401
|
Zhang ZY, Bai HH, Guo Z, Li HL, He YT, Duan XL, Suo ZW, Yang X, He YX, Hu XD. mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor α1ins subunit in spinal dorsal horn of mice. PLoS Biol 2019; 17:e3000371. [PMID: 31433808 PMCID: PMC6703679 DOI: 10.1371/journal.pbio.3000371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022] Open
Abstract
Inhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization. Extracellular signal-regulated kinase (ERK) was critical for mGluR5 to inhibit α1ins. By binding to a D-docking site created by the 8-amino–acid insert within the TM3–TM4 loop of α1ins, the active ERK catalyzed α1ins phosphorylation at Ser380, which favored α1ins ubiquitination at Lys379 and led to α1ins endocytosis. Disruption of ERK interaction with α1ins blocked Ser380 phosphorylation, potentiated glycinergic synaptic currents, and alleviated inflammatory and neuropathic pain. These data thus unraveled a novel, to our knowledge, mechanism for the activity-dependent regulation of glycinergic neurotransmission. Activity-dependent phosphorylation of the glycine receptor α1ins subunit by metabotropic glutamate receptor 5 and ERK kinase signalling causes endocytosis of α1ins and glycinergic disinhibition in the spinal cord dorsal horn, contributing to pain sensitization.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Yong-Xing He
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
- * E-mail:
| |
Collapse
|
402
|
Melnykov A, Chen SJ, Varshavsky A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2019; 116:15914-15923. [PMID: 31337681 PMCID: PMC6689949 DOI: 10.1073/pnas.1908304116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharomyces cerevisiae, is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When S. cerevisiae grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.
Collapse
Affiliation(s)
- Artem Melnykov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
403
|
Kruse K, Klomp J, Sun M, Chen Z, Santana D, Huang F, Kanabar P, Maienschein-Cline M, Komarova YA. Analysis of biological networks in the endothelium with biomimetic microsystem platform. Am J Physiol Lung Cell Mol Physiol 2019; 317:L392-L401. [PMID: 31313617 DOI: 10.1152/ajplung.00392.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Here we describe a novel method for studying the protein "interactome" in primary human cells and apply this method to investigate the effect of posttranslational protein modifications (PTMs) on the protein's functions. We created a novel "biomimetic microsystem platform" (Bio-MSP) to isolate the protein complexes in primary cells by covalently attaching purified His-tagged proteins to a solid microscale support. Using this Bio-MSP, we have analyzed the interactomes of unphosphorylated and phosphomimetic end-binding protein-3 (EB3) in endothelial cells. Pathway analysis of these interactomes demonstrated the novel role of EB3 phosphorylation at serine 162 in regulating the protein's function. We showed that phosphorylation "switches" the EB3 biological network to modulate cellular processes such as cell-to-cell adhesion whereas dephosphorylation of this site promotes cell proliferation. This novel technique provides a useful tool to study the role of PTMs or single point mutations in activating distinct signal transduction networks and thereby the biological function of the protein in health and disease.
Collapse
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Mitchell Sun
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhang Chen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Fei Huang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Pinal Kanabar
- Research Informatics Core of the Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mark Maienschein-Cline
- Research Informatics Core of the Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia A Komarova
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
404
|
Zhao X, Mißun M, Schneider T, Müller F, Lutz J, Scheffner M, Marx A, Kovermann M. Artificially Linked Ubiquitin Dimers Characterised Structurally and Dynamically by NMR Spectroscopy. Chembiochem 2019; 20:1772-1777. [PMID: 30920720 PMCID: PMC6771822 DOI: 10.1002/cbic.201900146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/23/2022]
Abstract
As one of the most prevalent post-translational modifications in eukaryotic cells, ubiquitylation plays vital roles in many cellular processes, such as protein degradation, DNA metabolism, and cell differentiation. Substrate proteins can be tagged by distinct types of polymeric ubiquitin (Ub) chains, which determine the eventual fate of the modified protein. A facile, click chemistry based approach for the efficient generation of linkage-defined Ub chains, including Ub dimers, was recently established. Within these chains, individual Ub moieties are connected through a triazole linkage, rather than the natural isopeptide bond. Herein, it is reported that the conformation of an artificially K48-linked Ub dimer resembles that of the natively linked dimer, with respect to structural and dynamic characteristics, as demonstrated by means of high-resolution NMR spectroscopy. Thus, it is proposed that artificially linked Ub dimers, as generated by this approach, represent potent tools for studying the inherently different properties and functions of distinct Ub chains.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Maite Mißun
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Tobias Schneider
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Franziska Müller
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Joachim Lutz
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Martin Scheffner
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Andreas Marx
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Michael Kovermann
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
405
|
Haakonsen DL, Rape M. Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends Cell Biol 2019; 29:704-716. [PMID: 31300189 DOI: 10.1016/j.tcb.2019.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Ubiquitin chains of distinct topologies control the stability, interactions, or localization of many proteins in eukaryotic cells, and thus play an essential role in cellular information transfer. It has recently been found that ubiquitin chains can be combined to produce branched conjugates that are characterized by the presence of at least two linkages within the same polymer. Akin to their homotypic counterparts, branched chains elicit a wide array of biological outputs, further expanding the versatility, specificity, and efficiency of ubiquitin-dependent signaling. This review discusses emerging understanding of the synthesis and function of branched ubiquitin chains.
Collapse
Affiliation(s)
- Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
406
|
The mammalian CTLH complex is an E3 ubiquitin ligase that targets its subunit muskelin for degradation. Sci Rep 2019; 9:9864. [PMID: 31285494 PMCID: PMC6614414 DOI: 10.1038/s41598-019-46279-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The multi-subunit C-terminal to LisH (CTLH) complex is the mammalian homologue of the yeast Gid E3 ubiquitin ligase complex. In this study, we investigated the human CTLH complex and characterized its E3 ligase activity. We confirm that the complex immunoprecipitated from human cells comprises RanBPM, ARMC8 α/β, muskelin, WDR26, GID4 and the RING domain proteins RMND5A and MAEA. We find that loss of expression of individual subunits compromises the stability of other complex members and that MAEA and RMND5A protein levels are interdependent. Using in vitro ubiquitination assays, we demonstrate that the CTLH complex has E3 ligase activity which is dependent on RMND5A and MAEA. We report that the complex can pair with UBE2D1, UBE2D2 and UBE2D3 E2 enzymes and that recombinant RMND5A mediates K48 and K63 poly-ubiquitin chains. Finally, we show a proteasome-dependent increase in the protein levels of CTLH complex member muskelin in RMND5A KO cells. Furthermore, muskelin ubiquitination is dependent on RMND5A, suggesting that it may be a target of the complex. Overall, we further the characterization of the CTLH complex as an E3 ubiquitin ligase complex in human cells and reveal a potential autoregulation mechanism.
Collapse
|
407
|
Structural Basis for Recruitment of DAPK1 to the KLHL20 E3 Ligase. Structure 2019; 27:1395-1404.e4. [PMID: 31279627 PMCID: PMC6720452 DOI: 10.1016/j.str.2019.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022]
Abstract
BTB-Kelch proteins form the largest subfamily of Cullin-RING E3 ligases, yet their substrate complexes are mapped and structurally characterized only for KEAP1 and KLHL3. KLHL20 is a related CUL3-dependent ubiquitin ligase linked to autophagy, cancer, and Alzheimer's disease that promotes the ubiquitination and degradation of substrates including DAPK1, PML, and ULK1. We identified an “LPDLV”-containing motif in the DAPK1 death domain that determines its recruitment and degradation by KLHL20. A 1.1-Å crystal structure of a KLHL20 Kelch domain-DAPK1 peptide complex reveals DAPK1 binding as a loose helical turn that inserts deeply into the central pocket of the Kelch domain to contact all six blades of the β propeller. Here, KLHL20 forms salt-bridge and hydrophobic interactions including tryptophan and cysteine residues ideally positioned for covalent inhibitor development. The structure highlights the diverse binding modes of β-propeller domains versus linear grooves and suggests a new target for structure-based drug design. An “LPDLV” motif in DAPK1 determines its recruitment and degradation by KLHL20 1.1-Å crystal structure determined of a KLHL20 Kelch domain-DAPK1 peptide complex A DAPK1 helical turn inserts into the β propeller to contact all six Kelch repeats KLHL20 shows a hydrophobic binding pocket suitable for inhibitor development
Collapse
|
408
|
Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019; 26:5317-5337. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Rebecca Wangen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, N-5021 Bergen, Norway
| | - Frode S Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Astrid Guldbrandsen
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Computational Biology Unit, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlensgt 55, N-5008 Bergen, Norway
| |
Collapse
|
409
|
Spradlin JN, Hu X, Ward CC, Brittain SM, Jones MD, Ou L, To M, Proudfoot A, Ornelas E, Woldegiorgis M, Olzmann JA, Bussiere DE, Thomas JR, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat Chem Biol 2019; 15:747-755. [PMID: 31209351 PMCID: PMC6592714 DOI: 10.1038/s41589-019-0304-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/08/2019] [Indexed: 12/22/2022]
Abstract
Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114 substrate recognition, leading to inhibition of ubiquitination and degradation of the tumor-suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the utility of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.
