401
|
Manohar M, Shigaki T, Hirschi KD. Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:561-9. [PMID: 21668596 DOI: 10.1111/j.1438-8677.2011.00466.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inorganic cations play decisive roles in many cellular and physiological processes and are essential components of plant nutrition. Therefore, the uptake of cations and their redistribution must be precisely controlled. Vacuolar antiporters are important elements in mediating the intracellular sequestration of these cations. These antiporters are energized by the proton gradient across the vacuolar membrane and allow the rapid transport of cations into the vacuole. CAXs (for CAtion eXchanger) are members of a multigene family and appear to predominately reside on vacuoles. Defining CAX regulation and substrate specificity have been aided by utilising yeast as an experimental tool. Studies in plants suggest CAXs regulate apoplastic Ca(2+) levels in order to optimise cell wall expansion, photosynthesis, transpiration and plant productivity. CAX studies provide the basis for making designer transporters that have been used to develop nutrient enhanced crops and plants for remediating toxic soils.
Collapse
Affiliation(s)
- M Manohar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
402
|
Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:852-62. [PMID: 21457363 DOI: 10.1111/j.1365-313x.2011.04548.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal for plants, but several unique Cd-hyperaccumulating plant species are able to accumulate this metal to extraordinary concentrations in the aboveground tissues without showing any toxic symptoms. However, the molecular mechanisms underlying this hypertolerance to Cd are poorly understood. Here we have isolated and functionally characterized an allelic gene, TcHMA3 (heavy metal ATPase 3) from two ecotypes (Ganges and Prayon) of Thlaspi caerulescens contrasting in Cd accumulation and tolerance. The TcHMA3 alleles from the higher (Ganges) and lower Cd-accumulating ecotype (Prayon) share 97.8% identity, and encode a P(1B)-type ATPase. There were no differences in the expression pattern, cell-specificity of protein localization and transport substrate-specificity of TcHMA3 between the two ecotypes. Both alleles were characterized by constitutive expression in the shoot and root, a tonoplast localization of the protein in all leaf cells and specific transport activity for Cd. The only difference between the two ecotypes was the expression level of TcHMA3: Ganges showed a sevenfold higher expression than Prayon, partly caused by a higher copy number. Furthermore, the expression level and localization of TcHMA3 were different from AtHMA3 expression in Arabidopsis. Overexpression of TcHMA3 in Arabidopsis significantly enhanced tolerance to Cd and slightly increased tolerance to Zn, but did not change Co or Pb tolerance. These results indicate that TcHMA3 is a tonoplast-localized transporter highly specific for Cd, which is responsible for sequestration of Cd into the leaf vacuoles, and that a higher expression of this gene is required for Cd hypertolerance in the Cd-hyperaccumulating ecotype of T. caerulescens.
Collapse
Affiliation(s)
- Daisei Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. PLANT, CELL & ENVIRONMENT 2011; 34:994-1008. [PMID: 21388416 DOI: 10.1111/j.1365-3040.2011.02299.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Analysis of rice plants exposed to a broad range of relatively low and environmentally realistic Cd concentrations showed that the root capacity to retain Cd ions rose from 49 to 79%, corresponding to increases in the external Cd²+ concentration in the 0.01-1 µM range. Fractioning of Cd ions retained by roots revealed that different events along the metal sequestration pathway (i.e. chelation by thiols, vacuolar compartmentalization, adsorption) contributed to Cd immobilization in the roots. However, large amounts of Cd ions (around 24% of the total amount) predictable as potentially mobile were still found in all conditions, while the amount of Cd ions loaded in the xylem seemed to have already reached saturation at 0.1 µM Cd²+, suggesting that Cd translocation may also play an indirect role in determining Cd root retention, especially at the highest external concentrations. In silico search and preliminary analyses in yeast suggest OsHMA2 as a good candidate for the control of Cd xylem loading in rice. Taken as a whole, data indicate Cd chelation, compartmentalization, adsorption and translocation processes as components of a complex 'firewall system' which acts in limiting Cd translocation from the root to the shoot and which reaches different equilibrium positions depending on Cd external concentration.
