401
|
Zheng Y, Zhang F, Deng C, Wei Z. [Research progress on effects of high glucose microenvironment on biological activity of adipose-derived stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1602-1606. [PMID: 33319543 DOI: 10.7507/1002-1892.202003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the research progress of the effects of high glucose microenvironment on the biological activity of adipose-derived stem cells (ADSCs). Methods The literature on the high glucose microenvironment and ADSCs at home and abroad in recent years was reviewed, and the effects of high glucose microenvironment on the general characteristics, differentiation potential, angiogenesis, and nerve regeneration of ADSCs were summarized. Results The accumulation of advanced glycosylation end products (AGEs) in the high glucose microenvironment led to changes in the biological activities of ADSCs through various pathways, including cell surface markers, proliferation, migration, multi-lineage differentiation, secretory function, and tissue repair ability. The ability of ADSCs to promote angiogenesis and nerve regeneration in high glucose microenvironment is still controversial. Conclusion High glucose microenvironment can affect the biological activity of ADSCs, and the effect and mechanism of ADSCs on angiogenesis and nerve regeneration in high glucose microenvironment need to be further studied.
Collapse
Affiliation(s)
- Yongjian Zheng
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563000, P.R.China
| | - Fengling Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563000, P.R.China
| | - Chengliang Deng
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563000, P.R.China
| | - Zairong Wei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563000, P.R.China
| |
Collapse
|
402
|
Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020; 108:270-285. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
The development of new tools to interface with the nervous system, empowered by advances in electronics and materials science, has transformed neuroscience and is informing therapies for neurological and mental conditions. Although the vast majority of neural engineering research has focused on advancing tools to study the brain, understanding the peripheral nervous system and other organs can similarly benefit from these technologies. To realize this vision, the neural interface technologies need to address the biophysical, mechanical, and chemical challenges posed by the peripheral nerves and organs. In this Perspective, we discuss design considerations and recent technological advances to modulate electrical signaling outside the central nervous system. The innovations in bioelectronics borne out of interdisciplinary collaborations between biologists and physical scientists may not only advance fundamental study of peripheral (neuro)physiology but also empower clinical interventions for conditions including neurological, gastrointestinal, and immune dysfunction.
Collapse
Affiliation(s)
- Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
403
|
Foster TP, Bruggeman B, Campbell-Thompson M, Atkinson MA, Haller MJ, Schatz DA. Exocrine Pancreas Dysfunction in Type 1 Diabetes. Endocr Pract 2020; 26:1505-1513. [PMID: 33471743 PMCID: PMC8697709 DOI: 10.4158/ep-2020-0295] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Type 1 diabetes (T1D) is characterized by autoimmune β-cell destruction, but exocrine pancreas abnormalities may also play a role in the disease pathophysiology. Herein, we review the current evidence of exocrine damage in T1D and discuss its underlying pathophysiology, clinical evaluation, and treatment. METHOD Extensive literature search was performed for "type 1 diabetes" and "exocrine dysfunction" on PubMed and Google Scholar databases. RESULTS T1D pancreata are significantly smaller than controls, both in weight and volume. T cells, dendritic cells, neutrophils, and products of complement activation are seen in T1D exocrine tissues. Exocrine pancreas fibrosis, arteriosclerosis, fatty infiltration, and acinar atrophy are also observed on histology. Pancreatic exocrine insufficiency (PEI) can be assessed through direct exocrine testing, fecal elastase concentration, and measurement of serum exocrine enzymes. The prevalence of PEI in T1D varies by modality and study but is consistently greater than controls. The clinical relevance of PEI in T1D is debatable, as many patients with laboratory evidence of PEI are asymptomatic. However, in PEI-symptomatic patients reported benefits of pancreatic enzyme replacement therapy (PERT) include relief of gastrointestinal symptoms, improved quality of life, better glycemic control, and optimal nutrition. CONCLUSION Exocrine pancreas abnormalities often occur in T1D. Whether exocrine dysfunction occurs simultaneously with β-cell destruction, as a result of β-cell loss, or as a combination of both remains to be definitively answered. In T1D with gastrointestinal complaints, PEI should be evaluated, usually via fecal elastase measurements. PERT is recommended for T1D patients with symptoms and laboratory evidence of PEI. ABBREVIATIONS AAb+ = autoantibody positive; AAb- = autoantibody negative; FEC = fecal elastase concentration; PEI = pancreatic exocrine insufficiency; PERT = pancreatic enzyme replacement therapy; PP = pancreatic polypep-tide; T1D = type 1 diabetes.
Collapse
Affiliation(s)
- Timothy P Foster
- From the (1)Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, and
| | - Brittany Bruggeman
- From the (1)Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, and
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, Florida
| | - Mark A Atkinson
- From the (1)Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, and; Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, Florida
| | - Michael J Haller
- From the (1)Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, and
| | - Desmond A Schatz
- From the (1)Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, and.
| |
Collapse
|
404
|
Yu M, Fang P, Wang H, Shen G, Zhang Z, Tang Z. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications. Peptides 2020; 134:170404. [PMID: 32898581 DOI: 10.1016/j.peptides.2020.170404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a distal spontaneous pain, caused by lesion of sensory neurons and accompanied by depression and anxiety frequently, which reduce life quality of patients and increase society expenditure. To date, antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants are addressed as first-line therapy to DPNP, alone or jointly. It is urgently necessary to develop novel agents to treat DPNP and its complications. Evidences indicate that neuropeptide galanin can regulate multiple physiologic and pathophysiological processes. Pain, depression and anxiety may upregulate galanin expression. In return, galanin can modulate depression, anxiety, pain threshold and pain behaviors. This article provides a new insight into regulative effects of galanin and its subtype receptors on antidepressant, antianxiety and against DPNP. Through activating GALR1, galanin reinforces depression-like and anxiogenic-like behaviors, but exerts antinociceptive roles. While via activating GALR2, galanin is referred to as anti-depressive and anti-anxiotropic compounds, and at low and high concentration facilitates and inhibits nociceptor activity, respectively. The mechanism of the galanin roles is relative to increase in K+ currents and decrease in Ca2+ currents, as well as neurotrophic and neuroprotective roles. These data are helpful to develop novel drugs to treat DPNP and its complications.
Collapse
Affiliation(s)
- Mei Yu
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Penghua Fang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Wang
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Guiqin Shen
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zongxiang Tang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
405
|
Shim JW, Cho YJ, Kim M, Hong SH, Moon HW, Hong SH, Chae MS. Comparison of analgesic efficacy between rectus sheath blockade, intrathecal morphine with bupivacaine, and intravenous patient-controlled analgesia in patients undergoing robot-assisted laparoscopic prostatectomy: a prospective, observational clinical study. BMC Anesthesiol 2020; 20:291. [PMID: 33225899 PMCID: PMC7681986 DOI: 10.1186/s12871-020-01208-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
Background We explored the analgesic outcomes on postoperative day (POD) 1 in patients undergoing robot-assisted laparoscopic prostatectomy (RALP) who received intravenous patient-controlled analgesia (IV-PCA), rectus sheath bupivacaine block (RSB), or intrathecal morphine with bupivacaine block (ITMB). Methods This was a prospective, observational clinical trial. Patients were divided into three groups: IV-PCA (n = 30), RSB (n = 30), and ITMB (n = 30). Peak pain scores at rest and with coughing, cumulative IV-PCA drug consumption, the need for IV rescue opioids, and Quality of Recovery-15 (QoR-15) questionnaire scores collected on POD 1 were compared among the groups. Results The preoperative and intraoperative findings were comparable among the groups; the ITMB group required the least remifentanil of all groups. During POD 1, the ITMB group reported lower levels of pain at rest and with coughing, compared with the other two groups. During POD 1, incidences of severe pain at rest (10.0% vs. 23.3% vs. 40.0%) and with coughing (16.7% vs. 36.7% vs. 66.7%) were the lowest in the ITMB group compared with the RSB and IV-PCA groups, respectively. After adjustment for age, body mass index, diabetes mellitus, hypertension, and intraoperative remifentanil infusion, severe pain at rest was 0.167-fold less common in the ITMB group than in the IV-PCA group, while pain with coughing was 0.1-fold lower in the ITMB group and 0.306-fold lower in the RSB group, compared with the IV-PCA group. The ITMB group required lower cumulative IV-PCA drug infusions and less IV rescue opioids, while exhibiting a better QoR-15 global score, compared with the other two groups. Complications (nausea and pruritus) were significantly more common in the ITMB group than in the other two groups; however, we noted no ITMB- or RSB-related anesthetic complications (respiratory depression, post-dural headache, nerve injury, or puncture site hematoma or infection), and all patients were assessed as Clavien-Dindo grade I or II during the hospital stay. Conclusion Although ITMB induced complications of nausea and pruritus, this analgesic technique provided appropriate pain relief that enhanced patient perception related to early postoperative recovery. Trial registration Clinical Research Information Service, Republic of Korea, (approval number: KCT0005040) on May 20, 2020
Collapse
Affiliation(s)
- Jung-Woo Shim
- Department of Anesthesiology and Pain medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yun Jeong Cho
- Department of Anesthesiology and Pain medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Minhee Kim
- Department of Anesthesiology and Pain medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hyun Hong
- Department of Anesthesiology and Pain medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyong Woo Moon
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Suk Chae
- Department of Anesthesiology and Pain medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
406
|
Maiga Y, Diallo S, Konipo FDN, Sangho O, Sangaré M, Diallo SH, Mahamadou S, Péréon Y, Giumelli B, Coulibaly A, Daou M, Traoré Z, Sow Sylla D, Albakaye M, Guinto CO, Ouologem M, Sissoko AS, Traoré HA, Coulibaly SP, Damier P, Attal N, Nizard J. Diabetic polyneuropathy with/out neuropathic pain in Mali: A cross-sectional study in two reference diabetes treatment centers in Bamako (Mali), Western Africa. PLoS One 2020; 15:e0241387. [PMID: 33166296 PMCID: PMC7652324 DOI: 10.1371/journal.pone.0241387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Diabetic polyneuropathy (DPN) with or without neuropathic pain is a frequent complication of diabetes. This work aimed to determine the prevalence of diabetic polyneuropathy, to describe its epidemiological aspects, and to analyze the therapeutic itinerary of patients with DPN. METHODS This was a cross-sectional, descriptive study performed synchronously over six months at two major follow-up sites for patients with diabetes in Mali. DPN was diagnosed based on the Michigan Neuropathy Screening Instrument (MNSI). The neuropathic nature of the pain and the quality of life of patients were evaluated by the DN4 and the ED-5D scale, respectively. We used three (3) different questionnaires to collect data from patients (one at inclusion and another during the follow-up consultation) and from the caregivers of patients with DPN. RESULTS We included 252 patients with diabetes, and DPN was found to have a healthcare facility-based prevalence of 69.8% (176/252). The sex ratio was approximately three females for every male patient. The patients were mostly 31 to 60 years of age, 83% had type 2 diabetes, and 86.9% had neuropathic pain Approximately half of the patients (48.3%) had autonomic neuropathy and they reported moderate to intense pain, which was mainly described as a burning sensation. The patients exhibited impaired exteroceptive and proprioceptive sensations in 51.7% of cases. The patients smoked tobacco in 3.4% of cases, while 36.6% of the patients were obese and had dyslipidemia. The caregivers clearly indicated that appropriate medications were not readily accessible or available for their patients with DPN. CONCLUSION The healthcare facility-based prevalence of DPN with or without neuropathic pain was high in our cohort. These inexpensive and easy-to-use tools (MNSI, DN4) can be used to adequately diagnose DPN in the African context. In Mali, screening and early treatment of patients at risk of DPN should allow for a reduction of the burden of the disease, while caregivers need to be adequately trained to manage DPN.