Collapse
Affiliation(s)
- Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Xirui Hu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Carl C Ward
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Scott M Brittain
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael D Jones
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lisha Ou
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Proudfoot
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | | | | | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Dirksen E Bussiere
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Jason R Thomas
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA.,Vertex Pharmaceuticals, Boston, MA, USA
| | - John A Tallarico
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Markus Schirle
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
410
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
411
|
Zhou C, Wang Q, Zhang D, Cai L, Du W, Xie J. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells. Int J Oral Sci 2019; 11:18. [PMID: 31152146 PMCID: PMC6544630 DOI: 10.1038/s41368-019-0052-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
The biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. In the skeleton system, bone shows the potential to adapt its architecture and contexture to environmental rigidity via the bone remodelling process, which involves chondrocytes, osteoblasts, osteoclasts, osteocytes and even peripheral bone marrow-derived stem/stromal cells (BMSCs). In the current study, we generated stiff (~1 014 ± 56) kPa, Young's modulus) and soft (~46 ± 11) kPa silicon-based elastomer polydimethylsiloxane (PDMS) substrates by mixing curing agent into oligomeric base at 1:5 and 1:45 ratios, respectively, and investigated the influence of substrate stiffness on the cell behaviours by characterizing cell spreading area, cell cytoskeleton and cell adhesion capacity. The results showed that the cell spreading areas of chondrocytes, osteoblasts, osteoclasts, osteocytes and BMSCs were all reduced in the soft substrate relative to those in the stiff substrate. F-actin staining confirmed that the cytoskeleton was also changed in the soft group compared to that in the stiff group. Vinculin in focal adhesion plaques was significantly decreased in response to soft substrate compared to stiff substrate. This study establishes the potential correlation between microenvironmental mechanics and the skeletal system, and the results regarding changes in cell spreading area, cytoskeleton and cell adhesion further indicate the important role of biomechanics in the cell-matrix interaction.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
412
|
Lu BS, Yin YW, Zhang YP, Guo PY, Li W, Liu KL. Upregulation of NPL4 promotes bladder cancer cell proliferation by inhibiting DXO destabilization of cyclin D1 mRNA. Cancer Cell Int 2019; 19:149. [PMID: 31164795 PMCID: PMC6543671 DOI: 10.1186/s12935-019-0874-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background NPL4 is an important cofactor of the valosin-containing protein (VCP)–NPL4–UFD1 complex. The VCP–NPL4–UFD1 has been considered as a ubiquitin proteasome system (UPS) regulator and response to protein degradation. While NPL4 plays important roles in various diseases, little is known about its functions in bladder cancer (BC). Methods MTT assays and colony forming test were performed to evaluate cell proliferation ability and Western blotting was used to detect protein expression. Cyclin D1 mRNA expression was detected using qRT-PCR, and coimmunoprecipitation (CoIP) was used to detect protein–protein interactions. Results NPL4 was upregulated in BC tissue and correlated with poor prognosis. Upregulation of NPL4 promoted cell proliferation while suppression of NPL4 reduced BC cell proliferation. Upregulation of NPL4 led to overexpression of cyclin D1 by enhancing its mRNA stability. Moreover, NPL4 was found to bind directly to DXO and induce its degradation. DXO was downregulated in BC tissue and regulated BC cell proliferation by destabilizing cyclin D1 mRNA. DXO-mediated NPL4 regulated BC cell proliferation by stabilizing cyclin D1 expression. Conclusions The NPL4/DXO/cyclin D1 axis exert crucial role in BC cell growth and is associated with prognosis and may represent a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Ping-Ying Guo
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| |
Collapse
|
413
|
Lyle CL, Belghasem M, Chitalia VC. c-Cbl: An Important Regulator and a Target in Angiogenesis and Tumorigenesis. Cells 2019; 8:cells8050498. [PMID: 31126146 PMCID: PMC6563115 DOI: 10.3390/cells8050498] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Casitas B lineage lymphoma (c-Cbl) is a multifunctional protein with a ubiquitin E3 ligase activity capable of degrading diverse sets of proteins. Although previous work had focused mainly on c-Cbl mutations in humans with hematological malignancies, recent emerging evidence suggests a critical role of c-Cbl in angiogenesis and human solid organ tumors. The combination of its unique structure, modular function, and ability to channelize cues from a rich network of signaling cascades, empowers c-Cbl to assume a central role in these disease models. This review consolidates the structural and functional insights based on recent studies that highlight c-Cbl as a target with tantalizing therapeutic potential in various models of angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Chimera L Lyle
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| | - Vipul C Chitalia
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
- Boston Veterans Affairs Healthcare System, Boston, MA 02118, USA.
| |
Collapse
|
414
|
Escobar-Henriques M, Joaquim M. Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Front Physiol 2019; 10:517. [PMID: 31156446 PMCID: PMC6533591 DOI: 10.3389/fphys.2019.00517] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles engaged in quality control and aging processes. They constantly undergo fusion, fission, transport, and anchoring events, which empower mitochondria with a very interactive behavior. The membrane remodeling processes needed for fusion require conserved proteins named mitofusins, MFN1 and MFN2 in mammals and Fzo1 in yeast. They are the first determinants deciding on whether communication and content exchange between different mitochondrial populations should occur. Importantly, each cell possesses hundreds of mitochondria, with a different severity of mitochondrial mutations or dysfunctional proteins, which potentially spread damage to the entire network. Therefore, the degree of their merging capacity critically influences cellular fitness. In turn, the mitochondrial network rapidly and dramatically changes in response to metabolic and environmental cues. Notably, cancer or obesity conditions, and stress experienced by neurons and cardiomyocytes, for example, triggers the downregulation of mitofusins and thus fragmentation of mitochondria. This places mitofusins upfront in sensing and transmitting stress. In fact, mitofusins are almost entirely exposed to the cytoplasm, a topology suitable for a critical relay point in information exchange between mitochondria and their cellular environment. Consistent with their topology, mitofusins are either activated or repressed by cytosolic post-translational modifiers, mainly by ubiquitin. Ubiquitin is a ubiquitous small protein orchestrating multiple quality control pathways, which is covalently attached to lysine residues in its substrates, or in ubiquitin itself. Importantly, from a chain of events also mediated by E1 and E2 enzymes, E3 ligases perform the ultimate and determinant step in substrate choice. Here, we review the ubiquitin E3 ligases that modify mitofusins. Two mitochondrial E3 enzymes—March5 and MUL1—one ligase located to the ER—Gp78—and finally three cytosolic enzymes—MGRN1, HUWE1, and Parkin—were shown to ubiquitylate mitofusins, in response to a variety of cellular inputs. The respective outcomes on mitochondrial morphology, on contact sites to the endoplasmic reticulum and on destructive processes, like mitophagy or apoptosis, are presented. Ultimately, understanding the mechanisms by which E3 ligases and mitofusins sense and bi-directionally signal mitochondria-cytosolic dysfunctions could pave the way for therapeutic approaches in neurodegenerative, cardiovascular, and obesity-linked diseases.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mariana Joaquim
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
415
|
JOSD1 inhibits mitochondrial apoptotic signalling to drive acquired chemoresistance in gynaecological cancer by stabilizing MCL1. Cell Death Differ 2019; 27:55-70. [PMID: 31043700 DOI: 10.1038/s41418-019-0339-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Gynaecological cancer is a main subtype of cancer in women, and acquired chemoresistance is a major contributor to the poor prognosis of gynaecological cancer, but its underlying mechanism remains ill-defined. JOSD1 has been recognized as a deubiquitinase, but its biological functions remain largely unknown, especially in the context of cancer. Here we established a chemoresistant xenograft model and acquired chemoresistant cell lines to mimic the establishment of acquired chemoresistance. We identified that JOSD1 is the most upregulated DUB during the development of chemoresistance. JOSD1 depletion led to severe apoptosis in gynaecological cancer cells both in vivo and in vitro. Mechanistically, we showed that JOSD1 deubiquitinated and stabilized MCL1 to suppress mitochondrial apoptotic signalling. JOSD1 overexpression caused chemoresistance in gynaecological cancer by upregulating the MCL1 protein. Importantly, high JOSD1 expression was correlated with poor prognosis among ovarian cancer patients, and serum JOSD1 levels could be a marker for clinical diagnosis. Our study showed that JOSD1 is a novel and critical oncogene that contributes to the acquisition of chemoresistance by inhibiting mitochondrial apoptotic signalling via MCL1 stabilization. We also suggest that JOSD1 is an ideal therapeutic target and a promising diagnostic marker.