Collapse
Affiliation(s)
- Fabio Francesco Nocito
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clarissa Lancilli
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, 20133 Milan, Italy
| | - Bianca Dendena
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giorgio Lucchini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gian Attilio Sacchi
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
404
|
Long Y, Li Q, Wang Y, Cui Z. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:310-7. [PMID: 21147257 DOI: 10.1016/j.cbpc.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022]
Abstract
Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells.
Collapse
Affiliation(s)
- Yong Long
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd., Wuhan, Hubei 430072, PR China
| | | | | | | |
Collapse
|
405
|
Souguir D, Ferjani E, Ledoigt G, Goupil P. Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:329-336. [PMID: 21153701 DOI: 10.1007/s10646-010-0582-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
Kinetics of stress responses to Cd exposure (50, 100 and 200 μM) expanding from 12 to 48 h were studied in roots of hydroponically cultivated-Vicia faba seedlings. The heavy metal induced toxicity symptoms and growth arrest of Vicia roots gradually to the Cd concentration and duration of the treatment. The intracellular oxidative stress was evaluated with the H(2)O(2) production. The H(2)O(2) content increased gradually with the sequestered Cd and root growth inhibition. Lipid peroxidation-evidenced by malondialdehyde (MDA) content and Evans blue uptake-and genotoxicity-evidenced by mitotic index (MI) and micronuclei (MCN) values-were concomitantly investigated in root tips. By 12 h, root meristematic cells lost 15% of their mitotic activity under 50 or 100 μM Cd treatment and 50% under 200 μM Cd treatment and led cells with MCN, while the MDA content and Evans blue absorption were not affected. The loss of membrane integrity occurred subsequently by 24 h. The increase in MDA content in root cells treated with 50, 100 and 200 μM Cd was significantly higher than the control. By 48 h, the MDA content increased 134, 178 or 208% in root cells treated with 50, 100 and 200 μM Cd, respectively. The Evans blue absorption was also affected by 24 h in roots when treated with 200 μM Cd and gradually increase by 48 h with the Cd concentration of the treatment. The decrease of mitotic activity triggered by 12 h was even higher by 24 h and the MI reduced to 44, 56 or 80% compared to the control in the three different Cd concentrations tested. The different kinetics of early in vivo physiological and cytogenetic responses to Cd might be relevant to the characterization of its toxicity mechanisms in disrupting primarily the mitosis process.
Collapse
Affiliation(s)
- D Souguir
- Laboratoire de Physiologie et Génétique végétales, UMR PIAF 547-UBP/INRA, Université Blaise Pascal-Clermont II, Campus universitaire des Cézeaux, Aubiere, France
| | | | | | | |
Collapse
|
406
|
Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK. Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 2011; 506:73-82. [DOI: 10.1016/j.abb.2010.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
|
407
|
Singh Gill S, Tuteja N. Cadmium stress tolerance in crop plants: probing the role of sulfur. PLANT SIGNALING & BEHAVIOR 2011; 6:215-22. [PMID: 21330784 PMCID: PMC3121981 DOI: 10.4161/psb.6.2.14880] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 05/03/2023]
Abstract
Plants can't move away and are therefore continuously confronted with unfavorable environmental conditions (such as soil salinity, drought, heat, cold, flooding and heavy metal contamination). Among heavy metals, cadmium (Cd) is a non-essential and toxic metal, rapidly taken up by roots and accumulated in various plant tissues which hamper the crop growth and productivity worldwide. Plants employ various strategies to counteract the inhibitory effect of Cd, among which nutrient management is one of a possible way to overcome Cd toxicity. Sulfur (S) uptake and assimilation are crucial for determining crop yield and resistance to Cd stress. Cd affects S assimilation pathway which leads to the activation of pathway responsible for the synthesis of cysteine (Cys), a precursor of glutathione (GSH) biosynthesis. GSH, a non-protein thiol acts as an important antioxidant in mitigating Cd-induced oxidative stress. It also plays an important role in phytochelatins (PCs) synthesis, which has a proven role in Cd detoxification. Therefore, S assimilation is considered a crucial step for plant survival under Cd stress. The aim of this review is to discuss the regulatory mechanism of S uptake and assimilation, GSH and PC synthesis for Cd stress tolerance in crop plants.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group; International Centre for Genetic Engineering & Biotechnology (ICGEB); Aruna Asaf Ali Marg, New Delhi, India
