401
|
da Silva FBO, Santos MDCQ, Borella da Silva TC, Facchini D, Kolberg A, Barros RR, Silveira EMS, Kroth A, Duarte FCK, Vassoler JM, Kolberg C, Partata WA. Spine adjusting instrument (Impulse®) attenuates nociception and modulates oxidative stress markers in the spinal cord and sciatic nerve of a rat model of neuropathic pain. PAIN MEDICINE 2021; 23:761-773. [PMID: 33993301 DOI: 10.1093/pm/pnab167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Oxidative stress plays an important role in neuropathic pain. Spinal manipulative therapy (SMT) can exert beneficial effects in pain outcomes in humans and animal models. SMT can also modulate oxidative stress markers in both humans and animals. We aimed to determine the effect of Impulse®-assisted SMT (ISMT) on nociception and oxidative stress biomarkers in the spinal cord and sciatic nerve of rats with neuropathic pain (NP). METHODS NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Animals were randomly assigned to naive, sham (rats with sciatic nerve exposure but without ligatures) and CCI, with and without ISMT. ISMT was applied onto the skin area corresponding to the spinous process of L4-L5, 3 times/week, for 2 weeks. Mechanical threshold, latency to paw withdrawal to thermal stimulus and oxidative stress biomarkers in spinal cord and sciatic nerve were the main outcomes evaluated. RESULTS ISMT significantly increased mechanical threshold and withdrawal latency after CCI. In the spinal cord, ISMT prevented the increase of pro-oxidative superoxide anion generation and hydrogen peroxide levels. Lipid hydroperoxide levels both in the spinal cord and in the sciatic nerve were attenuated by ISMT. Total antioxidant capacity increased in the spinal cord and sciatic nerve of CCI rats with and without ISMT. CCI and ISMT did not significantly change the total thiol content of the spinal cord. CONCLUSIONS Our findings suggest reduced oxidative stress in the spinal cord and/or nerve may be an important mechanism underlying a therapeutic effect of SMT to manage NP non-pharmacologically.
Collapse
Affiliation(s)
- Francielle B O da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Maria do Carmo Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Thaisla Cristiane Borella da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | | | - Angela Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Rodrigo R Barros
- Departamento de Engenharia Mecânica, Faculdade de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Elza M S Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Adarly Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina
| | - Felipe C K Duarte
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Ontario, Canada
| | - Jakson M Vassoler
- Departamento de Engenharia Mecânica, Faculdade de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Carolina Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Wania A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| |
Collapse
|
402
|
Young J, Zoghi M, Khan F, Galea MP. The Effect of Transcranial Direct Current Stimulation on Chronic Neuropathic Pain in Patients with Multiple Sclerosis: Randomized Controlled Trial. PAIN MEDICINE 2021; 21:3451-3457. [PMID: 32594139 DOI: 10.1093/pm/pnaa128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Chronic neuropathic pain is a common symptom in multiple sclerosis (MS). This randomized controlled single-blinded study investigated whether a new protocol involving five days of transcranial direct current stimulation (tDCS) with an interval period would be effective to reduce pain using the visual analog scale (VAS). Other secondary outcomes included the Neuropathic Pain Scale (NPS), Depression Anxiety Stress Score (DASS), Short Form McGill Pain Questionnaire (SFMPQ), and Multiple Sclerosis Quality of Life 54 (MSQOL54). DESIGN A total of 30 participants were recruited for the study, with 15 participants randomized to a sham group or and 15 randomized to an active group. After a five-day course of a-tDCS, VAS and NPS scores were measured daily and then weekly after treatment up to four weeks after treatment. Secondary outcomes were measured pretreatment and then weekly up to four weeks. RESULTS After a five-day course of a-tDCS, VAS scores were significantly reduced compared with sham tDCS and remained significantly low up to week 2 post-treatment. There were no statistically significant mean changes in MSQOL54, SFMPQ, NPS, or DASS for the sham or treatment group before treatment or at four-week follow-up. CONCLUSIONS This study shows that repeated stimulation with a-tDCS for five days can reduce pain intensity for a prolonged period in patients with MS who have chronic neuropathic pain.
Collapse
Affiliation(s)
- Jamie Young
- RehabilitationDepartment, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.,Department of Medicine and Radiology, Integrated Critical Care, University of Melbourne, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Fary Khan
- RehabilitationDepartment, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Mary P Galea
- RehabilitationDepartment, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
403
|
Nava-Ochoa AE, Antunes-Ricardo M, Guajardo-Flores D. Nano-sized carriers for capsaicinoids with topic analgesic and anti-inflammatory effects. J Biotechnol 2021; 333:77-85. [PMID: 33964358 DOI: 10.1016/j.jbiotec.2021.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Abstract
Capsaicinoids confer the pungency in chili peppers and are proven to contain many beneficial traits, among them analgesic and anti-inflammatory properties. Capsaicinoids produce a burning sensation when administered and have other secondary effects given their pungency. This is why many drug delivery vehicles have been tested to prove their efficacy in reducing the secondary effects of these compounds while still having its primary beneficial effects. There are many articles that talk about the formulation of drug delivery systems and their properties yet there is little information on the therapeutic effects of applying these drug delivery systems. This review is focused on studies' results that prove efficacy of capsaicinoids specially in those that use them in nano-sized drug delivery systems. Nano-sized carriers have been proven to reduce the secondary effects of capsaicinoids while improving the bioavailability, absorption, anti-inflammatory and analgesic properties of these compounds.
Collapse
Affiliation(s)
- Ana Emilia Nava-Ochoa
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, C.P., 64849, Monterrey, N.L., Mexico
| | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, C.P., 64849, Monterrey, N.L., Mexico.
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, C.P., 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
404
|
Mehra D, Mangwani-Mordani S, Acuna K, C Hwang J, R Felix E, Galor A. Long-Term Trigeminal Nerve Stimulation as a Treatment for Ocular Pain. Neuromodulation 2021; 24:1107-1114. [PMID: 33945660 DOI: 10.1111/ner.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Ocular pain symptoms (e.g., hypersensitivity to light and wind, "burning" sensations) can be debilitating and difficult to treat. Neuromodulatory therapies targeting sensory trigeminal and central pain pathways may help treat chronic ocular pain refractory to traditional therapies. The current study evaluates the long-term effects of a trigeminal neurostimulator (TNS) on ocular pain. MATERIALS AND METHODS Retrospective review of 18 individuals at the Miami Veterans Affairs Eye Clinic with chronic, severe ocular pain who were prescribed and used TNS at home for ≥3 months. The primary outcome measures were 1) ocular symptom intensity over a 24-hour recall period (dryness, pain, light sensitivity, wind sensitivity, burning; rated on 0-10 scales) captured pre-TNS and at monthly follow-up intervals and 2) side effects. The frequency and duration of TNS was a secondary outcome measure. RESULTS The mean age of the population (n = 18) was 57.5 years (range, 34-85 years) with a male majority (67%). Two individuals discontinued use due to lack of efficacy and one due to confounding health issues. Initial mean weekly frequency of TNS use was 3.7 ± 1.9 sessions of 25.8 min at month 1 and 2.7 ± 2.3 sessions of 28.0 min at month 6. At six months, pain intensity (↓ 31.4%), light sensitivity (↓ 36.3%), wind sensitivity (↓ 32.6%), and burning sensation (↓ 53.9%) were all decreased compared to baseline (p < 0.01 for all); greater decreases in ocular pain were noted in individuals with migraine (n = 10) than those without migraine (n = 8). No significant change was noted in mean dryness scores. Fifteen subjects experienced sedation with TNS use, persisting throughout the follow-up visits. No other adverse effects were communicated by any subjects. CONCLUSION Our study suggests TNS is a safe, adjunctive treatment option in individuals with severe, chronic ocular pain. Individuals demonstrated gradual, continual improvement in pain symptoms over time within a multimodal approach.
Collapse
Affiliation(s)
- Divy Mehra
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | - Kelly Acuna
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA
| | - Jodi C Hwang
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elizabeth R Felix
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Physical Medicine and Rehabilitation, University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
405
|
The Prevalence, Characteristics and Impact of Chronic Pain in People With Muscular Dystrophies: A Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2021; 22:1343-1359. [PMID: 33933682 DOI: 10.1016/j.jpain.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
Chronic pain is a frequent, yet under-recognized and under-assessed problem in people with muscular dystrophies (MDs). Knowledge of the prevalence and characteristics of chronic pain, and its impact on function and quality of life is limited and lacks systematic exploration. This article aims to systematically review and synthesize existing literature that addresses chronic pain prevalence, characteristics and impact in people with different types of MDs. The present meta-analysis showed that the estimated prevalence of chronic pain in MDs is high and appears to be similar across different diagnostic groups: 68% (95% CI: 52%-82%) in FSHD, 65% (95% CI: 51%-77%) in DM, 62% (95% CI: 50%-73%) in BMD/DMD, and 60% (95% CI: 48%-73%) in LGMD, although it should be noted that heterogeneity was high in some diagnostic groups. On average, people with FSHD and DM present with moderate pain intensity. The lumbar spine, shoulders and legs are the most frequent sites of chronic pain among people with FSHD, DM, BMD/DMD, and LGMD, with little variation. Diffuse pain across multiple body sites was reported by a notable proportion of these individuals. Chronic pain has a negative impact on daily life activities in people with MDs, and may also contribute to decreased quality of life. The protocol for this review has been published on PROSPERO (CRD42020168096). PERSPECTIVES: This is the first systematic review and meta-analysis exploring the prevalence, and nature and impact of chronic pain in people with MDs. The present study demonstrates how common chronic pain is across various MD populations and highlights the need for better recognition and understanding of the nature and impact of pain from health professionals.
