401
|
Abstract
The DSM-5 lists 13 psychotic disorders and introduces modest but significant changes in their diagnosis. Asian Americans bring unique issues to the assessment, diagnosis and treatment of these disorders. They may exhibit greater prevalence of culturally influenced psychosis-like experiences that may or may not constitute a pathological condition such as psychosis risk syndrome or attenuated psychosis. Acute psychotic disorders with good prognosis may be more prevalent in Asians and may sometimes be misdiagnosed as schizophrenia or schizoaffective disorder. Catatonic disorders are also more prevalent in Asians, and are likely to receive more appropriate labeling with DSM-5. The expanded cultural formulation in DSM-5 is a progressive step but its benefits might be limited by lack of culturally trained clinicians and/or limited time for assessment. There is a dearth of systematic data on psychotic disorders in Asian Americans and it is hoped that the DSM-5 will stimulate this much needed research.
Collapse
|
402
|
Hebels DGA, Jetten MJA, Aerts HJW, Herwig R, Theunissen DHJ, Gaj S, van Delft JH, Kleinjans JCS. Evaluation of database-derived pathway development for enabling biomarker discovery for hepatotoxicity. Biomark Med 2014; 8:185-200. [DOI: 10.2217/bmm.13.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver ‘omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes data set showed that human liver ‘omics gene lists performed better than text-mining gene lists and the results of the latter differed strongly between databases. However, both types of databases contained gene lists demonstrating biomarker potential. Visualizing those in pathway format may aid in interpreting the biomolecular background. We conclude that exploiting existing and openly accessible databases in a dedicated manner seems promising in providing venues for translational research in toxicology and biomarker development.
Collapse
Affiliation(s)
- Dennie GA Hebels
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Marlon JA Jetten
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hugo JW Aerts
- Department or Biostatistics & Computational Biology, Dana–Farber Cancer Institute, Harvard School of Public Health, 44 Binney Street, Boston, MA 02115, USA
| | - Ralf Herwig
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Daniël HJ Theunissen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Joost H van Delft
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jos CS Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
403
|
|
404
|
Abstract
Atomoxetine is a selective norepinephrine reuptake inhibitor indicated for the treatment of attention-deficit/hyperactivity disorder. Atomoxetine metabolism is mediated by CYP2D6 and CYP2C19. This study aimed to investigate the effect of the CYP2C19 genetic polymorphism on the pharmacokinetics of atomoxetine and its metabolites, 4-hydroxyatomoxetine and N-desmethylatomoxetine. A single 40-mg oral dose of atomoxetine was administered to 40 subjects with different CYP2C19 genotypes (all participants carried the CYP2D6*1/*10 genotype). Concentrations of atomoxetine and its metabolites were analyzed using high-performance liquid chromatography with tandem mass spectrometry in plasma samples that were collected up to 24 hours after drug intake. For atomoxetine, the CYP2C19 poor metabolizer (PM) group showed significantly increased maximum plasma concentration and AUC0-∞ (area under the plasma concentration-time curve from 0 to infinity) and decreased apparent oral clearance compared with samples of the CYP2C19 extensive metabolizer (EM) and intermediate metabolizer (IM) groups (P < 0.001 for all). The half-life of atomoxetine in the CYP2C19PM group was also significantly longer than in the other genotype groups (P < 0.01 for CYP2C19EM and P < 0.05 for CYP2C19IM groups). The maximum plasma concentration and AUC 0-∞ of 4-hydroxyatomoxetine were significantly higher in the CYP2C19PM group compared with those in the CYP2C19EM and IM groups (P < 0.001 for CYP2C19EM and P < 0.05 for CYP2C19IM, respectively), whereas the corresponding values for N-desmethylatomoxetine in the CYP2C19PM group were significantly lower than those in the 2 genotype groups (P < 0.001 for both genotype groups). These results suggest that the genetic polymorphisms of CYP2C19 significantly affect the pharmacokinetics of atomoxetine.