Collapse
Affiliation(s)
- Youssoufa Maiga
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
- Department of Neurology, Gabriel Touré Teaching Hospital, Bamako, Mali
- Laboratory of Therapeutics (EA3826), Faculty of Medicine of Nantes, University of Nantes, Nantes, France
| | - Salimata Diallo
- Department of Neurology, Gabriel Touré Teaching Hospital, Bamako, Mali
| | | | - Oumar Sangho
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
| | - Modibo Sangaré
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
| | - Seybou H. Diallo
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
- Department of Neurology, Gabriel Touré Teaching Hospital, Bamako, Mali
| | | | - Yann Péréon
- Reference Center of Neuromuscular Diseases Atlantique-Occitanie-Caraïbes, Hôtel-Dieu, UHC of Nantes, Nantes, France
| | | | - Awa Coulibaly
- Department of Neurology, Gabriel Touré Teaching Hospital, Bamako, Mali
| | - Mariam Daou
- Department of Neurology, Gabriel Touré Teaching Hospital, Bamako, Mali
| | | | - Djeneba Sow Sylla
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
- Center for Combating Diabetes in Mali (CCD), Bamako, Mali
| | - Mohamed Albakaye
- Department of Neurology, Gabriel Touré Teaching Hospital, Bamako, Mali
| | - Cheick Oumar Guinto
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
| | - Madani Ouologem
- Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Adama S. Sissoko
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
| | - Hamar A. Traoré
- Faculty of Medicine, University of Technical Sciences and Technologies, Bamako, Mali
| | | | | | - Nadine Attal
- INSERM U 98, CET, CHU Ambroise Paré, 92100 Boulogne-Billancourt, France
| | - Julien Nizard
- Laboratory of Therapeutics (EA3826), Faculty of Medicine of Nantes, University of Nantes, Nantes, France
- Faculty of Medicine, University of Nantes, Nantes, France
- Federal Pain Palliative Care and Support, Laboratory of Therapeutics, Nantes UHC, Nantes, France
| |
Collapse
|
407
|
Hicks CW, Wang D, Daya NR, Windham BG, Ballantyne CM, Matsushita K, Selvin E. Associations of Cardiac, Kidney, and Diabetes Biomarkers With Peripheral Neuropathy among Older Adults in the Atherosclerosis Risk in Communities (ARIC) Study. Clin Chem 2020; 66:686-696. [PMID: 32268368 DOI: 10.1093/clinchem/hvaa051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of this study was to assess the association of high-sensitivity cardiac troponin (hs-cTnT) and other cardiac, kidney, hyperglycemia, and inflammatory biomarkers with peripheral neuropathy (PN) in a community-based population. METHODS We conducted a cross-sectional analysis of 3056 black and white participants in the Atherosclerosis Risk in Communities (ARIC) study who underwent standardized monofilament PN testing and had measures of cardiac function (hs-cTnT, N-terminal pro-B-type natriuretic peptide [NT-proBNP], and growth differentiation factor 15 [GDF15]), kidney function (serum creatinine, cystatin C, β-2 microglobulin, urine albumin-to-creatinine ratio), hyperglycemia (fasting glucose, hemoglobin A1c [Hb A1c], fructosamine, glycated albumin, 1,5-anhydroglucitol), and inflammation (C-reactive protein) assessed at visit 6 (2016-2017; age 71-94 years). We used logistic regression to assess the associations of these biomarkers (modeled in diabetes-specific tertiles) with PN in older adults with and without diabetes after adjusting for traditional risk factors. RESULTS In total, 33.5% of participants had PN (37.3% with diabetes and 31.9% without diabetes). There was an independent association of hs-cTnT with PN regardless of diabetes status (diabetes T3 vs. T1: odds ratio [OR], 2.15 [95% CI, 1.44-3.22]; no diabetes: OR, 2.31 [95%CI, 1.76-3.03]; P = 0.72 for interaction). Among participants without diabetes, there were also significant associations of NT-proBNP (OR, 1.40 [95% CI, 1.08-1.81]) and urine albumin-to-creatinine ratio (OR, 1.55 [95% CI, 1.22-1.97]) with PN. Associations of hyperglycemia biomarkers including Hb A1c (OR, 1.76 [95% CI, 1.22-2.54]), fructosamine (OR, 1.71 [95% CI, 1.19-2.46]), and glycated albumin (OR, 1.45 [95% CI, 1.03-2.03]) with PN were significant only among participants with diabetes. CONCLUSIONS Overall, hs-cTnT appears to be a global marker of end organ damage, including PN. Laboratory biomarkers may be able to help us identify those individuals with PN.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Division of Vascular Surgery and Endovascular Therapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dan Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Natalie R Daya
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - B Gwen Windham
- Department of Medicine/Geriatrics, University of Mississippi Medical Center, Jackson, MS
| | | | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
408
|
Osonoi S, Mizukami H, Itabashi C, Wada K, Kudoh K, Igawa A, Ogasawara S, Ishibashi Y, Daimon M, Yagihashi S, Nakaji S. Increased Oxidative Stress Underlies Abnormal Pain Threshold in a Normoglycemic Japanese Population. Int J Mol Sci 2020; 21:E8306. [PMID: 33167536 PMCID: PMC7663937 DOI: 10.3390/ijms21218306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
Normal-high HbA1c levels are a risk factor for attenuated pain sensation in normoglycemic subjects. It is unclear, however, what mechanisms underlie the pathogenesis of attenuated pain sensation in such a population. We, therefore, explored the relationship between oxidative stress (OS) and pain sensation in a rural Japanese population. A population-based study of 894 individuals (average age 53.8 ± 0.5 years) and 55 subjects with impaired fasting glucose (IFG) were enrolled in this study. Individuals with diabetes were excluded. Relationships between pain threshold induced by intraepidermal electrical stimulation (PINT) and clinico-hematological parameters associated with OS were evaluated. Univariate linear regression analyses revealed age, BMI, HbA1c, the OS biomarker urine 8-hydroxy-2'-deoxyguanosine (8-OHdG), systolic blood pressure, and decreased Achilles tendon reflex on the PINT scores. Adjustments for age, gender, and multiple clinical measures confirmed a positive correlation between PINT scores and urine 8-OHdG (β = 0.09, p < 0.01). Urine 8-OHdG correlated positively with higher HbA1c levels and age in the normoglycemic population. Unlike in the normoglycemic population, both inflammation and OS were correlated with elevated PINT scores in IFG subjects. OS may be a major contributing factor to elevated PINT scores in a healthy Japanese population.
Collapse
Affiliation(s)
- Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (S.O.); (C.I.); (K.K.); (S.O.); (S.Y.)
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (S.O.); (C.I.); (K.K.); (S.O.); (S.Y.)
| | - Chieko Itabashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (S.O.); (C.I.); (K.K.); (S.O.); (S.Y.)
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (K.W.); (Y.I.)
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (S.O.); (C.I.); (K.K.); (S.O.); (S.Y.)
| | - Akiko Igawa
- Department of Gastroenterological Surgery and Pediatric Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (S.O.); (C.I.); (K.K.); (S.O.); (S.Y.)
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (K.W.); (Y.I.)
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; (S.O.); (C.I.); (K.K.); (S.O.); (S.Y.)
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
| |
Collapse
|
409
|
Jha MK, Ament XH, Yang F, Liu Y, Polydefkis MJ, Pellerin L, Morrison BM. Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Exp Neurol 2020; 333:113415. [PMID: 32717355 PMCID: PMC7502508 DOI: 10.1016/j.expneurol.2020.113415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications in diabetic patients. Though the exact mechanism for DPN is unknown, it clearly involves metabolic dysfunction and energy failure in multiple cells within the peripheral nervous system. Lactate is an alternate source of metabolic energy that is increasingly recognized for its role in supporting neurons. The primary transporter for lactate in the nervous system, monocarboxylate transporter-1 (MCT1), has been shown to be critical for peripheral nerve regeneration and metabolic support to neurons/axons. In this study, MCT1 was reduced in both sciatic nerve and dorsal root ganglia in wild-type mice treated with streptozotocin (STZ), a common model of type-1 diabetes. Heterozygous MCT1 null mice that developed hyperglycemia following STZ treatment developed a more severe DPN compared to wild-type mice, as measured by greater axonal demyelination, decreased peripheral nerve function, and increased numbness to innocuous low-threshold mechanical stimulation. Given that MCT1 inhibitors are being developed as both immunosuppressive and chemotherapeutic medications, our results suggest that clinical development in patients with diabetes should proceed with caution. Collectively, our findings uncover an important role for MCT1 in DPN and provide a potential lead toward developing novel treatments for this currently untreatable disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Xanthe H Ament
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Fang Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Ying Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Luc Pellerin
- Inserm U1082, Universite de Poitiers, Poitiers Cedex 86021, France; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
410
|
Gonçalves NP, Yan Y, Ulrichsen M, Venø MT, Poulsen ET, Enghild JJ, Kjems J, Vægter CB. Modulation of Small RNA Signatures in Schwann-Cell-Derived Extracellular Vesicles by the p75 Neurotrophin Receptor and Sortilin. Biomedicines 2020; 8:E450. [PMID: 33114403 PMCID: PMC7694014 DOI: 10.3390/biomedicines8110450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs) are the main glial cells of the peripheral nervous system (PNS) and are known to be involved in various pathophysiological processes, such as diabetic neuropathy and nerve regeneration, through neurotrophin signaling. Such glial trophic support to axons, as well as neuronal survival/death signaling, has previously been linked to the p75 neurotrophin receptor (p75NTR) and its co-receptor Sortilin. Recently, SC-derived extracellular vesicles (EVs) were shown to be important for axon growth and nerve regeneration, but cargo of these glial cell-derived EVs has not yet been well-characterized. In this study, we aimed to characterize signatures of small RNAs in EVs derived from wild-type (WT) SCs and define differentially expressed small RNAs in EVs derived from SCs with genetic deletions of p75NTR (Ngfr-/-) or Sortilin (Sort1-/-). Using RNA sequencing, we identified a total of 366 miRNAs in EVs derived from WT SCs of which the most highly expressed are linked to the regulation of axonogenesis, axon guidance and axon extension, suggesting an involvement of SC EVs in axonal homeostasis. Signaling of SC EVs to non-neuronal cells was also suggested by the presence of several miRNAs important for regulation of the endothelial cell apoptotic process. Ablated p75NTR or sortilin expression in SCs translated into a set of differentially regulated tRNAs and miRNAs, with impact in autophagy and several cellular signaling pathways such as the phosphatidylinositol signaling system. With this work, we identified the global expression profile of small RNAs present in SC-derived EVs and provided evidence for a regulatory function of these vesicles on the homeostasis of other cell types of the PNS. Differentially identified miRNAs can pave the way to a better understanding of p75NTR and sortilin roles regarding PNS homeostasis and disease.