Collapse
|
416
|
Emanuelli A, Manikoth Ayyathan D, Koganti P, Shah PA, Apel-Sarid L, Paolini B, Detroja R, Frenkel-Morgenstern M, Blank M. Altered Expression and Localization of Tumor Suppressive E3 Ubiquitin Ligase SMURF2 in Human Prostate and Breast Cancer. Cancers (Basel) 2019; 11:cancers11040556. [PMID: 31003445 PMCID: PMC6521037 DOI: 10.3390/cancers11040556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
SMURF2, an E3 ubiquitin ligase and suggested tumor suppressor, operates in normal cells to prevent genomic instability and carcinogenesis. However, the mechanisms underlying SMURF2 inactivation in human malignancies remain elusive, as SMURF2 is rarely found mutated or deleted in cancers. We hypothesized that SMURF2 might have a distinct molecular biodistribution in cancer versus normal cells and tissues. The expression and localization of SMURF2 were analyzed in 666 human normal and cancer tissues, with primary focus on prostate and breast tumors. These investigations were accompanied by SMURF2 gene expression analyses, subcellular fractionation and biochemical studies, including SMURF2’s interactome analysis. We found that while in normal cells and tissues SMURF2 has a predominantly nuclear localization, in prostate and aggressive breast carcinomas SMURF2 shows a significantly increased cytoplasmic sequestration, associated with the disease progression. Mechanistic studies showed that the nuclear export machinery was not involved in cytoplasmic accumulation of SMURF2, while uncovered that its stability is markedly increased in the cytoplasmic compartment. Subsequent interactome analyses pointed to 14-3-3s as SMURF2 interactors, which could potentially affect its localization. These findings link the distorted expression of SMURF2 to human carcinogenesis and suggest the alterations in SMURF2 localization as a potential mechanism obliterating its tumor suppressor activities.
Collapse
Affiliation(s)
- Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Pooja Anil Shah
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Liat Apel-Sarid
- Department of Pathology, The Galilee Medical Center, 22100 Nahariya, Israel.
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, Anatomic Pathology Unit 1, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and BioComputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and BioComputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| |
Collapse
|
417
|
Zhao Y, Wang Z, Ho C, Zhang G, Li Q. Ubiquitin-Specific Protease 15 Maintains Transforming Growth Factor-β Pathway Activity by Deubiquitinating Transforming Growth Factor-β Receptor I during Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1351-1362. [PMID: 30980801 DOI: 10.1016/j.ajpath.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Wound healing is a process of cutaneous barrier reconstruction that occurs after skin injury and involves diverse cytokines and cell types. Similar to several deubiquitinating enzymes, ubiquitin-specific protease 15 (USP15) can remove ubiquitin chains from specific proteins to rescue them from degradation. However, the regulatory role of USP15 in wound healing remains unclear. We investigated the dynamic function of USP15 in wound healing. First, in USP15 knockout mice, we observed a significant delay in wound closure. In addition, inhibition of cell proliferation and migration was observed in USP15-silenced human dermal fibroblasts. Through RNA sequencing, it was revealed that the transforming growth factor-β (TGF-β) pathway was suppressed after USP15 knockdown. Furthermore, coimmunoprecipitation demonstrated that USP15 could interact with TGF-β receptor I and promote its deubiquitination, thereby maintaining TGF-β signaling pathway activity by enhancing TGF-β receptor I stability. These observations shed light on the function and mechanisms of USP15-mediated modulation of the TGF-β signaling pathway during wound healing, thus providing a novel potential target for the treatment of refractory wounds.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
418
|
Verma S, Shukla S, Pandey M, MacLennan GT, Gupta S. Differentially Expressed Genes and Molecular Pathways in an Autochthonous Mouse Prostate Cancer Model. Front Genet 2019; 10:235. [PMID: 30972102 PMCID: PMC6445055 DOI: 10.3389/fgene.2019.00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer remains a major public health problem and the second leading cause of cancer-related deaths in men in the United States. The present study aims to understand the molecular pathway(s) of prostate cancer which is essential for early detection and treatment. Dorsolateral prostate from 20 week transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, which spontaneously develops prostate cancer and recapitulates human disease and age-matched non-transgenic littermates were utilized for microarray analysis. Mouse genome network and pathway analyses were mapped to the human genome using the Ingenuity Pathway Analysis (IPA) database for annotation, visualization, and integrated discovery. In total, 136 differentially expressed genes, including 32 downregulated genes and 104 upregulated genes were identified in the dorsolateral prostate of TRAMP, compared to non-transgenic mice. A subset of differentially expressed genes were validated by qRT-PCR. Alignment with human genome database identified 18 different classes of proteins, among these, 36% were connected to the nucleic acid binding, including ribosomal proteins, which play important role in protein synthesis-the most enriched pathway in the development of prostate cancer. Furthermore, the results suggest deregulation of signaling molecules (9%) and enzyme modulators (8%) affect various pathways. An imbalance in other protein classes, including transporter proteins (7%), hydrolases (6%), oxidoreductases, and cytoskeleton proteins (5%), contribute to cancer progression. Our study evaluated the underlying pathways and its connection to human prostate cancer, which may further help assess the risk of disease development and progression and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sanjeev Shukla
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mitali Pandey
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Vancouver Prostate Center, Vancouver, BC, Canada
| | - Gregory T MacLennan
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
419
|
Caputi FF, Rullo L, Stamatakos S, Candeletti S, Romualdi P. Interplay between the Endogenous Opioid System and Proteasome Complex: Beyond Signaling. Int J Mol Sci 2019; 20:ijms20061441. [PMID: 30901925 PMCID: PMC6470665 DOI: 10.3390/ijms20061441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Intracellular signaling mechanisms underlying the opioid system regulation of nociception, neurotransmitters release, stress responses, depression, and the modulation of reward circuitry have been investigated from different points of view. The presence of the ubiquitin proteasome system (UPS) in the synaptic terminations suggest a potential role of ubiquitin-dependent mechanisms in the control of the membrane occupancy by G protein-coupled receptors (GPCRs), including those belonging to the opioid family. In this review, we focused our attention on the role played by the ubiquitination processes and by UPS in the modulation of opioid receptor signaling and in pathological conditions involving the endogenous opioid system. The collective evidence here reported highlights the potential usefulness of proteasome inhibitors in neuropathic pain, addictive behavior, and analgesia since these molecules can reduce pain behavioral signs, heroin self-administration, and the development of morphine analgesic tolerance. Moreover, the complex mechanisms involved in the effects induced by opioid agonists binding to their receptors include the ubiquitination process as a post-translational modification which plays a relevant role in receptor trafficking and degradation. Hence, UPS modulation may offer novel opportunities to control the balance between therapeutic versus adverse effects evoked by opioid receptor activation, thus, representing a promising druggable target.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Serena Stamatakos
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
420
|
Abstract
This perspective is partly review and partly proposal. N-degrons and C-degrons are degradation signals whose main determinants are, respectively, the N-terminal and C-terminal residues of cellular proteins. N-degrons and C-degrons include, to varying extents, adjoining sequence motifs, and also internal lysine residues that function as polyubiquitylation sites. Discovered in 1986, N-degrons were the first degradation signals in short-lived proteins. A particularly large set of C-degrons was discovered in 2018. We describe multifunctional proteolytic systems that target N-degrons and C-degrons. We also propose to denote these systems as "N-degron pathways" and "C-degron pathways." The former notation replaces the earlier name "N-end rule pathways." The term "N-end rule" was introduced 33 years ago, when only some N-terminal residues were thought to be destabilizing. However, studies over the last three decades have shown that all 20 amino acids of the genetic code can act, in cognate sequence contexts, as destabilizing N-terminal residues. Advantages of the proposed terms include their brevity and semantic uniformity for N-degrons and C-degrons. In addition to being topologically analogous, N-degrons and C-degrons are related functionally. A proteolytic cleavage of a subunit in a multisubunit complex can create, at the same time, an N-degron (in a C-terminal fragment) and a spatially adjacent C-degron (in an N-terminal fragment). Consequently, both fragments of a subunit can be selectively destroyed through attacks by the N-degron and C-degron pathways.