Collapse
|
406
|
Honjo Y, Fujita Y, Niwa H, Yamashita T. Increased expression of Netrin-4 is associated with allodynia in a trigeminal neuropathic pain model rats by infraorbital nerve injury. PLoS One 2021; 16:e0251013. [PMID: 33914819 PMCID: PMC8084253 DOI: 10.1371/journal.pone.0251013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/18/2021] [Indexed: 12/01/2022] Open
Abstract
Neuropathic pain refers to pain caused by lesions or diseases of the somatosensory nervous system that is characteristically different from nociceptive pain. Moreover, neuropathic pain occurs in the maxillofacial region due to various factors and is treated using tricyclic antidepressants and nerve block therapy; however, some cases do not fully recover. Netrin is a secreted protein crucially involved in neural circuit formation during development, including cell migration, cell death, neurite formation, and synapse formation. Recent studies show Netrin-4 expressed in the dorsal horn of the spinal cord is associated with chronic pain. Here we found involvement of Netrin-4 in neuropathic pain in the maxillofacial region. Netrin-4, along with one of its receptors, Unc5B, are expressed in the caudal subnucleus of the trigeminal spinal tract nucleus. Inhibition of its binding by anti-Netrin-4 antibodies not only shows a behavioral analgesic effect but also neuronal activity suppression. There was increased Netrin-4 expression at 14 days after infraorbital nerve injury. Our findings suggest that Netrin-4 induced by peripheral nerve injury causes neuropathic pain via Unc5B.
Collapse
Affiliation(s)
- Yuka Honjo
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Molecular Neuroscience, Osaka University, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
407
|
Raja SN, Ringkamp M, Guan Y, Campbell JN. John J. Bonica Award Lecture: Peripheral neuronal hyperexcitability: the "low-hanging" target for safe therapeutic strategies in neuropathic pain. Pain 2021; 161 Suppl 1:S14-S26. [PMID: 33090736 DOI: 10.1097/j.pain.0000000000001838] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Matthias Ringkamp
- Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Yun Guan
- Departments of Anesthesiology and Critical Care Medicine and.,Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - James N Campbell
- Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
408
|
Are pain coping strategies and neuropathic pain associated with a worse outcome after conservative treatment for Achilles tendinopathy? A prospective cohort study. J Sci Med Sport 2021; 24:871-875. [PMID: 33934973 DOI: 10.1016/j.jsams.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To analyse whether (1) passive or active pain coping strategies and (2) presence of neuropathic pain component influences the change of Achilles tendinopathy (AT) symptoms over a course of 24 weeks in conservatively-treated patients. DESIGN Prospective cohort study. METHODS Patients with clinically-diagnosed chronic midportion AT were conservatively treated. At baseline, the Pain Coping Inventory (PCI) was used to determine scores of coping, which consisted of two domains, active and passive (score ranging from 0 to 1; the higher, the more active or passive). Presence of neuropathic pain (PainDETECT questionnaire, -1 to 38 points) was categorized as (a) unlikely (≤12 points), (b) unclear (13-18 points) and (c) likely (≥19 points). The symptom severity was determined with the validated Victorian Institute of Sports Assessment-Achilles (VISA-A) questionnaire (0-100) at baseline, 6, 12 and 24 weeks. We analysed the correlation between (1) PCI and (2) PainDETECT baseline scores with change in VISA-A score using an adjusted Generalized Estimating Equations model. RESULTS Of 80 included patients, 76 (95%) completed the 24-weeks follow-up. The mean VISA-A score (standard deviation) increased from 43 (16) points at baseline to 63 (23) points at 24 weeks. Patients had a mean (standard deviation) active coping score of 0.53 (0.13) and a passive score of 0.43 (0.10). Twelve patients (15%) had a likely neuropathic pain component. Active and passive coping mechanisms and presence of neuropathic pain did not influence the change in AT symptoms (p=0.459, p=0.478 and p=0.420, respectively). CONCLUSIONS Contrary to widespread belief, coping strategy and presence of neuropathic pain are not associated with a worse clinical outcome in this homogeneous group of patients with clinically diagnosed AT.
Collapse
|
409
|
Perineural fat grafting in end-neuroma pain treatment: long-term outcomes. EUROPEAN JOURNAL OF PLASTIC SURGERY 2021. [DOI: 10.1007/s00238-020-01664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
410
|
Fu M, Liu F, Zhang YY, Lin J, Huang CL, Li YL, Wang H, Zhou C, Li CJ, Shen JF. The α2δ-1-NMDAR1 interaction in the trigeminal ganglion contributes to orofacial ectopic pain following inferior alveolar nerve injury. Brain Res Bull 2021; 171:162-171. [PMID: 33811955 DOI: 10.1016/j.brainresbull.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Orofacial ectopic pain can often arise following nerve injury. However, the exact mechanism responsible for orofacial ectopic pain induced by trigeminal nerve injury remains unknown. The α2δ-1 and glutamate N-methyl-d-aspartic acid receptor (NMDAR) interactions have been demonstrated to participate in neuropathic pain regulation in the spinal cord. In this study, a rat model of inferior alveolar nerve transection (IANX) was used to investigate the role of α2δ-1-NMDAR1 interaction in the trigeminal ganglion (TG) in regard to the regulation of orofacial ectopic pain. Western blot (WB) analysis indicated that α2δ-1 and NMDAR1 in the TG were substantially higher in IANX rats than they were in sham/naive rats. Additionally, immunofluorescence (IF) results revealed that α2δ-1 and NMDAR1 were co-expressed and distributed within neurons and activated satellite glial cells in the TG. Co-immunoprecipitation (Co-IP) results indicated that α2δ-1-NMDAR1 complex levels in the TG were higher in IANX rats than they were in sham rats. Furthermore, the results of behavioral tests demonstrated that intra-TG injection of gabapentin (α2δ-1 inhibitory ligand) or memantine hydrochloride (NMDAR antagonist) reversed the decrease in mechanical head-withdrawal threshold (HWT) in IANX rats. Moreover, inhibition of α2δ-1 by intra-TG administration of gabapentin suppressed the upregulation of the NMDAR1 protein, and the inhibition of NMDAR by intra-TG administration of memantine hydrochloride inhibited the increased expression of α2δ-1 protein induced by IANX. In conclusion, the physical and functional interaction between α2δ-1 and NMDAR1 is critical for the development of orofacial ectopic pain, indicating that α2δ-1, NMDAR1, and the α2δ-1-NMDAR1 complex may represent potential targets for the treatment of orofacial ectopic pain.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
411
|
Yang S, Kwon S, Chang MC. The Usefulness of Diffusion Tensor Tractography in Diagnosing Neuropathic Pain: A Narrative Review. Front Neurosci 2021; 15:591018. [PMID: 33841069 PMCID: PMC8032899 DOI: 10.3389/fnins.2021.591018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor tractography (DTT) is derived from diffusion tensor imaging. It has allowed visualization and estimation of neural tract injury, which may be associated with the pathogenesis of neuropathic pain (NP). The aim of the present study was to review DTT studies that demonstrated the relationship between neural injuries and NP and to describe the potential use of DTT in the evaluation of neural injuries that are involved in the pathophysiological process of NP. A PubMed search was conducted for articles published until July 3, 2020, which used DTT to investigate the association between neural injuries and NP. The key search phrase for identifying potentially relevant articles was (diffusion tensor tractography AND pain). The following inclusion criteria were applied for article selection: (1) studies involving patients with NP and (2) studies in which DTT was applied for the evaluation of NP. Review articles were excluded. Altogether, 108 potentially relevant articles were identified. After reading the titles and abstracts and assessment of eligibility based on the full-text articles, 46 publications were finally included in our review. The results of the included studies suggested that DTT may be beneficial in identifying the pathophysiological mechanism of NP of various origins including central pain caused by brain injuries, trigeminal neuralgia, sciatica, and some types of headache. Further studies are needed to validate the efficacy of DTT in investigating the pathophysiology of other types of NP.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Women’s University Seoul Hospital, Ewha Women’s University School of Medicine, Seoul, South Korea
| | - SuYeon Kwon
- Department of Rehabilitation Medicine, Ewha Women’s University Seoul Hospital, Ewha Women’s University School of Medicine, Seoul, South Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
412
|
Arruri VK, Gundu C, Khan I, Khatri DK, Singh SB. PARP overactivation in neurological disorders. Mol Biol Rep 2021; 48:2833-2841. [PMID: 33768369 DOI: 10.1007/s11033-021-06285-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute a family of enzymes associated with divergent cellular processes that are not limited to DNA repair, chromatin organization, genome integrity, and apoptosis but also found to play a crucial role in inflammation. PARPs mediate poly (ADP-ribosylation) of DNA binding proteins that is often responsible for chromatin remodeling thereby ensure effective repairing of DNA stand breaks although during the conditions of severe genotoxic stress PARPs direct the cell fate towards apoptotic events. Recent discoveries have pushed PARPs into the spotlight as targets for treating cancer, metabolic, inflammatory and neurological disorders. Of note, PARP-1 is the most abundant isoform of PARPs (18 member super family) which executes more than 90% of PARPs functions. Since oxidative/nitrosative stress actuated PARP-1 is linked to vigorous DNA damage and wide spread provocative inflammatory response that underlie the aetiopathogenesis of different neurological disorders, possibility of developing PARP-1 inhibitors as plausible neurotherapeutic agents attracts considerable research interest. This review outlines the recent advances in PARP-1 biology and examines the capability of PARP-1 inhibitors as treatment modalities in intense and interminable diseases of neuronal origin.