Collapse
Affiliation(s)
- Nádia P. Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| | - Yan Yan
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Omiics ApS, 8000 Aarhus, Denmark
| | - Maj Ulrichsen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Omiics ApS, 8000 Aarhus, Denmark
| | - Ebbe T. Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Christian B. Vægter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| |
Collapse
|
411
|
Fan B, Chopp M, Zhang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurol 2020; 11:558758. [PMID: 33192992 PMCID: PMC7642849 DOI: 10.3389/fneur.2020.558758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
412
|
Eid SA, O’Brien PD, Hinder LM, Hayes JM, Mendelson FE, Zhang H, Zeng L, Kretzler K, Narayanan S, Abcouwer SF, Brosius FC, Pennathur S, Savelieff MG, Feldman EL. Differential Effects of Empagliflozin on Microvascular Complications in Murine Models of Type 1 and Type 2 Diabetes. BIOLOGY 2020; 9:biology9110347. [PMID: 33105667 PMCID: PMC7690408 DOI: 10.3390/biology9110347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Microvascular complications account for the significant morbidity associated with diabetes. Despite tight glycemic control, disease risk remains especially in type 2 diabetes (T2D) patients and no therapy fully prevents nerve, retinal, or renal damage in type 1 diabetes (T1D) or T2D. Therefore, new antidiabetic drug classes are being evaluated for the treatment of microvascular complications. We investigated the effect of empagliflozin (EMPA), an inhibitor of the sodium/glucose cotransporter 2 (SGLT2), on diabetic neuropathy (DPN), retinopathy (DR), and kidney disease (DKD) in streptozotocin-induced T1D and db/db T2D mouse models. EMPA lowered blood glycemia in T1D and T2D models. However, it did not ameliorate any microvascular complications in the T2D model, which was unexpected, given the protective effect of SGLT2 inhibitors on DKD progression in T2D subjects. Although EMPA did not improve DKD in the T1D model, it had a potential modest effect on DR measures and favorably impacted DPN as well as systemic oxidative stress. These results support the concept that glucose-centric treatments are more effective for DPN in T1D versus T2D. This is the first study that provides an evaluation of EMPA treatment on all microvascular complications in a side-by-side comparison in T1D and T2D models.
Collapse
Affiliation(s)
- Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
| | - Lixia Zeng
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
| | - Katharina Kretzler
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Samanthi Narayanan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
- Correspondence: ; Tel.: +1-(734)-763-7274
| |
Collapse
|
413
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
414
|
Mizukami H, Osonoi S, Takaku S, Yamagishi SI, Ogasawara S, Sango K, Chung S, Yagihashi S. Role of glucosamine in development of diabetic neuropathy independent of the aldose reductase pathway. Brain Commun 2020; 2:fcaa168. [PMID: 33305258 PMCID: PMC7713992 DOI: 10.1093/braincomms/fcaa168] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Long-term metabolic aberrations contribute to the development of diabetic neuropathy but the precise mechanism or mechanisms remains elusive. We have previously shown that aldose reductase-deficient mice exhibit delayed onset and progression of neuropathy following induction of diabetes, suggesting a role both for downstream metabolites of this enzyme and also for other unrelated pathways. In this study, we have utilized comprehensive metabolomics analyses to identify potential neurotoxic metabolites in nerve of diabetic mice and explored the mechanism of peripheral nerve injury. Aldose reductase knockout and control C57Bl/6J mice were made diabetic by injection of streptozotocin and followed for 8–16 weeks. Diabetic aldose reductase knockout mice exhibited delayed onset of nerve conduction slowing compared to diabetic wild-type mice. The sciatic nerves from aldose reductase knockout mice exposed to 12 weeks of diabetes were used for metabolomics analysis and compared with analyses of nerves from age-matched diabetic wild-type mice as well as non-diabetic aldose reductase knockout and wild-type mice. Neurotoxicity of candidate metabolites was evaluated using cultured Schwann cells and dorsal root ganglion neurons, and further confirmed in vivo. Metabolomics analysis identified elevated glucosamine levels in both diabetic aldose reductase knockout and diabetic wild mice. Exposure to glucosamine reduced survival of cultured Schwann cells and neurons accompanied by increased expression of cleaved caspase 3, CCAT-enhancer-binding homologous protein and mitochondrial hexokinase-I, along with ATP depletion. These changes were suppressed by siRNA to hexokinase-I or the ATP donor, inosine, but not by the antioxidant N-acetylcysteine or the endoplasmic reticulum-stress inhibitor 4-phenylbutyrate. The O-GlcNAcylation enhancer, O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino N-phenylcarbamate, did not augment glucosamine neurotoxicity. Single dose glucosamine injection into mice caused a reduction of sciatic nerve Na, K-ATPase activity, ATP content and augmented expression of hexokinase-I, which were suppressed by pretreatment with inosine but not with 4-phenylbutyrate. Mice implanted with a subcutaneous pump to infuse glucosamine for 12 weeks developed nerve conduction slowing and intraepidermal nerve fibre loss, recapitulating prominent indices of diabetic neuropathy. While acute glucosamine neurotoxicity is unlikely to contribute substantially to the slowly developing neuropathy phenotype in humans, sustained energy deprivation induced by glucosamine may well contribute to the pathogenesis of diabetic neuropathy. Our data thus identifies a novel pathway for diabetic neuropathy that may offer a potential new therapeutic target.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo
| | - Shin-Ichiro Yamagishi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo
| | - Sookja Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
415
|
Lanigan LG, Russell DS, Woolard KD, Pardo ID, Godfrey V, Jortner BS, Butt MT, Bolon B. Comparative Pathology of the Peripheral Nervous System. Vet Pathol 2020; 58:10-33. [PMID: 33016246 DOI: 10.1177/0300985820959231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The peripheral nervous system (PNS) relays messages between the central nervous system (brain and spinal cord) and the body. Despite this critical role and widespread distribution, the PNS is often overlooked when investigating disease in diagnostic and experimental pathology. This review highlights key features of neuroanatomy and physiology of the somatic and autonomic PNS, and appropriate PNS sampling and processing techniques. The review considers major classes of PNS lesions including neuronopathy, axonopathy, and myelinopathy, and major categories of PNS disease including toxic, metabolic, and paraneoplastic neuropathies; infectious and inflammatory diseases; and neoplasms. This review describes a broad range of common PNS lesions and their diagnostic criteria and provides many useful references for pathologists who perform PNS evaluations as a regular or occasional task in their comparative pathology practice.
Collapse
|
416
|
Okdahl T, Brock C, Fløyel T, Wegeberg AML, Jakobsen PE, Ejskjaer N, Pociot F, Brock B, Størling J. Increased levels of inflammatory factors are associated with severity of polyneuropathy in type 1 diabetes. Clin Endocrinol (Oxf) 2020; 93:419-428. [PMID: 32497255 DOI: 10.1111/cen.14261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Distal symmetrical polyneuropathy (DSPN) is a severe common long-term complication of type 1 diabetes caused by impaired sensory-motor nerve function. As chronic low-grade inflammation may be involved in the pathogenesis of DSPN, we investigated the circulating levels of inflammatory markers in individuals with type 1 diabetes with and without DSPN. Furthermore, we determined to what extent these factors correlated with different peripheral sensory nerve functions. DESIGN Cross-sectional study. PATIENTS The study included 103 individuals with type 1 diabetes with (n = 50) and without DSPN (n = 53) as well as a cohort of healthy controls (n = 21). MEASUREMENTS Circulating levels of various inflammatory markers (cytokines, chemokines and soluble adhesion molecules) were determined in serum samples by Luminex multiplexing technology. Peripheral sensory nerve testing, for example vibration, tactile and thermal perception, was assessed by standardized procedures. RESULTS The cytokines IL-1α, IL-4, IL-12p70, IL-13, IL-17A and TNF-α; the chemokine MCP-1; and the adhesion molecule E-selectin were significantly increased in individuals with type 1 diabetes with DSPN compared to those without DSPN (P < .001). These observations were independent of age, sex, BMI, disease duration and blood pressure. Additionally, higher serum concentrations of cytokines and chemokines were associated with higher vibration and tactile perception thresholds, but not with heat tolerance threshold. CONCLUSIONS Individuals with type 1 diabetes and concomitant DSPN display higher serum levels of several inflammatory markers. These findings support that systemic low-grade inflammation may play a role in the pathogenesis of DSPN.
