401
|
Chen J, Zhou M, Zhang Q, Xu J, Ouyang J. Gambogic acid induces death of K562 cells through autophagy and apoptosis mechanisms. Leuk Lymphoma 2015; 56:2953-8. [PMID: 25699654 DOI: 10.3109/10428194.2015.1018251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was aimed to detect the effects of gambogic acid (GA) on the growth of chronic myelogenous leukemia (CML) K562 cells. Our results showed that GA induced the accumulation of autophagic vacuoles and up-regulation of two autophagy-related proteins (Beclin 1 and LC3). GA also induced down-regulation of mRNA levels of BCR-ABL fusion gene and SQSTM1/sequestosome 1 (p62) protein levels. After treatment by chloroquine (CQ) and pan caspase inhibitor Z-VAD-FMK (PC), both GA-induced autophagy and apoptosis were inhibited. Our study demonstrates that GA may induce cell death through autophagy and apoptosis pathways in CML K562 cells. A cross-talk mechanism exists between GA-induced autophagy and apoptosis. However, the mechanism of GA for inducing autophagy and apoptosis need further clarification.
Collapse
Affiliation(s)
- Jinhao Chen
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu , China
| | - Min Zhou
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu , China
| | - Qian Zhang
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu , China
| | - Jingyan Xu
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu , China
| | - Jian Ouyang
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu , China
| |
Collapse
|
402
|
Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 2015; 16:329-44. [PMID: 25991373 DOI: 10.1038/nrm3999] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All life ends in death, but perhaps one of life's grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was almost synonymous with apoptosis; recently, however, alternative mechanisms of PCD have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals that emanate from dying cells, which can either trigger regeneration or instruct additional killing. Further advances in understanding the physiological roles of the various mechanisms of cell death and their associated signals will be important to selectively manipulate PCD for therapeutic purposes.
Collapse
|
403
|
Su JC, Tseng PH, Hsu CY, Tai WT, Huang JW, Ko CH, Lin MW, Liu CY, Chen KF, Shiau CW. RFX1-dependent activation of SHP-1 induces autophagy by a novel obatoclax derivative in hepatocellular carcinoma cells. Oncotarget 2015; 5:4909-19. [PMID: 24952874 PMCID: PMC4148109 DOI: 10.18632/oncotarget.2054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Obatoclax is a small molecule which targets the Bcl-2 family, and is to treat leukemia, lymphoma and lung carcinoma. Previously, an obatoclax analogue, SC-2001, was found to disrupt the protein-protein interactions of the Bcl-2 family and also repress Bcl-XL and Mcl-1 expression via STAT3 inactivation. Here, we report a novel mechanism of autophagy induction by SC-2001 in liver cancer cells. The findings indicate that SC-2001 induced the autophagy marker LC3-II in four hepatocellular carcinoma (HCC) cells. Autophagosomes induced by SC-2001-treated cells were confirmed by electron microscopy. SC-2001 activated SHP-1, dephosphorylated STAT3 and Mcl-1, and subsequently released free beclin 1. Overexpression of STAT3 and Mcl-1 in PLC5 cells attenuated the induction of SC-2001 on autophagy. Abolishment of SHP-1 by a specific inhibitor aboragated the autophagic effects induced by SC-2001. In addition, it was further revealed that RFX-1, a transcription factor of SHP-1, is a critical regulator in SC-2001-mediated autophagy. Downregulation of RFX-1 by si-RNA protected cells from SC-2001-induced autophagy. Importantly, Huh7 tumor-bearing nude mice treated with SC-2001 showed downregulation of Mcl-1 and p-STAT3 protein expression and upregulation of SHP-1, LC3II, and RFX-1 protein expression. In summary, our data suggest that SC-2001 induces autophagic cell death in a RFX1/SHP-1/STAT3/Mcl-1 signaling cascade.
Collapse
Affiliation(s)
- Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
404
|
WANG QIWEN, WANG YI, WANG TAO, ZHANG KANGBAO, JIANG CHENGYANG, HU FEIFEI, YUAN YAN, BIAN JIANCHUN, LIU XUEZHONG, GU JIANHONG, LIU ZONGPING. Cadmium-induced autophagy promotes survival of rat cerebral cortical neurons by activating class III phosphoinositide 3-kinase/beclin-1/B-cell lymphoma 2 signaling pathways. Mol Med Rep 2015; 12:2912-8. [DOI: 10.3892/mmr.2015.3755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
|
405
|
Jin Y, Lin Y, Feng JF, Jia F, Gao GY, Jiang JY. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate Traumatic Brain Injury. J Neurotrauma 2015; 32:1090-100. [PMID: 25942484 DOI: 10.1089/neu.2014.3649] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we evaluated changes in autophagy after post-traumatic brain injury (TBI) followed by moderate hypothermia in rats. Adult male Sprague-Dawley rats were randomly divided into four groups: sham injury with normothermia group (37 °C); sham injury with hypothermia group (32 °C); TBI with normothermia group (TNG; 37 °C); and TBI with hypothermia group (THG; 32 °C). Injury was induced by a fluid percussion TBI device. Moderate hypothermia (32 °C) was achieved by partial immersion in a water bath (0 °C) under general anesthesia for 4 h. All rats were killed at 24 h after fluid percussion TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin and eosin staining; terminal deoxynucleoitidyl transferase-mediated nick end labeling staining was used to determine cell death in ipsilateral hippocampus. Immunohistochemistry and western blotting of microtubule-associated protein light chain 3 (LC3), Beclin-1, as well as transmission electron microscopy performed to assess changes in autophagy. At 24 h after TBI, the cell death index was 27.90 ± 2.36% in TNG and 14.90 ± 1.52% in THG. Expression level of LC3 and Beclin-1 were significantly increased after TBI and were further up-regulated after post-TBI hypothermia. Further, ultrastructural observations showed that there was a marked increase of autophagosomes and autolysosomes in ipsilateral hippocampus after post-TBI hypothermia. Our data demonstrated that moderate hypothermia significantly attenuated cell death and increased autophagy in ipsilateral hippocampus after fluid percussion TBI. In conclusion, autophagy pathway may participate in the neuroprotective effect of post-TBI hypothermia.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Jun-feng Feng
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Guo-yi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Ji-yao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| |
Collapse
|
406
|
Del Rosario JS, Feldmann KG, Ahmed T, Amjad U, Ko B, An J, Mahmud T, Salama M, Mei S, Asemota D, Mano I. Death Associated Protein Kinase (DAPK) -mediated neurodegenerative mechanisms in nematode excitotoxicity. BMC Neurosci 2015; 16:25. [PMID: 25899010 PMCID: PMC4414438 DOI: 10.1186/s12868-015-0158-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity. However, the molecular mechanism by which DAPK exerts its effect is controversial. A few distinct mechanisms have been suggested by single (sometimes contradicting) studies, and a larger array of potential mechanisms is implicated by the extensive interactome of DAPK. Results Here we analyze a well-characterized model of excitotoxicity in the nematode C. elegans to show that DAPK is an important mediator of excitotoxic neurodegeneration across a large evolutionary distance. We further show that some proposed mechanisms of DAPK’s action (modulation of synaptic strength, involvement of the DANGER-related protein MAB-21, and autophagy) do not have a major role in nematode excitotoxicity. In contrast, Pin1/PINN-1 (a DAPK interaction-partner and a peptidyl-prolyl isomerase involved in chronic neurodegenerative conditions) suppresses neurodegeneration in our excitotoxicity model. Conclusions Our studies highlight the prominence of DAPK and Pin1/PINN-1 as conserved mediators of cell death processes in diverse scenarios of neurodegeneration.