Collapse
Affiliation(s)
- Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chayanika Gundu
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
413
|
Development of a novel in vitro assay to screen for neuroprotective drugs against iatrogenic neurite shortening. PLoS One 2021; 16:e0248139. [PMID: 33690613 PMCID: PMC7946280 DOI: 10.1371/journal.pone.0248139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
This work tries to help overcome the lack of relevant translational screening assays, as a limitation for the identification of novel analgesics for neuropathic pain. Hyperexcitability and neurite shortening are common adverse effects of antiviral and antitumor drugs, leading to neuropathic pain. Now, as seen in the drug screening that we developed here, a high-content microscopy-based assay with immortalized dorsal root ganglia (DRG) neurons (differentiated F11 cells) allowed to identify drugs able to protect against the iatrogenic neurite shortening induced by the antitumor drug vincristine and the antiviral drug rilpivirine. We observed that vincristine and rilpivirine induced a significant reduction in the neurite length, which was reverted by α-lipoic acid. We had also evidenced protective effects of pregabalin and melatonin, acting through the α2δ-2 subunit of the voltage-dependent calcium channels and the MT1 receptor, respectively. Additionally, two hits originated from a previous primary screening aimed to detect inhibitors of hyperexcitability to inflammatory mediators in DRG neurons (nitrendipine and felodipine) also prevented neurite shortening in our model. In summary, in this work we developed a novel secondary assay for identifying hits with neuroprotective effect against iatrogenic neurite shortening, consistent with the anti-hyperexcitability action previously tested: highlighting nitrendipine and felodipine against iatrogenic damage in DRG neurons.
Collapse
|
414
|
Montague-Cardoso K, Malcangio M. Changes in blood-spinal cord barrier permeability and neuroimmune interactions in the underlying mechanisms of chronic pain. Pain Rep 2021; 6:e879. [PMID: 33981925 PMCID: PMC8108584 DOI: 10.1097/pr9.0000000000000879] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
Advancing our understanding of the underlying mechanisms of chronic pain is instrumental to the identification of new potential therapeutic targets. Neuroimmune communication throughout the pain pathway is of crucial mechanistic importance and has been a major focus of preclinical chronic pain research over the last 2 decades. In the spinal cord, not only do dorsal horn neurons partake in mechanistically important bidirectional communication with resident immune cells such as microglia, but in some cases, they can also partake in bidirectional crosstalk with immune cells, such as monocytes/macrophages, which have infiltrated into the spinal cord from the circulation. The infiltration of immune cells into the spinal cord can be partly regulated by changes in permeability of the blood-spinal cord barrier (BSCB). Here, we discuss evidence for and against a mechanistic role for BSCB disruption and associated changes in neuroimmune crosstalk in preclinical chronic pain. We also consider recent evidence for its potential involvement in the vincristine model of chemotherapy-induced painful neuropathy. We conclude that current knowledge warrants further investigation to establish whether preventing BSCB disruption, or targeting the changes associated with this disruption, could be used for the development of novel approaches to treating chronic pain.
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
415
|
Dohm A, Sanchez J, Stotsky-Himelfarb E, Willingham FF, Hoffe S. Strategies to Minimize Late Effects From Pelvic Radiotherapy. Am Soc Clin Oncol Educ Book 2021; 41:158-168. [PMID: 34010045 DOI: 10.1200/edbk_320999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the past 30 years, radiation treatment techniques have significantly improved, from conventional external-beam radiation therapy, to three-dimensional conformal radiation therapy, to current intensity-modulated radiation therapy, benefiting patients who undergo treatment of pelvic malignancies. Modern treatment options also include proton beam irradiation as well as low and high dose rate brachytherapy. Although the acute adverse effects of these modalities are well documented in clinical trials, less well known are the true incidence and optimal management of those late adverse effects that can occur months to years later. In a population of survivors of cancer that is steadily increasing, with many such patients receiving radiotherapy at some time during their disease course, these late effects can become a considerable management and quality-of-life issue. This review will examine the range of late toxicities that can occur from pelvic radiotherapy and explore strategies to prevent and mitigate them.
Collapse
|
416
|
Maihöfner C, Diel I, Tesch H, Quandel T, Baron R. Chemotherapy-induced peripheral neuropathy (CIPN): current therapies and topical treatment option with high-concentration capsaicin. Support Care Cancer 2021; 29:4223-4238. [PMID: 33624117 PMCID: PMC8236465 DOI: 10.1007/s00520-021-06042-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
Cancer diagnosis and treatment are drastic events for patients and their families. Besides psychological aspects of the disease, patients are often affected by severe side effects related to the cancer itself or as a result of therapeutic interventions. Particularly, chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of oral or intravenous chemotherapy. The disorder may require dose reduction of chemotherapy and is accompanied by multiple symptoms with long-term functional impairment affecting quality of life (QoL), e.g., sensory and functional deteriorations as well as severe pain. Although CIPN may reverse or improve after termination of the causative chemotherapy, approximately 30–40% of patients are faced with chronicity of the symptoms. Due to the advantages in cancer diagnosis and treatments, survival rates of cancer patients rise and CIPN may occur even more frequently in the future. In this review, we summarize current recommendations of leading national and international societies regarding prevention and treatment options in CIPN. A special focus will be placed on current evidence for topical treatment of CIPN with high-dose capsaicin. Finally, an algorithm for CIPN treatment in clinical practice is provided, including both pharmacologic and non-pharmacologic modalities based on the clinical presentation.
Collapse
Affiliation(s)
- Christian Maihöfner
- Department of Neurology, Fürth General Hospital, Jakob-Henle-Straße 1, 90766, Fürth, Germany.
| | - Ingo Diel
- Praxisklinik Am Rosengarten, Mannheim, Germany
| | - Hans Tesch
- Department of Oncology, Bethanien Hospital, Frankfurt am Main, Germany
| | | | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
417
|
Ahmad F, Alkahtani MDF, Taj MB, Alnajeebi AM, Alzahrani SO, Babteen NA, Alelwani W, Bannunah AM, Noor S, Ayub R, Tirmizi SA, Alshater H. Synthesis of New Naphthyl Aceto Hydrazone-Based Metal Complexes: Micellar Interactions, DNA Binding, Antimicrobial, and Cancer Inhibition Studies. Molecules 2021; 26:molecules26041044. [PMID: 33671247 PMCID: PMC7923181 DOI: 10.3390/molecules26041044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, naphthyl acetohydrazide (HL) ligand was prepared and used for the synthesis of new six amorphous transition metal (Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II)) complexes. All the compounds were characterized by elemental analysis, UV-vis, FT-IR, 1H- and 13C-NMR, and Matrix-Assisted Laser Desorption Ionization (MALDI). The solubilization study was carried out by estimating the interaction between the metal complexes with surfactants viz. sodium stearate (SS) and Cetyltrimethylammonium bromide (CTAB). UV-Visible spectroscopy was employed to determine partitioning and binding parameters, whereas electrical conductivity measurements were employed to estimate critical micellar concentration (CMC), the extent of dissociation, and free energy of micellization. The CT-DNA interaction of synthesized compounds with DNA represents the major groove binding. The synthesized ligand and metal complexes were also tested against bacterial and fungal strains and it has been observed that Cu(II) complex is active against all the strains except Candida albicans, while Cd(II) complex is active against all bacterial and fungal strains except Pseudomonas. Among all compounds, only the Pd(II) complex shows reasonable activity against cervical cancer HeLa cell lines, representing 97% inhibition.
Collapse
Affiliation(s)
- Fawad Ahmad
- Department of Chemistry, Quaid-e-Azam University Islamabad, Islamabad 44000, Pakistan;
| | - Muneera D. F. Alkahtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11675, Saudi Arabia
- Correspondence: (M.D.F.A.); (M.B.T.); (S.A.T.); Tel.: +92-300-754-2669 (M.B.T.)
| | - Muhammad Babar Taj
- Department of Chemistry, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
- Correspondence: (M.D.F.A.); (M.B.T.); (S.A.T.); Tel.: +92-300-754-2669 (M.B.T.)
| | - Afnan M. Alnajeebi
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia; (A.M.A.); (N.A.B.); (W.A.)
| | - Seraj Omar Alzahrani
- Department of Chemistry, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Nouf Abubakr Babteen
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia; (A.M.A.); (N.A.B.); (W.A.)
| | - Walla Alelwani
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia; (A.M.A.); (N.A.B.); (W.A.)
| | - Azzah M. Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Sadia Noor
- Department of Chemistry, Govt. College for Women University Faisalabad, Faisalabad 38000, Pakistan;
| | - Rabia Ayub
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Svante Arrhenius Vag 16C, SE-10691 Stockholm, Sweden;
| | - Syed Ahmad Tirmizi
- Department of Chemistry, Quaid-e-Azam University Islamabad, Islamabad 44000, Pakistan;
- Correspondence: (M.D.F.A.); (M.B.T.); (S.A.T.); Tel.: +92-300-754-2669 (M.B.T.)
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, Menoufia University, Shbien El-Kom 32511, Egypt;
| |
Collapse
|
418
|
Mena-Valdés LC, Blanco-Hernández Y, Espinosa-Juárez JV, López-Muñoz FJ. Haloperidol potentiates antinociceptive effects of morphine and disrupt opioid tolerance. Eur J Pharmacol 2021; 893:173825. [PMID: 33347818 DOI: 10.1016/j.ejphar.2020.173825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023]
Abstract
Haloperidol is an antipsychotic agent recently described as an antinociceptive drug able to mediate the antagonism of sigma-1 receptors while morphine is an opioid used in the treatment of neuropathic pain. The objectives of this work were to determine the type of interaction generated by the combination of morphine and haloperidol in neuropathic pain induced by chronic constriction injury and to evaluate morphine tolerance and side effects. The antiallodynic and anti-hyperalgesic effects of morphine (0.01-3.16 mg/kg, s.c.) and haloperidol (0.0178-0.1778 mg/kg, s.c.) were determined after single-doses, in monotherapy and combined, using the acetone and von Frey tests, respectively. Evaluations were performed until 10-days postsurgery. Data were processed using "Surface of Synergic Interaction analysis". The rotarod test was used to evaluate motor coordination, and the constipation test was performed using 5% charcoal. The effects of haloperidol and BD-1063, sigma-1 receptor antagonists, naloxone and PRE-084 (sigma-1 agonist) were determined using the morphine-tolerance model. Morphine (0.0316 mg/kg)+haloperidol (0.0178 mg/kg) was determined to be the optimal combination. Morphine-tolerance was observed on day 5 after 11 administrations, although in animals that received the combination, tolerance was delayed until day 8. PRE-084 and naloxone administered on day 5 in animals treated with the combination resulted in a blockade of its antiallodynic effects. Adverse effects of constipation or motor incoordination were not shown in animals treated with morphine + haloperidol. In conclusion, haloperidol enhances the antinociceptive effects of morphine without significant adverse effects, as it is able to disrupt or delay the morphine-tolerance in neuropathic pain.
