401
|
Massazza DA, Parkinson JS, Studdert CA. Cross-linking evidence for motional constraints within chemoreceptor trimers of dimers. Biochemistry 2011; 50:820-7. [PMID: 21174433 PMCID: PMC3042772 DOI: 10.1021/bi101483r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In Escherichia coli, chemoreceptors exhibit higher-order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer-of-dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo cross-linking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr, respectively. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed cross-links, whereas reporters located different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernible effect on the cross-linking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced cross-linking at most of the reporter sites, indicating that individual dimers may move closer together under this condition.
Collapse
Affiliation(s)
- Diego A. Massazza
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - John S. Parkinson
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Claudia A. Studdert
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
402
|
|
403
|
Abstract
Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS-sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signalling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-co-ordinated b-type haem and that reversible signalling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
404
|
Aquino G, Clausznitzer D, Tollis S, Endres RG. Optimal receptor-cluster size determined by intrinsic and extrinsic noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021914. [PMID: 21405870 DOI: 10.1103/physreve.83.021914] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Biological cells sense external chemical stimuli in their environment using cell-surface receptors. To increase the sensitivity of sensing, receptors often cluster. This process occurs most noticeably in bacterial chemotaxis, a paradigm for sensing and signaling in general. While amplification of weak stimuli is useful in the absence of noise, its usefulness is less clear in the presence of extrinsic input noise and intrinsic signaling noise. Here, exemplified in a bacterial chemotaxis system, we combine the allosteric Monod-Wyman-Changeux model for signal amplification by receptor complexes with calculations of noise to study their interconnectedness. Importantly, we calculate the signal-to-noise ratio, describing the balance of beneficial and detrimental effects of clustering for the cell. Interestingly, we find that there is no advantage for the cell to build receptor complexes for noisy input stimuli in the absence of intrinsic signaling noise. However, with intrinsic noise, an optimal complex size arises in line with estimates of the size of chemoreceptor complexes in bacteria and protein aggregates in lipid rafts of eukaryotic cells.
Collapse
Affiliation(s)
- Gerardo Aquino
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
405
|
Li M, Khursigara CM, Subramaniam S, Hazelbauer GL. Chemotaxis kinase CheA is activated by three neighbouring chemoreceptor dimers as effectively as by receptor clusters. Mol Microbiol 2011; 79:677-85. [PMID: 21255111 PMCID: PMC3079359 DOI: 10.1111/j.1365-2958.2010.07478.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chemoreceptors are central to bacterial chemotaxis. These transmembrane homodimers form trimers of dimers. Trimers form clusters of a few to thousands of receptors. A crucial receptor function is 100-fold activation, in signalling complexes, of sensory histidine kinase CheA. Significant activation has been shown to require more than one receptor dimer but the number required for full activation was unknown. We investigated this issue using Nanodiscs, soluble, nanoscale (∼10 nm diameter) plugs of lipid bilayer, to limit the number of neighbouring receptors contributing to activation. Utilizing size-exclusion chromatography, we separated primary preparations of receptor-containing Nanodiscs, otherwise heterogeneous for number and orientation of inserted receptors, into fractions enriched for specific numbers of dimers per disc. Fractionated, clarified Nanodiscs carrying approximately five dimers per disc were as effective in activating kinase as native membrane vesicles containing many neighbouring dimers. At five independently inserted dimers per disc, every disc would have at least three dimers oriented in parallel and thus able act together as they would in native membrane. We conclude full kinase activation involves interaction of CheA with groups of three receptor dimers, presumably as a trimer of dimers, and that more extensive interactions among receptors are not necessary for full kinase activation.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri-Columbia, Columbia, MO 65211
| | - Cezar M. Khursigara
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Gerald L. Hazelbauer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri-Columbia, Columbia, MO 65211
| |
Collapse
|
406
|
Precision and kinetics of adaptation in bacterial chemotaxis. Biophys J 2011; 99:2766-74. [PMID: 21044573 DOI: 10.1016/j.bpj.2010.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022] Open
Abstract
The chemotaxis network of the bacterium Escherichia coli is perhaps the most studied model for adaptation of a signaling system to persistent stimuli. Although adaptation in this system is generally considered to be precise, there has been little effort to quantify this precision, or to understand how and when precision fails. Using a Förster resonance energy transfer-based reporter of signaling activity, we undertook a systematic study of adaptation kinetics and precision in E. coli cells expressing a single type of chemoreceptor (Tar). Quantifiable loss of precision of adaptation was observed at levels of the attractant MeAsp as low 10 μM, with pronounced differences in both kinetics and precision of adaptation between addition and removal of attractant. Quantitative modeling of the kinetic data suggests that loss of precise adaptation is due to a slowing of receptor methylation as available modification sites become scarce. Moreover, the observed kinetics of adaptation imply large cell-to-cell variation in adaptation rates-potentially providing genetically identical cells with the ability to "hedge their bets" by pursuing distinct chemotactic strategies.
Collapse
|
407
|
Gushchin IY, Gordeliy VI, Grudinin S. Role of the HAMP domain region of sensory rhodopsin transducers in signal transduction. Biochemistry 2010; 50:574-80. [PMID: 21162553 DOI: 10.1021/bi101032a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Archaea are able to sense light via the complexes of sensory rhodopsins I and II and their corresponding chemoreceptor-like transducers HtrI and HtrII. Though generation of the signal has been studied in detail, the mechanism of its propagation to the cytoplasm remains obscured. The cytoplasmic part of the transducer consists of adaptation and kinase activity modulating regions, connected to transmembrane helices via two HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, phosphatases) domains. The inter-HAMP region of Natronomonas pharaonis HtrII (NpHtrII) was found to be α-helical [Hayashi, K., et al. (2007) Biochemistry 46, 14380-14390]. We studied the inter-HAMP regions of NpHtrII and other phototactic signal transducers by means of molecular dynamics. Their structure is found to be a bistable asymmetric coiled coil, in which the protomers are longitudinally shifted by ~1.3 Å. The free energy penalty for the symmetric structure is estimated to be 1.2-1.5 kcal/mol depending on the molarity of the solvent. Both flanking HAMP domains are mechanistically coupled to the inter-HAMP region and are asymmetric. The longitudinal shift in the inter-HAMP region is coupled with the in-plane displacement of the cytoplasmic part by 8.6 Å relative to the transmembrane part. The established properties suggest that (1) the signal may be transduced through the inter-HAMP domain switching and (2) the inter-HAMP region may allow cytoplasmic parts of the transducers to come sufficiently close to each other to form oligomers.