Collapse
Affiliation(s)
- John S Del Rosario
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA. .,MS program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Katherine Genevieve Feldmann
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA. .,PhD program in Neuroscience, the CUNY Graduate Center, New York, NY, USA.
| | - Towfiq Ahmed
- Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Uzair Amjad
- Undergraduate program in Biochemistry, CCNY, CUNY, New York, NY, USA.
| | - BakKeung Ko
- MS program in Biology, CCNY, CUNY, New York, NY, USA. .,Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - JunHyung An
- Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Tauhid Mahmud
- Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Maha Salama
- Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA.
| | - Shirley Mei
- Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA.
| | - Daniel Asemota
- Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA.
| | - Itzhak Mano
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA. .,PhD program in Neuroscience, the CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
407
|
Merabova N, Sariyer IK, Saribas AS, Knezevic T, Gordon J, Turco MC, Rosati A, Weaver M, Landry J, Khalili K. WW domain of BAG3 is required for the induction of autophagy in glioma cells. J Cell Physiol 2015; 230:831-41. [PMID: 25204229 DOI: 10.1002/jcp.24811] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022]
Abstract
Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associates with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy.
Collapse
Affiliation(s)
- Nana Merabova
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Tait SWG, Ichim G, Green DR. Die another way--non-apoptotic mechanisms of cell death. J Cell Sci 2015; 127:2135-44. [PMID: 24833670 DOI: 10.1242/jcs.093575] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death.
Collapse
Affiliation(s)
- Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
409
|
Orogo AM, Gustafsson ÅB. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ Res 2015; 116:489-503. [PMID: 25634972 DOI: 10.1161/circresaha.116.303791] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Autophagy is an evolutionarily conserved process by which long-lived proteins and organelles are sequestered by autophagosomes and subsequently degraded by lysosomes for recycling. Autophagy is important for maintaining cardiac homeostasis and is a survival mechanism that is upregulated during stress or starvation. Accumulating evidence suggests that dysregulated or reduced autophagy is associated with heart failure and aging. Thus, modulating autophagy represents an attractive future therapeutic target for treating cardiovascular disease. Activation of autophagy is generally considered to be cardioprotective, whereas excessive autophagy can lead to cell death and cardiac atrophy. It is important to understand how autophagy is regulated to identify ideal therapeutic targets for treating disease. Here, we discuss the key proteins in the core autophagy machinery and describe upstream regulators that respond to extracellular and intracellular signals to tightly coordinate autophagic activity. We review various genetic and pharmacological studies that demonstrate the important role of autophagy in the heart and consider the advantages and limitations of approaches that modulate autophagy.
Collapse
Affiliation(s)
- Amabel M Orogo
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla
| | - Åsa B Gustafsson
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla.
| |
Collapse
|
410
|
Moschetta M, Reale A, Marasco C, Vacca A, Carratù MR. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br J Pharmacol 2015; 171:3801-13. [PMID: 24780124 DOI: 10.1111/bph.12749] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) plays an important role in the regulation of protein translation, cell growth and metabolism. The mTOR protein forms two distinct multi-subunit complexes: mTORC1 and mTORC2. The mTORC1 complex is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals; and essential signalling pathways, such as PI3K and MAPK, in order to control cell growth, proliferation and survival. mTORC1 also activates S6K1 and 4EBP1, which are involved in mRNA translation. The mTORC2 complex is resistant to rapamycin inhibitory activity and is generally insensitive to nutrient- and energy-dependent signals. It activates PKC-α and Akt and regulates the actin cytoskeleton. Deregulation of the mTOR-signalling pathway (PI3K amplification/mutation, PTEN loss of function, Akt overexpression, and S6K1, 4EBP1 and eIF4E overexpression) is common in cancer, and alterations in components of the mTOR pathway have a major role in tumour progression. Therefore, mTOR is an appealing therapeutic target in many tumours. Here we summarize the upstream regulators and downstream effectors of the mTORC1 and mTORC2 pathways, the role of mTOR in cancer, and the potential therapeutic values and issues related to the novel agents targeting the mTOR-signalling pathway.
Collapse
Affiliation(s)
- M Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Section of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School 'Aldo Moro', Bari, Italy
| | | | | | | | | |
Collapse
|
411
|
Du X, Xiao R, Xiao F, Chen Y, Hua F, Yu S, Xu G. NAF-1 antagonizes starvation-induced autophagy through AMPK signaling pathway in cardiomyocytes. Cell Biol Int 2015; 39:816-23. [PMID: 25689847 DOI: 10.1002/cbin.10453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/03/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaohong Du
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Renjie Xiao
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Fan Xiao
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Yong Chen
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Fuzhou Hua
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Shuchun Yu
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Guohai Xu
- Department of Anesthesiology; the Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| |
Collapse
|
412
|
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2784-90. [PMID: 25840011 DOI: 10.1016/j.bbamcr.2015.03.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The efficient and selective elimination of damaged or excessive mitochondria in response to bioenergetic and environmental cues is critical for maintaining a healthy and appropriate population of mitochondria. Mitophagy is considered to be the central mechanism of mitochondrial quality and quantity control. Atg32, a mitophagy receptor in yeast, recruits mitochondria targeted for degradation into the isolation membrane via both direct and indirect interactions with Atg8. In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria. One common feature of mitophagy receptors is that they harbor an LC3-interacting region (LIR) that interacts with LC3, thus promoting the sequestration of mitochondria into the isolation membrane. Additionally, both receptor- and Parkin/PINK1-mediated mitophagy have been found to be regulated by reversible phosphorylation. Here, we review the recent progress in the understanding of the molecular mechanisms involved in selective mitophagy at multiple levels. We also discuss different mitophagy receptors from an evolutionary perspective and highlight the specific functions of and possible cooperation between distinct mechanisms of mitophagy.