Collapse
|
421
|
Peng R, Zhang PF, Yang X, Wei CY, Huang XY, Cai JB, Lu JC, Gao C, Sun HX, Gao Q, Bai DS, Shi GM, Ke AW, Fan J. Overexpression of RNF38 facilitates TGF-β signaling by Ubiquitinating and degrading AHNAK in hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:113. [PMID: 30836988 PMCID: PMC6402116 DOI: 10.1186/s13046-019-1113-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND RING finger protein 38 (RNF38), a member of the RNF protein family, has just emerged as a vital driver of cancer progression. However, the oncogenic mechanisms of RNF38 remain unexplored. METHODS Using frozen tumor tissue and tissue microarray from hepatocellular carcinoma (HCC) patients, we tried to probe the expression of RNF38 in HCC and its clinical value. Then the biological functions of RNF38 were analyzed in vivo and vitro. Stable isotope labeling with amino acids (SILAC) in cell culture and co-immunoprecipitation proteomic analyses were combined to reveal the potential mechanism of RNF38 in HCC progression. RESULTS We report that RNF38 expression was markedly higher in HCC tissues than in peritumor tissues. Correspondingly, RNF38 overexpression promoted the HCC cell migration and invasion and inhibited apoptosis both in vitro and in vivo. And elevated RNF38 expression induced HCC cell epithelial-mesenchymal transition by facilitating transforming growth factor-β (TGF-β) signaling via ubiquitinating and degrading neuroblast differentiation-associated protein (AHNAK), a well-established inhibitor of TGF-β signaling. Furthermore, AHNAK interference restored the HCC cell invasion and metastasis deprived by RNF38 downregulation. Clinically, elevated RNF38 and transforming growth factor beta receptor 1 (TGFBR1) expression was related to short overall survival (OS) and high cumulative recurrence rates in HCC patients. CONCLUSIONS High levels of RNF38 promote HCC by facilitating TGF-β signaling and are a novel marker for predicting the prognosis of HCC patients and a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Rui Peng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
- Clinical Medical College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200031 China
| | - Xuan Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Chuan-Yuan Wei
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Jia-Cheng Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Hai-Xiang Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Dou-Sheng Bai
- Clinical Medical College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 180 Feng lin Road, Shanghai, 200032 People’s Republic of China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031 People’s Republic of China
| |
Collapse
|
422
|
Rei Liao JY, van Wijk KJ. Discovery of AAA+ Protease Substrates through Trapping Approaches. Trends Biochem Sci 2019; 44:528-545. [PMID: 30773324 DOI: 10.1016/j.tibs.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
Abstract
Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease-substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems.
Collapse
Affiliation(s)
- Jui-Yun Rei Liao
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
423
|
Zhang ZY, Guo Z, Li HL, He YT, Duan XL, Suo ZW, Yang X, Hu XD. Ubiquitination and inhibition of glycine receptor by HUWE1 in spinal cord dorsal horn. Neuropharmacology 2019; 148:358-365. [PMID: 30721695 DOI: 10.1016/j.neuropharm.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 01/26/2023]
Abstract
Glycine receptors (GlyRs) are pentameric proteins that consist of α (α1-α4) subunits and/or β subunit. In the spinal cord of adult animals, the majority of inhibitory glycinergic neurotransmission is mediated by α1 subunit-containing GlyRs. The reduced glycinergic inhibition (disinhibition) is proposed to increase the excitabilities and spontaneous activities of spinal nociceptive neurons during pathological pain. However, the molecular mechanisms by which peripheral lesions impair GlyRs-α1-mediated synaptic inhibition remain largely unknown. Here we found that activity-dependent ubiquitination of GlyRs-α1 subunit might contribute to glycinergic disinhibition after peripheral inflammation. Our data showed that HUWE1 (HECT, UBA, WWE domain containing 1), an E3 ubiquitin ligase, located at spinal synapses and specifically interacted with GlyRs-α1 subunit. By ubiquitinating GlyRs-α1, HUWE1 reduced the surface expression of GlyRs-α1 through endocytic pathway. In the dorsal horn of Complete Freund's Adjuvant-injected mice, shRNA-mediated knockdown of HUWE1 blunted GlyRs-α1 ubiquitination, potentiated glycinergic synaptic transmission and attenuated inflammatory pain. These data implicated that ubiquitin modification of GlyRs-α1 represented an important way for peripheral inflammation to reduce spinal glycinergic inhibition and that interference with HUWE1 activity generated analgesic action by resuming GlyRs-α1-mediated synaptic transmission.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
424
|
van Wijk SJ, Fulda S, Dikic I, Heilemann M. Visualizing ubiquitination in mammalian cells. EMBO Rep 2019; 20:embr.201846520. [PMID: 30665942 DOI: 10.15252/embr.201846520] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Covalent modification of proteins with ubiquitin is essential for the majority of biological processes in mammalian cells. Numerous proteins are conjugated with single or multiple ubiquitin molecules or chains in a dynamic fashion, often determining protein half-lives, localization or function. Experimental approaches to study ubiquitination have been dominated by genetic and biochemical analysis of enzyme structure-function relationships, reaction mechanisms and physiological relevance. Here, we provide an overview of recent developments in microscopy-based imaging of ubiquitination, available reagents and technologies. We discuss the progress in direct and indirect imaging of differentially linked ubiquitin chains in fixed and living cells using confocal fluorescence microscopy and super-resolution microscopy, illustrated by the role of ubiquitin in antibacterial autophagy and pro-inflammatory signalling. Finally, we speculate on future developments and forecast a transition from qualitative to quantitative super-resolution approaches to understand fundamental aspects of ubiquitination and the formation and distribution of functional E3 ligase protein complexes in their native environment.
Collapse
Affiliation(s)
- Sjoerd Jl van Wijk
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
425
|
Kim RQ, Geurink PP, Mulder MPC, Fish A, Ekkebus R, El Oualid F, van Dijk WJ, van Dalen D, Ovaa H, van Ingen H, Sixma TK. Kinetic analysis of multistep USP7 mechanism shows critical role for target protein in activity. Nat Commun 2019; 10:231. [PMID: 30651545 PMCID: PMC6335408 DOI: 10.1038/s41467-018-08231-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
USP7 is a highly abundant deubiquitinating enzyme (DUB), involved in cellular processes including DNA damage response and apoptosis. USP7 has an unusual catalytic mechanism, where the low intrinsic activity of the catalytic domain (CD) increases when the C-terminal Ubl domains (Ubl45) fold onto the CD, allowing binding of the activating C-terminal tail near the catalytic site. Here we delineate how the target protein promotes the activation of USP7. Using NMR analysis and biochemistry we describe the order of activation steps, showing that ubiquitin binding is an instrumental step in USP7 activation. Using chemically synthesised p53-peptides we also demonstrate how the correct ubiquitinated substrate increases catalytic activity. We then used transient reaction kinetic modelling to define how the USP7 multistep mechanism is driven by target recognition. Our data show how this pleiotropic DUB can gain specificity for its cellular targets. Deubiquitinating enzymes (DUBs) are critical regulators of cellular processes by removing ubiquitin from specific targets. Here global kinetic modelling reveals the mechanism by which the low intrinsic activity of USP7 is substantially enhanced on a specific physiological target.