- Stress Physiology and Molecular Biology Lab; Centre for Biotechnology; MD University; Rohtak, Haryana, India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering & Biotechnology (ICGEB); Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
408
|
Gill SS, Khan NA, Tuteja N. Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. PLANT SIGNALING & BEHAVIOR 2011; 6:293-300. [PMID: 21744661 PMCID: PMC3121991 DOI: 10.4161/psb.6.2.15049] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 05/18/2023]
Abstract
The presence of Cadmium (Cd) in the agricultural soils affects horticultural cultivars and constrains the crop productivity. A pot experiment was performed using five cultivars of mustard (Brassica juncea L.) to evaluate the difference in their response to Cd toxicity under greenhouse conditions. The pots containing reconstituted soil were supplied with different concentration of CdCl2 (0, 25, 50, 100 or 150 mg Cd kg-1 soil). Increasing concentration of Cd in the soil resulted in decreased growth, photosynthesis and yield. Maximum significant reduction in growth, photosynthesis and yield were observed with 150 mg Cd kg-1 soil in all the cultivars. Our results indicate that the cultivar Alankar is found to be more tolerant to Cd stress, recording higher plant dry mass, net photosynthesis rate, associated with high antioxidant activity and low Cd content in the plant leaves and thus less oxidative damage. Cultivar RH 30 experienced maximum damage in terms of reduction in growth, photosynthesis, yield characteristics and oxidative damage and emerged as sensitive cultivar. The data of tolerance index of Alankar were found to be higher among all tested mustard cultivars which indicate its higher tolerance to Cd. Better coordination of antioxidants protected Alankar from Cd toxicity, whereas lesser antioxidant activity in RH 30 resulted in maximum damage. Cultivars of mustard were ranked with respect to their tolerance to Cd: Alankar > Varuna > Pusa Bold > Sakha > RH 30, respectively.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Physiology and Biochemistry Division; Department of Botany; Aligarh Muslim University; Aligarh, India
- Plant Molecular Biology Group; International Centre for Genetic Engineering & Biotechnology (ICGEB); Aruna Asaf Ali Marg, New Delhi, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Division; Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering & Biotechnology (ICGEB); Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
409
|
Simoniello P, Motta CM, Scudiero R, Trinchella F, Filosa S. Cadmium-induced teratogenicity in lizard embryos: correlation with metallothionein gene expression. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:119-27. [PMID: 20888429 DOI: 10.1016/j.cbpc.2010.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Cadmium teratogenic effects and metallothionein expression were studied in tissues of lizard embryos at different stages of development. Incubation of eggs in cadmium contaminated soil had no effect on embryo survival, but strongly affected cranial morphogenesis. Cytological analyses demonstrated abnormalities in the development of proencephalic vesicles, mesencephalon and eyes. No defects were observed in somite or limb development. Northern blot analysis demonstrated that MT expression was much stronger in embryos developed in cadmium contaminated soil. In situ hybridization showed an early induction of MT gene expression in developing liver and gut, whereas in brain and eyes the spatial and temporal localization of MT transcripts did not change. A possible correlation between inability to induce MT expression and abnormalities observed in the head region of lizard developing embryos is suggested.