Collapse
Affiliation(s)
- Tina Okdahl
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tina Fløyel
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Anne-Marie L Wegeberg
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Poul Erik Jakobsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joachim Størling
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
417
|
Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020; 14:589582. [PMID: 33132853 PMCID: PMC7550678 DOI: 10.3389/fncel.2020.589582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Research over the last couple of decades has provided novel insights into lactate neurobiology and the implications of lactate transport-driven neuroenergetics in health and diseases of peripheral nerve and the brain. The expression pattern of lactate transporters in glia and neurons has now been described, though notable controversies and discrepancies remain. Importantly, down- and up-regulation experiments are underway to better understand the function of these transporters in different systems. Lactate transporters in peripheral nerves are important for maintenance of axon and myelin integrity, motor end-plate integrity, the development of diabetic peripheral neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain energy metabolism and functions ranging from development to synaptic plasticity to axonal integrity are also dependent on lactate transport primarily between glia and neurons. This review is focused on critically analysing the expression pattern and the functions of lactate transporters in peripheral nerves and the brain and highlighting their role in glia-neuron metabolic crosstalk in physiological and pathological conditions.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
418
|
Jende JME, Kender Z, Rother C, Alvarez-Ramos L, Groener JB, Pham M, Morgenstern J, Oikonomou D, Hahn A, Juerchott A, Kollmer J, Heiland S, Kopf S, Nawroth PP, Bendszus M, Kurz FT. Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography. Front Neurosci 2020; 14:570744. [PMID: 33100960 PMCID: PMC7546893 DOI: 10.3389/fnins.2020.570744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic neuropathy (DPN) is one of the most severe and yet most poorly understood complications of diabetes mellitus. In vivo imaging of dorsal root ganglia (DRG), a key structure for the understanding of DPN, has been restricted to animal studies. These have shown a correlation of decreased DRG volume with neuropathic symptom severity. Our objective was to investigate correlations of DRG morphology and signal characteristics at 3 Tesla (3T) magnetic resonance neurography (MRN) with clinical and serological data in diabetic patients with and without DPN. In this cross-sectional study, participants underwent 3T MRN of both L5 DRG using an isotropic 3D T2-weighted, fat-suppressed sequence with subsequent segmentation of DRG volume and analysis of normalized signal properties. Overall, 55 diabetes patients (66 ± 9 years; 32 men; 30 with DPN) took part in this study. DRG volume was smaller in patients with severe DPN when compared to patients with mild or moderate DPN (134.7 ± 21.86 vs 170.1 ± 49.22; p = 0.040). In DPN patients, DRG volume was negatively correlated with the neuropathy disability score (r = −0.43; 95%CI = −0.66 to −0.14; p = 0.02), a measure of neuropathy severity. DRG volume showed negative correlations with triglycerides (r = −0.40; 95%CI = −0.57 to −0.19; p = 0.006), and LDL cholesterol (r = −0.33; 95%CI = −0.51 to −0.11; p = 0.04). There was a strong positive correlation of normalized MR signal intensity (SI) with the neuropathy symptom score in the subgroup of patients with painful DPN (r = 0.80; 95%CI = 0.46 to 0.93; p = 0.005). DRG SI was positively correlated with HbA1c levels (r = 0.30; 95%CI = 0.09 to 0.50; p = 0.03) and the triglyceride/HDL ratio (r = 0.40; 95%CI = 0.19 to 0.57; p = 0.007). In this first in vivo study, we found DRG morphological degeneration and signal increase in correlation with neuropathy severity. This elucidates the potential importance of MR-based DRG assessments in studying structural and functional changes in DPN.
Collapse
Affiliation(s)
- Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Rother
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucia Alvarez-Ramos
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Jan B Groener
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, München-Neuherberg, Germany.,Medicover Neuroendokrinologie, Munich, Germany
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neuroradiology, Würzburg University Hospital, Würzburg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Dimitrios Oikonomou
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, München-Neuherberg, Germany
| | - Peter P Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, München-Neuherberg, Germany.,Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
419
|
Ren X, Yang R, Li L, Xu X, Liang S. Long non coding RNAs involved in MAPK pathway mechanism mediates diabetic neuropathic pain. Cell Biol Int 2020; 44:2372-2379. [PMID: 32844535 DOI: 10.1002/cbin.11457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is the largest global epidemic of the 21st century, and the cost of diabetes and its complications comprise about 12% of global health expenditure. Diabetic neuropathy is the most common complication of diabetes, affecting up to 50% of patients over the course of their disease. Among them, 30%-50% develop neuropathic pain, which has typical symptoms that originate from the toes and progress to foot ulcers and seriously influence quality of life. The pathogenesis of diabetic neuropathic pain (DNP) is complicated and incompletely understood and there is no effective treatment except supportive treatment. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs exceeding 200 nucleotides in length, have been shown to play key roles in fundamental cellular processes, and are considered to be potential targets for treatment. Recent research indicates that lncRNA is involved in the pathogenesis of DNP. Certain overexpressed lncRNAs can enhance the purinergic receptor-mediated neuropathic pain in peripheral ganglia and inflammatory cytokines are released due to receptors activated by adenosine triphosphate. In recent years, our laboratory also has been exploring the relationship and pathogenesis between lncRNAs and DNP. In this review, we focus on the recent progress in functional lncRNAs associated with DNP and investigate their roles related to respective receptors.
Collapse
Affiliation(s)
- Xinlu Ren
- Queen Mary University of London Joint Programme, Nanchang University, Nanchang, Jiangxi, China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
420
|
Gylfadottir SS, Itani M, Krøigård T, Kristensen AG, Christensen DH, Nicolaisen SK, Karlsson P, Callaghan BC, Bennett DL, Andersen H, Tankisi H, Nielsen JS, Andersen NT, Jensen TS, Thomsen RW, Sindrup SH, Finnerup NB. Diagnosis and prevalence of diabetic polyneuropathy: a cross-sectional study of Danish patients with type 2 diabetes. Eur J Neurol 2020; 27:2575-2585. [PMID: 32909392 DOI: 10.1111/ene.14469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Diabetic polyneuropathy (DPN) is a common complication of diabetes. Using the Toronto criteria for diabetic polyneuropathy and the grading system for neuropathic pain, the performance of neuropathy scales and questionnaires were assessed by comparing them to a clinical gold standard diagnosis of DPN and painful DPN in a cohort of patients with recently diagnosed type 2 diabetes. METHODS A questionnaire on neuropathy and pain was sent to a cohort of 5514 Danish type 2 diabetes patients. A sample of 389 patients underwent a detailed clinical examination and completed neuropathy questionnaires and scales. RESULTS Of the 389 patients with a median diabetes duration of 5.9 years, 126 had definite DPN (including 53 with painful DPN), 88 had probable DPN and 53 had possible DPN. There were 49 patients with other causes of polyneuropathy, neuropathy symptoms or pain, 10 with subclinical DPN and 63 without DPN. The sensitivity of the Michigan Neuropathy Screening Instrument questionnaire to detect DPN was 25.7% and the specificity 84.6%. The sensitivity of the Toronto Clinical Neuropathy Scoring System, including questionnaire and clinical examination, was 62.9% and the specificity was 74.6%. CONCLUSIONS Diabetic polyneuropathy affects approximately one in five Danish patients with recently diagnosed type 2 diabetes but neuropathic pain is not as common as previously reported. Neuropathy scales with clinical examination perform better compared with questionnaires alone, but better scales are needed for future epidemiological studies.
Collapse
Affiliation(s)
- S S Gylfadottir
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - M Itani
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - T Krøigård
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - A G Kristensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - D H Christensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - S K Nicolaisen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - P Karlsson
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - B C Callaghan
- Department of Neurology, University of Michigan, Ann Arbor,, MI, USA
| | - D L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - H Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - H Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - J S Nielsen
- Danish Centre for Strategic Research in Type 2 Diabetes, Steno Diabetes Center, Odense, Denmark
| | - N T Andersen
- Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - T S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - R W Thomsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - S H Sindrup
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - N B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
421
|
Chen X, Liu W, Wang L, Lin D, Nie L, He K, Guo Z, Zhu F, Feng W, Liu W, Yuan J, Yang X, Spencer P, Liu J. Diabetes mellitus is associated with elevated urinary pyrrole markers of γ-diketones known to cause axonal neuropathy. BMJ Open Diabetes Res Care 2020; 8:8/1/e001575. [PMID: 32912928 PMCID: PMC7484872 DOI: 10.1136/bmjdrc-2020-001575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Progressive distal symmetrical axonal neuropathy, a complication of diabetes mellitus (DM), has an unknown cause. Normal physiological metabolism and diabetic dysmetabolism are associated with the generation of γ-diketones. γ-Diketones form pyrroles with protein amines, notably with axonal proteins required for the maintenance of nerve fiber integrity, especially elongate, large-diameter peripheral nerve fibers innervating the extremities. We tested the hypothesis that neuropathy-associated γ-diketone pyrroles are elevated in DM. RESEARCH DESIGN AND METHODS We measured the urinary concentration of γ-diketone pyrroles in age-matched and gender-matched elderly (60-84 years) persons with (n=267) or without (n=267) indicators of DM based in a community population (9411 community older adults aged ≥60 years) in Shenzhen city, Guangdong, China. We used statistical methods, including a generalized linear model, multivariate logistic regression analysis and restricted cubic splines, to assess linear and nonlinear relationships between urinary γ-diketone pyrroles and indicators of DM. RESULTS Compared with healthy controls, those with DM had significantly higher levels of fasting blood glucose, glycated hemoglobin A1c, urinary ketone bodies and urinary γ-diketone pyrroles. The median concentration of urinary γ-diketone pyrrole adducts was significantly higher (p<0.0001) in individuals with DM (7.5 (5.4) μM) compared with healthy controls (5.9 (4.3) μM). Both linear and non-linear relations were found between urinary γ-diketone pyrroles and indicators of DM. CONCLUSIONS Diabetic dysmetabolism includes increased generation and excretion of neuropathy-associated γ-diketone pyrroles. These findings form the foundation for studies to test whether γ-diketone pyrrole concentration correlates with quantitative sensory (vibration and temperature) and electrodiagnostic testing.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Lu Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dafeng Lin
- Poison Detection Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhiwei Guo
- Shenzhen Luohu Hospital for Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Feiqi Zhu
- Cognitive Impairment ward of Neurology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wenting Feng
- Poison Detection Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Weimin Liu
- Shenzhen Luohu Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Peter Spencer
- Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
422
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
423
|
Xu X, Wang W, Wang Z, Lv J, Xu X, Xu J, Yang J, Zhu X, Lu Y, Duan W, Huang X, Wang J, Zhou J, Shen X. DW14006 as a Direct AMPKα Activator Ameliorates Diabetic Peripheral Neuropathy in Mice. Diabetes 2020; 69:1974-1988. [PMID: 32647036 DOI: 10.2337/db19-1084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/29/2020] [Indexed: 11/13/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a long-term complication of diabetes with a complicated pathogenesis. AMP-activated protein kinase (AMPK) senses oxidative stress, and mitochondrial function plays a central role in the regulation of DPN. Here, we reported that DW14006 (2-[3-(7-chloro-6-[2'-hydroxy-(1,1'-biphenyl)-4-yl]-2-oxo-1,2-dihydroquinolin-3-yl)phenyl]acetic acid) as a direct AMPKα activator efficiently ameliorated DPN in both streptozotocin (STZ)-induced type 1 and BKS db/db type 2 diabetic mice. DW14006 administration highly enhanced neurite outgrowth of dorsal root ganglion neurons and improved neurological function in diabetic mice. The underlying mechanisms have been intensively investigated. DW14006 treatment improved mitochondrial bioenergetics profiles and restrained oxidative stress and inflammation in diabetic mice by targeting AMPKα, which has been verified by assay against the STZ-induced diabetic mice injected with adeno-associated virus 8-AMPKα-RNAi. To our knowledge, our work might be the first report on the amelioration of the direct AMPKα activator on DPN by counteracting multiple risk factors including mitochondrial dysfunction, oxidative stress, and inflammation, and DW14006 has been highlighted as a potential leading compound in the treatment of DPN.