Collapse
|
405
|
Naidoo P, Chetty VV, Chetty M. Impact of CYP polymorphisms, ethnicity and sex differences in metabolism on dosing strategies: the case of efavirenz. Eur J Clin Pharmacol 2014; 70:379-89. [PMID: 24390631 DOI: 10.1007/s00228-013-1634-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/18/2013] [Indexed: 01/11/2023]
Abstract
PURPOSE Differences in drug metabolism due to cytochrome P450 (CYP) polymorphisms may be significant enough to warrant different dosing strategies in carriers of specific cytochrome P450 (CYP) polymorphisms, especially for drugs with a narrow therapeutic index. The impact of such polymorphisms on drug plasma concentrations and the resulting dosing strategies are presented in this review, using the example of efavirenz (EFV). METHODS A structured literature search was performed to extract information pertaining to EFV metabolism and the influence of polymorphisms of CYP2B6, ethnicity, sex and drug interactions on plasma concentrations of EFV. The corresponding dosing strategies developed for carriers of specific CYP2B6 genotypes were also reviewed. RESULTS The polymorphic CYP2B6 enzyme, which is the major enzyme in the EFV metabolic pathway, is a key determinant for the significant inter-individual differences seen in EFV pharmacokinetics and pharmacodynamics (PKPD). Ethnic differences and the associated prevalence of CYP2B6 polymorphisms result in significant differences in the PKPD associated with a standard 600 mg per day dose of EFV, warranting dosage reduction in carriers of specific CYP2B6 polymorphisms. Drug interactions and auto-induction also influence EFV PKPD significantly. CONCLUSION Using EFV as an example of a drug with a narrow therapeutic index and a high inter-patient variability in plasma concentrations corresponding to a standard dose of the drug, this review demonstrates how genotyping of the primary metabolising enzyme can be useful for appropriate dosage adjustments in individuals. However, other variables such as drug interactions and auto-induction may necessitate plasma concentration measurements as well, prior to personalising the dose.
Collapse
Affiliation(s)
- Panjasaram Naidoo
- University of KwaZulu Natal, School of Health Science, Discipline of Pharmaceutical Sciences, Private Bag X54001, Durban, 4001, KZN, South Africa,
| | | | | |
Collapse
|
406
|
Association between the CYP1A1 T3801C polymorphism and risk of cancer: Evidence from 268 case–control studies. Gene 2014. [PMID: 24498651 DOI: 10.1016/j.gene.2013.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
407
|
Dhaini HR, Kobeissi L. Toxicogenetic profile and cancer risk in Lebanese. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:95-125. [PMID: 24627976 DOI: 10.1080/10937404.2013.878679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An increasing number of genetic polymorphisms in drug-metabolizing enzymes (DME) were identified among different ethnic groups. Some of these polymorphisms are associated with an increased cancer risk, while others remain equivocal. However, there is sufficient evidence that these associations become significant in populations overexposed to environmental carcinogens. Hence, genetic differences in expression activity of both Phase I and Phase II enzymes may affect cancer risk in exposed populations. In Lebanon, there has been a marked rise in reported cancer incidence since the 1990s. There are also indicators of exposure to unusually high levels of environmental pollutants and carcinogens in the country. This review considers this high cancer incidence by exploring a potential gene-environment model based on available DME polymorphism prevalence, and their impact on bladder, colorectal, prostate, breast, and lung cancer in the Lebanese population. The examined DME include glutathione S-transferases (GST), N-acetyltransferases (NAT), and cytochromes P-450 (CYP). Data suggest that these DME influence bladder cancer risk in the Lebanese population. Evidence indicates that identification of a gene-environment interaction model may help in defining future research priorities and preventive cancer control strategies in this country, particularly for breast and lung cancer.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Faculty of Health Sciences , University of Balamand , Beirut , Lebanon
| | | |
Collapse
|
408
|
Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One 2013; 8:e82562. [PMID: 24340040 PMCID: PMC3858335 DOI: 10.1371/journal.pone.0082562] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022] Open
Abstract
The cytochrome P450 (CYP) enzymes are major players in drug metabolism. More than 2,000 mutations have been described, and certain single nucleotide polymorphisms (SNPs) have been shown to have a large impact on CYP activity. Therefore, CYPs play an important role in inter-individual drug response and their genetic variability should be factored into personalized medicine. To identify the most relevant polymorphisms in human CYPs, a text mining approach was used. We investigated their frequencies in different ethnic groups, the number of drugs that are metabolized by each CYP, the impact of CYP SNPs, as well as CYP expression patterns in different tissues. The most important polymorphic CYPs were found to be 1A2, 2D6, 2C9 and 2C19. Thirty-four common allele variants in Caucasians led to altered enzyme activity. To compare the relevant Caucasian SNPs with those of other ethnicities a search in 1,000 individual genomes was undertaken. We found 199 non-synonymous SNPs with frequencies over one percent in the 1,000 genomes, many of them not described so far. With knowledge of frequent mutations and their impact on CYP activities, it may be possible to predict patient response to certain drugs, as well as adverse side effects. With improved availability of genotyping, our data may provide a resource for an understanding of the effects of specific SNPs in CYPs, enabling the selection of a more personalized treatment regimen.