Collapse
Affiliation(s)
- Ivan Yu Gushchin
- Research-educational Centre Bionanophysics, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | | | | |
Collapse
|
408
|
Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Methods 2010; 8:177-83. [PMID: 21186362 DOI: 10.1038/nmeth.1546] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/03/2010] [Indexed: 01/22/2023]
Abstract
Managing the overwhelming numbers of molecular states and interactions is a fundamental obstacle to building predictive models of biological systems. Here we introduce the Network-Free Stochastic Simulator (NFsim), a general-purpose modeling platform that overcomes the combinatorial nature of molecular interactions. Unlike standard simulators that represent molecular species as variables in equations, NFsim uses a biologically intuitive representation: objects with binding and modification sites acted on by reaction rules. During simulations, rules operate directly on molecular objects to produce exact stochastic results with performance that scales independently of the reaction network size. Reaction rates can be defined as arbitrary functions of molecular states to provide powerful coarse-graining capabilities, for example to merge Boolean and kinetic representations of biological networks. NFsim enables researchers to simulate many biological systems that were previously inaccessible to general-purpose software, as we illustrate with models of immune system signaling, microbial signaling, cytoskeletal assembly and oscillating gene expression.
Collapse
|
409
|
|
410
|
Abstract
HAMP domains mediate input-output signaling in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and some phosphatases. HAMP subunits have two 16-residue amphiphilic helices (AS1, AS2) joined by a 14- to 15-residue connector segment. Two alternative HAMP structures in these homodimeric signaling proteins have been described: HAMP(A), a tightly packed, parallel, four-helix bundle; and HAMP(B), a more loosely packed bundle with an altered AS2/AS2' packing arrangement. Stimulus-induced conformational changes probably modulate HAMP signaling by shifting the relative stabilities of these opposing structural states. Changes in AS2/AS2' packing, in turn, modulate output signals by altering structural interactions between output helices through heptad repeat stutters that produce packing phase clashes. Output helices that are too tightly or too loosely packed most likely produce kinase-off output states, whereas kinase-on states require an intermediate range of HAMP stabilities and dynamic behaviors. A three-state, dynamic bundle signaling model best accounts for the signaling properties of chemoreceptor mutants and may apply to other transducers as well.
Collapse
Affiliation(s)
- John S Parkinson
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
411
|
DifA, a methyl-accepting chemoreceptor protein-like sensory protein, uses a novel signaling mechanism to regulate exopolysaccharide production in Myxococcus xanthus. J Bacteriol 2010; 193:759-67. [PMID: 21131490 DOI: 10.1128/jb.00944-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DifA is a methyl-accepting chemotaxis protein (MCP)-like sensory transducer that regulates exopolysaccharide (EPS) production in Myxococcus xanthus. Here mutational analysis and molecular biology were used to probe the signaling mechanisms of DifA in EPS regulation. We first identified the start codon of DifA experimentally; this identification extended the N terminus of DifA for 45 amino acids (aa) from the previous bioinformatics prediction. This extension helped to address the outstanding question of how DifA receives input signals from type 4 pili without a prominent periplasmic domain. The results suggest that DifA uses its N-terminus extension to sense an upstream signal in EPS regulation. We suggest that the perception of the input signal by DifA is mediated by protein-protein interactions with upstream components. Subsequent signal transmission likely involves transmembrane signaling instead of direct intramolecular interactions between the input and the output modules in the cytoplasm. The basic functional unit of DifA for signal transduction is likely dimeric as mutational alteration of the predicted dimeric interface of DifA significantly affected EPS production. Deletions of 14-aa segments in the C terminus suggest that the newly defined flexible bundle subdomain in MCPs is likely critical for DifA function because shortening of this bundle can lead to constitutively active mutations.
Collapse
|
412
|
Abstract
Bacterial chemotaxis is mediated by signalling complexes of chemoreceptors, histidine kinase CheA and coupling protein CheW. Interactions in complexes profoundly affect the kinase. We investigated effects of these interactions on chemoreceptors by comparing receptors alone and in complexes. Assays of initial rates of methylation indicated that signalling complexes shifted receptor conformation towards the methylation-on, higher-ligand-affinity, kinase-off state, tuning receptors for greater sensitivity. In contrast, transmembrane and conformational signalling within chemoreceptors was essentially unaltered, consistent with other evidence identifying receptor dimers as the fundamental units of such signalling. In signalling complexes, coupling of ligand binding to kinase activity is cooperative and the dynamic range of kinase control expanded > 100-fold by receptor adaptational modification. We observed no cooperativity in influence of ligand on receptor conformation, only on kinase activity. However, receptor modification generated increased dynamic range in a stepwise fashion, partly in coupling ligand to receptor conformation and partly in coupling receptor conformation to kinase activity. Thus, receptors and kinase were not equivalently affected by interactions in signalling complexes or by ligand binding and adaptational modification, indicating asymmetrical coupling between them. This has implications for mechanisms of precise adaptation. Coupling might vary, providing a previously unappreciated locus for sensory control.
Collapse
Affiliation(s)
- Divya N. Amin
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri-Columbia, Columbia, MO 65211
| | - Gerald L. Hazelbauer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri-Columbia, Columbia, MO 65211
| |
Collapse
|
413
|
Wu K, Walukiewicz HE, Glekas GD, Ordal GW, Rao CV. Attractant binding induces distinct structural changes to the polar and lateral signaling clusters in Bacillus subtilis chemotaxis. J Biol Chem 2010; 286:2587-95. [PMID: 21098025 DOI: 10.1074/jbc.m110.188664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.
Collapse
Affiliation(s)
- Kang Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
414
|
Abstract
In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.