Collapse
Affiliation(s)
- Huifang Wei
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
413
|
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34:856-80. [PMID: 25712477 PMCID: PMC4388596 DOI: 10.15252/embj.201490784] [Citation(s) in RCA: 940] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Federico Pietrocola
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark IRCCS Fondazione Santa Lucia and Department of Biology University of Rome Tor Vergata, Rome, Italy
| | - Patrice Codogno
- Université Paris Descartes Sorbonne Paris Cité, Paris, France Institut Necker Enfants-Malades (INEM), Paris, France INSERM U1151, Paris, France CNRS UMR8253, Paris, France
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - David A Gewirtz
- Department of Pharmacology, Toxicology and Medicine, Virginia Commonwealth University, Richmond Virginia, VA, USA
| | | | - Alec Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Chiara Maiuri
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Seamus J Martin
- Department of Genetics, Trinity College, The Smurfit Institute, Dublin, Ireland
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Rome, Italy
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andrew M Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Madrid, Spain Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
414
|
The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin 2015; 36:411-20. [PMID: 25832421 PMCID: PMC4387298 DOI: 10.1038/aps.2014.151] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Autophagy is an evolutionarily conserved and lysosome-dependent process for degrading and recycling cellular constituents. Autophagy is activated following an ischemic insult or preconditioning, but it may exert dual roles in cell death or survival during these two processes. Preconditioning or lethal ischemia may trigger autophagy via multiple signaling pathways involving endoplasmic reticulum (ER) stress, AMPK/TSC/mTOR, Beclin 1/BNIP3/SPK2, and FoxO/NF-κB transcription factors, etc. Autophagy then interacts with apoptotic and necrotic signaling pathways to regulate cell death. Autophagy may also maintain cell function by removing protein aggregates or damaged mitochondria. To date, the dual roles of autophagy in ischemia and preconditioning have not been fully clarified. The purpose of the present review is to summarize the recent progress in the mechanisms underlying autophagy activation during ischemia and preconditioning. A better understanding of the dual effects of autophagy in ischemia and preconditioning could help to develop new strategies for the preventive treatment of ischemia.
Collapse
|
415
|
Ney PA. Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2775-83. [PMID: 25753537 DOI: 10.1016/j.bbamcr.2015.02.022] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/24/2015] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
Mitochondrial autophagy (mitophagy) is a core cellular activity. In this review, we consider mitophagy and related cellular processes and discuss their significance for human disease. Strong parallels exist between mitophagy and xenophagy employed in host defense. These mechanisms converge on receptors in the innate immune system in clinically relevant scenarios. Mitophagy is part of a cellular quality control mechanism, which is implicated in degenerative disease, especially neurodegenerative disease. Furthermore, mitophagy is an aspect of cellular remodeling, which is employed during development. BNIP3 and NIX are related multi-functional outer mitochondrial membrane proteins. BNIP3 regulates mitophagy during hypoxia, whereas NIX is required for mitophagy during development of the erythroid lineage. Recent advances in the field of BNIP3- and NIX-mediated mitophagy are discussed.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Cell & Molecular Biology, Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67 Street, New York, NY 10065-6275, USA.
| |
Collapse
|
416
|
Identification of the Essential Role of Viral Bcl-2 for Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2015; 89:5308-17. [PMID: 25740994 DOI: 10.1128/jvi.00102-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298-5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication.
Collapse
|
417
|
Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y, Levine B. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated with Estrogen Receptor-Negative Subtypes and Poor Prognosis. EBioMedicine 2015; 2:255-263. [PMID: 25825707 PMCID: PMC4376376 DOI: 10.1016/j.ebiom.2015.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both BRCA1 and Beclin 1 (BECN1) are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA) (n = 1067) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1992). In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative) breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1) was associated with poor prognosis, and BECN1 (but not BRCA1) expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers. The tumor suppressor genes, BECN1 and BRCA1, are in close proximity to the 17q21 breast cancer tumor susceptibility locus. We studied mRNA expression patterns of BECN1 and BRCA1 in breast cancer patients in the large TCGA and METABRIC datasets. Decreased BECN1 (but not BRCA1) expression is linked with aggressive clinico-pathological features in human breast cancer. Decreased BECN1 (but not BRCA1) expression is linked with worse survival in human breast cancer patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Salwa Sebti
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rossella Titone
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yunyun Zhou
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A Avogrado", Via Solaroli 17, 28100 Novara, Italy
| | - Theodora S Ross
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University College of Physicians & Surgeons, New York, New York 10032
| | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Milton Packer
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Howard Hughes Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
418
|
Zhen C, Feng X, Li Z, Wang Y, Li B, Li L, Quan M, Wang G, Guo L. Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation. J Neuroimmunol 2015; 280:1-7. [DOI: 10.1016/j.jneuroim.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
|
419
|
A Nontoxic Concentration of Cisplatin Induces Autophagy in Cervical Cancer. Int J Gynecol Cancer 2015; 25:380-8. [DOI: 10.1097/igc.0000000000000365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
420
|
Abstract
Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.
Collapse
|
421
|
Wei Y, An Z, Zou Z, Sumpter R, Su M, Zang X, Sinha S, Gaestel M, Levine B. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. eLife 2015; 4:e05289. [PMID: 25693418 PMCID: PMC4337728 DOI: 10.7554/elife.05289] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/26/2015] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pathway MAPKAPK2 (MK2) and MAPKAPK3 (MK3), positively regulate starvation-induced autophagy by phosphorylating an essential ATG protein, Beclin 1, at serine 90, and that this phosphorylation site is essential for the tumor suppressor function of Beclin 1. Moreover, MK2/MK3-dependent Beclin 1 phosphorylation (and starvation-induced autophagy) is blocked in vitro and in vivo by BCL2, a negative regulator of Beclin 1. Together, these findings reveal MK2/MK3 as crucial stress-responsive kinases that promote autophagy through Beclin 1 S90 phosphorylation, and identify the blockade of MK2/3-dependent Beclin 1 S90 phosphorylation as a mechanism by which BCL2 inhibits the autophagy function of Beclin 1.