Collapse
Affiliation(s)
- Sarah C Preissner
- Charité Universitätsmedizin Berlin, ECRC - Structural Bioinformatics Group, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Berlin, Germany
| | | | | | | | | | | |
Collapse
|
409
|
Qin J, Zhang JX, Li XP, Wu BQ, Chen GB, He XF. Association between the CYP1A1 A2455G polymorphism and risk of cancer: evidence from 272 case–control studies. Tumour Biol 2013; 35:3363-76. [DOI: 10.1007/s13277-013-1443-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/18/2013] [Indexed: 01/15/2023] Open
|
410
|
Abstract
Adverse drug reactions (ADRs) can involve all tissues and organs, but liver injuries are considered among the most serious. A number of prospective, multicenter studies have confirmed a higher risk of ADRs in general among female subjects compared to a male cohort. Although drug-induced liver injury (DILI) is infrequently encountered, the preponderance of evidence suggests that women appear to be more susceptible than men to fulminate hepatic/acute liver failure especially in response to some anti-infective drugs and to autoimmune-like hepatitis following exposure to certain other therapeutic drugs. A number of hypotheses have been proposed to explain this sex difference in susceptibility to DILI. Collectively, these hypotheses suggest three basic sex-dependent mechanisms that include differences in various aspects of drug pharmacokinetics (PK) or pharmacodynamics following the administration of certain drugs; specific hormonal effects or interactions with immunomodulating agents or signaling molecules; and differences in the adverse response of the immune system to some drugs, reactive drug metabolites, or drug-protein adducts. At the preclinical drug safety stage, there is a need for more research on hormonal effects on drug PK and for additional research on gender differences in aberrant immune responses that may lead to idiosyncratic DILI in some female patients. Because the detection of rare but serious hepatic ADRs requires the exposure of very large patient populations, pharmacovigilance networks will continue to play a key role in the postmarketing surveillance for their detection and reporting.
Collapse
|
411
|
Dai DP, Wang SH, Geng PW, Hu GX, Cai JP. In vitro assessment of 36 CYP2C9 allelic isoforms found in the Chinese population on the metabolism of glimepiride. Basic Clin Pharmacol Toxicol 2013; 114:305-10. [PMID: 24118918 DOI: 10.1111/bcpt.12159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/06/2013] [Indexed: 11/29/2022]
Abstract
Of the 57 reported CYP2C9 alleles, to date, 36 of them have been identified in the Chinese population. The aim of this study was to assess the catalytic characteristics of these allelic isoforms and their effects on the metabolism of glimepiride in vitro. Baculovirus-mediated expressing system was used to highly express wild-type and the 35 CYP2C9 allelic variants in insect cell microsomes. Then, the enzymatic characteristics of each variant were evaluated using glimepiride as the substrate. Reactions were performed at 37°C with the insect microsomes and 0.125-10 μM glimepiride for 40 min. After termination, the products were extracted and used for signal collection by LC-MS/MS. Of the 36 tested CYP2C9 allelic isoforms, only four variants (CYP2C9.40, CYP2C9.47, CYP2C9.51 and CYP2C9.54) exhibited similar relative clearance values to that of wild-type CYP2C9.1. In addition, one variant (CYP2C9.36) showed a higher intrinsic clearance value than the wild-type protein, while the remaining 30 CYP2C9 allelic isoforms exhibited significantly decreased clearance values (from 0.1% to 87.2%) compared to CYP2C9.1. This study provided the most comprehensive data on the enzymatic activities of all reported CYP2C9 variants in the Chinese population with regard to the commonly used antidiabetic drug, glimepiride. Our results indicate that most of the tested rare alleles significantly decrease the catalytic activity of CYP2C9 variants towards glimepiride hydroxylation in vitro.