Collapse
Affiliation(s)
- Palma Simoniello
- Department of Biological Sciences, Evolutionary and Comparative Section, University Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
410
|
Lux A, Martinka M, Vaculík M, White PJ. Root responses to cadmium in the rhizosphere: a review. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:21-37. [PMID: 20855455 DOI: 10.1093/jxb/erq281] [Citation(s) in RCA: 550] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 μg g(-1) dry matter are toxic to most plants, and plants have evolved mechanisms to limit Cd translocation to the shoot. Cadmium movement through the root symplasm is thought to be restricted by the production of phytochelatins and the sequestration of Cd-chelates in vacuoles. Apoplasmic movement of Cd to the xylem can be restricted by the development of the exodermis, endodermis, and other extracellular barriers. Increasing rhizosphere Cd concentrations increase Cd accumulation in the plant, especially in the root. The presence of Cd in the rhizosphere inhibits root elongation and influences root anatomy. Cadmium concentrations are greater in the root apoplasm than in the root symplasm, and tissue Cd concentrations decrease from peripheral to inner root tissues. This article reviews current knowledge of the proteins involved in the transport of Cd across root cell membranes and its detoxification through sequestration in root vacuoles. It describes the development of apoplastic barriers to Cd movement to the xylem and highlights recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality. It concludes that accelerated maturation of the endodermis in response to local Cd availability is of functional significance in protecting the shoot from excessive Cd loads.
Collapse
Affiliation(s)
- Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, 842 15 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
411
|
Mendoza-Cózatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI. Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 2010; 285:40416-26. [PMID: 20937798 PMCID: PMC3003340 DOI: 10.1074/jbc.m110.155408] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/20/2010] [Indexed: 11/06/2022] Open
Abstract
Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates (35)S-PC(2) uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms.
Collapse
Affiliation(s)
- David G. Mendoza-Cózatl
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| | - Zhiyang Zhai
- the Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | - Timothy O. Jobe
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| | - Garo Z. Akmakjian
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| | - Won-Yong Song
- the Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland, and
| | - Oliver Limbo
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Matthew R. Russell
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | | | - Enrico Martinoia
- the Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland, and
| | - Olena K. Vatamaniuk
- the Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | - Paul Russell
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Julian I. Schroeder
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
412
|
Lequeux H, Hermans C, Lutts S, Verbruggen N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:673-82. [PMID: 20542443 DOI: 10.1016/j.plaphy.2010.05.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 05/16/2010] [Accepted: 05/18/2010] [Indexed: 05/23/2023]
Abstract
Growth, in particular reorganization of the root system architecture, mineral homeostasis and root hormone distribution were studied in Arabidopsis thaliana upon copper excess. Five-week-old Arabidopsis plants growing in hydroponics were exposed to different Cu(2+) concentrations (up to 5 muM). Root biomass was more severely inhibited than shoot biomass and Cu was mainly retained in roots. Cu(2+) excess also induced important changes in the ionome. In roots, Mg, Ca, Fe and Zn concentrations increased, whereas K and S decreased. Shoot K, Ca, P, and Mn concentrations decreased upon Cu(2+) exposure. Further, experiments with seedlings vertically grown on agar were carried out to investigate the root architecture changes. Increasing Cu(2+) concentrations (up to 50 muM) reduced the primary root growth and increased the density of short lateral roots. Experiment of split-root system emphasized a local toxicity of Cu(2+) on the root system. Observations of GUS reporter lines suggested changes in auxin and cytokinin accumulations and in mitotic activity within the primary and secondary root tips treated with Cu(2+). At toxic Cu(2+) concentrations (50 muM), these responses were accompanied by higher root apical meristem death. Contrary to previous reports, growth on high Cu(2+) did not induce an ethylene production. Finally lignin deposition was detected in Cu(2+)-treated roots, probably impacting on the translocation of nutrients. The effects on mineral profile, hormonal status, mitotic activity, cell viability and lignin deposition changes on the Cu(2+)-induced reorganization of the root system architecture are discussed.
Collapse
Affiliation(s)
- Hélène Lequeux
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, CP242, boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | | | |
Collapse
|
413
|
Ma W, Xu W, Xu H, Chen Y, He Z, Ma M. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. PLANTA 2010; 232:325-35. [PMID: 20449606 DOI: 10.1007/s00425-010-1177-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/13/2010] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.