Collapse
Affiliation(s)
- Yongjie Wei
- Center for Autophagy Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| | - Zhenyi An
- Center for Autophagy Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| | - Rhea Sumpter
- Center for Autophagy Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| | - Minfei Su
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, United States
| | - Xiao Zang
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, United States
| | - Sangita Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, United States
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, Hannover, Germany
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
- Department of Microbiology, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
422
|
Wang YY, Yang YX, Zhao R, Pan ST, Zhe H, He ZX, Duan W, Zhang X, Yang T, Qiu JX, Zhou SF. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:993-1026. [PMID: 25733817 PMCID: PMC4338783 DOI: 10.2147/dddt.s73493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial–mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shu-Ting Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| |
Collapse
|
423
|
Kumar S, Gupta P, Khanal S, Shahi A, Kumar P, Sarin SK, Venugopal SK. Overexpression of microRNA-30a inhibits hepatitis B virus X protein-induced autophagosome formation in hepatic cells. FEBS J 2015; 282:1152-63. [DOI: 10.1111/febs.13209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Satendra Kumar
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi India
| | - Parul Gupta
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi India
| | - Sweta Khanal
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi India
| | - Aashirwad Shahi
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi India
| | - Pushpendra Kumar
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi India
| | - Shiv K. Sarin
- Department of Hepatology; Institute of Liver and Biliary Sciences; New Delhi India
| | - Senthil K. Venugopal
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi India
| |
Collapse
|
424
|
Zhang J, Deng H, Liu L, Liu X, Zuo X, Xu Q, Wu Z, Peng X, Ji A. α-Lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy. Mol Med Rep 2015; 12:180-6. [PMID: 25684163 PMCID: PMC4438966 DOI: 10.3892/mmr.2015.3351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 11/14/2014] [Indexed: 01/16/2023] Open
Abstract
α-lipoic acid (ALA) is known as a powerful antioxidant, which has been reported to have protective effects against various cardiovascular diseases. The present study aimed to determine whether ALA pre- or post-treatment induced protective effects against hypoxia/reoxygenation-induced injury via inhibition of apoptosis and autophagy in human umbilical vein endothelial cells (HUVECs). In order to simulate the conditions of hypoxia/reoxygenation, HUVECs were subjected to 4 h of oxygen-glucose deprivation (OGD) followed by 12 h of reoxygenation. For the pre-treatment, ALA was added to the buffer 12 h prior to OGD, whereas for the post-treatment, ALA was added at the initiation of reoxygenation. The results demonstrated that ALA pre- or post-treatment significantly reduced lactate dehydrogenase (LDH) release induced through hypoxia/reoxygenation in HUVECs in a dose-dependent manner; of note, 1 mM ALA pre- or post-treatment exhibited the most potent protective effects. In addition, ALA significantly reduced hypoxia/reoxygenation-induced loss of mitochondrial membrane potential, apoptosis and the expression of cleaved caspase-3 in HUVECs. In the presence of the specific autophagy inhibitor 3-methyladenine, hypoxia/reoxygenation-induced apoptosis was significantly reduced. Furthermore, the formation of autophagosomes, cytosolic microtubule-associated protein 1A/1B-light chain 3 ratio and beclin1 levels significantly increased following hypoxia/reoxygenation injury; however, all of these effects were ameliorated following pre- or post-treatment with ALA. The results of the present study suggested that ALA may provide beneficial protection against hypoxia/reoxygenation-induced injury via attenuation of apoptosis and autophagy in HUVECs.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Houliang Deng
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Li Liu
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xiaoxia Liu
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xialin Zuo
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qian Xu
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zhuomin Wu
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xiaobin Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Aimin Ji
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
425
|
Mollace V, Gliozzi M, Musolino V, Carresi C, Muscoli S, Mollace R, Tavernese A, Gratteri S, Palma E, Morabito C, Vitale C, Muscoli C, Fini M, Romeo F. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. Int J Cardiol 2015; 184:152-158. [PMID: 25703423 DOI: 10.1016/j.ijcard.2015.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Overproduction of oxidized-low density lipoproteins (oxyLDLs) has been found to contribute in endothelial cell (EC) dysfunction thereby leading to atherosclerosis development and progression. In particular, oxyLDLs lead to apoptotic cell death of EC via oxidative stress production, mostly subsequent to the overexpression of the scavenger receptor LOX-1. Here, we hypothesize that LOX-1 expression in EC represents a crucial event which attenuates protective autophagic response, thereby enhancing programmed endothelial cell death. METHODS AND RESULTS Bovine aortic endothelial cells (BAECs) in culture were exposed to oxyLDL (1-100 μM). After 48 h incubation, oxyLDL produced pronounced malondialdehyde (MDA) elevation and apoptotic cell death of BAEC as detected by FACS analysis, an effect counteracted by antioxidant N-acetyl-cysteine (NAC) as well as by the NO-donor SNAP. OxyLDL-induced apoptotic cell death was also accompanied by reduced VEGF-dependent phosphorylation of constitutive NO synthase (cNOS) in BAEC and consistent attenuation of autophagic response as detected by the expression of Beclin-1 and LC3, two reliable biomarkers of autophagy. Moreover, silencing LOX-1 receptor significantly restored LC3 expression in oxyLDL-treated BAEC, thus suggesting a key role of LOX-1 overproduction in oxyLDL-induced endothelial dysfunction. CONCLUSIONS OxyLDL leads to impaired NO generation and apoptotic cell death in BAECs. This effect occurs via the overexpression of LOX-1 and subsequent attenuation of protective autophagic response thereby contributing to the pathophysiology of oxyLDL-induced endothelial dysfunction which characterizes early stages of atherosclerotic process.
Collapse
Affiliation(s)
- Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy; IRCCS San Raffaele, Rome, Italy.
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Saverio Muscoli
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Santo Gratteri
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Chiara Morabito
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | | | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy; IRCCS San Raffaele, Rome, Italy
| | | | - Francesco Romeo
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
426
|
Autophagy regulates colistin-induced apoptosis in PC-12 cells. Antimicrob Agents Chemother 2015; 59:2189-97. [PMID: 25645826 DOI: 10.1128/aac.04092-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons.
Collapse
|
427
|
Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci 2015; 16:2942-55. [PMID: 25636036 PMCID: PMC4346874 DOI: 10.3390/ijms16022942] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 12/24/2022] Open
Abstract
The process of apoptosis is essential for maintaining the physiologic balance between cell death and cell growth. This complex process is executed by two major pathways that participate in activating an executioner mechanism leading to chromatin disintegration and nuclear fragmentation. Dysregulation of these pathways often contributes to cancer development and resistance to cancer therapy. Here, we review the most recent discoveries in apoptosis regulation and possible mechanisms for resensitizing tumor cells to therapy.