Collapse
Affiliation(s)
- Licet Caridad Mena-Valdés
- Laboratorio No.7 "Dolor y Analgesia" Del Departamento de Farmacobiología, Cinvestav-Sede Sur, Calz. de Los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Ciudad de México, Mexico.
| | - Yisel Blanco-Hernández
- Laboratorio No.7 "Dolor y Analgesia" Del Departamento de Farmacobiología, Cinvestav-Sede Sur, Calz. de Los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Ciudad de México, Mexico.
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa, Chiapas, Mexico.
| | - Francisco Javier López-Muñoz
- Laboratorio No.7 "Dolor y Analgesia" Del Departamento de Farmacobiología, Cinvestav-Sede Sur, Calz. de Los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Ciudad de México, Mexico.
| |
Collapse
|
419
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
420
|
A randomized controlled trial of 5 daily sessions and continuous trial of 4 weekly sessions of repetitive transcranial magnetic stimulation for neuropathic pain. Pain 2021; 161:351-360. [PMID: 31593002 PMCID: PMC6970577 DOI: 10.1097/j.pain.0000000000001712] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supplemental Digital Content is Available in the Text. Five daily sessions of repetitive transcranial magnetic stimulation with stimulus conditions were ineffective in neuropathic pain relief. Long-term administration should be investigated for clinical use of repetitive transcranial magnetic stimulation in neuropathic pain. We conducted a multicenter, randomized, patient- and assessor-blinded, sham-controlled trial to investigate the efficacy of repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) in patients with neuropathic pain (NP). Patients were randomly assigned to receive 5 daily sessions of active or sham rTMS of M1 corresponding to the part of the body experiencing the worst pain (500 pulses per session at 5 Hz). Responders were invited to enroll in an open-label continuous trial involving 4 weekly sessions of active rTMS. The primary outcome was a mean decrease in a visual analogue scale of pain intensity (scaled 0-100 mm) measured daily during the daily sessions in an intention-to-treat population. Secondary outcomes were other pain scores, quality-of-life measures, and depression score. One hundred forty-four patients were assigned to the active or sham stimulation groups. The primary outcome, mean visual analogue scale decreases, was not significantly different (P = 0.58) between the active stimulation group (mean, 8.0) and the sham group (9.2) during the daily sessions. The secondary outcomes were not significantly different between 2 groups. The patients enrolled in the continuous weekly rTMS achieved more pain relief in the active stimulation group compared with the sham (P < 0.01). No serious adverse events were observed. Five daily sessions of rTMS with stimulus conditions used in this trial were ineffective in short-term pain relief in the whole study population with various NP. Long-term administration to the responders should be investigated for the clinical use of rTMS on NP in the future trials.
Collapse
|
421
|
Development of depression-like behavior and altered hippocampal neurogenesis in a mouse model of chronic neuropathic pain. Brain Res 2021; 1758:147329. [PMID: 33539793 DOI: 10.1016/j.brainres.2021.147329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022]
Abstract
Chronic-pain patients often suffer from depression. In rodent models of neuropathic pain, animals develop depression-like and anxiety behaviors, indicating a relationship between chronic pain and affective disorders. However, the underlying neurobiological mechanisms linking chronic pain and depression are not yet fully understood. Neurogenesis in the hippocampus is a fundamental process related to brain plasticity. Reduced neurogenesis has been associated with the development of mood disorders and cognitive impairments. The current study aims to elucidate the underlying long-term changes in brain plasticity induced by neuropathic pain in mice at a time point when depression-like behavior has already developed. Furthermore, our focus is set on alterations in neurogenesis in the hippocampus. We found that manifestation of anxiety- and depressive-like behavior as well as cognitive impairment co-occur with decreased survival of newly generated cells but not with impaired proliferative activity or reduced number of immature neurons in the dentate gyrus area of the hippocampus. Moreover, we detected an impairment of differentiation of newly generated cells into mature calbindin-positive neurons, accompanied with a shift towards increased differentiation into astroglial cells. These findings indicate that a reduction in mature functional neurons, rather than reduced proliferation or neuronal progenitor cells, are the long-term changes in hippocampal plasticity that manifest in neuropathic pain conditions after depression-like behavior has developed.
Collapse
|
422
|
Mick G, Serpell M, Baron R, Mayoral V, Hans G, Mendez I, Artime E, Qizilbash N, Sohns M. Localised neuropathic pain in the primary care setting: a cross-sectional study of prevalence, clinical characteristics, treatment patterns, quality of life and sleep performance. Curr Med Res Opin 2021; 37:293-302. [PMID: 33140987 DOI: 10.1080/03007995.2020.1846174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Localised Neuropathic Pain (LNP) is challenging to diagnose and manage in primary care. OBJECTIVE To describe clinical characteristics, treatment patterns, quality of life and sleep performance of patients with LNP and estimate its prevalence in primary care. METHODS Cross-sectional study in 4 European countries. Patients were identified using a screening tool for LNP. Patients completed the EQ-5D VAS score and Chronic Pain Sleep Inventory (CPSI). RESULTS There were 1030 LNP patients for analysis. They presented a median pain intensity of 6.0 (IQR 4.0-7.0) with a median duration of 30.9 months (IQR 12.0-75.3), despite 97% receiving pain treatment. Main sites affected were the limbs (62% upper/58% lower) and spine (41%). Main aetiologies were neuropathic low back pain (47%), post-surgical neuropathic pain (17%), and diabetic poly-neuropathy (12%). Thirty percent received a single analgesic (2% topical), while combinations comprised 43% systemic-systemic, 24% topical-systemic, 1% topical-topical. Medications included NSAIDs (45%), anticonvulsants (38%), WHO step 2 opioids (35%), and topical analgesics (27%). In the previous 6 months, 40% had switched treatment. The mean (SD) EQ-5D VAS score was 58 (22.3) and the mean (SD) EQ-5D summary score (UK tariff) was 0.62 (0.25). Patients had a CPSI mean index of 41/100, and sleeping pills were used by 33% of patients. The standardized prevalence of LNP by age and sex was 2.01% in the general population and 43.3% among chronic pain patients. CONCLUSIONS Many LNP patients reported pain intensities of six on a ten-point scale in average for durations longer than 2.5 years, with quality of life and sleep performance affected, with frequent treatment combinations and switches, suggesting suboptimal pain management.
Collapse
Affiliation(s)
- Gerard Mick
- Centre for Pain Evaluation and Treatment, University Neurological Hospital, Lyon, France
| | - Mick Serpell
- Department of Anaesthesia, University of Glasgow, Glasgow, Scotland
| | - Ralf Baron
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | | | - Guy Hans
- Multidisciplinary Pain Center, Antwerp University Hospital, Edegem, Belgium
| | | | | | - Nawab Qizilbash
- OXON Epidemiology, Madrid, Spain
- London School of Hygiene & Tropical Medicine, London, UK
| | | |
Collapse
|
423
|
Jönsson M, Gerdle B, Ghafouri B, Bäckryd E. The inflammatory profile of cerebrospinal fluid, plasma, and saliva from patients with severe neuropathic pain and healthy controls-a pilot study. BMC Neurosci 2021; 22:6. [PMID: 33522900 PMCID: PMC7852144 DOI: 10.1186/s12868-021-00608-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuropathic pain (NeuP) is a complex, debilitating condition of the somatosensory system, where dysregulation between pro- and anti-inflammatory cytokines and chemokines are believed to play a pivotal role. As of date, there is no ubiquitously accepted diagnostic test for NeuP and current therapeutic interventions are lacking in efficacy. The aim of this study was to investigate the ability of three biofluids - saliva, plasma, and cerebrospinal fluid (CSF), to discriminate an inflammatory profile at a central, systemic, and peripheral level in NeuP patients compared to healthy controls. METHODS The concentrations of 71 cytokines, chemokines and growth factors in saliva, plasma, and CSF samples from 13 patients with peripheral NeuP and 13 healthy controls were analyzed using a multiplex-immunoassay based on an electrochemiluminescent detection method. The NeuP patients were recruited from a clinical trial of intrathecal bolus injection of ziconotide (ClinicalTrials.gov identifier NCT01373983). Multivariate data analysis (principal component analysis and orthogonal partial least square regression) was used to identify proteins significant for group discrimination and protein correlation to pain intensity. Proteins with variable influence of projection (VIP) value higher than 1 (combined with the jack-knifed confidence intervals in the coefficients plot not including zero) were considered significant. RESULTS We found 17 cytokines/chemokines that were significantly up- or down-regulated in NeuP patients compared to healthy controls. Of these 17 proteins, 8 were from saliva, 7 from plasma, and 2 from CSF samples. The correlation analysis showed that the most important proteins that correlated to pain intensity were found in plasma (VIP > 1). CONCLUSIONS Investigation of the inflammatory profile of NeuP showed that most of the significant proteins for group separation were found in the less invasive biofluids of saliva and plasma. Within the NeuP patient group it was also seen that proteins in plasma had the highest correlation to pain intensity. These preliminary results indicate a potential for further biomarker research in the more easily accessible biofluids of saliva and plasma for chronic peripheral neuropathic pain where a combination of YKL-40 and MIP-1α in saliva might be of special interest for future studies that also include other non-neuropathic pain states.