Collapse
Affiliation(s)
- Xu Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyu Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jianlu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juanzhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
424
|
Kristensen AG, Khan KS, Bostock H, Khan BS, Gylfadottir S, Andersen H, Finnerup NB, Jensen TS, Tankisi H. MScanFit motor unit number estimation and muscle velocity recovery cycle recordings in diabetic polyneuropathy. Clin Neurophysiol 2020; 131:2591-2599. [PMID: 32927215 DOI: 10.1016/j.clinph.2020.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Motor Unit Number Estimation (MUNE) methods may be valuable in tracking motor unit loss in diabetic polyneuropathy (DPN). Muscle Velocity Recovery Cycles (MVRCs) provide information about muscle membrane properties. This study aimed to examine the utility of the MScanFit MUNE in detecting motor unit loss and to test whether the MVRCs could improve understanding of DPN pathophysiology. METHODS Seventy-nine type-2 diabetic patients were compared to 32 control subjects. All participants were examined with MScanFit MUNE and MVRCs in anterior tibial muscle. Lower limb nerve conduction studies (NCS) in peroneal, tibial and sural nerves were applied to diagnose large fiber neuropathy. RESULTS NCS confirmed DPN for 47 patients (DPN + ), with 32 not showing DPN (DPN-). MScanFit showed significantly decreased MUNE values and increased motor unit sizes, when comparing DPN + patients with controls (MUNE = 71.3 ± 4.7 vs 122.7 ± 3.8), and also when comparing DPN- patients (MUNE = 103.2 ± 5.1) with controls. MVRCs did not differ between groups. CONCLUSIONS MScanFit is more sensitive in showing motor unit loss than NCS in type-2 diabetic patients, whereas MVRCs do not provide additional information. SIGNIFICANCE The MScanFit results suggest that motor changes are seen as early as sensory, and the role of axonal membrane properties in DPN pathophysiology should be revisited.
Collapse
Affiliation(s)
- A G Kristensen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark
| | - K S Khan
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark; Department of Neurology, Aarhus University Hospital, Denmark
| | - H Bostock
- Institute of Neurology, University College London, Queen Square, London, UK
| | - B S Khan
- Department of Neurology, Aarhus University Hospital, Denmark
| | - S Gylfadottir
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark; Department of Neurology, Aarhus University Hospital, Denmark
| | - H Andersen
- Department of Neurology, Aarhus University Hospital, Denmark
| | - N B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark; Department of Neurology, Aarhus University Hospital, Denmark
| | - T S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark; Department of Neurology, Aarhus University Hospital, Denmark
| | - H Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark.
| |
Collapse
|
425
|
Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020; 12:123. [PMID: 32787975 PMCID: PMC7425575 DOI: 10.1186/s13148-020-00913-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes (T2D). Although the cellular and molecular mechanisms of DPN are poorly understood, we and others have shown that altered gene expression and DNA methylation are implicated in disease pathogenesis. However, how DNA methylation might functionally impact gene expression and contribute to nerve damage remains unclear. Here, we analyzed genome-wide transcriptomic and methylomic profiles of sural nerves from T2D patients with DPN. RESULTS Unbiased clustering of transcriptomics data separated samples into groups, which correlated with HbA1c levels. Accordingly, we found 998 differentially expressed genes (DEGs) and 929 differentially methylated genes (DMGs) between the groups with the highest and lowest HbA1c levels. Functional enrichment analysis revealed that DEGs and DMGs were enriched for pathways known to play a role in DPN, including those related to the immune system, extracellular matrix (ECM), and axon guidance. To understand the interaction between the transcriptome and methylome in DPN, we performed an integrated analysis of the overlapping genes between DEGs and DMGs. Integrated functional and network analysis identified genes and pathways modulating functions such as immune response, ECM regulation, and PI3K-Akt signaling. CONCLUSION These results suggest for the first time that DNA methylation is a mechanism regulating gene expression in DPN. Overall, DPN patients with high HbA1c have distinct alterations in sural nerve DNA methylome and transcriptome, suggesting that optimal glycemic control in DPN patients is an important factor in maintaining epigenetic homeostasis and nerve function.
Collapse
Affiliation(s)
- Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND 58202-9037 USA
| | - Stephanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah E. Elzinga
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Crystal Pacut
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND 58202-9037 USA
| |
Collapse
|
426
|
Bogacka J, Ciapała K, Pawlik K, Dobrogowski J, Przeklasa-Muszynska A, Mika J. Blockade of CCR4 Diminishes Hypersensitivity and Enhances Opioid Analgesia - Evidence from a Mouse Model of Diabetic Neuropathy. Neuroscience 2020; 441:77-92. [PMID: 32592824 DOI: 10.1016/j.neuroscience.2020.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
Abstract
Chemokine signaling has been implicated in the pathogenesis of diabetic neuropathy; however, the role of chemokine CC motif receptor 4 (CCR4) remains unknown. The goal was to examine the function of CCR4 in hypersensitivity development and opioid effectiveness in diabetic neuropathy. Streptozotocin (STZ; 200 mg/kg, intraperitoneally administered)-induced mouse model of diabetic neuropathy were used. An analysis of the mRNA/protein expression of CCR4 and its ligands was performed by qRT-PCR, microarray and/or Western blot methods. C021 (CCR4 antagonist), morphine and buprenorphine were injected intrathecally or intraperitoneally, and pain-related behavior was evaluated by the von Frey, cold plate and rotarod tests. We observed that on day 7 after STZ administration, the blood glucose level was increased, and as a consequence, hypersensitivity to tactile and thermal stimuli developed. In addition, we observed an increase in the mRNA level of CCL2 but not CCL17/CCL22. The microarray technique showed that the CCL2 protein level was also upregulated. In naive mice, the pronociceptive effect of intrathecally injected CCL2 was blocked by C021, suggesting that this chemokine acts through CCR4. Importantly, our results provide the first evidence that in a mouse model of diabetic neuropathy, single intrathecal and intraperitoneal injections of C021 diminished neuropathic pain-related behavior in a dose-dependent manner and improved motor functions. Moreover, both single intrathecal and intraperitoneal injections of C021 enhanced morphine and buprenorphine effectiveness. These results reveal that pharmacological modulation of CCR4 may be a good potential therapeutic target for the treatment of diabetic neuropathy and may enhance the effectiveness of opioids.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
427
|
Doostkam A, Mirkhani H, Iravani K, Karbalay-Doust S, Zarei K. Effect of Rutin on Diabetic Auditory Neuropathy in an Experimental Rat Model. Clin Exp Otorhinolaryngol 2020; 14:259-267. [PMID: 32764214 PMCID: PMC8373845 DOI: 10.21053/ceo.2019.02068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives Diabetic auditory neuropathy is a common complication of diabetes mellitus that has a major impact on patients’ quality of life. In this study, we assessed the efficacy of rutin in treating diabetic auditory neuropathy in an experimental rat model. Methods Forty Sprague-Dawley rats were randomly assigned to the following groups: group 1, control; group 2, diabetic rats; and groups 3–5, rats treated with rutin (at doses of 50, 100, and 150 mg/kg, respectively). We used auditory brain stem response, stereology of the spiral ganglion, and measurements of superoxide dismutase (SOD) and malondialdehyde (MDA) to evaluate the effects of treatment. Results Significant improvements in auditory neuropathy were observed in the rutin-treated groups in comparison with the diabetic group (P<0.05). Auditory threshold, wave latency, wave morphology, the volume and number of neurons in the spiral ganglion, and SOD and MDA activity showed improvements following treatment. Conclusion Rutin shows promise as a treatment modality for diabetic auditory neuropathy, but more trials are warranted for its clinical application.
Collapse
Affiliation(s)
- Aida Doostkam
- Department of Pharmacology, School of Medicine, Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mirkhani
- Department of Pharmacology, Medicinal and Natural Products Chemistry Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyar Iravani
- Department of Otolaryngology, Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Department of Anatomy, Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Zarei
- Department of Otolaryngology, Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
428
|
van der Velde JHPM, Koster A, Strotmeyer ES, Mess WH, Hilkman D, Reulen JPH, Stehouwer CDA, Henry RMA, Schram MT, van der Kallen CJH, Schalkwijk CG, Savelberg HHCM, Schaper NC. Cardiometabolic risk factors as determinants of peripheral nerve function: the Maastricht Study. Diabetologia 2020; 63:1648-1658. [PMID: 32537727 PMCID: PMC7351845 DOI: 10.1007/s00125-020-05194-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We aimed to examine associations of cardiometabolic risk factors, and (pre)diabetes, with (sensorimotor) peripheral nerve function. METHODS In 2401 adults (aged 40-75 years) we previously determined fasting glucose, HbA1c, triacylglycerol, HDL- and LDL-cholesterol, inflammation, waist circumference, blood pressure, smoking, glucose metabolism status (by OGTT) and medication use. Using nerve conduction tests, we measured compound muscle action potential, sensory nerve action potential amplitudes and nerve conduction velocities (NCVs) of the peroneal, tibial and sural nerves. In addition, we measured vibration perception threshold (VPT) of the hallux and assessed neuropathic pain using the DN4 interview. We assessed cross-sectional associations of risk factors with nerve function (using linear regression) and neuropathic pain (using logistic regression). Associations were adjusted for potential confounders and for each other risk factor. Associations from linear regression were presented as standardised regression coefficients (β) and 95% CIs in order to compare the magnitudes of observed associations between all risk factors and outcomes. RESULTS Hyperglycaemia (fasting glucose or HbA1c) was associated with worse sensorimotor nerve function for all six outcome measures, with associations of strongest magnitude for motor peroneal and tibial NCV, βfasting glucose = -0.17 SD (-0.21, -0.13) and βfasting glucose = -0.18 SD (-0.23, -0.14), respectively. Hyperglycaemia was also associated with higher VPT and neuropathic pain. Larger waist circumference was associated with worse sural nerve function and higher VPT. Triacylglycerol, HDL- and LDL-cholesterol, and blood pressure were not associated with worse nerve function; however, antihypertensive medication usage (suggestive of history of exposure to hypertension) was associated with worse peroneal compound muscle action potential amplitude and NCV. Smoking was associated with worse nerve function, higher VPT and higher risk for neuropathic pain. Inflammation was associated with worse nerve function and higher VPT, but only in those with type 2 diabetes. Type 2 diabetes and, to a lesser extent, prediabetes (impaired fasting glucose and/or impaired glucose tolerance) were associated with worse nerve function, higher VPT and neuropathic pain (p for trend <0.01 for all outcomes). CONCLUSIONS/INTERPRETATION Hyperglycaemia (including the non-diabetic range) was most consistently associated with early-stage nerve damage. Nonetheless, larger waist circumference, inflammation, history of hypertension and smoking may also independently contribute to worse nerve function.