Collapse
|
415
|
Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL. Diversity at its best: bacterial taxis. Environ Microbiol 2010; 13:1115-24. [PMID: 21087385 DOI: 10.1111/j.1462-2920.2010.02383.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial taxis is one of the most investigated signal transduction mechanisms. Studies of taxis have primarily used Escherichia coli and Salmonella as model organism. However, more recent studies of other bacterial species revealed a significant diversity in the chemotaxis mechanisms which are reviewed here. Differences include the genomic abundance, size and topology of chemoreceptors, the mode of signal binding, the presence of additional cytoplasmic signal transduction proteins or the motor mechanism. This diversity of chemotactic mechanisms is partly due to the diverse nature of input signals. However, the physiological reasons for the majority of differences in the taxis systems are poorly understood and its elucidation represents a major research need.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
416
|
Underbakke ES, Kiessling LL. Classifying chemoreceptors: quantity versus quality. EMBO J 2010; 29:3435-6. [PMID: 20959858 DOI: 10.1038/emboj.2010.246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eric S Underbakke
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
417
|
Kentner D, Sourjik V. Use of Fluorescence Microscopy to Study Intracellular Signaling in Bacteria. Annu Rev Microbiol 2010; 64:373-90. [DOI: 10.1146/annurev.micro.112408.134205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Kentner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| |
Collapse
|
418
|
Cardozo MJ, Massazza DA, Parkinson JS, Studdert CA. Disruption of chemoreceptor signalling arrays by high levels of CheW, the receptor-kinase coupling protein. Mol Microbiol 2010; 75:1171-81. [PMID: 20487303 DOI: 10.1111/j.1365-2958.2009.07032.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During chemotactic signalling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signalling complexes, CheW in stoichiometric excess disrupts chemotactic behaviour. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability and elevated receptor methylation levels. The severity of these effects paralleled the receptor-binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signalling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor-binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signalling.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
419
|
Spatial organization in bacterial chemotaxis. EMBO J 2010; 29:2724-33. [PMID: 20717142 DOI: 10.1038/emboj.2010.178] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/07/2010] [Indexed: 11/09/2022] Open
Abstract
Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well-documented examples of higher-order intracellular signalling structures in bacteria. One of the most prominent and best-characterized structures is formed by proteins that control bacterial chemotaxis. Signals in chemotaxis are processed by ordered arrays, or clusters, of receptors and associated proteins, which amplify and integrate chemotactic stimuli in a highly cooperative manner. Receptor clusters further serve to scaffold protein interactions, enhancing the efficiency and specificity of the pathway reactions and preventing the formation of signalling gradients through the cell body. Moreover, clustering can also ensure spatial separation of multiple chemotaxis systems in one bacterium. Assembly of receptor clusters appears to be a stochastic process, but bacteria evolved mechanisms to ensure optimal cluster distribution along the cell body for partitioning to daughter cells at division.
Collapse
|
420
|
Mutational analysis of the transmembrane helix 2-HAMP domain connection in the Escherichia coli aspartate chemoreceptor tar. J Bacteriol 2010; 193:82-90. [PMID: 20870768 DOI: 10.1128/jb.00953-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmembrane helix 2 (TM2) of the Tar chemoreceptor undergoes an inward piston-like displacement of 1 to 3 Å upon binding aspartate. This signal is transmitted to the kinase-control module via the HAMP domain. Within Tar, the HAMP domain forms a parallel four-helix bundle consisting of a dimer of two amphipathic helices connected by a flexible linker. In the nuclear magnetic resonance structure of an archaeal HAMP domain, residues corresponding to the MLLT sequence between Arg-214 at the end of TM2 and Pro-219 of Tar are an N-terminal helical extension of AS1. We modified this region to test whether it behaves as a continuous helical connection between TM2 and HAMP. First, one to four Gly residues were inserted between Thr-218 and Pro-219. Second, the MLLT sequence was replaced with one to nine Gly residues. Third, the sequence was shortened or extended with residues compatible with helix formation. Cells expressing receptors in which the MLLT sequence was shortened to MLL or in which the MLLT sequence was replaced by four Gly residues performed good aspartate chemotaxis. Other mutant receptors supported diminished aspartate taxis. Most mutant receptors had biased signal outputs and/or abnormal patterns of adaptive methylation. We interpret these results to indicate that a strong, permanent helical connection between TM2 and the HAMP domain is not necessary for normal transmembrane signaling.
Collapse
|
421
|
Alexander RP, Lowenthal AC, Harshey RM, Ottemann KM. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol 2010; 18:494-503. [PMID: 20832320 DOI: 10.1016/j.tim.2010.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/13/2010] [Accepted: 07/26/2010] [Indexed: 11/26/2022]
Abstract
Microbes have chemotactic signaling systems that enable them to detect and follow chemical gradients in their environments. The core of these sensory systems consists of chemoreceptor proteins coupled to the CheA kinase via the scaffold or coupler protein CheW. Some bacterial chemotaxis systems replace or augment CheW with a related protein, CheV, which is less well understood. CheV consists of a CheW domain fused to a receiver domain that is capable of being phosphorylated. Our review of the literature, as well as comparisons of the CheV and CheW sequence and structure, suggest that CheV proteins conserve CheW residues that are crucial for coupling. Phosphorylation of the CheV receiver domain might adjust the efficiency of its coupling and thus allow the system to modulate the response to chemical stimuli in an adaptation process.
Collapse
Affiliation(s)
- Roger P Alexander
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
422
|
Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T. Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 2010; 12:2873-84. [PMID: 20738376 DOI: 10.1111/j.1462-2920.2010.02325.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Central to the different forms of taxis are methyl-accepting chemotaxis proteins (MCPs). The increasing number of genome sequences reveals that MCPs differ enormously in sequence, topology and genomic abundance. This work is a one-by-one bioinformatic analysis of the almost-totality of MCP genes available and a classification of motile bacteria according to their lifestyle. On average, motile archaea have 6.7 MCP genes per genome whereas motile bacteria have more than twice as much. We show that the number of MCPs per genome depends on bacterial lifestyle and metabolic diversity, but weakly on genome size. Signal perception at an MCP occurs at the N-terminal ligand binding region (LBR). Here we show that around 88% of MCPs possess an LBR that remains un-annotated in SMART. MCPs can be classified into two clusters according to the size of the LBR. Cluster I receptors have an LBR between 120 and 210 amino acids whereas cluster II receptors have larger LBRs of 220-299 amino acids. There is evidence that suggests that some cluster II LBRs are composed of two cluster I LBRs. Further evidence indicates that other cluster II LBRs might harbour novel sensor domains. Cluster II receptors are dominant in archaea whereas cluster I receptors are prevalent in bacteria. MCPs can be classified into six different receptor topologies and this work contains a first estimation of the relative abundance of different receptor topologies in bacteria and archaea. Topologies involving extracytoplasmic sensing are prevalent in bacteria whereas topologies with cytosolic signal recognition are abundant in archaea.