Collapse
Affiliation(s)
- Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | | | | | | | | |
Collapse
|
412
|
Braam W, Keijzer H, Struijker Boudier H, Didden R, Smits M, Curfs L. CYP1A2 polymorphisms in slow melatonin metabolisers: a possible relationship with autism spectrum disorder? JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2013; 57:993-1000. [PMID: 22823064 DOI: 10.1111/j.1365-2788.2012.01595.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND In some of our patients with intellectual disabilities (ID) and sleep problems, the initial good response to melatonin disappeared within a few weeks after starting treatment. In these patients melatonin levels at noon were extremely high (>50 pg/ml). We hypothesise that the disappearing effectiveness is associated with slow metabolisation of melatonin because of a single nucleotide polymorphism (SNP) of CYP1A2. METHOD In this pilot study we analysed DNA extracted from saliva samples of 15 consecutive patients with disappearing effectiveness of melatonin. Saliva was collected at noon and 4 pm for measuring melatonin levels. RESULTS In all patients' salivary melatonin levels at noon were >50 or melatonin half time was > 5 h. A SNP was found in eight of 15 patients. The allele 1C was found in two patients and in six patients the 1F allele was found. CONCLUSIONS Of 15 patients with disappearing effectiveness of melatonin, seven were diagnosed with autism spectrum disorder, and in four of them a SNP was found. The other eight patients were known with a genetic syndrome. In six of them behaviour was considered to be autistic-type and in three of them a SNP was found. This finding may give a new direction for research into the genetic background of autism.
Collapse
Affiliation(s)
- W Braam
- Department Advisium, 's Heeren Loo Zuid-Veluwe, Wekerom, The Netherlands Department of Clinical Chemistry, Rijnstate Hospital, Arnhem, The Netherlands Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands Special Education, Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands Department of Neurology, Gelderse Vallei Hospital, Ede, The Netherlands Department of Clinical Genetics, University Maastricht/Academic Hospital, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
413
|
O’Rawe JA, Fang H, Rynearson S, Robison R, Kiruluta ES, Higgins G, Eilbeck K, Reese MG, Lyon GJ. Integrating precision medicine in the study and clinical treatment of a severely mentally ill person. PeerJ 2013; 1:e177. [PMID: 24109560 PMCID: PMC3792182 DOI: 10.7717/peerj.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023] Open
Abstract
Background. In recent years, there has been an explosion in the number of technical and medical diagnostic platforms being developed. This has greatly improved our ability to more accurately, and more comprehensively, explore and characterize human biological systems on the individual level. Large quantities of biomedical data are now being generated and archived in many separate research and clinical activities, but there exists a paucity of studies that integrate the areas of clinical neuropsychiatry, personal genomics and brain-machine interfaces. Methods. A single person with severe mental illness was implanted with the Medtronic Reclaim(®) Deep Brain Stimulation (DBS) Therapy device for Obsessive Compulsive Disorder (OCD), targeting his nucleus accumbens/anterior limb of the internal capsule. Programming of the device and psychiatric assessments occurred in an outpatient setting for over two years. His genome was sequenced and variants were detected in the Illumina Whole Genome Sequencing Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. Results. We report here the detailed phenotypic characterization, clinical-grade whole genome sequencing (WGS), and two-year outcome of a man with severe OCD treated with DBS. Since implantation, this man has reported steady improvement, highlighted by a steady decline in his Yale-Brown Obsessive Compulsive Scale (YBOCS) score from ∼38 to a score of ∼25. A rechargeable Activa RC neurostimulator battery has been of major benefit in terms of facilitating a degree of stability and control over the stimulation. His psychiatric symptoms reliably worsen within hours of the battery becoming depleted, thus providing confirmatory evidence for the efficacy of DBS for OCD in this person. WGS revealed that he is a heterozygote for the p.Val66Met variant in BDNF, encoding a member of the nerve growth factor family, and which has been found to predispose carriers to various psychiatric illnesses. He carries the p.Glu429Ala allele in methylenetetrahydrofolate reductase (MTHFR) and the p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase, with both alleles having been shown to confer an elevated susceptibility to psychoses. We have found thousands of other variants in his genome, including pharmacogenetic and copy number variants. This information has been archived and offered to this person alongside the clinical sequencing data, so that he and others can re-analyze his genome for years to come. Conclusions. To our knowledge, this is the first study in the clinical neurosciences that integrates detailed neuropsychiatric phenotyping, deep brain stimulation for OCD and clinical-grade WGS with management of genetic results in the medical treatment of one person with severe mental illness. We offer this as an example of precision medicine in neuropsychiatry including brain-implantable devices and genomics-guided preventive health care.