Collapse
Affiliation(s)
- Jeroen H P M van der Velde
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| | - Annemarie Koster
- Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Elsa S Strotmeyer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Werner H Mess
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Danny Hilkman
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jos P H Reulen
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Ronald M A Henry
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Heart and Vascular Centre, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Miranda T Schram
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Heart and Vascular Centre, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Hans H C M Savelberg
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
429
|
Understanding Diabetic Neuropathy: Focus on Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9524635. [PMID: 32832011 PMCID: PMC7422494 DOI: 10.1155/2020/9524635] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy is one of the clinical syndromes characterized by pain and substantial morbidity primarily due to a lesion of the somatosensory nervous system. The burden of diabetic neuropathy is related not only to the complexity of diabetes but also to the poor outcomes and difficult treatment options. There is no specific treatment for diabetic neuropathy other than glycemic control and diligent foot care. Although various metabolic pathways are impaired in diabetic neuropathy, enhanced cellular oxidative stress is proposed as a common initiator. A mechanism-based treatment of diabetic neuropathy is challenging; a better understanding of the pathophysiology of diabetic neuropathy will help to develop strategies for the new and correct diagnostic procedures and personalized interventions. Thus, we review the current knowledge of the pathophysiology in diabetic neuropathy. We focus on discussing how the defects in metabolic and vascular pathways converge to enhance oxidative stress and how they produce the onset and progression of nerve injury present in diabetic neuropathy. We discuss if the mechanisms underlying neuropathy are similarly operated in type I and type II diabetes and the progression of antioxidants in treating diabetic neuropathy.
Collapse
|
430
|
SUMOylation of Enzymes and Ion Channels in Sensory Neurons Protects against Metabolic Dysfunction, Neuropathy, and Sensory Loss in Diabetes. Neuron 2020; 107:1141-1159.e7. [PMID: 32735781 DOI: 10.1016/j.neuron.2020.06.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/20/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly frequent and debilitating clinical complication of diabetes that lacks therapies. Cellular oxidative stress regulates post-translational modifications, including SUMOylation. Here, using unbiased screens, we identified key enzymes in metabolic pathways and ion channels as novel molecular targets of SUMOylation that critically regulated their activity. Sensory neurons of diabetic patients and diabetic mice demonstrated changes in the SUMOylation status of metabolic enzymes and ion channels. In support of this, profound metabolic dysfunction, accelerated neuropathology, and sensory loss were observed in diabetic gene-targeted mice selectively lacking the ability to SUMOylate proteins in peripheral sensory neurons. TRPV1 function was impaired by diabetes-induced de-SUMOylation as well as by metabolic imbalance elicited by de-SUMOylation of metabolic enzymes, facilitating diabetic sensory loss. Our results unexpectedly uncover an endogenous post-translational mechanism regulating diabetic neuropathy in patients and mouse models that protects against metabolic dysfunction, nerve damage, and altered sensory perception.
Collapse
|
431
|
Neurotoxicity of bupivacaine and liposome bupivacaine after sciatic nerve block in healthy and streptozotocin-induced diabetic mice. BMC Vet Res 2020; 16:247. [PMID: 32680505 PMCID: PMC7367396 DOI: 10.1186/s12917-020-02459-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Background Long-acting local anaesthetics (e.g. bupivacaine hydrochloride) or sustained-release formulations of bupivacaine (e.g. liposomal bupivacaine) may be neurotoxic when applied in the setting of diabetic neuropathy. The aim of the study was to assess neurotoxicity of bupivacaine and liposome bupivacaine in streptozotocin (STZ) - induced diabetic mice after sciatic nerve block. We used the reduction in fibre density and decreased myelination assessed by G-ratio (defined as axon diameter divided by large fibre diameter) as indicators of local anaesthetic neurotoxicity. Results Diabetic mice had higher plasma levels of glucose (P < 0.001) and significant differences in the tail flick and plantar test thermal latencies compared to healthy controls (P < 0.001). In both diabetic and nondiabetic mice, sciatic nerve block with 0.25% bupivacaine HCl resulted in a significantly greater G-ratio and an axon diameter compared to nerves treated with 1.3% liposome bupivacaine or saline (0.9% sodium chloride) (P < 0.01). Moreover, sciatic nerve block with 0.25% bupivacaine HCl resulted in lower fibre density and higher large fibre and axon diameters compared to the control (untreated) sciatic nerves in both STZ-induced diabetic (P < 0.05) and nondiabetic mice (P < 0.01). No evidence of acute or chronic inflammation was observed in any of the treatment groups. Conclusions In our exploratory study the sciatic nerve block with bupivacaine HCl (7 mg/kg), but not liposome bupivacaine (35 mg/kg) or saline, resulted in histomorphometric indices of neurotoxicity. Histologic findings were similar in diabetic and healthy control mice.
Collapse
|
432
|
Buyukaydin B, Guler EM, Karaaslan T, Olgac A, Zorlu M, Kiskac M, Kocyigit A. Relationship between diabetic polyneuropathy, serum visfatin, and oxidative stress biomarkers. World J Diabetes 2020; 11:309-321. [PMID: 32843933 PMCID: PMC7415233 DOI: 10.4239/wjd.v11.i7.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic polyneuropathy is a very common complication of diabetes. Numerous studies are available in terms of pathogenesis. But examination methods with low reliability are still not standardized and generally time consuming. High-sensitive, easy-to-access methods are expected. Biochemical markers are one of the subjects of research. We aimed to discover a potential biomarker that can be used for this purpose in patients with diabetes who have not yet developed symptoms of neuropathy.
AIM To determine the place and availability of visfatin and thiol-disulfide homeostasis in this disorder.
METHODS A total of 392 patients with type 2 diabetes mellitus were included in the study. The polyneuropathy clinical signs were evaluated with the Subjective Peripheral Neuropathy Screen Questionnaire and Michigan Neuropathy Screening Instrument questionnaire and examination. The biochemical parameters, oxidative stress markers, visfatin, and thiol-disulfide homeostasis were analyzed and correlated with each other and clinical signs.
RESULTS Subjective Peripheral Neuropathy Screen Questionnaire and Michigan Neuropathy Screening Instrument questionnaire with examination scores were correlated with each other and diabetes duration (P < 0.005). Neuropathy related symptoms were present in 20.7% of the patients, but neuropathy related findings were observed in 43.9% of the patients. Serum glucose, glycated hemoglobin, and visfatin were positively correlated with each other. Also, these parameters were positively correlated with the total oxidative stress index. Total and native thiol was positively correlated with total antioxidant status and negatively with oxidant status. Inversely thiol-disulfide positively correlated with higher glucose and oxidant status and negatively with total antioxidant status (P < 0.005). There was no correlation between visfatin and thiol-disulphide (P = 0.092, r = 0.086). However, a significant negative correlation was observed between visfatin and total with native thiol (P < 0.005, r = -0.338), (P < 0.005, r = -0.448).
CONCLUSION Diagnosis of neuropathy is one of the issues studied in patients with diabetes. Visfatin and thiol-disulfide balance were analyzed for the first time in this study with inspiring results.
Collapse
Affiliation(s)
- Banu Buyukaydin
- Department of Internal Medicine, Bezmialem Vakif University Medical Faculty, İstanbul 34093, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, Bezmialem Vakif University Medical Faculty, İstanbul 34093, Turkey
| | - Tahsin Karaaslan
- Department of Nephrology, Istanbul Medeniyet University Medical Faculty, İstanbul 34093, Turkey
| | - Atilla Olgac
- Department of Internal Medicine, Bezmialem Vakif University Medical Faculty, İstanbul 34093, Turkey
| | - Mehmet Zorlu
- Department of Internal Medicine, Bezmialem Vakif University Medical Faculty, İstanbul 34093, Turkey
| | - Muharrem Kiskac
- Department of Internal Medicine, Bezmialem Vakif University Medical Faculty, İstanbul 34093, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Bezmialem Vakif University Medical Faculty, İstanbul 34093, Turkey
| |
Collapse
|
433
|
Gonçalves NP, Jager SE, Richner M, Murray SS, Mohseni S, Jensen TS, Vaegter CB. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia 2020; 68:2725-2743. [PMID: 32658363 DOI: 10.1002/glia.23881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy has an incidence as high as 50% of diabetic patients and is characterized by damage to neurons, Schwann cells and blood vessels within the peripheral nervous system. The low-affinity neurotrophin receptor p75 (p75NTR ), particularly expressed by the Schwann cells in the peripheral nerve, has previously been reported to play a role in developmental myelination and cell survival/death. Increased levels of p75NTR , in the endoneurium and plasma from diabetic patients and rodent models of disease, have been observed, proposing that this receptor might be involved in the pathogenesis of diabetic neuropathy. Therefore, in this study, we addressed this hypothesis by utilizing a mouse model of selective nerve growth factor receptor (Ngfr) deletion in Schwann cells (SC-p75NTR -KO). Electron microscopy of sciatic nerves from mice with high fat diet induced obesity demonstrated how loss of Schwann cell-p75NTR aggravated axonal atrophy and loss of C-fibers. RNA sequencing disclosed several pre-clinical signaling alterations in the diabetic peripheral nerves, dependent on Schwann cell p75NTR signaling, specially related with lysosome, phagosome, and immune pathways. Morphological and biochemical analyses identified abundant lysosomes and autophagosomes in the C-fiber axoplasm of the diabetic SC-p75NTR -KO nerves, which together with increased Cathepsin B protein levels corroborates gene upregulation from the phagolysosomal pathways. Altogether, this study demonstrates that Schwann cell p75NTR deficiency amplifies diabetic neuropathy disease by triggering overactivation of immune-related pathways and increased lysosomal stress.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| | - Sara E Jager
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Simon S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Troels S Jensen
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark.,Department of Neurology and Danish Pain Research Center, Aarhus University, Aarhus C, Denmark
| | - Christian B Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
434
|
[Causes, spectrum, and treatment of the diabetic neuropathy]. DER NERVENARZT 2020; 91:714-721. [PMID: 32647958 DOI: 10.1007/s00115-020-00948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Half of all diabetics are affected by a diabetic neuropathy. Microangiopathy, dysfunctional Schwann cell interactions, accumulation of toxic metabolites, and inflammatory processes all contribute to nerve damage. OBJECTIVE Overview and perspectives of the pathophysiology as well as the current and future treatment implications. METHODS Literature search (1990-2020). RESULTS Clinically predominant are sensory and autonomic symptoms; however, muscle weakness can occur as well. Complications such as unrecognized myocardial infarctions and the diabetic foot syndrome are potentially life-threatening and can cause major disability. The pathophysiology of neuropathies in type 1 and type 2 diabetes mellitus differs due to additional risk factors of the metabolic syndrome. To reduce the risk of neuropathy, an intensive insulin therapy is superior compared to the conventional insulin therapy. Oral antidiabetic drugs should be chosen based on individual risk profiles. Metformin can cause an iatrogenic vitamin B12 deficiency. In the treatment of neuropathic pain, the calcium channel blocker pregabalin has the highest recommendation level. The tricyclic antidepressant amitriptyline is considered to be equally effective, but it is contraindicated in autonomic dysregulation and cognitive impairment. Alternatively, the serotonin-norepinephrine reuptake inhibitor duloxetine is approved for the symptomatic treatment of diabetic neuropathies. Controversially discussed medications include alpha-lipoic acid, epalrestat, and L‑serine. CONCLUSION The diabetic neuropathy is frequent and causes severe complications. A good understanding of the underlying pathophysiology can contribute to the development of novel treatment strategies in the future.