Collapse
Affiliation(s)
- Jesús Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof Albareda, 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
423
|
Tindall MJ, Porter SL, Maini PK, Armitage JP. Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLoS Comput Biol 2010; 6:e1000896. [PMID: 20808885 PMCID: PMC2924250 DOI: 10.1371/journal.pcbi.1000896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/20/2010] [Indexed: 12/23/2022] Open
Abstract
Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY(6), aided by its specific phosphatase, the bifunctional kinase CheA(3), acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB(2) connects the cytoplasmic cluster kinase CheA(3) with the polar localised kinase CheA(2), and allows CheA(3)-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA(3) to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.
Collapse
Affiliation(s)
- Marcus J. Tindall
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Mathematics, University of Reading, Reading, United Kingdom
| | - Steven L. Porter
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Philip K. Maini
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith P. Armitage
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
424
|
Campbell AJ, Watts KJ, Johnson MS, Taylor BL. Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor, Aer. Mol Microbiol 2010; 77:575-86. [PMID: 20545849 PMCID: PMC2916861 DOI: 10.1111/j.1365-2958.2010.07231.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Aer receptor monitors internal energy (redox) levels in Escherichia coli with an FAD-containing PAS domain. Here, we randomly mutagenized the region encoding residues 14-119 of the PAS domain and found 72 aerotaxis-defective mutants, 24 of which were gain-of-function, signal-on mutants. The mutations were mapped onto an Aer homology model based on the structure of the PAS-FAD domain in NifL from Azotobacter vinlandii. Signal-on lesions clustered in the FAD binding pocket, the beta-scaffolding and in the N-cap loop. We suggest that the signal-on lesions mimic the 'signal-on' state of the PAS domain, and therefore may be markers for the signal-in and signal-out regions of this domain. We propose that the reduction of FAD rearranges the FAD binding pocket in a way that repositions the beta-scaffolding and the N-cap loop. The resulting conformational changes are likely to be conveyed directly to the HAMP domain, and on to the kinase control module. In support of this hypothesis, we demonstrated disulphide band formation between cysteines substituted at residues N98C or I114C in the PAS beta-scaffold and residue Q248C in the HAMP AS-2 helix.
Collapse
Affiliation(s)
- Asharie J Campbell
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
425
|
Tareen AM, Dasti JI, Zautner AE, Groß U, Lugert R. Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. MICROBIOLOGY-SGM 2010; 156:3123-3135. [PMID: 20656782 DOI: 10.1099/mic.0.039438-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni, an important food-borne bacterial pathogen in industrialized countries and in the developing world, is one of the major causes of bacterial diarrhoea. To identify genes which are important for the invasion of host cells by the pathogen, we screened altogether 660 clones of a transposon-generated mutant library based on the clinical C. jejuni isolate B2. Thereby, we identified a clone with a transposon insertion in gene cj0952c. As in the well-characterized C. jejuni strain NCTC 11168, the corresponding protein together with the gene product of the adjacent gene cj0951c consists of two transmembrane domains, a HAMP domain and a putative MCP domain, which together are thought to act as a chemoreceptor, designated Tlp7. In this report we show that genes cj0952c and cj0951c (i) are important for the host cell invasion of the pathogen, (ii) are not translated as one protein in C. jejuni isolate B2, contradicting the idea of a postulated read-through mechanism, (iii) affect the motility of C. jejuni, (iv) alter the chemotactic behaviour of the pathogen towards formic acid, and (v) are not related to the utilization of formic acid by formate dehydrogenase.
Collapse
Affiliation(s)
- A Malik Tareen
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Javid Iqbal Dasti
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Andreas E Zautner
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Raimond Lugert
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
426
|
Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos JL, Krell T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 2010; 285:23126-36. [PMID: 20498372 PMCID: PMC2906306 DOI: 10.1074/jbc.m110.110403] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.
Collapse
Affiliation(s)
- Jesús Lacal
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Carlos Alfonso
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Xianxian Liu
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Rebecca E. Parales
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Bertrand Morel
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Germán Rivas
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Estrella Duque
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan L. Ramos
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Tino Krell
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
427
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
428
|
Wuichet K, Zhulin IB. Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 2010; 3:ra50. [PMID: 20587806 DOI: 10.1126/scisignal.2000724] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein "chemotaxis system" is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species.
Collapse
Affiliation(s)
- Kristin Wuichet
- BioEnergy Science Center and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
429
|
Alexandre G. Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. MICROBIOLOGY-SGM 2010; 156:2283-2293. [PMID: 20558508 DOI: 10.1099/mic.0.039214-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteria have evolved the ability to monitor changes in various physico-chemical parameters and to adapt their physiology and metabolism by implementing appropriate cellular responses to these changes. Energy taxis is a metabolism-dependent form of taxis and is the directed movement of motile bacteria in gradients of physico-chemical parameters that affect metabolism. Energy taxis has been described in diverse bacterial species and several dedicated energy sensors have been identified. The molecular mechanism of energy taxis has not been studied in as much detail as chemotaxis, but experimental evidence indicates that this behaviour differs from metabolism-independent taxis only by the presence of dedicated energy taxis receptors. Energy taxis receptors perceive changes in energy-related parameters, including signals related to the redox and/or intracellular energy status of the cell. The best-characterized energy taxis receptors are those that sense the redox state of the electron transport chain via non-covalently bound FAD cofactors. Other receptors shown to mediate energy taxis lack any recognizable redox cofactor or conserved energy-sensing motif, and some have been suggested to monitor changes in the proton motive force. The exact energy-sensing mechanism(s) involved are yet to be elucidated for most of these energy sensors. By monitoring changes in energy-related parameters, energy taxis receptors allow cells to couple motility behaviour with metabolism under diverse environmental conditions. Energy taxis receptors thus provide fruitful models to decipher how cells integrate sensory behaviours with metabolic activities.