Collapse
Affiliation(s)
- Jason A. O’Rawe
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA
- Stony Brook University, Stony Brook, NY, USA
| | - Han Fang
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA
- Stony Brook University, Stony Brook, NY, USA
| | - Shawn Rynearson
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Reid Robison
- Utah Foundation for Biomedical Research, Salt Lake City, UT, USA
| | | | | | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | | | - Gholson J. Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA
- Stony Brook University, Stony Brook, NY, USA
- Utah Foundation for Biomedical Research, Salt Lake City, UT, USA
| |
Collapse
|
414
|
Jetten M, Kleinjans J, Claessen S, Chesné C, van Delft J. Baseline and genotoxic compound induced gene expression profiles in HepG2 and HepaRG compared to primary human hepatocytes. Toxicol In Vitro 2013; 27:2031-40. [DOI: 10.1016/j.tiv.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022]
|
415
|
Kummar S, Gutierrez ME, Anderson LW, Klecker RW, Chen A, Murgo AJ, Doroshow JH, Collins JM. Pharmacogenetically driven patient selection for a first-in-human phase I trial of batracylin in patients with advanced solid tumors and lymphomas. Cancer Chemother Pharmacol 2013; 72:917-23. [PMID: 23912694 PMCID: PMC7534863 DOI: 10.1007/s00280-013-2244-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Batracylin (daniquidone), an ATP-insensitive topoisomerase I/II inhibitor, demonstrated wide interspecies variation in preclinical models consistent with formation of a toxic metabolite, N-acetyl-batracylin, following metabolism by N-acetyl-transferase 2 (NAT2). To minimize exposure to this toxic metabolite, this first-in-human study was conducted in patients with advanced refractory solid tumors or lymphomas demonstrated to have a slow NAT2 acetylator genotype. The objectives were to determine the safety, maximum tolerated dose (MTD), and pharmacokinetics of batracylin and its metabolites. METHODS Based on the MTD for rats, the most sensitive species, the starting dose was 5 mg/day for 7 days in 28-day cycles. Dose escalation followed accelerated titration design 4B, with restaging performed every 2 cycles. RESULTS Thirty-one patients were enrolled. Treatment was well tolerated; one patient experienced grade 3 toxicity (lymphopenia). Dose escalation was stopped at 400 mg/day due to grade 1 and 2 hemorrhagic cystitis. No objective responses were observed, but prolonged disease stabilization was observed in 2 patients, one with peritoneal mesothelioma (8 cycles) and another with adrenocortical cancer (18 cycles). Across an 80-fold range of doses, the ratios of systemic exposures for batracylin and N-acetyl batracylin were near 1. CONCLUSIONS Pharmacogenetically selected patients reached a dose that was 20-fold higher than the MTD in rats and 70 % of the MTD in mice. This genotype-guided strategy was successful in safely delivering batracylin to patients. However, due to unexpected cystitis, not preventable by hydration, and in the absence of a stronger signal for antitumor activity, further development of batracylin has been stopped.
Collapse
Affiliation(s)
- Shivaani Kummar
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
416
|
Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry 2013; 25:509-33. [PMID: 24151799 DOI: 10.3109/09540261.2013.825579] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adverse events, response failures and medication non-compliance are common in patients receiving medications for the treatment of mental illnesses. A systematic literature review assessed whether pharmacokinetic (PK) or pharmacodynamic (PD) responses to 26 commonly prescribed antipsychotic and antidepressant medications, including efficacy or side effects, are associated with nucleotide polymorphisms in eight commonly studied genes in psychiatric pharmacotherapy: CYP2D6, CYP2C19, CYP2C9, CYP1A2, CYP3A4, HTR2C, HTR2A, and SLC6A4. Of the 294 publications included in this review, 168 (57%) showed significant associations between gene variants and PK or PD outcomes. Other studies that showed no association often had insufficient control for confounding variables, such as co-medication use, or analysis of medications not substrates of the target gene. The strongest gene-outcome associations were for the PK profiles of CYP2C19 and CYP2D6 (93% and 90%, respectively), for the PD associations between HTR2C and weight gain (57%), and for SLC6A4 and clinical response (54%), with stronger SLC6A4 response associations for specific drug classes (60-83%). The preponderance of evidence supports the validity of analyzing nucleotide polymorphisms in CYP and pharmacodynamic genes to predict the metabolism, safety, or therapeutic efficacy of psychotropic medications commonly used for the treatment of depression, schizophrenia, and bipolar illness.