Collapse
|
435
|
Mert T, Sahin E, Yaman S, Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1293-1302. [PMID: 32361779 DOI: 10.1007/s00210-020-01871-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
In this study, we hypothesized that reduction of immune cell activation as well as their oxidant or inflammatory mediators with minocycline (MCN), liposome-encapsulated clodronate (LEC), or anti-Ly6G treatments can be neuroprotective approaches in diabetic neuropathy. MCN (40 mg/kg) for reduction of microglial activation, LEC (25 mg/kg) for of macrophage inhibition, or anti-Ly6G (150 μg/kg) for neutrophil suppression injected to streptozotocin (STZ)-induced diabetic rats twice, 3 days, and 1 week (half dose) after STZ. Animal mass and blood glucose levels were measured; thermal and mechanical sensitivities were tested for in pain sensations. The levels of chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, and C-C motif ligand 2 (CCL2), CCL3, and total oxidant status (TOS) and total antioxidant status (TAS) were measured in the spinal cord and sciatic nerve tissues of rats. LEC significantly reduced the glucose level of diabetic rats compared with drug control. However, MCN or anti-LY6G did not change the glucose level. While diabetic rats showed a marked decrease in both thermal and mechanical sensations, all treatments alleviated these abnormal sensations. The levels of chemokines and oxidative stress parameters increased in diabetic rats. All drug treatments significantly decreased the CCL2, CXCL1, and CXCL8 levels of spinal cord tissues and ameliorated the neuronal oxidative stress compared with control treatments. Present findings suggest that the neuroprotective actions of MCN, LEC, or anti-Ly6G treatments may be due to the modulation of neuronal oxidative stress and/or inflammatory mediators of immune cells in diabetic rats with neuropathy.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
436
|
Storz MA, Küster O. Plant‐based diets and diabetic neuropathy: A systematic review. LIFESTYLE MEDICINE 2020. [DOI: 10.1002/lim2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
437
|
Asiri MMH, Engelsman S, Eijkelkamp N, Höppener JWM. Amyloid Proteins and Peripheral Neuropathy. Cells 2020; 9:E1553. [PMID: 32604774 PMCID: PMC7349787 DOI: 10.3390/cells9061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature-deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for "peripheral amyloid neuropathies".
Collapse
Affiliation(s)
- Mohammed M. H. Asiri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- The National Centre for Genomic Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11461 Riyadh, Saudi Arabia
| | - Sjoukje Engelsman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Jo W. M. Höppener
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
438
|
Liu Y, Shang Y, Yan Z, Li H, Wang Z, Li Z, Liu Z. Pim1 kinase provides protection against high glucose-induced stress and apoptosis in cultured dorsal root ganglion neurons. Neurosci Res 2020; 169:9-16. [PMID: 32593591 DOI: 10.1016/j.neures.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023]
Abstract
The pathogenesis of diabetic peripheral neuropathy (DPN) is complex and not well understood. Recently, oxidative stress and endoplasmic reticulum (ER) stress induced by hyperglycemia have been demonstrated to play a critical role in neuronal apoptosis, which then contributing to DPN. However, the specific molecular mechanism that underlies the hyperglycemia-induced neuronal stresses and apoptosis remains largely unknown. In this study, we demonstrated for the first time that Pim1 kinase is a positive modulator of dorsal root ganglion (DRG) neuron survival in vitro. Hyperglycemia causes compensatory upregulation of Pim1 kinase in the DRG neurons, which provides protection against high glucose-induced oxidative stress and ER stress. Pharmacological inhibition of Pim1 not only sensitizes the stress response to high glucose in the DRG neurons, but also accelerates the apoptosis of DRG neurons in vitro. Therefore, our work provides experimental evidence for the prevention of high glucose-induced neuronal stress and apoptosis by targeting Pim1 kinase.
Collapse
Affiliation(s)
- Yuantong Liu
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China; Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yue Shang
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Zihan Yan
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Zhen Wang
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Zhen Liu
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China.
| |
Collapse
|
439
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
440
|
Aldossari KK, Shubair MM, Al-Zahrani J, Alduraywish AA, AlAhmary K, Bahkali S, Aloudah SM, Almustanyir S, Al-Rizqi L, El-Zahaby SA, Toivola P, El-Metwally A. Association between Chronic Pain and Diabetes/Prediabetes: A Population-Based Cross-Sectional Survey in Saudi Arabia. Pain Res Manag 2020. [DOI: https://doi.org/10.1155/2020/8239474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background. Diabetes is a debilitating chronic health condition that is associated with certain pain syndromes. The present study sought to evaluate chronic pain and its association with diabetes mellitus at a population level. Methods. A population-based cross-sectional questionnaire survey study was conducted in Al-Kharj, Saudi Arabia, from January 2016 to June 2016. Participants from both private and governmental institutions were selected following a multistage sampling technique and using a cluster sampling method. Anthropometric measurements were taken, including body weight, height, body mass index (BMI) and waist circumference. A blood sample was also drawn from each respondent for fasting blood sugar, HbA1c, and fasting lipid profile. A P value of less than 0.05 indicated statistical significance. Results. A total of 1003 subjects were included for final analysis. Compared to prediabetic and nondiabetic individuals, diabetic subjects had a higher prevalence of lower limb pain (11.1%), back pain (8.9%), abdominal pain (6.7%), and neck pain (4.4%) (X2 = 27.792, P=0.015). In a multiple logistic regression model, after adjusting for age, gender, education level, cholesterol, and smoking status, diabetic/prediabetic patients had a significantly higher prevalence of chronic pain ((OR) = 1.931 (95% CI = 1.536–2.362), P=0.037). Increased age was also significantly associated with chronic pain ((OR) = 1.032 (95% CI = 1.010–1.054, P=0.004). Conclusion. Results of this study found a significant association between diabetes and prediabetes and chronic pain symptoms. Prospective studies are needed to explore temporality of such association.
Collapse
Affiliation(s)
- Khaled K. Aldossari
- Family& Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mamdouh M. Shubair
- School of Health Sciences, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Jamaan Al-Zahrani
- Family& Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Khalid AlAhmary
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Salwa Bahkali
- Princess Nourah Bint Abdulrahman University, King Abdullah Bin AbdulAziz University Hospital, Riyadh, Saudi Arabia
| | - Sara M. Aloudah
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh 29391, Saudi Arabia
| | | | - Laila Al-Rizqi
- Internal Medicine, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Paivi Toivola
- King Abdullah Specialist Children’s Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ashraf El-Metwally
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
441
|
Aldossari KK, Shubair MM, Al-Zahrani J, Alduraywish AA, AlAhmary K, Bahkali S, Aloudah SM, Almustanyir S, Al-Rizqi L, El-Zahaby SA, Toivola P, El-Metwally A. Association between Chronic Pain and Diabetes/Prediabetes: A Population-Based Cross-Sectional Survey in Saudi Arabia. Pain Res Manag 2020; 2020:8239474. [PMID: 32676137 PMCID: PMC7333061 DOI: 10.1155/2020/8239474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is a debilitating chronic health condition that is associated with certain pain syndromes. The present study sought to evaluate chronic pain and its association with diabetes mellitus at a population level. METHODS A population-based cross-sectional questionnaire survey study was conducted in Al-Kharj, Saudi Arabia, from January 2016 to June 2016. Participants from both private and governmental institutions were selected following a multistage sampling technique and using a cluster sampling method. Anthropometric measurements were taken, including body weight, height, body mass index (BMI) and waist circumference. A blood sample was also drawn from each respondent for fasting blood sugar, HbA1c, and fasting lipid profile. A P value of less than 0.05 indicated statistical significance. RESULTS A total of 1003 subjects were included for final analysis. Compared to prediabetic and nondiabetic individuals, diabetic subjects had a higher prevalence of lower limb pain (11.1%), back pain (8.9%), abdominal pain (6.7%), and neck pain (4.4%) (X 2 = 27.792, P = 0.015). In a multiple logistic regression model, after adjusting for age, gender, education level, cholesterol, and smoking status, diabetic/prediabetic patients had a significantly higher prevalence of chronic pain ((OR) = 1.931 (95% CI = 1.536-2.362), P = 0.037). Increased age was also significantly associated with chronic pain ((OR) = 1.032 (95% CI = 1.010-1.054, P = 0.004). CONCLUSION Results of this study found a significant association between diabetes and prediabetes and chronic pain symptoms. Prospective studies are needed to explore temporality of such association.
Collapse
Affiliation(s)
- Khaled K. Aldossari
- Family& Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mamdouh M. Shubair
- School of Health Sciences, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Jamaan Al-Zahrani
- Family& Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Khalid AlAhmary
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Salwa Bahkali
- Princess Nourah Bint Abdulrahman University, King Abdullah Bin AbdulAziz University Hospital, Riyadh, Saudi Arabia
| | - Sara M. Aloudah
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh 29391, Saudi Arabia
| | | | - Laila Al-Rizqi
- Internal Medicine, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Paivi Toivola
- King Abdullah Specialist Children's Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ashraf El-Metwally
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
442
|
Liu X, Zhou H, Wang Z, Liu X, Li X, Nie C, Li Y. WITHDRAWN: Efficacy of High-frequency Ultrasound Image Information Diagnosis on Neurological-abnormality in Patients with Type-2-diabetes Combined with Peripheral- neuropathy. Neurosci Lett 2020:135205. [PMID: 32590043 DOI: 10.1016/j.neulet.2020.135205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Ultrasound, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Hongyan Zhou
- Department of Ultrasound, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Zhaoyun Wang
- Department of Wound repair, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Xiaoli Liu
- Department of Respiratory, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Xin Li
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Chen Nie
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Yang Li
- Department of Ultrasound, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China.
| |
Collapse
|
443
|
Oltipraz Prevents High Glucose-Induced Oxidative Stress and Apoptosis in RSC96 Cells through the Nrf2/NQO1 Signalling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5939815. [PMID: 32685505 PMCID: PMC7333049 DOI: 10.1155/2020/5939815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/06/2020] [Indexed: 12/17/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). Schwann cell (SC) apoptosis contributes to the occurrence and development of DPN. Effective drugs to prevent SC apoptosis are required to relieve and reverse peripheral nerve injury caused by DM. Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione], an agonist of nuclear factor erythroid derived-2-related factor 2 (Nrf2), exerts strong effect against oxidative stress in animal models or clinical patients in certain diseases, including heart failure, acute kidney injury, and liver injury. The aim of the present study was to determine the effectiveness of oltipraz in preventing SC apoptosis induced by high glucose levels. RSC96 cells pretreated with oltipraz were cultured in high-glucose medium (50 mM glucose) for 24 h, and cells cultured in medium containing 5 mM glucose were used as the control. Flow cytometry was used to evaluate the degree of apoptosis. A Cell Counting Kit-8 assay was used to assess cell viability. The mitochondrial membrane potential was assessed using JC-1 staining, and reactive oxygen species (ROS) generation was measured using 20,70-dichlorodihydrofluorescein diacetate staining. In addition, the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) levels were also evaluated using the corresponding kits. Flow cytometry was subsequently used to detect apoptosis, and western blotting was used to measure the expression levels of nuclear factor erythroid derived-2-related factor 2 and NADPH quinone oxidoreductase 1. The results showed that high glucose concentration increased oxidative stress and apoptosis in RSC96 cells. Oltipraz improved cell viability and reduced apoptosis of RSC96 cells in the high glucose environment. Additionally, oltipraz exhibited a significant antioxidative effect, as shown by the decrease in MDA levels, increased SOD levels, and reduced ROS generation in RSC96 cells. The results of the present study suggest that oltipraz exhibits potential as an effective drug for treatment with DPN.