Collapse
Affiliation(s)
- Gladys Alexandre
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, 1414 W. Cumberland Ave, Knoxville, TN 37996, USA
| |
Collapse
|
430
|
Abstract
Electron cryotomography (ECT) is an emerging technology that allows thin samples such as macromolecular complexes and small bacterial cells to be imaged in 3-D in a nearly native state to "molecular" ( approximately 4 nm) resolution. As such, ECT is beginning to deliver long-awaited insight into the positions and structures of cytoskeletal fi laments, cell wall elements, motility machines, chemoreceptor arrays, internal compartments, and other ultrastructures. This article describes the technique and summarizes its contributions to bacterial cell biology. For comparable recent reviews, see (Subramaniam 2005; Jensen and Briegel 2007; Murphy and Jensen 2007; Li and Jensen 2009). For reviews on the history, technical details, and broader application of electron tomography in general, see for example (Subramaniam and Milne 2004; Lucić et al. 2005; Leis et al. 2008; Midgley and Dunin-Borkowski 2009).
Collapse
Affiliation(s)
- Elitza I Tocheva
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
431
|
Darnton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J 2010; 98:2082-90. [PMID: 20483315 PMCID: PMC2872219 DOI: 10.1016/j.bpj.2010.01.053] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/04/2010] [Accepted: 01/22/2010] [Indexed: 12/30/2022] Open
Abstract
When vegetative bacteria that can swim are grown in a rich medium on an agar surface, they become multinucleate, elongate, synthesize large numbers of flagella, produce wetting agents, and move across the surface in coordinated packs: they swarm. We examined the motion of swarming Escherichia coli, comparing the motion of individual cells to their motion during swimming. Swarming cells' speeds are comparable to bulk swimming speeds, but very broadly distributed. Their speeds and orientations are correlated over a short distance (several cell lengths), but this correlation is not isotropic. We observe the swirling that is conspicuous in many swarming systems, probably due to increasingly long-lived correlations among cells that associate into groups. The normal run-tumble behavior seen in swimming chemotaxis is largely suppressed, instead, cells are continually reoriented by random jostling by their neighbors, randomizing their directions in a few tenths of a second. At the edge of the swarm, cells often pause, then swim back toward the center of the swarm or along its edge. Local alignment among cells, a necessary condition of many flocking theories, is accomplished by cell body collisions and/or short-range hydrodynamic interactions.
Collapse
Affiliation(s)
| | | | | | - Howard C. Berg
- Rowland Institute at Harvard University, Cambridge, Massachusetts
| |
Collapse
|
432
|
An MCP-like protein interacts with the MamK cytoskeleton and is involved in magnetotaxis in Magnetospirillum magneticum AMB-1. J Mol Biol 2010; 400:309-22. [PMID: 20471399 DOI: 10.1016/j.jmb.2010.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
Abstract
Magnetotactic bacteria have the unique capacity of aligning and swimming along geomagnetic field lines, a behavior called magnetotaxis. Although this behavior has been observed for 40 years, little is known about its mechanism. Magnetotactic bacteria synthesize unique organelles, magnetosomes, which are magnetic crystals enveloped by membrane. They form chains with the help of the filamentous cytoskeletal protein MamK and impart a net magnetic-dipole moment to the bacterium. The current model proposes that magnetotaxis comprises passive magnetic orientation and active swimming due to flagellar rotation. We thought that magnetic sensing, via the widely used chemotaxis mechanism, might be actively involved in magnetotaxis. We found that the methyl-accepting chemotaxis protein Amb0994 of Magnetospirillum magneticum AMB-1 was capable of carrying out such a function. Amb0994 is encoded by a gene in the magnetosome island, in which genes essential for magnetosome biosynthesis and magnetotaxis are concentrated. Amb0994 lacks periplasmic sensing domain, which is generally involved in sensing stimuli from outside of cells. By constructing fusions with a derivative of yellow-fluorescent-protein, we showed that Amb0994 localizes to the cell poles, where methyl-accepting chemotaxis proteins are usually clustered. We then showed that Amb0994 specifically interacts, via its C-terminal domain, with MamK, using a bimolecular fluorescence complementation assay. Moreover, overproduction of Amb0994 slowed down the response of the bacterium to changes in the direction of the magnetic field. Most importantly, the C-terminal domain of Amb0994, which interacts with MamK, is responsible for this phenotype, suggesting that the interaction between Amb0994 and MamK plays a key role in magnetotaxis. These results lead to a novel explanation for magnetotaxis at the molecular level.
Collapse
|
433
|
Miller J, Parker M, Bourret RB, Giddings MC. An agent-based model of signal transduction in bacterial chemotaxis. PLoS One 2010; 5:e9454. [PMID: 20485527 PMCID: PMC2869346 DOI: 10.1371/journal.pone.0009454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/01/2010] [Indexed: 11/17/2022] Open
Abstract
We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.