Collapse
Affiliation(s)
- Robbert Q Kim
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Paul P Geurink
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.,Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique P C Mulder
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.,Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Reggy Ekkebus
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.,Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Farid El Oualid
- UbiQ Bio BV, Science Park 408, 1098 XH, Amsterdam, the Netherlands
| | - Willem J van Dijk
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Duco van Dalen
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.,Tumor Immunology department, Radboud Institute for Molecular Sciences, Nijmegen, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands. .,Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands. .,Bijvoet center, Utrecht University, Utrecht, the Netherlands.
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
426
|
Fu Z, Yu W, Wang H, Chen X. Overexpression of RNF187 induces cell EMT and apoptosis resistance in NSCLC. J Cell Physiol 2019; 234:14161-14169. [PMID: 30624778 DOI: 10.1002/jcp.28111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Overexpression of RING finger protein 187 (RNF187) was recently revealed to be a driver of several cancers. However, the expression and function of RNF187 in non-small-cell lung cancer (NSCLC) are still unknown. Here, we uncovered that RNF187 expression was significantly higher in NSCLC samples than in matched normal lung samples at both the messenger RNA (3.55 ± 0.79 vs. 1.74 ± 0.63) and protein (2.85 ± 0.14 vs. 1.24 ± 0.02) levels. By downregulating or upregulating RNF187 expression in NSCLC cells, we showed that elevated RNF187 expression distinctly enhanced the migration, invasion, and colony formation of NSCLC cells. Moreover, we revealed that high level of RNF187 promoted NSCLC progression by inducing cell epithelial to mesenchymal transition (EMT) and apoptosis resistance mainly via activating the mitogen-activated protein kinase and PI3K signaling. Clinically, we demonstrated that RNF187 expression was positively associated with advanced TNM stage (p = 1.29 × 10 -6 ), lymph node metastasis ( p = 2.69 × 10 -9 ), and large tumor size ( p = 0.002). Importantly, NSCLC patients with elevated RNF187 expression related to the short overall survival rate( p = 1.29, E-7) and could serve as an independent prognostic factor in NSCLC patients. Thus, elevated RNF187 expression promotes NSCLC development by inducing cell EMT and apoptosis resistance, and RNF187 may be a novel prognostic indicator for NSCLC patients after curative resection.
Collapse
Affiliation(s)
- Zhongming Fu
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, Affiliated Yinzhou Hospital, College of Medicine, Ningbo Univerisity, Ningbo, Zhejiang, People's Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, Affiliated Yinzhou Hospital, College of Medicine, Ningbo Univerisity, Ningbo, Zhejiang, People's Republic of China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, Affiliated Yinzhou Hospital, College of Medicine, Ningbo Univerisity, Ningbo, Zhejiang, People's Republic of China
| | - Xiaofei Chen
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, Affiliated Yinzhou Hospital, College of Medicine, Ningbo Univerisity, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
427
|
Abstract
Ubiquitin signaling requires tight control of all aspects of protein ubiquitination, including the timing, locale, extent, and type of modification. Dysregulation of any of these signaling features can lead to severe human disease. One key mode of regulation is through the controlled removal of the ubiquitin signal by dedicated families of proteases, termed deubiquitinases. In light of their key roles in signal regulation, deubiquitinases have become a recent focus for therapeutic intervention as a means to regulate protein abundance. This work and recent discoveries of novel deubiquitinases in humans, viruses, and bacteria, provide the impetus for this chapter on methods for evaluating the activities and structures of deubiquitinases. An array of available deubiquitinase substrates for biochemical characterization are presented and their limitations as standalone tools are discussed. Methods for the determination and analysis of deubiquitinase structure are also presented, with a focus on visualizing recognition of the ubiquitin substrate.
Collapse
Affiliation(s)
- Jonathan N. Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Corresponding author:
| |
Collapse
|
428
|
Wang R, Wang G. Protein Modification and Autophagy Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:237-259. [PMID: 31776989 DOI: 10.1007/978-981-15-0602-4_12] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein modification refers to the chemical modification of proteins after their biosynthesis, which is also called posttranslational modification (PTM). PTM causes changes in protein properties and functions. PTM includes an attachment of addition of functional groups, such as methylation, acetylation, glycosylation and phosphorylation; a covalent coupling of small peptides or proteins, such as ubiquitination and SUMOylation; or chemical changes in amino acids, such as citrullination (conversion of arginine to citrulline). Protein modification plays an important role in cellular processes. Since a protein can be modified in different ways, such as acetylation, methylation and phosphorylation, the functions of proteins are different under different modification states. Moreover, the same modification at different sites may have completely different effects on protein function. For example, phosphorylation at some sites in a protein may lead to a functional activation, while phosphorylation at other sites may cause an inhibition of the functions. Thus, different modifications, combinations and sites changes lead to different functional regulations of a protein, resulting in different effects in the cells. In autophagy, PTMs are widely involved in the regulation of autophagy, including ubiquitination, phosphorylation and acetylation. Ubiquitination is the covalent conjugation of ubiquitin to the substrates through a series of enzymes. Phosphorylation refers to an attachment of a phosphoryl group into a protein, primarily on serine, threonine and tyrosine, which is catalyzed by the kinases. Phosphorylation, a common modification, regulates protein function and localization. Phosphorylation in autophagy regulates the activity of autophagy-associated proteins and the initiation and progression of autophagy by regulating signaling pathways. Acetylation means the addition of acetyl groups onto lysine or N-terminal segment of target proteins through acetyltransferases. Acetylation and deacetylation are both involved in the regulation of autophagy initiation and selective autophagy by controlling the acetylation level of important proteins in the autophagy process. In this chapter, we will focus on the regulation of ubiquitination and phosphorylation in autophagy.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
429
|
Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It's all about tau. Prog Neurobiol 2018; 175:54-76. [PMID: 30605723 DOI: 10.1016/j.pneurobio.2018.12.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic structure and function, and neuronal signaling pathways. Although tau plays important physiological roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a thorough knowledge of the physiological functions of tau and its post-translational modifications under normal conditions are necessary to provide the foundation for understanding its role in pathological settings. In this review, we will focus on human tau, summarizing tau structure and organization, as well as its posttranslational modifications associated with physiological processes. We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss newly elucidated tau functions in a physiological context.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Fabian Cabezas-Opazo
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Carol A Deaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Erick H Vergara
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIIA), Santiago, Chile.
| |
Collapse
|
430
|
Yuan H, Jiang B, Zhao B, Zhang L, Zhang Y. Recent Advances in Multidimensional Separation for Proteome Analysis. Anal Chem 2018; 91:264-276. [DOI: 10.1021/acs.analchem.8b04894] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiming Yuan
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Bo Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Baofeng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
431
|
Fernández-Espartero CH, Rizzo A, Fulford AD, Falo-Sanjuan J, Goutte-Gattat D, Ribeiro PS. Prp8 regulates oncogene-induced hyperplastic growth in Drosophila. Development 2018; 145:dev.162156. [PMID: 30333215 PMCID: PMC6262796 DOI: 10.1242/dev.162156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
Although developmental signalling pathways control tumourigenic growth, the cellular mechanisms that abnormally proliferating cells rely on are still largely unknown. Drosophila melanogaster is a genetically tractable model that is used to study how specific genetic changes confer advantageous tumourigenic traits. Despite recent efforts, the role of deubiquitylating enzymes in cancer is particularly understudied. We performed a Drosophila in vivo RNAi screen to identify deubiquitylating enzymes that modulate RasV12-induced hyperplastic growth. We identified the spliceosome core component Prp8 as a crucial regulator of Ras-, EGFR-, Notch- or RET-driven hyperplasia. Loss of prp8 function alone decreased cell proliferation, increased cell death, and affected cell differentiation and polarity. In hyperplasia, Prp8 supported tissue overgrowth independently of caspase-dependent cell death. The depletion of prp8 efficiently blocked Ras-, EGFR- and Notch-driven tumours but, in contrast, enhanced tumours that were driven by oncogenic RET, suggesting a context-specific role in hyperplasia. These data show, for the first time, that Prp8 regulates hyperplasia, and extend recent observations on the potential role of the spliceosome in cancer. Our findings suggest that targeting Prp8 could be beneficial in specific tumour types. Summary: Prp8 has been identified as a modulator of oncogenic growth in multiple Drosophila cancer models, which suggests the spliceosome as a potential context-dependent target in cancers.