Collapse
Affiliation(s)
- Jean L Koff
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Sampath Ramachandiran
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
428
|
Lin L, Baehrecke EH. Autophagy, cell death, and cancer. Mol Cell Oncol 2015; 2:e985913. [PMID: 27308466 PMCID: PMC4905302 DOI: 10.4161/23723556.2014.985913] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular catabolic process that is used by all cells to degrade dysfunctional or unnecessary cytoplasmic components through delivery to the lysosome. Increasing evidence reveals that autophagic dysfunction is associated with human diseases, such as cancer. Paradoxically, although autophagy is well recognized as a cell survival process that promotes tumor development, it can also participate in a caspase-independent form of programmed cell death. Induction of autophagic cell death by some anticancer agents highlights the potential of this process as a cancer treatment modality. Here, we review our current understanding of the molecular mechanism of autophagy and the potential roles of autophagy in cell death, cancer development, and cancer treatment.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cancer Biology; University of Massachusetts Medical School ; Worcester, MA, USA
| | - Eric H Baehrecke
- Department of Cancer Biology; University of Massachusetts Medical School ; Worcester, MA, USA
| |
Collapse
|
429
|
Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 2015; 34:5105-13. [PMID: 25619832 DOI: 10.1038/onc.2014.458] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022]
Abstract
Autophagy is a tightly-regulated catabolic process of cellular self-digestion by which cellular components are targeted to lysosomes for their degradation. Key functions of autophagy are to provide energy and metabolic precursors under conditions of starvation and to alleviate stress by removal of damaged proteins and organelles, which are deleterious for cell survival. Therefore, autophagy appears to serve as a pro-survival stress response in most settings. However, the role of autophagy in modulating cell death is highly dependent on the cellular context and its extent. There is an increasing evidence for cell death by autophagy, in particular in developmental cell death in lower organisms and in autophagic cancer cell death induced by novel cancer drugs. The death-promoting and -executing mechanisms involved in the different paradigms of autophagic cell death (ACD) are very diverse and complex, but a draft scenario of the key molecular targets involved in ACD is beginning to emerge. This review provides an up-to-date and comprehensive report on the molecular mechanisms of drug-induced autophagy-dependent cell death and highlights recent key findings in this exciting field of research.
Collapse
|
430
|
Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 2015; 89:289-317. [PMID: 25618543 DOI: 10.1007/s00204-014-1448-7] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Apoptosis is a critically important biological process that plays an essential role in cell fate and homeostasis. An important component of the apoptotic pathway is the family of proteins commonly known as the B cell lymphoma-2 (Bcl-2). The primary role of Bcl-2 family members is the regulation of apoptosis. Although the structure of Bcl-2 family of proteins was reported nearly 10 years ago, however, it still surprises us with its structural and functional complexity and diversity. A number of studies have demonstrated that Bcl-2 family influences many other cellular processes beyond apoptosis which are generally independent of the regulation of apoptosis, suggesting additional roles for Bcl-2. The disruption of the regulation of apoptosis is a causative event in many diseases. Since the Bcl-2 family of proteins is the key regulator of apoptosis, the abnormalities in its function have been implicated in many diseases including cancer, neurodegenerative disorders, ischemia and autoimmune diseases. In the past few years, our understanding of the mechanism of action of Bcl-2 family of proteins and its implications in various pathological conditions has enhanced significantly. The focus of this review is to summarize the current knowledge on the structure and function of Bcl-2 family of proteins in apoptotic cellular processes. A number of drugs have been developed in the past few years that target different Bcl-2 members. The role of Bcl-2 proteins in the pathogenesis of various diseases and their pharmacological significance as effective molecular therapeutic targets is also discussed.
Collapse
Affiliation(s)
- Waseem Ahmad Siddiqui
- Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | | | | |
Collapse
|
431
|
Liang LZ, Ma B, Liang YJ, Liu HC, Zhang TH, Zheng GS, Su YX, Liao GQ. Obatoclax induces Beclin 1- and ATG5-dependent apoptosis and autophagy in adenoid cystic carcinoma cells. Oral Dis 2015; 21:470-7. [PMID: 25482163 DOI: 10.1111/odi.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/10/2014] [Accepted: 11/22/2014] [Indexed: 12/12/2022]
Affiliation(s)
- L-Z Liang
- Department of Oral and Maxillofacial Surgery; Fifth Affiliated Hospital of Sun Yat-sen University; Zhuhai China
| | - B Ma
- Department of Stomatology; Shanxi Academy of Medical Sciences; Shanxi Dayi Hospital; Taiyuan China
| | - Y-J Liang
- Department of Oral and Maxillofacial Surgery; Guanghua School of Stomatology; Sun Yat-Sen University; Guangzhou China
| | - H-C Liu
- Department of Oral and Maxillofacial Surgery; Guanghua School of Stomatology; Sun Yat-Sen University; Guangzhou China
| | - T-H Zhang
- Department of Stomatology; Affiliated Zhongshan Hospital; Sun Yat-sen University; Zhongshan China
| | - G-S Zheng
- Department of Oral and Maxillofacial Surgery; Guanghua School of Stomatology; Sun Yat-Sen University; Guangzhou China
| | - Y-X Su
- Department of Oral and Maxillofacial Surgery; Guanghua School of Stomatology; Sun Yat-Sen University; Guangzhou China
- Discipline of Oral & Maxillofacial Surgery; Faculty of Dentistry; the University of Hong Kong; Hong Kong China
| | - G-Q Liao
- Department of Oral and Maxillofacial Surgery; Guanghua School of Stomatology; Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
432
|
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015; 94:1-11. [PMID: 25562745 DOI: 10.1016/j.bcp.2014.12.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Cell death plays an essential role in the development of organs, homeostasis, and cancer. Apoptosis and programmed necrosis are two major types of cell death, characterized by different cell morphology and pathways. Accumulating evidence shows autophagy as a new alternative target to treat tumor resistance. Besides its well-known pro-survival role, autophagy can be a physiological cell death process linking apoptosis and programmed necrosis cell death pathways, by various molecular mediators. Here, we summarize the effects of pharmacologically active compounds as modulators of different types of cancer cell death depending on the cellular context. Indeed, current findings show that both natural and synthetic compounds regulate the interplay between apoptosis, autophagy and necroptosis stimulating common molecular mediators and sharing common organelles. In response to specific stimuli, the same death signal can cause cells to switch from one cell death modality to another depending on the cellular setting. The discovery of important interconnections between the different cell death mediators and signaling pathways, regulated by pharmacologically active compounds, presents novel opportunities for the targeted treatment of cancer. The aim of this review is to highlight the potential role of these compounds for context-specific anticancer therapy.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
433
|
Abstract
Macro-autophagy is a major catabolic process in the cell used to degrade protein aggregates, dysfunctional organelles and intracellular pathogens that would otherwise become toxic. Autophagy also generates energy and metabolites for the cell through recycling of degraded autophagosomal cargo, which can be particularly important for cell viability under stress. The significance of changes in the rates of autophagic flux for cellular function and disease is being increasingly appreciated, and interest in measuring autophagy in different experimental systems is growing accordingly. Here, we describe key methodologies used in the field to measure autophagic flux, including monitoring LC3 processing by western blot, fluorescent cell staining, and flow cytometry, in addition to changes in the levels or posttranslational modifications of other autophagy markers, such as p62/Sqstm1 and the Atg5-Atg12 conjugate. We also describe what cellular stresses may be used to induce autophagy and how to control for changes in the rates of autophagic flux as opposed to inhibition of flux. Finally, we detail available techniques to monitor autophagy in vivo.