Collapse
Affiliation(s)
- Jameson Miller
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Bioinformatics & Computational Biology Training Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Miles Parker
- Metascape, LLC, Nelson, British Columbia, Canada
| | - Robert B. Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Morgan C. Giddings
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Bioinformatics & Computational Biology Training Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
434
|
Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR. Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 2010; 49:3824-41. [PMID: 20355710 PMCID: PMC2873776 DOI: 10.1021/bi100055m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The signaling apparatus that controls bacterial chemotaxis is composed of a core complex containing chemoreceptors, the histidine autokinase CheA, and the coupling protein CheW. Site-specific spin labeling and pulsed dipolar ESR spectroscopy (PDS) have been applied to investigate the structure of a soluble ternary complex formed by Thermotoga maritima CheA (TmCheA), CheW, and receptor signaling domains. Thirty-five symmetric spin-label sites (SLSs) were engineered into the five domains of the CheA dimer and CheW to provide distance restraints within the CheA:CheW complex in the absence and presence of a soluble receptor that inhibits kinase activity (Tm14). Additional PDS restraints among spin-labeled CheA, CheW, and an engineered single-chain receptor labeled at six different sites allow docking of the receptor structure relative to the CheA:CheW complex. Disulfide cross-linking between selectively incorporated Cys residues finds two pairs of positions that provide further constraints within the ternary complex: one involving Tm14 and CheW and another involving Tm14 and CheA. The derived structure of the ternary complex indicates a primary site of interaction between CheW and Tm14 that agrees well with previous biochemical and genetic data for transmembrane chemoreceptors. The PDS distance distributions are most consistent with only one CheW directly engaging one dimeric Tm14. The CheA dimerization domain (P3) aligns roughly antiparallel to the receptor-conserved signaling tip but does not interact strongly with it. The angle of the receptor axis with respect to P3 and the CheW-binding P5 domains is bound by two limits differing by approximately 20 degrees . In one limit, Tm14 aligns roughly along P3 and may interact to some extent with the hinge region near the P3 hairpin loop. In the other limit, Tm14 tilts to interact with the P5 domain of the opposite subunit in an interface that mimics that observed with the P5 homologue CheW. The time domain ESR data can be simulated from the model only if orientational variability is introduced for the P5 and, especially, P3 domains. The Tm14 tip also binds beside one of the CheA kinase domains (P4); however, in both bound and unbound states, P4 samples a broad range of distributions that are only minimally affected by Tm14 binding. The CheA P1 domains that contain the substrate histidine are also broadly distributed in space under all conditions. In the context of the hexagonal lattice formed by trimeric transmembrane chemoreceptors, the PDS structure is best accommodated with the P3 domain in the center of a honeycomb edge.
Collapse
Affiliation(s)
- Jaya Bhatnagar
- Center for Advanced ESR Studies (ACERT), Cornell University, Ithaca NY 14853
| | - Peter P. Borbat
- Center for Advanced ESR Studies (ACERT), Cornell University, Ithaca NY 14853
| | | | | | - Jack H. Freed
- Center for Advanced ESR Studies (ACERT), Cornell University, Ithaca NY 14853
| | - Brian R. Crane
- To whom correspondence should be addressed. Telephone (607)-255-8634. Fax (607)-255-1248,
| |
Collapse
|
435
|
Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 2010; 161:276-83. [DOI: 10.1016/j.resmic.2010.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/15/2010] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
|
436
|
Schweinitzer T, Josenhans C. Bacterial energy taxis: a global strategy? Arch Microbiol 2010; 192:507-20. [PMID: 20411245 PMCID: PMC2886117 DOI: 10.1007/s00203-010-0575-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 12/24/2022]
Abstract
A functional energy metabolism is one of the most important requirements for survival of all kinds of organisms including bacteria. Therefore, many bacteria actively seek conditions of optimal metabolic activity, a behaviour which can be termed "energy taxis". Motility, combined with the sensory perception of the internal energetic conditions, is prerequisite for tactic responses to different energy levels and metabolic yields. Diverse mechanisms of energy sensing and tactic response have evolved among various bacteria. Many of the known energy taxis sensors group among the methyl-accepting chemotaxis protein (MCP)-like sensors. This review summarizes recent advances in the field of energy taxis and explores the current concept that energy taxis is an important part of the bacterial behavioural repertoire in order to navigate towards more favourable metabolic niches and to survive in a specific habitat.
Collapse
Affiliation(s)
- Tobias Schweinitzer
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
437
|
Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. SENSORS 2010; 10:4010-39. [PMID: 22319339 PMCID: PMC3274258 DOI: 10.3390/s100404010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/29/2010] [Accepted: 04/09/2010] [Indexed: 12/17/2022]
Abstract
Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan; E-Mail: (I.K.)
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-52-789-2993; Fax: +81-52-789-3001
| |
Collapse
|
438
|
Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 2010; 38:128-39. [PMID: 20346719 PMCID: PMC2929022 DOI: 10.1016/j.molcel.2010.03.001] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 11/17/2022]
Abstract
We describe a mechanism of flagellar motor control by the bacterial signaling molecule c-di-GMP, which regulates several cellular behaviors. E. coli and Salmonella have multiple c-di-GMP cyclases and phosphodiesterases, yet absence of a specific phosphodiesterase YhjH impairs motility in both bacteria. yhjH mutants have elevated c-di-GMP levels and require YcgR, a c-di-GMP-binding protein, for motility inhibition. We demonstrate that YcgR interacts with the flagellar switch-complex proteins FliG and FliM, most strongly in the presence of c-di-GMP. This interaction reduces the efficiency of torque generation and induces CCW motor bias. We present a "backstop brake" model showing how both effects can result from disrupting the organization of the FliG C-terminal domain, which interacts with the stator protein MotA to generate torque. Inhibition of motility and chemotaxis may represent a strategy to prepare for sedentary existence by disfavoring migration away from a substrate on which a biofilm is to be formed.
Collapse
Affiliation(s)
- Koushik Paul
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Vincent Nieto
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - David F. Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Rasika M. Harshey
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
439
|
Carmona-Ribeiro AM. Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int J Nanomedicine 2010; 5:249-59. [PMID: 20463941 PMCID: PMC2865020 DOI: 10.2147/ijn.s9035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Indexed: 11/23/2022] Open
Abstract
Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
440
|
Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 2010; 141:107-16. [PMID: 20303158 DOI: 10.1016/j.cell.2010.01.018] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/09/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022]
Abstract
Bacteria swim by means of rotating flagella that are powered by ion influx through membrane-spanning motor complexes. Escherichia coli and related species harness a chemosensory and signal transduction machinery that governs the direction of flagellar rotation and allows them to navigate in chemical gradients. Here, we show that Escherichia coli can also fine-tune its swimming speed with the help of a molecular brake (YcgR) that, upon binding of the nucleotide second messenger cyclic di-GMP, interacts with the motor protein MotA to curb flagellar motor output. Swimming velocity is controlled by the synergistic action of at least five signaling proteins that adjust the cellular concentration of cyclic di-GMP. Activation of this network and the resulting deceleration coincide with nutrient depletion and might represent an adaptation to starvation. These experiments demonstrate that bacteria can modulate flagellar motor output and thus swimming velocity in response to environmental cues.