Collapse
Affiliation(s)
- Cecilia H Fernández-Espartero
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alberto Rizzo
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Damien Goutte-Gattat
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
432
|
Wang F, Zhao K, Yu S, Xu A, Han W, Mei Y. RNF12 catalyzes BRF1 ubiquitination and regulates RNA polymerase III-dependent transcription. J Biol Chem 2018; 294:130-141. [PMID: 30413534 DOI: 10.1074/jbc.ra118.004524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase III (Pol III) is responsible for the production of small noncoding RNA species, including tRNAs and 5S rRNA. Pol III-dependent transcription is generally enhanced in transformed cells and tumors, but the underlying mechanisms remain not well-understood. It has been demonstrated that the BRF1 subunit of TFIIIB is essential for the accurate initiation of Pol III-dependent transcription. However, it is not known whether BRF1 undergoes ubiquitin modification and whether BRF1 ubiquitination regulates Pol III-dependent transcription. Here, we show that RNF12, a RING domain-containing ubiquitin E3 ligase, physically interacts with BRF1. Via direct interaction, RNF12 catalyzes Lys27- and Lys33-linked polyubiquitination of BRF1. Furthermore, RNF12 is able to negatively regulate Pol III-dependent transcription and cell proliferation via BRF1. These findings uncover a novel mechanism for the regulation of BRF1 and reveal RNF12 as an important regulator of Pol III-dependent transcription.
Collapse
Affiliation(s)
- Fang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kailiang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Sixiang Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - An Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yide Mei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
433
|
Chen W, Lu C, Hong J. TRIM15 Exerts Anti-Tumor Effects Through Suppressing Cancer Cell Invasion in Gastric Adenocarcinoma. Med Sci Monit 2018; 24:8033-8041. [PMID: 30412518 PMCID: PMC6238583 DOI: 10.12659/msm.911142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Backgrounds Recent studies have shown that some members of the tripartite motif-containing protein (TRIM) family function as important regulators in several tumors. However, the clinical significance of TRIM15 in gastric adenocarcinoma has not been elucidated. In the present study, we aimed to examine the expression pattern of TRIM15 and explore whether the TRIM15 expression is correlated with clinicopathological characteristics of patients with gastric adenocarcinoma. Material/Methods The expression pattern of TRIM15 was examined in gastric adenocarcinoma tissues and adjacent normal stomach tissues by using immunohistochemistry staining. The prognostic role of TRIM15 in gastric cancer patients was evaluated by univariate and multivariate analyses. Clinical outcomes were assessed by the Kaplan-Meier analysis and log-rank test. The effects of TRIM15 on cancer cell proliferation and invasion were tested through cellular experiments. Results TRIM15 was highly expressed in normal stomach tissues compared to tumor tissues. TCGA database showed that higher TRIM15 RNA transcription indicates poorer overall survival of gastric cancer patients. Besides, low expression of TRIM15 was significantly associated with advanced tumor invasion depth and advanced TNM stage. Moreover, gastric cancer patients with lower KDM5B expression had poorer overall survival, and TRIM15 was identified as an independent prognosis factor according to multivariate analysis. Using the gastric cancer cell lines, we found that overexpression of TRIM15 can inhibits tumor cell invasion. Conclusions Our study demonstrated that low expression of TRIM15 in gastric adenocarcinoma tissues was significantly associated with poorer prognosis of patients, indicating the potential of TRIM15 as a novel clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Cancer Radiotherapy, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| | - Chuanhui Lu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Jianming Hong
- 2nd Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| |
Collapse
|
434
|
Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun 2018; 9:4441. [PMID: 30361475 PMCID: PMC6202321 DOI: 10.1038/s41467-018-06953-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.
Collapse
|
435
|
Pasupala N, Morrow ME, Que LT, Malynn BA, Ma A, Wolberger C. OTUB1 non-catalytically stabilizes the E2 ubiquitin-conjugating enzyme UBE2E1 by preventing its autoubiquitination. J Biol Chem 2018; 293:18285-18295. [PMID: 30282802 PMCID: PMC6254341 DOI: 10.1074/jbc.ra118.004677] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
OTUB1 is a deubiquitinating enzyme that cleaves Lys-48–linked polyubiquitin chains and also regulates ubiquitin signaling through a unique, noncatalytic mechanism. OTUB1 binds to a subset of E2 ubiquitin-conjugating enzymes and inhibits their activity by trapping the E2∼ubiquitin thioester and preventing ubiquitin transfer. The same set of E2s stimulate the deubiquitinating activity of OTUB1 when the E2 is not charged with ubiquitin. Previous studies have shown that, in cells, OTUB1 binds to E2-conjugating enzymes of the UBE2D (UBCH5) and UBE2E families, as well as to UBE2N (UBC13). Cellular roles have been identified for the interaction of OTUB1 with UBE2N and members of the UBE2D family, but not for interactions with UBE2E E2 enzymes. We report here a novel role for OTUB1–E2 interactions in modulating E2 protein ubiquitination. We observe that Otub1−/− knockout mice exhibit late-stage embryonic lethality. We find that OTUB1 depletion dramatically destabilizes the E2-conjugating enzyme UBE2E1 (UBCH6) in both mouse and human OTUB1 knockout cell lines. Of note, this effect is independent of the catalytic activity of OTUB1, but depends on its ability to bind to UBE2E1. We show that OTUB1 suppresses UBE2E1 autoubiquitination in vitro and in cells, thereby preventing UBE2E1 from being targeted to the proteasome for degradation. Taken together, we provide evidence that OTUB1 rescues UBE2E1 from degradation in vivo.
Collapse
Affiliation(s)
- Nagesh Pasupala
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185 and
| | - Marie E Morrow
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185 and
| | - Lauren T Que
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185 and
| | - Barbara A Malynn
- the Department of Medicine, University of California San Francisco, San Francisco, California 94117
| | - Averil Ma
- the Department of Medicine, University of California San Francisco, San Francisco, California 94117
| | - Cynthia Wolberger
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185 and.
| |
Collapse
|
436
|
Schwechheimer C. NEDD8-its role in the regulation of Cullin-RING ligases. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:112-119. [PMID: 29909289 DOI: 10.1016/j.pbi.2018.05.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 05/10/2023]
Abstract
The ubiquitin-related protein NEDD8 is conjugated and deconjugated to and from proteins in processes related to ubiquitin conjugation and deconjugation. Neddylation is a well-studied posttranslational modification of Cullin-RING E3 ligases (CRLs). Biochemical and structural studies aiming at understanding the role of NEDD8 in CRL function have now resulted in a convincing model of how neddylation and deneddylation antagonistically regulate CRL stability, conformation, activity as well as degradation substrate receptor exchange. Studies of the Arabidopsis thaliana deneddylation-deficient den1 mutant led to the identification of many low abundant, non-Cullin NEDD8 conjugates. Examination of neddylated AUXIN RESISTANT1 (AXR1), a prominent neddylated protein in den1, suggests, however, that AXR1 neddylation may be an auto-catalytic side-reaction of Cullin-targeted neddylation and that DEN1 may serve to antagonize non-productive, auto-neddylation from substrates to provide free NEDD8 for CRL regulation.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Plant Systems Biology, Emil-Ramann-Strasse 8, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
437
|
Morrow ME, Morgan MT, Clerici M, Growkova K, Yan M, Komander D, Sixma TK, Simicek M, Wolberger C. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep 2018; 19:embr.201745680. [PMID: 30150323 PMCID: PMC6172466 DOI: 10.15252/embr.201745680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild‐type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight‐binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30‐fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.