Collapse
|
444
|
Inspiratory Muscle Training in Obstructive Sleep Apnea Associating Diabetic Peripheral Neuropathy: A Randomized Control Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5036585. [PMID: 32626744 PMCID: PMC7306097 DOI: 10.1155/2020/5036585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Objective This work is aimed at assessing the effects of inspiratory muscle training on lung functions, inspiratory muscle strength, and aerobic capacity in diabetic peripheral neuropathy (DPN) patients with obstructive sleep apnea (OSA). Methods A randomized control study was performed on 55 patients diagnosed with DPN and OSA. They were assigned to the training group (IMT, n = 28) and placebo training group (P-IMT, n = 27). Inspiratory muscle strength, lung functions, and aerobic capacity were evaluated before and after 12 weeks postintervention. An electronic inspiratory muscle trainer was conducted, 30 min a session, three times a week for 12 consecutive weeks. Results From seventy-four patients, 55 have completed the study program. A significant improvement was observed in inspiratory muscle strength (p < 0.05) in the IMT group while no changes were observed in the P-IMT group (p > 0.05). No changes were observed in the lung function in the two groups (p > 0.05). Also, VO2max and VCO2max changed significantly after training in the IMT group (p < 0.05) while no changes were observed in the P-IMT group (p > 0.05). Other cardiopulmonary exercise tests did not show any significant change in both groups (p > 0.05). Conclusions Based on the outcomes of the study, it was found that inspiratory muscle training improves inspiratory muscle strength and aerobic capacity without a notable effect on lung functions for diabetic patients suffering from DPN and OSA.
Collapse
|
445
|
Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy and relieves hyperalgesia in diabetic rats. Neuroreport 2020; 31:644-649. [DOI: 10.1097/wnr.0000000000001461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
446
|
Keltner JR, Tong A, Visser E, Jenkinson M, Connolly CG, Dasca A, Sheringov A, Calvo Z, Umbao E, Mande R, Bilder MB, Sahota G, Franklin DR, Corkran S, Grant I, Archibald S, Vaida F, Brown GG, Atkinson JH, Simmons AN, Ellis RJ. Evidence for a novel subcortical mechanism for posterior cingulate cortex atrophy in HIV peripheral neuropathy. J Neurovirol 2020; 26:530-543. [PMID: 32524422 DOI: 10.1007/s13365-020-00850-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
We previously reported that neuropathic pain was associated with smaller posterior cingulate cortical (PCC) volumes, suggesting that a smaller/dysfunctional PCC may contribute to development of pain via impaired mind wandering. A gap in our previous report was lack of evidence for a mechanism for the genesis of PCC atrophy in HIV peripheral neuropathy. Here we investigate if volumetric differences in the subcortex for those with neuropathic paresthesia may contribute to smaller PCC volumes, potentially through deafferentation of ascending white matter tracts resulting from peripheral nerve damage in HIV neuropathy. Since neuropathic pain and paresthesia are highly correlated, statistical decomposition was used to separate pain and paresthesia symptoms to determine which regions of brain atrophy are associated with both pain and paresthesia and which are associated separately with pain or paresthesia. HIV+ individuals (N = 233) with and without paresthesia in a multisite study underwent structural brain magnetic resonance imaging. Voxel-based morphometry and a segmentation/registration tool were used to investigate regional brain volume changes associated with paresthesia. Analysis of decomposed variables found that smaller midbrain and thalamus volumes were associated with paresthesia rather than pain. However, atrophy in the PCC was related to both pain and paresthesia. Peak thalamic atrophy (p = 0.004; MNI x = - 14, y = - 24, z = - 2) for more severe paresthesia was in a region with reciprocal connections with the PCC. This provides initial evidence that smaller PCC volumes in HIV peripheral neuropathy are related to ascending white matter deafferentation caused by small fiber damage observed in HIV peripheral neuropathy.
Collapse
Affiliation(s)
- John R Keltner
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA. .,UCSD Department of Psychiatry, UCSD HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, Mailcode 8231, San Diego, CA, 92103-8231, USA.
| | - Alan Tong
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Eelke Visser
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Alyssa Dasca
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Aleks Sheringov
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zachary Calvo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Earl Umbao
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Rohit Mande
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mary Beth Bilder
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Gagandeep Sahota
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Donald R Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Stephanie Corkran
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sarah Archibald
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Florin Vaida
- Department of Family and Preventative Medicine, University of California San Diego, San Diego, CA, USA
| | - Gregory G Brown
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - J Hampton Atkinson
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | - Alan N Simmons
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
447
|
Zhang X, Shu W, Yu Q, Qu W, Wang Y, Li R. Functional Biomaterials for Treatment of Chronic Wound. Front Bioeng Biotechnol 2020; 8:516. [PMID: 32582657 PMCID: PMC7283526 DOI: 10.3389/fbioe.2020.00516] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
The increasing number of patients with chronic wounds caused by diseases, such as diabetes, malignant tumors, infections, and vasculopathy, has caused severe economic and social burdens. The main clinical treatments for chronic wounds include the systemic use of antibiotics, changing dressings frequently, operative debridement, and flap repair. These routine therapeutic strategies are characterized by a long course of treatment, substantial trauma, and high costs, and fail to produce satisfactory results. Biomaterial dressings targeting the different stages of the pathophysiology of chronic wounds have become an active research topic in recent years. In this review, after providing an overview of the epidemiology of chronic wounds, and the pathophysiological characteristics of chronic wounds, we highlight the functional biomaterials that can enhance chronic wound healing through debridement, anti-infection and antioxidant effects, immunoregulation, angiogenesis, and extracellular matrix remodeling. It is hoped that functional biomaterials will resolve the treatment dilemma for chronic wounds and improve patient quality of life.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China.,Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wentao Shu
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Qinghua Yu
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, The First Hospital of Jilin University, Changchun, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
448
|
Bani Hani DA, Alawneh KZ, Aleshawi AJ, Ahmad AI, Raffee LA, Alhowary AAA, AlQawasmeh M, Abuzayed B. Successful and Complete Recovery of the Ulnar Nerve After Eight Years of Chronic Injury Through Local Steroid Injections: A Case Report. Pain Ther 2020; 9:327-332. [PMID: 31900814 PMCID: PMC7203399 DOI: 10.1007/s40122-019-00144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 01/29/2023] Open
Abstract
Peripheral neuropathy is a common neurodegenerative disease, with vastness of inducers and causalities. The acquired form peripheral neuropathy can be caused by traumatic injuries caused by nerve lacerations or compressions. Such injuries are usually followed by Wallerian degeneration, and inflammatory reaction. We present a case of a 33-year-old female with a chronic loss of the ulnar nerve function for 8 years after traumatic laceration. After that, she regained the functions of ulnar nerve after nerve stimulation by peri-ulnar nerve injection of methylprednisolone and lidocaine. The theory behind using steroids is related to the fact that the immune system could induce a secondary injury that interferes with the recovery. Many studies have shown effectiveness in using steroids alone or when combined with other substances on nerve regeneration in animal models. We believe that this is the first report of nerve recovery using local steroidal injections after a traumatic injury.
Collapse
Affiliation(s)
- Diab A Bani Hani
- Department of Anesthesia and Pain Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Khaled Z Alawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Akram I Ahmad
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Liqaa A Raffee
- Department of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ala A A Alhowary
- Department of Anesthesia and Pain Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Majdi AlQawasmeh
- Division of Neuro-medicine, Department of Neuroscience, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Bashar Abuzayed
- Department of Neurosurgery, The Specialty Hospital, Amman, Jordan
| |
Collapse
|
449
|
Singh R, Rao HK, Singh TG. Neuropathic pain in diabetes mellitus: Challenges and future trends. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
450
|
Expression and functional characterization of transient receptor potential vanilloid 4 in the dorsal root ganglion and spinal cord of diabetic rats with mechanical allodynia. Brain Res Bull 2020; 162:30-39. [PMID: 32479780 DOI: 10.1016/j.brainresbull.2020.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Diabetic mechanical allodynia (DMA) is a common manifestation in patients with diabetes mellitus, and currently, no effective treatment is available. Transient receptor potential vanilloid 4 (TRPV4) is involved in mechanical hypersensitivity resulting from varying aetiologies in animal, but its expression pattern during DMA and whether it contributes to this condition are still unclear. We investigated the spatial and temporal expression patterns of TRPV4 in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) by qRT-PCR, Western blotting and immunofluorescence assays. The pathophysiological role of TRPV4 in DMA was also investigated by intrathecal application of the TRPV4 selective antagonist HC-067047 or the agonist GSK1016790A. The results showed that both the mRNA and protein levels of TRPV4 were strikingly upregulated on day 14 in the rats with DMA. The increase in TRPV4 was mainly observed in the soma and central processes of calcitonin gene-related peptide (CGRP)- or neurofilament 200 kDa (NF200)-containing DRG neurons. Both single and repetitive intrathecal applications of HC-067047 (400 ng/kg) significantly alleviated mechanical allodynia in the rats with DMA, whereas a single application of GSK1016790A (200 ng/kg) aggravated mechanical allodynia. The present data suggest that TRPV4 undergoes expression changes that are associated with mechanical hypersensitivity in diabetic rats. TRPV4 may be a new molecular target for developing a clinical strategy to treat this intractable neuropathic pain.
Collapse
|