Collapse
Affiliation(s)
- Mika Jönsson
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Björn Gerdle
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Emmanuel Bäckryd
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
424
|
Reinert JP, Nuon K, Veronin MA. Carbamazepine, oxcarbazepine, and lacosamide as adjunctive analgesics: a review of the literature. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2021. [DOI: 10.1002/jppr.1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Justin P. Reinert
- Fisch College of Pharmacy The University of Texas at Tyler Tyler USA
| | - Katelin Nuon
- Fisch College of Pharmacy The University of Texas at Tyler Tyler USA
| | | |
Collapse
|
425
|
Borgonetti V, Galeotti N. Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol Res 2021; 165:105431. [PMID: 33529752 DOI: 10.1016/j.phrs.2021.105431] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Current treatments for neuropathic pain have often moderate efficacy and present unwanted effects showing the need to develop effective therapies. Accumulating evidence suggests that histone acetylation plays essential roles in chronic pain and the analgesic activity of histone deacetylases (HDACs) inhibitors is documented. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that interact with acetylated lysine residues on histones, but little is known about their implication in neuropathic pain. Thus, the current study was aimed to investigate the effect of the combination of HDAC and BET inhibitors in the spared nerve injury (SNI) model in mice. Intranasal administration of i-BET762 (BET inhibitor) or SAHA (HDAC inhibitor) attenuated thermal and mechanical hypersensitivity and this antiallodynic activity was improved by co-administration of both drugs. Spinal cord sections of SNI mice showed an increased expression of HDAC1 and Brd4 proteins and combination produced a stronger reduction compared to each epigenetic agent alone. SAHA and i-BET762, administered alone or in combination, counteracted the SNI-induced microglia activation by inhibiting the expression of IBA1, CD11b, inducible nitric oxide synthase (iNOS), the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-1 (STAT1) with comparable efficacy. Conversely, the epigenetic inhibitors showed a modest effect on spinal proinflammatory cytokines content that was significantly potentiated by their combination. Present results indicate a key role of acetylated histones and their recruitment by BET proteins on microglia-mediated spinal neuroinflammation. Targeting neuropathic pain with the combination of HDAC and BET inhibitors may represent a promising new therapeutic option.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
426
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
427
|
Chronic BDNF simultaneously inhibits and unmasks superficial dorsal horn neuronal activity. Sci Rep 2021; 11:2249. [PMID: 33500423 PMCID: PMC7838274 DOI: 10.1038/s41598-021-81269-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is critically involved in the pathophysiology of chronic pain. However, the mechanisms of BDNF action on specific neuronal populations in the spinal superficial dorsal horn (SDH) requires further study. We used chronic BDNF treatment (200 ng/ml, 5–6 days) of defined-medium, serum-free spinal organotypic cultures to study intracellular calcium ([Ca2+]i) fluctuations. A detailed quantitative analysis of these fluctuations using the Frequency-independent biological signal identification (FIBSI) program revealed that BDNF simultaneously depressed activity in some SDH neurons while it unmasked a particular subpopulation of ‘silent’ neurons causing them to become spontaneously active. Blockade of gap junctions disinhibited a subpopulation of SDH neurons and reduced BDNF-induced synchrony in BDNF-treated cultures. BDNF reduced neuronal excitability assessed by measuring spontaneous excitatory postsynaptic currents. This was similar to the depressive effect of BDNF on the [Ca2+]i fluctuations. This study reveals novel regulatory mechanisms of SDH neuronal excitability in response to BDNF.
Collapse
|
428
|
Peripheral Mechanisms of Neuropathic Pain-the Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14020077. [PMID: 33498496 PMCID: PMC7909513 DOI: 10.3390/ph14020077] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
Collapse
|
429
|
Silva Dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front Pharmacol 2021; 11:565700. [PMID: 33519431 PMCID: PMC7838523 DOI: 10.3389/fphar.2020.565700] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
Kaempferol (KPF) is a flavonoid antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary KPF in reducing the risk of chronic diseases, especially cancer. Nevertheless, little is known about the cellular and molecular mechanisms underlying KPF actions in the central nervous system (CNS). Also, the relationship between KPF structural properties and their glycosylation and the biological benefits of these compounds is unclear. The aim of this study was to review studies published in the PubMed database during the last 10 years (2010–2020), considering only experimental articles that addressed the isolated cell effect of KPF (C15H10O6) and its derivatives in neurological diseases such as Alzheimer's disease, Parkinson, ischemia stroke, epilepsy, major depressive disorder, anxiety disorders, neuropathic pain, and glioblastoma. 27 publications were included in the present review, which presented recent advances in the effects of KPF on the nervous system. KPF has presented a multipotential neuroprotective action through the modulation of several proinflammatory signaling pathways such as the nuclear factor kappa B (NF-kB), p38 mitogen-activated protein kinases (p38MAPK), serine/threonine kinase (AKT), and β-catenin cascade. In addition, there are different biological benefits and pharmacokinetic behaviors between KPF aglycone and its glycosides. The antioxidant nature of KPF was observed in all neurological diseases through MMP2, MMP3, and MMP9 metalloproteinase inhibition; reactive oxygen species generation inhibition; endogenous antioxidants modulation as superoxide dismutase and glutathione; formation and aggregation of beta-amyloid (β-A) protein inhibition; and brain protective action through the modulation of brain-derived neurotrophic factor (BDNF), important for neural plasticity. In conclusion, we suggest that KPF and some glycosylated derivatives (KPF-3-O-rhamnoside, KPF-3-O-glucoside, KPF-7-O-rutinoside, and KPF-4′-methyl ether) have a multipotential neuroprotective action in CNS diseases, and further studies may make the KPF effect mechanisms in those pathologies clearer. Future in vivo studies are needed to clarify the mechanism of KPF action in CNS diseases as well as the impact of glycosylation on KPF bioactivity.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - João Pedro Gonçalves Cirino
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| |
Collapse
|
430
|
Kang SA, Govindarajan R. Anti-calcitonin gene-related peptide monoclonal antibodies for neuropathic pain in patients with migraine headache. Muscle Nerve 2021; 63:563-567. [PMID: 33347632 DOI: 10.1002/mus.27153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION There is increasing evidence that calcitonin gene-related peptide (CGRP) plays a role in the development of neuropathic pain, a common feature of peripheral neuropathy. Although clinical studies have shown that anti-CGRP monoclonal antibodies are highly efficacious for migraine headache prophylaxis, their effects on nonheadache chronic pain conditions, including neuropathic pain, in humans are unknown. Therefore, the aim of this study was to assess the effectiveness of anti-CGRP monoclonal antibodies for neuropathic pain in patients with coexisting chronic migraine. METHODS A retrospective chart review was conducted of 14 patients with chronic migraine and peripheral neuropathy. All patients were treated with anti-CGRP monoclonal antibodies. We collected data on patient-reported scores on the Neuropathy Pain Scale (NPS) and the frequency of migraine headache days (MHDs) per month. Data were collected 3 and 0 months before and 3, 6, 9, and 12 months after treatment with anti-CGRP medications. RESULTS With treatment of anti-CGRP monoclonal antibodies, patients reported a 41.7% decrease in NPS scores from 89.3 at baseline to 52.1 at 12 months posttreatment (P < .05). In addition, there was a 33.3% decrease in MHDs per month from 19.8 at baseline to 13.2 at 12 months posttreatment (P < .05). DISCUSSION Administration of anti-CGRP medications significantly improved neuropathic pain in patients who also had chronic migraine. To confirm these promising outcomes, it would be worthwhile to conduct a blinded, randomized study with a larger population of patients.
Collapse
Affiliation(s)
- Seung Ah Kang
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri
| | - Raghav Govindarajan
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
431
|
Chin ML. Regional Techniques and Interventions for Intractable Neuropathic Pain. Neurology 2021. [DOI: 10.17925/usn.2021.17.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
432
|
Lee Y, Kim S, Shin JW, Leem JG, Choi SS. Adjuvant administration of hypertonic saline in lumbar epidural intervention may be associated with successful response in patients with probable neuropathic radicular pain Screened by Douleur Neuropathique 4. Int J Med Sci 2021; 18:2736-2742. [PMID: 34104106 PMCID: PMC8176191 DOI: 10.7150/ijms.59695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 11/12/2022] Open
Abstract
Background: Chronic lumbar radicular pain often accompanies neuropathic pain. The treatment may follow a screening for probable neuropathic pain rather than the definitive diagnosis, which is often difficult in daily practice. However, interventional management may have limited effects on symptoms in patients with neuropathic radicular pain refractory to conservative treatments. The purpose of this study is to evaluate the factors associated with successful responses after lumbar epidural intervention in patients with chronic lumbar neuropathic radicular pain determined by Douleur Neuropathique 4 (DN4). Methods: We retrospectively reviewed 221 chronic lumbar radicular pain patients using a DN4 questionnaire prior to the epidural interventional procedure. The patients were divided into two groups according to the DN4 questionnaire: <4-point DN4 and ≥4 DN4. The numerical rating scale (NRS) for pain intensity, changes in physical functional status, and the use of pain medication were obtained before and 1 month after the procedure. Successful responder was defined based on robust combination of outcome parameters. The factors associated with successful response were analyzed using univariate and multivariate regression. Results: We found 170 (76.9%) patients with DN4 <4 and 51 (23.1%) with a score ≥4. Among the total 221 patients, 129 (58.4%) were successful responders and 92 (41.6%) were non-responders regardless of DN4 score. We observed a significantly lower proportion of successful responders among patients with a DN4 score ≥4 (22, 43.1%) than patients with a score <4 (107, 62.9%) (P=0.012). After adjusting in multivariate regression analysis, the DN4 score was independently associated with response after lumbar epidural intervention (odds ratio [OR]=0.838; 95% confidence interval [CI]=0.718-0.978; P=0.025). In subgroup logistic regression analysis according to the DN4 score, adjuvant administration of hypertonic saline during epidural interventions in patients with a DN4 score ≥4 (OR=3.71; CI=1.142-12.457; P=0.029) was associated with the success of the lumbar epidural procedure at 1 month. Conclusion: The adjuvant use of hypertonic saline in lumbar epidural interventions may be effective at least 1 month after the intervention in patients with probable neuropathic lumbar radicular pain ≥4 using the DN4.