Collapse
Affiliation(s)
- Marie E Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcello Clerici
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ming Yan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
438
|
Gupta I, Varshney NK, Khan S. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Front Genet 2018; 9:336. [PMID: 30186311 PMCID: PMC6110912 DOI: 10.3389/fgene.2018.00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays an imperative role in many critical cellular processes, frequently by mediating the selective degradation of misfolded and damaged proteins and also by playing a non-degradative role especially important as in many signaling pathways. Over the last three decades, accumulated evidence indicated that UPS proteins are primal modulators of cell cycle progression, DNA replication, and repair, transcription, immune responses, and apoptosis. Comparatively, latest studies have demonstrated a substantial complexity by the UPS regulation in the heart. In addition, various UPS proteins especially ubiquitin ligases and proteasome have been identified to play a significant role in the cardiac development and dynamic physiology of cardiac pathologies such as ischemia/reperfusion injury, hypertrophy, and heart failure. However, our understanding of the contribution of UPS dysfunction in the plausible development of cardiac pathophysiology and the complete list of UPS proteins regulating these afflictions is still in infancy. The recent emergence of the roles of TNF receptor-associated factor (TRAFs) and deubiquitinating enzymes (DUBs) superfamily in hypertrophic cardiomyopathy has enhanced our knowledge. In this review, we have mainly compiled the TRAF superfamily of E3 ligases and few DUBs proteins with other well-documented E3 ligases such as MDM2, MuRF-1, Atrogin-I, and TRIM 32 that are specific to myocardial hypertrophy. In this review, we also aim to highlight their expression profile following physiological and pathological stimulation leading to the onset of hypertrophic phenotype in the heart that can serve as biomarkers and the opportunity for the development of novel therapies.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
439
|
Ravindran R, Polk P, Robinson LC, Tatchell K. New ubiquitin-dependent mechanisms regulating the Aurora B-protein phosphatase 1 balance in Saccharomyces cerevisiae. J Cell Sci 2018; 131:jcs.217620. [PMID: 30054382 DOI: 10.1242/jcs.217620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Protein ubiquitylation regulates many cellular processes, including cell division. We report here a novel mutation altering the Saccharomyces cerevisiae E1 ubiquitin-activating enzyme (uba1-W928R) that suppresses the temperature sensitivity and chromosome loss phenotype of a well-characterized Aurora B mutant (ip1-2). The uba1-W928R mutation increases histone H3-S10 phosphorylation in the ipl1-2 strain, indicating that uba1-W928R acts by increasing Ipl1 activity and/or reducing the opposing protein phosphatase 1 (PP1; Glc7 in S. cerevisiae) phosphatase activity. Consistent with this hypothesis, Ipl1 protein levels and stability are elevated in the uba1-W928R mutant, likely mediated via the E2 enzymes Ubc4 and Cdc34. In contrast, the uba1-W928R mutation does not affect Glc7 stability, but exhibits synthetic lethality with several glc7 mutations. Moreover, uba1-W928R cells have an altered subcellular distribution of Glc7 and form nuclear Glc7 foci. These effects are likely mediated via the E2 enzymes Rad6 and Cdc34. Our new UBA1 allele reveals new roles for ubiquitylation in regulating the Ipl1-Glc7 balance in budding yeast. While ubiquitylation likely regulates Ipl1 protein stability via the canonical proteasomal degradation pathway, a non-canonical ubiquitin-dependent pathway maintains normal Glc7 localization and activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paula Polk
- Research Core Facility Genomics Core, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
440
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
441
|
Werner A, Baur R, Teerikorpi N, Kaya DU, Rape M. Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions. eLife 2018; 7:35407. [PMID: 29999490 PMCID: PMC6057744 DOI: 10.7554/elife.35407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Metazoan development depends on tightly regulated gene expression programs that instruct progenitor cells to adopt specialized fates. Recent work found that posttranslational modifications, such as monoubiquitylation, can determine cell fate also independently of effects on transcription, yet how monoubiquitylation is implemented during development is poorly understood. Here, we have identified a regulatory circuit that controls monoubiquitylation-dependent neural crest specification by the E3 ligase CUL3 and its substrate adaptor KBTBD8. We found that CUL3KBTBD8 monoubiquitylates its essential targets only after these have been phosphorylated in multiple motifs by CK2, a kinase whose levels gradually increase during embryogenesis. Its dependency on multisite phosphorylation allows CUL3KBTBD8 to convert the slow rise in embryonic CK2 into decisive recognition of ubiquitylation substrates, which in turn is essential for neural crest specification. We conclude that multisite dependency of an E3 ligase provides a powerful mechanism for switch-like cell fate transitions controlled by monoubiquitylation.
Collapse
Affiliation(s)
- Achim Werner
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Regina Baur
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nia Teerikorpi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Deniz U Kaya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
442
|
Gianazza E, Banfi C. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Rev Proteomics 2018; 15:477-502. [DOI: 10.1080/14789450.2018.1484283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Erica Gianazza
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cristina Banfi
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
443
|
Zhang D, Yu K, Yang Z, Li Y, Ma X, Bian X, Liu F, Li L, Liu X, Wu W. Silencing Ubc9 expression suppresses osteosarcoma tumorigenesis and enhances chemosensitivity to HSV-TK/GCV by regulating connexin 43 SUMOylation. Int J Oncol 2018; 53:1323-1331. [PMID: 29956745 DOI: 10.3892/ijo.2018.4448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 11/06/2022] Open
Abstract
The ability of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) systems to kill tumor cells is partially dependent on the integrity of gap junction intercellular communication (GJIC) of targeted tumor cells. Recent studies have suggested that connexin 43 (Cx43), which serves a role in gap junction-mediated intercellular communication, is regulated by small ubiquitin-like modifiers (SUMOs). However, the roles of these post-translational modifications remain to be elucidated. The present study demonstrated overexpression of SUMO‑conjugating enzyme Ubc9 (Ubc9) protein in osteosarcoma. Silencing Ubc9 by siRNA inhibited osteosarcoma cell proliferation and migration, and significantly increased the sensitivity of cells to HSV-TK/GCV systems both in vitro and in vivo. Further experimentation demonstrated that silencing Ubc9 induced decoupling of SUMO1 from Cx43, generating increased free Cx43 levels, which is important for reconstructing GJIC and recovering cellular functions. In conclusion, the present study revealed a novel method for the effective restoration of GJIC in osteosarcoma cells, which may increase their sensitivity to conventional chemotherapy.