Collapse
Affiliation(s)
- Marina N. Sharifi
- The Ben May Department for Cancer Research, The Gordon
Center for Integrative Sciences, 929 East 57 Street, The University of
Chicago, Chicago, IL 60637
- The Committee on Cancer Biology, The Gordon Center for
Integrative Sciences, 929 East 57 Street, The University of Chicago,
Chicago, IL 60637
- Medical Scientist Training Program, The Gordon Center for
Integrative Sciences, 929 East 57 Street, The University of Chicago,
Chicago, IL 60637
| | - Erin E. Mowers
- The Ben May Department for Cancer Research, The Gordon
Center for Integrative Sciences, 929 East 57 Street, The University of
Chicago, Chicago, IL 60637
- Medical Scientist Training Program, The Gordon Center for
Integrative Sciences, 929 East 57 Street, The University of Chicago,
Chicago, IL 60637
| | - Lauren E Drake
- The Ben May Department for Cancer Research, The Gordon
Center for Integrative Sciences, 929 East 57 Street, The University of
Chicago, Chicago, IL 60637
- The Committee on Molecular Pathogenesis and Molecular
Medicine, The Gordon Center for Integrative Sciences, 929 East 57
Street, The University of Chicago, Chicago, IL 60637
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon
Center for Integrative Sciences, 929 East 57 Street, The University of
Chicago, Chicago, IL 60637
- The Committee on Cancer Biology, The Gordon Center for
Integrative Sciences, 929 East 57 Street, The University of Chicago,
Chicago, IL 60637
- The Committee on Molecular Pathogenesis and Molecular
Medicine, The Gordon Center for Integrative Sciences, 929 East 57
Street, The University of Chicago, Chicago, IL 60637
- Corresponding author: Tel: 773-834-8309, Fax:
773-702-4476,
| |
Collapse
|
434
|
Wu HJ, Pu JL, Krafft PR, Zhang JM, Chen S. The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 2015; 35:85-99. [PMID: 25257832 PMCID: PMC11488065 DOI: 10.1007/s10571-014-0116-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
Abstract
Autophagy involves degradation of dysfunctional cellular components through the actions of lysosomes. Apoptosis is the process of programmed cell death involving a series of characteristic cell changes. Autophagy and apoptosis, as self-destructive processes, play an important role in the pathogenesis of neurological diseases; and a crosstalk between "self-eating" (autophagy) and "self-killing" (apoptosis) plays an important role in pathological cellular adaptation. Expert knowledge of autophagy and apoptosis has increased in recent years, particularly in regards to cellular and molecular mechanisms. The crosstalk between autophagy and apoptosis was partially uncovered and several key molecules, including Bcl-2 family members, Beclin 1, and p53 were identified. However, the precise mechanisms of such a crosstalk remain to be elucidated. This current review article aims to summarize key mediators of the autophagy-apoptosis crosstalk in pathological conditions, and to highlight recent advances in the field, as well as to discuss further investigations and therapeutic potentials of manipulating those mechanisms in central nervous system diseases.
Collapse
Affiliation(s)
- Hai-Jian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Paul. R. Krafft
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA USA
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| |
Collapse
|
435
|
Luan Q, Jin L, Jiang CC, Tay KH, Lai F, Liu XY, Liu YL, Guo ST, Li CY, Yan XG, Tseng HY, Zhang XD. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy 2015; 11:975-94. [PMID: 26018731 PMCID: PMC4590596 DOI: 10.1080/15548627.2015.1049800] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.
Collapse
Key Words
- 3-MA, 3-methyladenine
- AMPK, AMP-activated protein kinase
- ATF6, activating transcription factor 6
- Baf A1, bafilomycin A1
- CAMKK2, calcium/calmodulin-dependent protein kinase kinase 2: β
- EIF2AK3/PERK, eukaryotic translation initiation factor 2-α kinase 3
- ER, endoplasmic reticulum
- ERN1/IRE1, endoplasmic reticulum to nucleus signaling 1
- HSF1, heat shock transcription factor 1
- HSPA5, heat shock 70kDa protein 5 (glucose-regulated protein: 78kDa)
- MAP2K1/MEK1, mitogen-activated protein kinase kinase 1
- MAPK, mitogen-activated protein kinase
- MAPK1/ERK2, mitogen-activated protein kinase 1
- MAPK11/p38β, mitogen-activated protein kinase 11
- MAPK12/p38γ, mitogen-activated protein kinase 12
- MAPK13/p38δ, mitogen-activated protein kinase 13
- MAPK14/p38α, mitogen-activated protein kinase 14
- MAPK3/ERK1, mitogen-activated protein kinase 3
- MAPK8/JNK1, mitogen-activated protein kinase 8
- MAPK9/JNK2, mitogen-activated protein kinase 9
- NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- PRKAA1, protein kinase AMP-activated: α 1 catalytic subunit
- RIPK1
- RIPK1, receptor (TNFRSF)-interacting protein kinase 1
- SQSTM1/p62, sequestosome 1
- TG, thapsigargin
- TM, tunicamycin
- TNFRSF1A/TNFR1, tumor necrosis factor receptor superfamily: member 1A
- UPR, unfolded protein response
- XBP1, x-box binding protein 1
- autophagy
- cell death
- endoplasmic reticulum stress
- melanoma
Collapse
Affiliation(s)
- Qi Luan
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
- Department of Dermatology; Xijing Hospital; Fourth Military Medical University; Xi'an; China
| | - Lei Jin
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Kwang Hong Tay
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Fritz Lai
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Xiao Ying Liu
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Yi Lun Liu
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Chun Ying Li
- Department of Dermatology; Xijing Hospital; Fourth Military Medical University; Xi'an; China
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Hsin-Yi Tseng
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| |
Collapse
|
436
|
Reidick C, El Magraoui F, Meyer HE, Stenmark H, Platta HW. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO. Cancers (Basel) 2014; 7:1-29. [PMID: 25545884 PMCID: PMC4381249 DOI: 10.3390/cancers7010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022] Open
Abstract
The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.