Collapse
Affiliation(s)
- Yongsoo Lee
- Department of Anesthesiology and Pain Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-Si, Republic of Korea
| | - Sunmin Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Woo Shin
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Gil Leem
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong-Soo Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
433
|
Argueta DA, Aich A, Lei J, Kiven S, Nguyen A, Wang Y, Gu J, Zhao W, Gupta K. β-endorphin at the intersection of pain and cancer progression: Preclinical evidence. Neurosci Lett 2020; 744:135601. [PMID: 33387660 DOI: 10.1016/j.neulet.2020.135601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
We examined the association between endogenous opioid β-endorphin, cancer progression and pain in a transgenic mouse model of breast cancer, with a rat C3(1) simian virus 40 large tumor antigen fusion gene (C3TAg). C3TAg mice develop ductal epithelial atypia at 8 weeks, progression to intra-epithelial neoplasia at 12 weeks, and invasive carcinoma with palpable tumors at 16 weeks. Consistent with invasive carcinoma at 4 months of age, C3TAg mice demonstrate a significant increase in hyperalgesia compared to younger C3TAg or control FVBN mice without tumors. Our data show that the growing tumor contributes to circulating β-endorphin. As an endogenous ligand of mu opioid receptor, β-endorphin has analgesic activity. Paradoxically, we observed an increase in pain in transgenic breast cancer mice with significantly high circulating and tumor-associated β-endorphin. Increased circulating β-endorphin correlates with increasing tumor burden. β-endorphin induced the activation of mitogenic and survival-promoting signaling pathways, MAPK/ERK 1/2, STAT3 and Akt, observed by us in human MDA-MB-231 cells suggesting a role for β-endorphin in breast cancer progression and associated pain.
Collapse
Affiliation(s)
- Donovan A Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Jianxun Lei
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Stacy Kiven
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Aithanh Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ying Wang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Anesthesia, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua Gu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, USA.
| |
Collapse
|
434
|
Stem Cells in the Treatment of Neuropathic Pain: Research Progress of Mechanism. Stem Cells Int 2020; 2020:8861251. [PMID: 33456473 PMCID: PMC7785341 DOI: 10.1155/2020/8861251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by somatosensory nervous system injury or disease. Its prominent symptoms are spontaneous pain, hyperalgesia, and allodynia, and the sense of pain is extremely strong. Owing to the complex mechanism, conventional painkillers lack effectiveness. Recently, research on the treatment of NP by stem cells is increasing and promising results have been achieved in preclinical research. In this review, we briefly introduce the neuropathic pain, the current treatment strategy, and the development of stem cell therapy, and we collected the experimental and clinical trial articles of many kinds of stem cells in the treatment of neuropathic pain from the past ten years. We analyzed and summarized the general efficacy and mechanism of stem cells in the treatment of neuropathic pain. We found that the multiple-mechanism approach was different from the single mechanism of routine clinical drugs; stem cells play a role in peripheral mechanism, central mechanism, and disinhibition of spinal cord level that lead to neuropathic pain, so they are more effective in analgesia and treatment of neuropathic pain.
Collapse
|
435
|
Lassen J, Baron R. [Rheumatic diseases and neuropathic pain : Diagnosis and treatment]. Z Rheumatol 2020; 80:226-233. [PMID: 33355701 DOI: 10.1007/s00393-020-00950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Pain is a leading symptom in inflammatory rheumatic diseases. For a long time it has been assumed that this pain is of nociceptive origin; however, in about one fifth of all patients the pain remains despite successful anti-inflammatory treatment and is not typically described as nociceptive by those affected. Recent studies indicate that some patients with rheumatoid arthritis (RA) experience pain with a neuropathic pain component. The treatment of neuropathic pain with damage to the somatosensory system differs markedly from the treatment of nociceptive pain in which the pain processing system is intact. Thus, the recognition and, above all, the more precise differentiation of the pain symptoms of affected patients make a decisive contribution to a successful treatment. With the help of a few points in the history and a physical examination, the assumption of the diagnosis neuropathic pain can often be rejected or substantiated. Pain with a neuropathic component does not adequately respond to typical analgesics. Instead, the high efficacy of co-analgesics, such as anticonvulsants and antidepressants, has been repeatedly proven.
Collapse
Affiliation(s)
- J Lassen
- Sektion Neurologische Schmerzforschung und -therapie, Klinik für Neurologie, Christian-Albrechts-Universität zu Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Deutschland
| | - R Baron
- Sektion Neurologische Schmerzforschung und -therapie, Klinik für Neurologie, Christian-Albrechts-Universität zu Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Deutschland.
| |
Collapse
|
436
|
Schubert T, Kern KU, Schneider S, Baron R. Oral or Topical Pain Therapy-How Would Patients Decide? A Discrete Choice Experiment in Patients with Peripheral Neuropathic Pain. Pain Pract 2020; 21:536-546. [PMID: 33342078 DOI: 10.1111/papr.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022]
Abstract
To ensure an adequate pain therapy with high patient adherence, it is necessary to know and consider patient preferences. A discrete choice experiment was used to obtain patients' preferences regarding treatment with systemic or topical pain medication. Patients with peripheral neuropathic pain (pNP) were recruited in two pain-focused practices in Germany. To identify relevant attributes of topical or systemic pain medication, a literature review and face-to-face interviews with experts for pain treatment were conducted. The attributes used in the choice scenarios were noticeable onset of effect, time spent in medical office, risk of systemic and local side effects, and impairment of daily life with regard to sleep quality and sexuality. The model was estimated with a mixed multinomial logit regression model. The study included 153 participants suffering from moderate to severe pNP. Most important attributes from patient's perspective was noticeable onset of effect (odds ratio 2.141 [95% confidence interval 1.837 to 2.494]), followed by risk of systemic side effects (2.038 [1.731 to 2.400]) and risk of sexual dysfunction (1.839 [1.580 to 2.140]), while risk of local side effects regarding skin ranked fourth (1.612 [1.321 to 1.966]). The impairment of sleep quality was also significant but less important (1.556 [1.346 to 1.798]). Local side effects were more likely to be accepted than systemic side effects. The risk of sexual dysfunction as a side effect of treatment is very important for patients, although it has received little attention in the literature.
Collapse
Affiliation(s)
| | - Kai-Uwe Kern
- Institut für Schmerzmedizin/Schmerzpraxis, Wiesbaden, Germany
| | | | - Ralf Baron
- Klinik für Neurologie, Sektion Neurologische Schmerzforschung und -therapie, Kiel, Germany
| |
Collapse
|
437
|
Ferreira CM, de Carvalho CD, Gomes R, Bonifácio de Assis ED, Andrade SM. Transcranial Direct Current Stimulation and Mirror Therapy for Neuropathic Pain After Brachial Plexus Avulsion: A Randomized, Double-Blind, Controlled Pilot Study. Front Neurol 2020; 11:568261. [PMID: 33362687 PMCID: PMC7759497 DOI: 10.3389/fneur.2020.568261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Although transcranial direct current stimulation (tDCS) and mirror therapy (MT) have benefits in combating chronic pain, there is still no evidence of the effects of the simultaneous application of these techniques in patients with neuropathic pain. This study aims to assess the efficacy of tDCS paired with MT in neuropathic pain after brachial plexus injury. Methods: In a sham controlled, double-blind, parallel-group design, 16 patients were randomized to receive active or sham tDCS administered during mirror therapy. Each patient received 12 treatment sessions, 30 min each, during a period of 4 weeks over M1 contralateral to the side of the injury. Outcome variables were evaluated at baseline and post-treatment using the McGill questionnaire, Brief Pain Inventory, and Medical Outcomes Study 36-Item Short-Form Health Survey. Long-term effects of treatment were evaluated at a 3-month follow-up. Results: An improvement in pain relief and quality of life were observed in both groups (p ≤ 0.05). However, active tDCS and mirror therapy resulted in greater improvements after the endpoint (p ≤ 0.02). No statistically significant differences in the outcome measures were identified among the groups at follow-up (p ≥ 0.12). A significant relationship was found between baseline pain intensity and outcome measures (p ≤ 0.04). Moreover, the results showed that state anxiety is closely linked to post-treatment pain relief (p ≤ 0.05). Conclusion: Active tDCS combined with mirror therapy has a short-term effect of pain relief, however, levels of pain and anxiety at the baseline should be considered. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04385030.
Collapse
Affiliation(s)
| | | | - Ruth Gomes
- Neuroscience and Aging Laboratory, Federal University of Paraíba, João Pessoa, Brazil
| | | | | |
Collapse
|
438
|
Kohli D, Katzmann G, Benoliel R, Korczeniewska OA. Diagnosis and management of persistent posttraumatic trigeminal neuropathic pain secondary to implant therapy: A review. J Am Dent Assoc 2020; 152:483-490. [PMID: 33293028 DOI: 10.1016/j.adaj.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 10/22/2022]
|
439
|
Li D, Chung G, Kim SK. The Involvement of Central Noradrenergic Pathway in the Analgesic Effect of Bee Venom Acupuncture on Vincristine-Induced Peripheral Neuropathy in Rats. Toxins (Basel) 2020; 12:toxins12120775. [PMID: 33291335 PMCID: PMC7762247 DOI: 10.3390/toxins12120775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vincristine is a vinca alkaloid anti-mitotic drug with a broad spectrum of effects on solid and hematologic cancers. The major dose-limiting factor of this anti-cancer regimen is painful peripheral neuropathy. However, no gold-standard analgesic option has been used clinically. In this study, we investigated the effects and mechanism of bee venom acupuncture (BVA) to alleviate peripheral neuropathic pain induced by repeated intraperitoneal infusions of vincristine (1 mg/kg/day, days 1–5 and 8–12) in rats. Subcutaneous injection with bee venom (BV, 1.0 mg/kg) at the ST36 acupoint ameliorated cold and mechanical hypersensitivity (i.e., aberrant withdrawal responses in acetone drop and von Frey hair tests, respectively). In vivo extracellular recording demonstrated that BVA inhibited cutaneous cold (acetone) and mechanical (brush, press, and pinch) stimuli-elicited abnormal hyperexcitation of the spinal wide dynamic range (WDR) neurons in vincristine-treated rats. In addition, the microinjection of lidocaine into the ipsilateral locus coeruleus or the antagonism of the spinal α2-adrenergic receptors clearly reversed the effects of BVA on cold and mechanical hypersensitivity, indicating a vital role of the descending noradrenergic modulation in analgesia. These findings suggest that BVA could be a potential therapeutic option for vincristine-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Daxian Li
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
440
|
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2020; 21:45-63. [PMID: 33161784 PMCID: PMC9482886 DOI: 10.1080/14737175.2021.1847645] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson’s disease, Huntington’s disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.