Collapse
Affiliation(s)
- Alex Boehm
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Nishikata K, Fuchigami S, Ikeguchi M, Kidera A. Molecular modeling of the HAMP domain of sensory rhodopsin II transducer from Natronomonas pharaonis. Biophysics (Nagoya-shi) 2010; 6:27-36. [PMID: 27857583 PMCID: PMC5036668 DOI: 10.2142/biophysics.6.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/16/2010] [Indexed: 12/02/2022] Open
Abstract
The halobacterial transducer of sensory rhodopsin II (HtrII) is a photosignal transducer associated with phototaxis in extreme halophiles. The HAMP domain, a linker domain in HtrII, is considered to play an important role in transferring the signal from the membrane to the cytoplasmic region, although its structure in the complex remains undetermined. To establish the structural basis for understanding the mechanism of signal transduction, we present an atomic model of the structure of the N-terminal HAMP domain from Natronomonas pharaonis (HtrII: 84–136), based on molecular dynamics (MD) simulations. The model was built by homology modeling using the NMR structure of Af1503 from Archaeoglobus fulgidus as a template. The HAMP domains of Af1503 and HtrII were stable during MD simulations over 100 ns. Quantitative analyses of inter-helical packing indicated that the Af1503 HAMP domain stably maintained unusual knobs-to-knobs packing, as observed in the NMR structure, while the bulky side-chains of HtrII shifted the packing state to canonical knobs-into-holes. The role of the connector loop in maintaining structural stability was also discussed using MD simulations of loop deletion mutants.
Collapse
Affiliation(s)
- Koro Nishikata
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | - Sotaro Fuchigami
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | - Akinori Kidera
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan; Research Program for Computational Science, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
442
|
Airola MV, Watts KJ, Bilwes AM, Crane BR. Structure of concatenated HAMP domains provides a mechanism for signal transduction. Structure 2010; 18:436-48. [PMID: 20399181 PMCID: PMC2892831 DOI: 10.1016/j.str.2010.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/07/2023]
Abstract
HAMP domains are widespread prokaryotic signaling modules found as single domains or poly-HAMP chains in both transmembrane and soluble proteins. The crystal structure of a three-unit poly-HAMP chain from the Pseudomonas aeruginosa soluble receptor Aer2 defines a universal parallel four-helix bundle architecture for diverse HAMP domains. Two contiguous domains integrate to form a concatenated di-HAMP structure. The three HAMP domains display two distinct conformations that differ by changes in helical register, crossing angle, and rotation. These conformations are stabilized by different subsets of conserved residues. Known signals delivered to HAMP would be expected to switch the relative stability of the two conformations and the position of a coiled-coil phase stutter at the junction with downstream helices. We propose that the two conformations represent opposing HAMP signaling states and suggest a signaling mechanism whereby HAMP domains interconvert between the two states, which alternate down a poly-HAMP chain.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, Californi 92350
| | | | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
443
|
Dunin-Horkawicz S, Lupas AN. Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol 2010; 397:1156-74. [PMID: 20184894 DOI: 10.1016/j.jmb.2010.02.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 11/26/2022]
Abstract
Homodimeric receptors with one or two transmembrane (TM) segments per monomer are universal to life and represent the largest and most diverse group of cellular TM receptors. They frequently share domain types across phyla and, in some cases, have been recombined experimentally into functional chimeras (e.g., the bacterial aspartate chemoreceptor with the human insulin receptor), suggesting that they have a common mechanism. The nature of this mechanism, however, is still being debated. We have proposed a new model for transduction mechanism by axial helix rotation, based on the structure of a widespread domain, HAMP, that frequently occurs in direct continuation of the last TM segment, primarily in histidine kinases and chemoreceptors. Here we show by statistical analysis that HAMP domain sequences have biophysical properties compatible with the two conformations proposed by the model. The analysis also identifies three networks of coevolving residues, which allow the mechanism to subdivide into individual steps. The most extended of these networks is specific for membrane-bound HAMP domains and most likely accepts the signal from the TM helices. In a classification based on sequence clustering, these HAMPs form a central supercluster, surrounded by smaller clusters of divergent HAMPs, which typically combine into arrays of up to 31 consecutive copies and accept conformational input from other HAMP domains. Unexpectedly, the classification shows a division between domains of histidine kinases and those of chemoreceptors; thus, except for a few versatile lineages, HAMP domains are largely specific for one particular output domain. Within proteins using a given output domain, HAMP domains also show extensive coevolution with histidine kinases, but not with chemoreceptors. We attribute the greater capability for recombination among chemoreceptors to their acquisition of a reversible modification system, which acts as a capacitor for the initially deleterious effects of combining domains optimized in different contexts.
Collapse
Affiliation(s)
- Stanislaw Dunin-Horkawicz
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Spemannstr. 35, D-72076 Tuebingen, Germany
| | | |
Collapse
|
444
|
Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet 2010; 6:e1000851. [PMID: 20174605 PMCID: PMC2824747 DOI: 10.1371/journal.pgen.1000851] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/20/2010] [Indexed: 12/15/2022] Open
Abstract
Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.
Collapse
Affiliation(s)
- Christel Cazalet
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | - Mariella Lomma
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | | | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Sophie Jarraud
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Nora Zidane
- Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France
| | - Laurence Ma
- Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France
| | - Jerôme Etienne
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
- * E-mail:
| |
Collapse
|
445
|
Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP. Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex. PLoS Biol 2010; 8:e1000306. [PMID: 20161720 PMCID: PMC2817712 DOI: 10.1371/journal.pbio.1000306] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/31/2009] [Indexed: 11/30/2022] Open
Abstract
Analysis of the crystal structure of a phosphotransfer complex from the Rhodobacter sphaeroides chemotaxis pathway allowed reengineering of molecular recognition in a two-component signalling system. Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 Å crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA3, in complex with its cognate RR, CheY6. A methionine finger on CheY6 that nestles in a hydrophobic pocket in CheA3 was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA3, CheY6, and CheB2. Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA3-P to CheY6. Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA3-P. The structure presented here has allowed us to identify specificity determinants for the CheA–CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction. The ability to respond to environmental stimuli is a universal feature of living cells. Evolution has created a vast array of signalling mechanisms that enable cells to react in many ways to extracellular changes. In bacteria, two-component signalling mechanisms, comprising a sensor protein kinase paired with its a cognate response regulator, are used widely to sense and respond to environmental changes. Some species of bacteria have over 150 different two-component pairs in a single cell, so the specificity between these pairs has to be tightly controlled to prevent “crossed wires” between signalling pathways. In this study, we have identified the determinants of this specificity in a two-component complex that controls the movement of Rhodobacter sphaeroides along a chemical gradient. By solving and analysing the crystal structure of this complex, we were able to pinpoint the amino acid residues that are crucially involved in formation of the complex. Knowledge of these crucial residues allowed us to convert noncognate response regulators into cognate response regulators simply by changing two amino acids. This reengineering of two-component signalling pathways paves the way for producing custom-designed circuits for applications in synthetic biology.