Collapse
Affiliation(s)
- Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| | - Fouzi El Magraoui
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Helmut E Meyer
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310, Norway.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| |
Collapse
|
437
|
Jimenez RE, Kubli DA, Gustafsson ÅB. Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. Br J Pharmacol 2014; 171:1907-16. [PMID: 24148024 DOI: 10.1111/bph.12477] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/30/2013] [Accepted: 09/23/2013] [Indexed: 01/10/2023] Open
Abstract
The autophagic-lysosomal degradation pathway is critical for cardiac homeostasis, and defects in this pathway are associated with development of cardiomyopathy. Autophagy is responsible for the normal turnover of organelles and long-lived proteins. Autophagy is also rapidly up-regulated in response to stress, where it rapidly clears dysfunctional organelles and cytotoxic protein aggregates in the cell. Autophagy is also important in clearing dysfunctional mitochondria before they can cause harm to the cell. This quality control mechanism is particularly important in cardiac myocytes, which contain a very high volume of mitochondria. The degradation of proteins and organelles also generates free fatty acids and amino acids, which help maintain energy levels in myocytes during stress conditions. Increases in autophagy have been observed in various cardiovascular diseases, but a major question that remains to be answered is whether enhanced autophagy is an adaptive or maladaptive response to stress. This review discusses the regulation and role of autophagy in the myocardium under baseline conditions and in various aetiologies of heart disease. It also discusses whether this pathway represents a new therapeutic target to treat or prevent cardiovascular disease and the concerns associated with modulating autophagy.
Collapse
Affiliation(s)
- Rebecca E Jimenez
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
438
|
Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat Commun 2014; 5:5637. [DOI: 10.1038/ncomms6637] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
|
439
|
Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014; 77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
440
|
Moyzis AG, Sadoshima J, Gustafsson ÅB. Mending a broken heart: the role of mitophagy in cardioprotection. Am J Physiol Heart Circ Physiol 2014; 308:H183-92. [PMID: 25437922 DOI: 10.1152/ajpheart.00708.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The heart is highly energy dependent with most of its energy provided by mitochondrial oxidative phosphorylation. Mitochondria also play a role in many other essential cellular processes including metabolite synthesis and calcium storage. Therefore, maintaining a functional population of mitochondria is critical for cardiac function. Efficient degradation and replacement of dysfunctional mitochondria ensures cell survival, particularly in terminally differentiated cells such as cardiac myocytes. Mitochondria are eliminated via mitochondrial autophagy or mitophagy. In the heart, mitophagy is an essential housekeeping process and required for cardiac homeostasis. Reduced autophagy and accumulation of impaired mitochondria have been linked to progression of heart failure and aging. In this review, we discuss the pathways that regulate mitophagy in cells and highlight the cardioprotective role of mitophagy in response to stress and aging. We also discuss the therapeutic potential of targeting mitophagy and directions for future investigation.
Collapse
Affiliation(s)
- Alexandra G Moyzis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; and
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
441
|
Fougeray S, Pallet N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol 2014; 11:34-45. [PMID: 25385287 DOI: 10.1038/nrneph.2014.201] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy degrades pathogens, altered organelles and protein aggregates, and is characterized by the sequestration of cytoplasmic cargos within double-membrane-limited vesicles called autophagosomes. The process is regulated by inputs from the cellular microenvironment, and is activated in response to nutrient scarcity and immune triggers, which signal through a complex molecular network. Activation of autophagy leads to the formation of an isolation membrane, recognition of cytoplasmic cargos, expansion of the autophagosomal membrane, fusion with lysosomes and degradation of the autophagosome and its contents. Autophagy maintains cellular homeostasis during stressful conditions, dampens inflammation and shapes adaptive immunity. A growing body of evidence has implicated autophagy in kidney health, ageing and disease; it modulates tissue responses during acute kidney injuries, regulates podocyte homeostasis and protects against age-related renal disorders. The renoprotective functions of autophagy in epithelial renal cells and podocytes are mostly mediated by the clearance of altered mitochondria, which can activate inflammasomes and apoptosis, and the removal of protein aggregates, which might trigger inflammation and cell death. In translational terms, autophagy is undoubtedly an attractive target for developing new renoprotective treatments and identifying markers of kidney injury.