Collapse
Affiliation(s)
- Sarah Demaré
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Asha Kothari
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego , La Jolla, CA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| |
Collapse
|
441
|
Sachau J, Bruckmueller H, Gierthmühlen J, Magerl W, May D, Binder A, Forstenpointner J, Koetting J, Maier C, Tölle TR, Treede RD, Berthele A, Caliebe A, Diesch C, Flor H, Huge V, Maihöfner C, Rehm S, Kersebaum D, Fabig SC, Vollert J, Rolke R, Stemmler S, Sommer C, Westermann A, Cascorbi I, Baron R. The serotonin receptor 2A (HTR2A) rs6313 variant is associated with higher ongoing pain and signs of central sensitization in neuropathic pain patients. Eur J Pain 2020; 25:595-611. [PMID: 33171011 DOI: 10.1002/ejp.1696] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/08/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The serotonin receptor 2A (HTR2A) has been described as an important facilitation mediator of spinal nociceptive processing leading to central sensitization (CS) in animal models of chronic pain. However, whether HTR2A single nucleotide variants (SNVs) modulate neuropathic pain states in patients has not been investigated so far. The aim of this study was to elucidate the potential association of HTR2A variants with sensory abnormalities or ongoing pain in neuropathic pain patients. METHODS At total of 240 neuropathic pain patients and 253 healthy volunteers were included. Patients were phenotypically characterized using standardized quantitative sensory testing (QST). Patients and controls were genotyped for HTR2A g.-1438G > A (rs6311) and c.102C > T (rs6313). Genotype-related differences in QST parameters were assessed considering QST profile clusters, principal somatosensory components and sex. RESULTS There was an equal distribution of rs6313 and linked rs6311 between patients and controls. However, the rs6313 variant was significantly associated with a principal component of pinprick hyperalgesia and dynamic mechanical allodynia, indicating enhanced CS in patients with sensory loss (-0.34 ± 0.15 vs. +0.31 ± 0.11 vs., p < .001). In this cluster, the variant allele was also associated with single QST parameters of pinprick hyperalgesia (MPT, +0.64 ± 0.18 vs. -0.34 ± 0.23 p = .002; MPS, +0.66 ± 0.17 vs. -0.09 ± 0.23, p = .009) and ongoing pain was increased by 30%. CONCLUSIONS The specific association of the rs6313 variant with pinprick hyperalgesia and increased levels of ongoing pain suggests that the HTR2A receptor might be an important modulator in the development of CS in neuropathic pain. SIGNIFICANCE This article presents new insights into serotonin receptor 2A-mediating mechanisms of central sensitization in neuropathic pain patients. The rs6313 variant allele was associated with increased mechanical pinprick sensitivity and increased levels of ongoing pain supporting a contribution of central sensitization in the genesis of ongoing pain providing a possible route for mechanism-based therapies.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Denisa May
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Judith Koetting
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas R Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carolin Diesch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herta Flor
- Department of Clinical and Cognitive Neuroscience, Central Institute for Mental Health, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University Munich, München, Germany
| | - Christian Maihöfner
- Department of Neurology, General Hospital Fürth, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Vollert
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany.,Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Andrea Westermann
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
442
|
Saghaeian SM, Salavati M, Akhbari B, Ghamkhar L, Layeghi F, Kahlaee AH. Persian version of the LANSS and S-LANSS questionnaires: A study for cultural adaptation and validation. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:1095-1102. [PMID: 33232182 DOI: 10.1080/23279095.2020.1848836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to culturally adapt and validate Leeds assessment of neuropathic symptoms and signs (LANSS) and self-report LANSS (S-LANSS) tools. Patients with chronic pain (n = 206) were categorized into neuropathic pain (NeP) (n = 101) or non-NeP (n = 105). After the translation process, both questionnaires and the Persian Douleur Neuropathique 4 (P-DN4) were administered to patients to assess the clinometric properties. The mean overall score of both tools was significantly higher in the NeP group (p < 0.01). Test-retest reliability analysis of the overall score of the Persian (P)-LANSS and PS-LANSS were 0.99 and 0.98, respectively. α-Cronbach value for P-LANSS and PS-LANSS were 0.64 and 0.61, respectively. Factor analysis of both questionnaires yielded two components explaining most of the observable variance. The P-LANSS was significantly correlated with PS-LANSS and P-DN4 (ρ = 0.92, p = 0.01, for both). PS-LANSS was also significantly correlated with P-DN4 (ρ = 0.79, p = 0.01). Both tools successfully diagnosed NeP patients at the cutoff point of ≥12 with 88.12% sensitivity and 76.19% specificity for P-LANSS and 83.17% sensitivity and 95.24% specificity for PS-LANSS. P-LANSS and PS-LANSS are reliable and valid tools to identify NeP component in chronic pain patients. PS-LANSS was found to be an acceptable alternative for P-LANSS.
Collapse
Affiliation(s)
- S Mohaddesseh Saghaeian
- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahyar Salavati
- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behnam Akhbari
- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Leila Ghamkhar
- Department of Physical Therapy, Rofeideh Rehabilitation Hospital Clinical Research Development Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fereydoun Layeghi
- Clinical Sciences Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Amir H Kahlaee
- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
443
|
Cheng X, Xiao F, Xie R, Hu H, Wan Y. Alternate thermal stimulation ameliorates thermal sensitivity and modulates calbindin-D 28K expression in lamina I and II and dorsal root ganglia in a mouse spinal cord contusion injury model. FASEB J 2020; 35:e21173. [PMID: 33225523 DOI: 10.1096/fj.202001775r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Neuropathic pain (NP) is a common complication that negatively affects the lives of patients with spinal cord injury (SCI). The disruption in the balance of excitatory and inhibitory neurons in the spinal cord dorsal horn contributes to the development of SCI and induces NP. The calcium-binding protein (CaBP) calbindin-D 28K (CaBP-28K) is highly expressed in excitatory interneurons, and the CaBP parvalbumin (PV) is present in inhibitory neurons in the dorsal horn. To better define the changes in the CaBPs contributing to the development of SCI-induced NP, we examined the changes in CaBP-28K and PV staining density in the lumbar (L4-6) lamina I and II, and their relationship with NP after mild spinal cord contusion injury in mice. We additionally examined the effects of alternate thermal stimulation (ATS). Compared with sham mice, injured animals developed mechanical allodynia in response to light mechanical stimuli and exhibited mechanical hyporesponsiveness to noxious mechanical stimuli. The decreased response latency to heat stimuli and increased response latency to cold stimuli at 7 days post injury suggested that the injured mice developed heat hyperalgesia and cold hypoalgesia, respectively. Temperature preference tests showed significant warm allodynia after injury. Animals that underwent ATS (15-18 and 35-40°C; +5 minutes/stimulation/day; 5 days/week) displayed significant amelioration of heat hyperalgesia, cold hypoalgesia, and warm allodynia after 2 weeks of ATS. In contrast, mechanical sensitivity was not influenced by ATS. Analysis of the CaBP-28K positive signal in L4-6 lamina I and II indicated an increase in staining density after SCI, which was associated with an increase in the number of CaBP-28K-stained L4-6 dorsal root ganglion (DRG) neurons. ATS decreased the CaBP-28K staining density in L4-6 spinal cord and DRG in injured animals, and was significantly and strongly correlated with ATS alleviation of pain behavior. The expression of PV showed no changes in lamina I and II after ATS in SCI animals. Thus, ATS partially decreases the pain behavior after SCI by modulating the changes in CaBP-associated excitatory-inhibitory neurons.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Spinal Cord Injury Center, Heidelberg University, Heidelberg, Germany
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Rong Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| |
Collapse
|
444
|
Tu Y, Cao J, Bi Y, Hu L. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. SCIENCE CHINA-LIFE SCIENCES 2020; 64:879-896. [PMID: 33247802 DOI: 10.1007/s11427-020-1822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
445
|
Yoon HJ, Kim J, Yoon KC. Treatment Response to Gabapentin in Neuropathic Ocular Pain Associated with Dry Eye. J Clin Med 2020; 9:jcm9113765. [PMID: 33266439 PMCID: PMC7700262 DOI: 10.3390/jcm9113765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the response to gabapentin treatment in patients with dry eye (DE) accompanied by features of neuropathic ocular pain (NOP), and to analyze the differences between clinical manifestations of the groups according to treatment response. METHODS We retrospectively reviewed the records of 35 patients with DE accompanied by NOP features and obtained information on their medical history and previous ocular history. The patients underwent clinical examinations of the tear film, ocular surface, and meibomian gland and completed the Ocular Pain Assessment Survey (OPAS). One month after treatment with topical eye drops, add-on of gabapentin treatment was determined according to the Wong-Baker FACES Pain Rating Scale (WBFPS). A reduction of 2 points or more on the WBFPS was considered a positive treatment response. Enrolled patients were divided into three groups according to the treatment response: topical treatment response group (group 1, n = 11); gabapentin response group (group 2, n = 13); and gabapentin non-response group (group 3, n = 11). The medical history, clinical parameters, and OPAS scores were compared between groups. RESULTS The incidence of systemic comorbidities was higher in group 2 than in other groups. The corneal staining scores were lower in groups 2 and 3 than in group 1. Among the treatment response groups, group 2 showed improvements in OPAS scores of ocular pain severity, pain other than eyes, and quality of life, while group 1 showed improved OPAS scores of ocular pain severity and ocular associated factors. Group 2 exhibited lower scores of pains aggravated by mechanical and chemical stimuli than group 3. CONCLUSIONS Gabapentin could be effective in patients who have systemic comorbidity and less pain evoked by mechanical and chemical stimuli for the treatment of DE patients with NOP, which is refractory to topical treatment.