Collapse
Affiliation(s)
- Dianying Zhang
- Department of Trauma and Orthopedics, Beijing University People's Hospital, Beijing 100044, P.R. China
| | - Kai Yu
- Department of Orthopedics, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Zhong Yang
- Department of Orthopedics, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Fengting Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Wenhan Wu
- Department of General Surgery, Beijing University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
444
|
Blount JR, Libohova K, Marsh GB, Sutton JR, Todi SV. Expression and Regulation of Deubiquitinase-Resistant, Unanchored Ubiquitin Chains in Drosophila. Sci Rep 2018; 8:8513. [PMID: 29855490 PMCID: PMC5981470 DOI: 10.1038/s41598-018-26364-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023] Open
Abstract
The modifier protein, ubiquitin (Ub) regulates various cellular pathways by controlling the fate of substrates to which it is conjugated. Ub moieties are also conjugated to each other, forming chains of various topologies. In cells, poly-Ub is attached to proteins and also exists in unanchored form. Accumulation of unanchored poly-Ub is thought to be harmful and quickly dispersed through dismantling by deubiquitinases (DUBs). We wondered whether disassembly by DUBs is necessary to control unanchored Ub chains in vivo. We generated Drosophila melanogaster lines that express Ub chains non-cleavable into mono-Ub by DUBs. These chains are rapidly modified with different linkages and represent various types of unanchored species. We found that unanchored poly-Ub is not devastating in Drosophila, under normal conditions or during stress. The DUB-resistant, free Ub chains are degraded by the proteasome, at least in part through the assistance of VCP and its cofactor, p47. Also, unanchored poly-Ub that cannot be cleaved by DUBs can be conjugated en bloc, in vivo. Our results indicate that unanchored poly-Ub species need not be intrinsically toxic; they can be controlled independently of DUB-based disassembly by being degraded, or through conjugation onto other proteins.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gregory B Marsh
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joanna R Sutton
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
445
|
Horita H, Law A, Middleton K. Utilizing Optimized Tools to Investigate PTM Crosstalk: Identifying Potential PTM Crosstalk of Acetylated Mitochondrial Proteins. Proteomes 2018; 6:proteomes6020024. [PMID: 29786648 PMCID: PMC6027404 DOI: 10.3390/proteomes6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification (PTM) crosstalk is recognized as a major cell-regulatory mechanism, and studies of several proteins have validated the premise that PTMs work in concert. Previous work by our group investigated the potential PTM crosstalk on proteins in the EGFR-Ras-c-Fos axis by utilizing a comprehensive set of PTM reagents termed Signal-Seeker toolkits. In this study, these tools were used to investigate the potential PTM crosstalk that occurs in acetylated mitochondrial proteins in response to a mitochondrial stress-inducing agent hydrogen peroxide (H2O2). Mitochondrial protein acetylation has been shown to participate in PTM crosstalk as exemplified by the regulation of the pyruvate dehydrogenase complex via kinase, phosphatase, acetyltransferase, and deacetylase activities. Changes in the acetylated state of mitochondrial proteins were investigated, in response to H2O2, using a novel anti acetyl lysine (Ac-K) antibody. Signal-Seeker PTM detection tools were used to validate the acetylation state of ten mitochondrial targets, as well as their endogenous acetylation state in response to H2O2. Importantly, the endogenous acetylation, ubiquitination, SUMOylation 2/3, and tyrosine phosphorylation state of four target mitochondrial proteins were also investigated with the toolkit. Each of the four proteins had unique PTM profiles, but diverging acetylation and ubiquitin or SUMO 2/3 signals appeared to be a common theme. This proof-of-concept study identifies the Signal-Seeker toolkits as a useful tool to investigate potential PTM crosstalk.
Collapse
Affiliation(s)
- Henrick Horita
- Research and Development Department, Cytoskeleton Inc., Denver, CO 80223, USA.
| | - Andy Law
- Research and Development Department, Cytoskeleton Inc., Denver, CO 80223, USA.
| | - Kim Middleton
- Research and Development Department, Cytoskeleton Inc., Denver, CO 80223, USA.
| |
Collapse
|
446
|
Wu K, He J, Pu W, Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:120-126. [PMID: 29723684 PMCID: PMC6112314 DOI: 10.1016/j.gpb.2017.09.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are conserved small non-coding RNAs that play an important role in the regulation of gene expression and participate in a variety of biological processes. The biogenesis of miRNAs is tightly controlled at multiple steps, such as transcription of miRNA genes, processing by Drosha and Dicer, and transportation of precursor miRNAs (pre-miRNAs) from the nucleus to the cytoplasm by exportin-5 (XPO5). Given the critical role of nuclear export of pre-miRNAs in miRNA biogenesis, any alterations of XPO5, resulting from either genetic mutation, epigenetic change, abnormal expression level or posttranslational modification, could affect miRNA expression and thus have profound effects on tumorigenesis. Importantly, XPO5 phosphorylation by ERK kinase and its cis/trans isomerization by the prolyl isomerase Pin1 impair XPO5′s nucleo-to-cytoplasmic transport ability of pre-miRNAs, leading to downregulation of mature miRNAs in hepatocellular carcinoma. In this review, we focus on how XPO5 transports pre-miRNAs in the cells and summarize the dysregulation of XPO5 in human tumors.
Collapse
Affiliation(s)
- Ke Wu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan He
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
447
|
Pseudo-DUBs as allosteric activators and molecular scaffolds of protein complexes. Biochem Soc Trans 2018; 46:453-466. [PMID: 29472364 DOI: 10.1042/bst20160268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
Abstract
The ubiquitin (Ub) proteasome system and Ub signalling networks are crucial to cell biology and disease development. Deubiquitylases (DUBs) control cell signalling by removing mono-Ub and polyubiquitin chains from substrates. DUBs take part in almost all processes that regulate cellular life and are frequently dysregulated in disease. We have catalogued 99 currently known DUBs in the human genome and sequence conservation analyses of catalytic residues suggest that 11 lack enzyme activity and are classed as pseudo-DUBs. These pseudoenzymes play important biological roles by allosterically activating catalytically competent DUBs as well as other active enzymes. Additionally, pseudoenzymes act as assembly scaffolds of macromolecular complexes. We discuss how pseudo-DUBs have lost their catalytic activity, their diverse mechanisms of action and their potential as therapeutic targets. Many known pseudo-DUBs play crucial roles in cell biology and it is likely that unstudied and overlooked pseudo-DUB genes will have equally important functions.
Collapse
|
448
|
Abstract
The availability of different polyubiquitin chains of specific linkage types has changed the appreciation of the specificity in the ubiquitin (Ub) system. Numerous E2 Ub-conjugating enzymes and E3 Ub ligases, Ub-binding domains (UBDs), and deubiquitinases (DUBs) are now known to assemble, bind, or hydrolyze individual linkage types, respectively. Biochemical and structural studies of these processes require milligram quantities of pure polyUb. Here we describe protocols that allow the enzymatic synthesis and purification of six of the eight homotypic polyUb chains through the use of chain-specific Ub ligases and DUBs.
Collapse
Affiliation(s)
- Martin A Michel
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Paul R Elliott
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
449
|
The Biology of SUMO-Targeted Ubiquitin Ligases in Drosophila Development, Immunity, and Cancer. J Dev Biol 2018; 6:jdb6010002. [PMID: 29615551 PMCID: PMC5875560 DOI: 10.3390/jdb6010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin and SUMO (small ubiquitin-like modifier) pathways modify proteins that in turn regulate diverse cellular processes, embryonic development, and adult tissue physiology. These pathways were originally discovered biochemically in vitro, leading to a long-standing challenge of elucidating both the molecular cross-talk between these pathways and their biological importance. Recent discoveries in Drosophila established that ubiquitin and SUMO pathways are interconnected via evolutionally conserved SUMO-targeted ubiquitin ligase (STUbL) proteins. STUbL are RING ubiquitin ligases that recognize SUMOylated substrates and catalyze their ubiquitination, and include Degringolade (Dgrn) in Drosophila and RNF4 and RNF111 in humans. STUbL are essential for early development of both the fly and mouse embryos. In the fly embryo, Dgrn regulates early cell cycle progression, sex determination, zygotic gene transcription, segmentation, and neurogenesis, among other processes. In the fly adult, Dgrn is required for systemic immune response to pathogens and intestinal stem cell regeneration upon infection. These functions of Dgrn are highly conserved in humans, where RNF4-dependent ubiquitination potentiates key oncoproteins, thereby accelerating tumorigenesis. Here, we review the lessons learned to date in Drosophila and highlight their relevance to cancer biology.
Collapse
|
450
|
Haakonsen DL, Rape M. Ubiquitin levels: the next target against gynecological cancers? J Clin Invest 2017; 127:4228-4230. [PMID: 29130938 DOI: 10.1172/jci98262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ubiquitylation is a tightly regulated process that is essential for appropriate cell survival and function, and the ubiquitin pathway has shown promise as a therapeutic target for several forms of cancer. In this issue of the JCI, Kedves and colleagues report the identification of a subset of gynecological cancers with repressed expression of the polyubiquitin gene UBB, which renders these cancer cells sensitive to further decreases in ubiquitin production by inhibition of the polyubiquitin gene UBC. Moreover, inducible depletion of UBC in mice harboring tumors with low UBB levels dramatically decreased tumor burden and prolonged survival. Together, the results of this study indicate that there is a synthetic lethal relationship between UBB and UBC that has potential to be exploited as a therapeutic strategy to fight these devastating cancers.
Collapse
|