Collapse
Affiliation(s)
- Wenwen Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
414
|
Willems G, Frérot H, Gennen J, Salis P, Saumitou-Laprade P, Verbruggen N. Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. THE NEW PHYTOLOGIST 2010; 187:368-379. [PMID: 20487315 DOI: 10.1111/j.1469-8137.2010.03294.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study describes the quantitative trait locus (QTL) analysis of cadmium (Cd), zinc (Zn), iron (Fe), potassium (K), magnesium (Mg) and calcium (Ca) accumulation in the pseudometallophyte Arabidopsis halleri under conditions of Cd excess using an interspecific A. halleri x Arabidopsis lyrata F(2) population. *Our data provide evidence for the implication of one major QTL in Cd hyperaccumulation in A. halleri, and suggests that Cd tolerance and accumulation are not independent in A. halleri. Moreover, the major loci responsible for Zn hyperaccumulation in the absence of Cd appear to be the same when Cd is present at high concentrations. *More than twofold higher Fe concentrations were measured in A. halleri shoots than in A. lyrata, suggesting a different regulation of Fe accumulation in the hyperaccumulator. *With the exception of Ca, the accumulation of Cd was significantly correlated with the accumulation of all elements measured in the F(2) progeny, suggesting pleiotropic gene action. However, QTL analysis identified pleiotropic QTLs only for Cd, Zn and Fe. Mg accumulation was negatively correlated with Cd accumulation, as well as with dry shoot biomass, suggesting that it might indicate cellular damage.
Collapse
Affiliation(s)
- Glenda Willems
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine - CP242 - Bd du Triomphe, B-1050 Brussels, Belgium
| | - Hélène Frérot
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille - Lille 1, F-59655 Villeneuve d'Ascq Cedex, France
| | - Jérôme Gennen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine - CP242 - Bd du Triomphe, B-1050 Brussels, Belgium
| | - Pietro Salis
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine - CP242 - Bd du Triomphe, B-1050 Brussels, Belgium
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille - Lille 1, F-59655 Villeneuve d'Ascq Cedex, France
| | - Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine - CP242 - Bd du Triomphe, B-1050 Brussels, Belgium
| |
Collapse
|
415
|
Chen W, Chi Y, Taylor NL, Lambers H, Finnegan PM. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:1385-97. [PMID: 20488895 PMCID: PMC2899905 DOI: 10.1104/pp.110.153452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/19/2010] [Indexed: 05/20/2023]
Abstract
Arsenic is a ubiquitous environmental poison that inhibits root elongation and seed germination to a variable extent depending on the plant species. To understand the molecular mechanisms of arsenic resistance, a genetic screen was developed to isolate arsenate overly sensitive (aos) mutants from an activation-tagged Arabidopsis (Arabidopsis thaliana) population. Three aos mutants were isolated, and the phenotype of each was demonstrated to be due to an identical disruption of plastidial LIPOAMIDE DEHYDROGENASE1 (ptLPD1), a gene that encodes one of the two E3 isoforms found in the plastidial pyruvate dehydrogenase complex. In the presence of arsenate, ptlpd1-1 plants exhibited reduced root and shoot growth and enhanced anthocyanin accumulation compared with wild-type plants. The ptlpd1-1 plants accumulated the same amount of arsenic as wild-type plants, indicating that the aos phenotype was not due to increased arsenate in the tissues but to an increase in the innate sensitivity to the poison. Interestingly, a ptlpd1-4 knockdown allele produced a partial aos phenotype. Two loss-of-function alleles of ptLPD2 in Arabidopsis also caused elevated arsenate sensitivity, but the sensitivity was less pronounced than for the ptlpd1 mutants. Moreover, both the ptlpd1 and ptlpd2 mutants were more sensitive to arsenite than wild-type plants, and the LPD activity in isolated chloroplasts from wild-type plants was sensitive to arsenite but not arsenate. These findings show that the ptLPD isoforms are critical in vivo determinants of arsenite-mediated arsenic sensitivity in Arabidopsis and possible strategic targets for increasing arsenic tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Patrick M. Finnegan
- School of Plant Biology and Institute of Agriculture, Faculty of Natural and Agricultural Sciences (W.C., Y.C., H.L., P.M.F.), and Australian Research Council Centre of Excellence in Plant Energy Biology (N.L.T.), University of Western Australia, Crawley, Western Australia 6009, Australia; National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China (Y.C.)