Collapse
Affiliation(s)
| | | | - Kyung Chul Yoon
- Correspondence: ; Tel.: +82-62-220-6741; Fax: +82-62-227-1642
| |
Collapse
|
446
|
Kim J, Yoon HJ, You IC, Ko BY, Yoon KC. Clinical characteristics of dry eye with ocular neuropathic pain features: comparison according to the types of sensitization based on the Ocular Pain Assessment Survey. BMC Ophthalmol 2020; 20:455. [PMID: 33208127 PMCID: PMC7672944 DOI: 10.1186/s12886-020-01733-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/12/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND To compare the clinical characteristics of dry eye patients with ocular neuropathic pain features according to the types of sensitization based on the Ocular Pain Assessment Survey (OPAS). METHODS Cross-sectional study of 33 patients with dry eye and ocular neuropathic pain features. All patients had a comprehensive ophthalmic assessment including detailed history, the intensity and duration of ocular pain, the tear film, ocular surface, and Meibomian gland examination, and OPAS. Patients with < 50% improvement in pain intensity after proparacaine challenge test were assigned to the central-dominant sensitization group (central group) and those with ≥50% improvement were assigned to the peripheral-dominant sensitization group (peripheral group). All variables were compared between the two groups. RESULTS No significant differences were observed in age, sex, underlying diseases, history of ocular surgery, duration of ocular pain, tear film, ocular surface and Meibomian gland parameters (all p > 0.05). Ocular pain and non-ocular pain severity and the percentage of time spent thinking about non-ocular pain were significantly higher in the central group than in the peripheral group (all p < 0.05). Central group complained more commonly of a burning sensation than did the peripheral group (p = 0.01). CONCLUSIONS Patients with central-dominant sensitization may experience more intense ocular and non-ocular pain than the others and burning sensation may be a key symptom in those patients.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - In Cheon You
- Department of Ophthalmology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Byung Yi Ko
- Department of Ophthalmology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea.
| |
Collapse
|
447
|
Kamoun N, Gazzo G, Goumon Y, Andry V, Yalcin I, Poisbeau P. Long-lasting analgesic and neuroprotective action of the non-benzodiazepine anxiolytic etifoxine in a mouse model of neuropathic pain. Neuropharmacology 2020; 182:108407. [PMID: 33212115 DOI: 10.1016/j.neuropharm.2020.108407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is frequently associated with anxiety and major depressive disorders, which considerably impact the overall patient experience. Favoring GABAergic inhibition through the pain matrix has emerged as a promising strategy to restore proper processing of nociceptive and affective information in neuropathic pain states. In this context, the non-benzodiazepine anxiolytic etifoxine (EFX), known to amplify GABAergic inhibition through positive modulation of GABAA receptors and neurosteroidogenesis, presents several advantages. Therefore, we sought to investigate the preclinical therapeutic potential of EFX on the somatosensory and affective components of neuropathic pain. Here, we used a murine model in which neuropathic pain was induced by the implantation of a compressive cuff around the sciatic nerve (mononeuropathy). We showed that the intraperitoneal EFX treatment for five consecutive days (50 mg/kg) relieved mechanical allodynia in a sustained manner. Besides its effect on evoked mechanical hypersensitivity, EFX also alleviated aversiveness of ongoing pain as well as anxiodepressive-like consequences of neuropathic pain following cuff-induced mononeuropathy. This effect was also seen 12 weeks after induction of the neuropathy when allodynia was no longer present. Analgesic and neuroprotective actions of EFX were also seen by the absence of neuropathic pain symptoms if a second sciatic nerve constriction injury was applied to the contralateral hindpaw. Mass spectrometry analysis revealed a normalization of brainstem serotonin levels in EFX-treated animals and an increase in norepinephrine. This study suggests that EFX presents promising therapeutic potential for the relief of both somatosensory and affective consequences of neuropathic pain, a beneficial effect that is likely to involve monoamine descending controls.
Collapse
Affiliation(s)
- Nisrine Kamoun
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Géraldine Gazzo
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Yannick Goumon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Mass Spectrometry Facilities of the CNRS UPR3212, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Virginie Andry
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Mass Spectrometry Facilities of the CNRS UPR3212, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France.
| |
Collapse
|
448
|
Wang Q, He H, Xie S, Wei Q, He C. Mesenchymal Stem Cells Transplantation for Neuropathic Pain Induced By Peripheral Nerve Injury in Animal Models: A Systematic Review. Stem Cells Dev 2020; 29:1420-1428. [PMID: 32962522 DOI: 10.1089/scd.2020.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain is defined as a lesion or disease of the somatosensory system, currently remaining a challenging condition to treat. Mesenchymal stem cells (MSCs) transplantation is emerging as a promising strategy to alleviate the neuropathic pain conditions induced by peripheral nerve injury. The aim of this systematic review was to assess the efficacy and safety of MSCs transplantation in neuropathic pain induced by peripheral nerve injury in controlled animal studies, and thus to yield evidence-based decision making. Following the PRISMA guidelines, PubMed, Cochrane Central Library, Embase, and CINAHL were searched for preclinical controlled animal studies from the inception to April 16, 2020. Seventeen studies are included in this review. Substantial heterogeneity is observed regarding the animal's species, models of neuropathic pain, regimen of MSCs transplantation, and outcome of measures across the included studies. Both mechanical allodynia and thermal hyperalgesia could be significantly attenuated by transplanted MSCs. The MSCs-elicited analgesic effect is independent of the type of MSCs, time of administration, and route of delivery, and is efficiently enhanced by genetic transfection with fibroblast growth factor, proenkephalin, and glial cell line-derived neurotrophic factor. The migration of MSCs after intrathecal or intravenous injection has been shown to be directed toward the surface of dorsal spinal cord or dorsal root ganglions on the ipsilateral side of injury. No adverse effects have been reported. The accumulating evidence demonstrates the therapeutic effect of MSCs-based cell therapy on prevention and alleviation of the neuropathic pain induced by peripheral nerve injury in rat or mouse models. The robust preclinical studies are deserved to optimize the regimen of MSCs transplantation and to promote the translation of the MSCs-based therapy into clinical studies.
Collapse
Affiliation(s)
- Qian Wang
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Hongchen He
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Shuhang Xie
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Quan Wei
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Chengqi He
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
449
|
Naguib IA, Ali NA, Elroby FA, El Ghobashy MR, Abdallah FF. Ecologically evaluated and FDA-validated HPTLC method for assay of pregabalin and tramadol in human biological fluids. Biomed Chromatogr 2020; 35:e5023. [PMID: 33169415 DOI: 10.1002/bmc.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 11/12/2022]
Abstract
The introduced research presents a novel in vivo quantitative method for assay of mixtures of pregabalin and tramadol as a common combinations approved for treatment of neuropathic pain. Green analytical chemistry is a recently emerging science concerned with control of the use of chemicals harmful to the environment in various analytical methods. Consequently, a green high-performance thin layer chromatography (HPTLC) method was achieved for determination of the mixture in human plasma and urine satisfying both analytical and environmental standards. The separation was achieved on HPTLC sheets using a separating mixture of ethanol-ethyl acetate-acetone-ammonia solution (8:2:1:0.05, by volume) as a mobile phase. The sheets were dried in air then scanned at two wavelengths. For tramadol, 220 nm was chosen; however, pregabalin is an unconjugated drug, so its determination was a challenge. Hence for pregabalin, the plates were sprayed with ethanolic solution of ninhydrin (3%, w/v), to obtain a conjugated complex, which could be assessed at 550 nm. Furthermore, the developed method fulfilled the US Food and Drug Administration validation guidelines, and proved to be useful in therapeutic drug monitoring of this combination. The Eco-scale assessment protocol was implemented to determine the greenness profile of the applied method.
Collapse
Affiliation(s)
- Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62541, Egypt
| | - Nesma A Ali
- Toxicology Laboratory, Forensic Medicine Authority, Ministry of Justice, Cairo, 11647, Egypt
| | - Fadwa A Elroby
- Forensic Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed R El Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Faculty of Pharmacy, October 6 University, October 6 City, Giza, Egypt
| | - Fatma F Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62541, Egypt
| |
Collapse
|
450
|
Downregulation of lncRNA FIRRE relieved the neuropathic pain of female mice by suppressing HMGB1 expression. Mol Cell Biochem 2020; 476:841-852. [PMID: 33151463 DOI: 10.1007/s11010-020-03949-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs are novel regulators in neuropathic pain. In this study, we aimed to explore the role and the mechanism of lncRNA FIRRE in regulating the secretion of microglial cells-derived proinflammatory cytokines in neuropathic pain. The female mouse model of neuropathic pain was established by bilateral chronic constriction injury (CCI) surgery. The mouse primary microglial cells were induced by lipopolysaccharide (LPS). The interaction between FIRRE and high mobility group box 1 (HMGB1) was assessed by RNA immunoprecipitation, RNA pull-down, and ubiquitination assays. FIRRE expression was upregulated in the spinal cord tissue of female CCI mice and LPS-induced microglial cells. The concentrations of IL-1β, TNF-α, and IL-6 from LPS-induced microglial cells were reduced by FIRRE knockdown. FIRRE bound to HMGB1 and negatively regulated its protein level. The ubiquitination degradation of HMGB1 was promoted by FIRRE silence. The HMGB1 over-expression reversed the inhibitory effect of FIRRE silence on the secretion of IL-1β, TNF-α, and IL-6 from LPS-induced microglial cells. The in vivo experiment showed that FIRRE knockdown alleviated neuropathic pain of CCI female mice. Our findings indicated that lncRNA FIRRE downregulation inhibits the secretion of microglial cells-derived proinflammatory cytokines by decreasing HMGB1 expression, thereby relieving neuropathic pain of female mice.
Collapse
|