Collapse
Affiliation(s)
- Sophie Fougeray
- Departments of Medicine, Microbiology and Immunology, The Research Institute of the McGill University Health Center, 2155 Guy Street, Montreal, QC H3H 2R9, Canada
| | - Nicolas Pallet
- Service de Biochimie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 20 Rue Leblanc, 75015 Paris, France
| |
Collapse
|
442
|
Ye LX, Yu J, Liang YX, Zeng JS, Huang RX, Liao SJ. Beclin 1 knockdown retards re-endothelialization and exacerbates neointimal formation via a crosstalk between autophagy and apoptosis. Atherosclerosis 2014; 237:146-54. [DOI: 10.1016/j.atherosclerosis.2014.08.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
|
443
|
Chen S, Zhang Y, Zhou L, Leng Y, Lin H, Kmieciak M, Pei XY, Jones R, Orlowski RZ, Dai Y, Grant S. A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood 2014; 124:2687-2697. [PMID: 25208888 PMCID: PMC4208284 DOI: 10.1182/blood-2014-03-564534] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/26/2014] [Indexed: 02/06/2023] Open
Abstract
Bim contributes to resistance to various standard and novel agents. Here we demonstrate that Bim plays a functional role in bortezomib resistance in multiple myeloma (MM) cells and that targeting Bim by combining histone deacetylase inhibitors (HDACIs) with BH3 mimetics (eg, ABT-737) overcomes bortezomib resistance. BH3-only protein profiling revealed high Bim levels (Bim(hi)) in most MM cell lines and primary CD138(+) MM samples. Whereas short hairpin RNA Bim knockdown conferred bortezomib resistance in Bim(hi) cells, adaptive bortezomib-resistant cells displayed marked Bim downregulation. HDACI upregulated Bim and, when combined with ABT-737, which released Bim from Bcl-2/Bcl-xL, potently killed bortezomib-resistant cells. These events were correlated with Bim-associated autophagy attenuation, whereas Bim knockdown sharply increased autophagy in Bim(hi) cells. In Bim(low) cells, autophagy disruption by chloroquine (CQ) was required for HDACI/ABT-737 to induce Bim expression and lethality. CQ also further enhanced HDACI/ABT-737 lethality in bortezomib-resistant cells. Finally, HDACI failed to diminish autophagy or potentiate ABT-737-induced apoptosis in bim(-/-) mouse embryonic fibroblasts. Thus, Bim deficiency represents a novel mechanism of adaptive bortezomib resistance in MM cells, and Bim-targeting strategies combining HDACIs (which upregulate Bim) and BH3 mimetics (which unleash Bim from antiapoptotic proteins) overcomes such resistance, in part by disabling cytoprotective autophagy.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Yun Leng
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Hui Lin
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Maciej Kmieciak
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Xin-Yan Pei
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Richard Jones
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond VA
| |
Collapse
|
444
|
Autophagy is required and protects against apoptosis during myoblast differentiation. Biochem J 2014; 462:267-77. [PMID: 24865278 DOI: 10.1042/bj20140312] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several degradative systems assist in formation of multinucleated terminally differentiated myotubes. However, the role of autophagy in this process has not been examined. GFP-LC3B (light chain 3 beta) puncta, LC3B-II protein and LysoTracker fluorescence increased during C2C12 cell differentiation. Importantly, accumulation of LC3B-II protein occurred in CQ (chloroquine)-treated cells throughout differentiation. Furthermore, BECN1 (beclin 1), ATG7 (autophagy-related 7) and ATG12-5 protein increased, whereas SQSTM1/p62 (sequestosome 1) protein was rapidly reduced during differentiation. A transient decrease in BECN1-BCL2 association was observed from day 0.5 to 2 of differentiation. Chemical inhibition of JNK (c-Jun N-terminal kinase) during differentiation reduced LC3B-II protein and GFP-LC3B puncta and maintained BECN1-BCL2 association. Inhibition of autophagy by 3MA (3-methyladenine) or shRNA against Atg7 (shAtg7) resulted in lower myosin heavy chain expression, as well as impaired myoblast fusion and differentiation. Interestingly, 3MA treatment during differentiation increased transient CASP3 (caspase 3) activation, DNA fragmentation and the percentage of apoptotic nuclei. Similarly, shAtg7 cells had increased DNA fragmentation during differentiation compared with the controls. Collectively, these data demonstrate that autophagy increases and is required during myoblast differentiation. Moreover, autophagy protects differentiating myoblasts from apoptotic cell death.
Collapse
|
445
|
WANG GUAN, CHEN SHAOHUA, EDWARDS HOLLY, CUI XINMING, CUI LI, GE YUBIN. Combination of chloroquine and GX15-070 (obatoclax) results in synergistic cytotoxicity against pancreatic cancer cells. Oncol Rep 2014; 32:2789-94. [DOI: 10.3892/or.2014.3525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/18/2014] [Indexed: 11/06/2022] Open
|
446
|
Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 2014; 22:367-76. [PMID: 25257169 PMCID: PMC4326571 DOI: 10.1038/cdd.2014.143] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 12/31/2022] Open
Abstract
It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions.
Collapse
|
447
|
Abstract
Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France.
| |
Collapse
|
448
|
Chen S, Zhou L, Zhang Y, Leng Y, Pei XY, Lin H, Jones R, Orlowski RZ, Dai Y, Grant S. Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 2014; 34:3435-3449. [PMID: 25002530 PMCID: PMC4135623 DOI: 10.1128/mcb.01383-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/29/2013] [Accepted: 06/22/2014] [Indexed: 02/05/2023] Open
Abstract
In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Liang Zhou
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Yu Zhang
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Yun Leng
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Xin-Yan Pei
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Hui Lin
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Richard Jones
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yun Dai
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Steven Grant
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Biochemistry, Virginia Commonwealth University and Massey Cancer Center and Virginia Institute of Molecular Medicine, Richmond, Virginia, USA
| |
Collapse
|
449
|
Tripathi R, Ash D, Shaha C. Beclin-1-p53 interaction is crucial for cell fate determination in embryonal carcinoma cells. J Cell Mol Med 2014; 18:2275-86. [PMID: 25208472 PMCID: PMC4224560 DOI: 10.1111/jcmm.12386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Emerging interest on the interrelationship between the apoptotic and autophagy pathways in the context of cancer chemotherapy is providing exciting discoveries. Complexes formed between molecules from both pathways present potential targets for chemotherapeutics design as disruption of such complexes could alter cell survival. This study demonstrates an important role of Beclin-1 and p53 interaction in cell fate decision of human embryonal carcinoma cells. The findings provide evidence for p53 interaction with Beclin-1 through the BH3 domain of the latter. This interaction facilitated Beclin-1 ubiquitination through lysine 48 linkage, resulting in proteasome-mediated degradation, consequently maintaining a certain constitutive level of Beclin-1. Disruption of Beclin-1-p53 interaction through shRNA-mediated down-regulation of p53 reduced Beclin-1 ubiquitination suggesting requirement of p53 for the process. Reduction of ubiquitination consequently resulted in an increase in Beclin-1 levels with cells showing high autophagic activity. Enforced overexpression of p53 in the p53 down-regulated cells restored ubiquitination of Beclin-1 reducing its level and lowering autophagic activity. The Beclin-1-p53 interaction was also disrupted by exposure to cisplatin-induced stress resulting in higher level of Beclin-1 because of lesser ubiquitination. This higher concentration of Beclin-1 increased autophagy and offered protection to the cells from cisplatin-induced death. Inhibition of autophagy by either pharmacological or genetic means during cisplatin exposure increased apoptotic death in vitro as well as in xenograft tumours grown in vivo confirming the protective nature of autophagy. Therefore, Beclin-1-p53 interaction defines one additional molecular subroutine crucial for cell fate decisions in embryonal carcinoma cells.
Collapse
Affiliation(s)
- Rakshamani Tripathi
- Cell Death and Differentiation Research, National Institute of Immunology, New Delhi, India
| | | | | |
Collapse
|
450
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|