| |
Collapse
|
416
|
Conn S, Gilliham M. Comparative physiology of elemental distributions in plants. ANNALS OF BOTANY 2010; 105:1081-102. [PMID: 20410048 PMCID: PMC2887064 DOI: 10.1093/aob/mcq027] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/16/2009] [Accepted: 12/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants contain relatively few cell types, each contributing a specialized role in shaping plant function. With respect to plant nutrition, different cell types accumulate certain elements in varying amounts within their storage vacuole. The role and mechanisms underlying cell-specific distribution of elements in plants is poorly understood. SCOPE The phenomenon of cell-specific elemental accumulation has been briefly reviewed previously, but recent technological advances with the potential to probe mechanisms underlying elemental compartmentation have warranted an updated evaluation. We have taken this opportunity to catalogue many of the studies, and techniques used for, recording cell-specific compartmentation of particular elements. More importantly, we use three case-study elements (Ca, Cd and Na) to highlight the basis of such phenomena in terms of their physiological implications and underpinning mechanisms; we also link such distributions to the expression of known ion or solute transporters. CONCLUSIONS Element accumulation patterns are clearly defined by expression of key ion or solute transporters. Although the location of element accumulation is fairly robust, alterations in expression of certain solute transporters, through genetic modifications or by growth under stress, result in perturbations to these patterns. However, redundancy or induced pleiotropic expression effects may complicate attempts to characterize the pathways that lead to cell-specific elemental distribution. Accumulation of one element often has consequences on the accumulation of others, which seems to be driven largely to maintain vacuolar and cytoplasmic osmolarity and charge balance, and also serves as a detoxification mechanism. Altered cell-specific transcriptomics can be shown, in part, to explain some of this compensation.
Collapse
Affiliation(s)
- Simon Conn
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
417
|
Łangowski Ł, Růžička K, Naramoto S, Kleine-Vehn J, Friml J. Trafficking to the Outer Polar Domain Defines the Root-Soil Interface. Curr Biol 2010; 20:904-8. [DOI: 10.1016/j.cub.2010.03.059] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/24/2010] [Accepted: 03/04/2010] [Indexed: 02/05/2023]
|
418
|
Karimi N, Ghaderian SM, Maroofi H, Schat H. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:159-173. [PMID: 20734613 DOI: 10.1080/15226510903213977] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To assess the potential for arsenic (As) hyperaccumulation of native plant species, plant and soil samples were collected from the Zarshuran area (north-western Iran), which has a history of As pollution from mining. Total and water-soluble As in the soil ranged from 11.2 to 6525 and from 0.004 to 13.08 mg kg(-1), respectively. Among 89 plant species, the highest foliar As concentrations were found in Isatis capadocica (up to 3000 mg kg(-1)) and Hesperis persica (up to 1500 mg kg(-1)). Over a broad range of soil As concentrations, these species maintained more than 10-fold increased foliar As concentrations and soil to leaf As transfer coefficients in comparison with all the other species sampled at the same sites. Based on these characteristics, in combination with their ability to accumulate As to concentrations exceeding 1000 mg kg(-1) on a dry weight basis in their foliage, both species should be classified as As hyperaccumulators. I. capadocica and H. persica, both Brassicacaeae, are the first terrestrial angiosperms shown to possess the As hyperaccumulation trait. Both species are fairly robust with relatively high biomass productivity and, therefore, potentially useful in on site phytoremediation, particularly I. capadocica, because of its higher robustness and As accumulation capacity.
Collapse
Affiliation(s)
- Naser Karimi
- Department of Biology, University of Isfahan, Isfahan, Iran
| | | | | | | |
Collapse
|