Collapse
Affiliation(s)
- Christian H. Bell
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | - Steven L. Porter
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Annabel Strawson
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DIS); (JPA)
| | - Judith P. Armitage
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (DIS); (JPA)
| |
Collapse
|
446
|
Hazelbauer GL, Lai WC. Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 2010; 13:124-32. [PMID: 20122866 DOI: 10.1016/j.mib.2009.12.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/30/2009] [Accepted: 12/31/2009] [Indexed: 11/17/2022]
Abstract
Bacteria perform chemotaxis utilizing core two-component signaling systems to which have been added enhanced features of signal amplification, sensory adaptation, molecular memory and high sensitivity over a wide dynamic range. Chemoreceptors are central to the enhancements. These transmembrane homodimers associate in trimers and in clusters of signaling complexes containing from a few to thousands of receptors. Receptor homodimers couple ligand occupancy and adaptational modification to transmembrane signaling. Trimers activate and control the histidine kinase. Clusters enable signal amplification, high sensitivity and adaptational assistance. Homodimer signaling initiates with helical piston sliding that is converted to modulation of competing packing modes of adjacent segments of an extended helical coiled coil. In trimers, signaling and coupling may involve switching between compact and expanded forms.
Collapse
Affiliation(s)
- Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|
447
|
Abstract
Escherichia coli chemoreceptors can sense changes in temperature for thermotaxis. Here we found that the aerotaxis transducer Aer, a homolog of chemoreceptors lacking a periplasmic domain, mediates thermoresponses. We propose that thermosensing by the chemoreceptors is a general attribute of their highly conserved cytoplasmic domain (or their less conserved transmembrane domain).
Collapse
|
448
|
PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proc Natl Acad Sci U S A 2010; 107:2235-40. [PMID: 20133866 DOI: 10.1073/pnas.0910055107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemoreceptors provide sensory specificity and sensitivity that enable motile bacteria to seek optimal positions for growth and metabolism in gradients of various physicochemical cues. Despite the abundance of chemoreceptors, little is known regarding the sensory specificity and the exact contribution of individual chemoreceptors to the lifestyle of bacteria. Azospirillum brasilense are motile bacteria that can fix atmospheric nitrogen under microaerophilic conditions. Here, we characterized a chemoreceptor in this organism, named AerC, which functions as a redox sensor that enables the cells to seek microaerophilic conditions that support optimum nitrogen fixation. AerC is a representative of a widespread class of soluble chemoreceptors that monitor changes in the redox status of the electron transport system via the FAD cofactor associated with its PAS domains. In A. brasilense, AerC clusters at the cell poles. Its cellular localization and contribution to the behavioral response correlate with its expression pattern and with changes in the overall cellular FAD content under nitrogen-fixing conditions. AerC-mediated energy taxis in A. brasilense prevails under conditions of nitrogen fixation, illustrating a strategy by which cells optimize chemosensing to signaling cues that directly affect current metabolic activities and thus revealing a mechanism by which chemotaxis is coordinated with dynamic changes in cell physiology.
Collapse
|
449
|
The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling. J Bacteriol 2010; 192:1193-200. [PMID: 20061469 DOI: 10.1128/jb.01391-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmembrane chemoreceptors are central components in bacterial chemotaxis. Receptors couple ligand binding and adaptational modification to receptor conformation in processes that create transmembrane signaling. Homodimers, the fundamental receptor structural units, associate in trimers and localize in patches of thousands. To what degree do conformational coupling and transmembrane signaling require higher-order interactions among dimers? To what degree are they altered by such interactions? To what degree are they inherent features of homodimers? We addressed these questions using nanodiscs to create membrane environments in which receptor dimers had few or no potential interaction partners. Receptors with many, few, or no interaction partners were tested for conformational changes and transmembrane signaling in response to ligand occupancy and adaptational modification. Conformation was assayed by measuring initial rates of receptor methylation, a parameter independent of receptor-receptor interactions. Coupling of ligand occupancy and adaptational modification to receptor conformation and thus to transmembrane signaling occurred with essentially the same sensitivity and magnitude in isolated dimers as for dimers with many neighbors. Thus, we conclude that the chemoreceptor dimer is the fundamental unit of conformational coupling and transmembrane signaling. This implies that in signaling complexes, coupling and transmembrane signaling occur through individual dimers and that changes between dimers in a receptor trimer or among trimer-based signaling complexes are subsequent steps in signaling.
Collapse
|
450
|
Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes. Appl Environ Microbiol 2009; 76:1241-50. [PMID: 20023074 DOI: 10.1128/aem.02153-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper describes a new approach for labeling intact flagella using the biarsenical dyes FlAsH and ReAsH and imaging their spatial and temporal dynamics on live Escherichia coli cells in swarming communities of bacteria by using epifluorescence microscopy. Using this approach, we observed that (i) bundles of flagella on swarmer cells remain cohesive during frequent collisions with neighboring cells, (ii) flagella on nonmotile swarmer cells at the leading edge of the colony protrude in the direction of the uncolonized agar surface and are actively rotated in a thin layer of fluid that extends outward from the colony, and (iii) flagella form transient interactions with the flagella of other swarmer cells that are in close proximity. This approach opens a window for observing the dynamics of cells in communities that are relevant to ecology, industry, and biomedicine.
Collapse
|