Collapse
|
417
|
Müller DJ, Kekin I, Kao ACC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry 2013; 25:554-71. [PMID: 24151801 DOI: 10.3109/09540261.2013.838944] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic testing may help to improve treatment outcomes in order to avoid non-response or severe side effects to psychotropic medication. Most robust data have been obtained for gene variants in CYP2D6 and CYP2C19 enzymes for antipsychotics and antidepressant treatment. We reviewed original articles indexed in PubMed from 2008-2013 on CYP2D6 and CYP2C19 gene variants and treatment outcome to antidepressant or antipsychotic medication. We have started providing CYP2D6 and CYP2C19 genotype information to physicians and conducted a survey where preliminary results are reported. Studies provided mixed results regarding the impact of CYP2D6 and CYP2C19 gene variation on treatment response. Plasma levels were mostly found associated with CYP metabolizer status. Higher occurrence/severity of side effects were reported in non-extensive CYP2D6 or CYP2C19 metabolizers. Results showed that providing genotypic information is feasible and generally well accepted by both patients and physicians. Although currently available studies are limited by small sample sizes and infrequent plasma drug level assessment, research to date indicates that CYP2D6 and CYP2C19 testing may be beneficial particularly for non-extensive metabolizing patients. In summary, clinical assessment of CYP2D6 and CYP2C19 metabolizer status is feasible, well accepted and optimizes drug treatment in psychiatry.
Collapse
Affiliation(s)
- Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, Ontario , Canada
| | | | | | | |
Collapse
|
418
|
Khlifi R, Messaoud O, Rebai A, Hamza-Chaffai A. Polymorphisms in the human cytochrome P450 and arylamine N-acetyltransferase: susceptibility to head and neck cancers. BIOMED RESEARCH INTERNATIONAL 2013; 2013:582768. [PMID: 24151610 PMCID: PMC3787584 DOI: 10.1155/2013/582768] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/25/2013] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
The occurrence of head and neck cancer (HNC) is associated with smoking and alcohol drinking. Tobacco smoking exposes smokers to a series of carcinogenic chemicals. Cytochrome P450 enzymes (CYP450s), such as CYP1A1, CYP1B1, and CYP2D6, usually metabolize carcinogens to their inactive derivatives, but they occasionally convert the chemicals to more potent carcinogens. In addition, via CYP450 (CYP2E1) oxidase, alcohol is metabolized to acetaldehyde, a highly toxic compound, which plays an important role in carcinogenesis. Furthermore, two N-acetyltransferase isozymes (NATs), NAT1 and NAT2, are polymorphic and catalyze both N-acetylation and O-acetylation of aromatic and heterocyclic amine carcinogens. Genetic polymorphisms are associated with a number of enzymes involved in the metabolism of carcinogens important in the induction of HNC. It has been suggested that such polymorphisms may be linked to cancer susceptibility. In this paper, we select four cytochrome P450 enzymes (CYP1A1, CYP1BA1, CYP2D6, and CYP2E1), and two N-acetyltransferase isozymes (NAT1 and NAT2) in order to summarize and analyze findings from the literature related to HNC risk by focusing on (i) the interaction between these genes and the environment, (ii) the impact of genetic defect on protein activity and/or expression, and (iii) the eventual involvement of race in such associations.
Collapse
Affiliation(s)
- Rim Khlifi
- Research Unit on Toxicology and Environment, Sfax University, 3018 Sfax, Tunisia
- Bioinformatics Unit, Centre of Biotechnology of Sfax, Sfax University, 3018 Sfax, Tunisia
| | - Olfa Messaoud
- Biomedical Genomics and Oncogenetics Laboratory LR11IPT05, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Ahmed Rebai
- Bioinformatics Unit, Centre of Biotechnology of Sfax, Sfax University, 3018 Sfax, Tunisia
| | - Amel Hamza-Chaffai
- Research Unit on Toxicology and Environment, Sfax University, 3018 Sfax, Tunisia
| |
Collapse
|
419
|
Synthesis of novel psoralen analogues and their in vitro antitumor activity. Bioorg Med Chem 2013; 21:5047-53. [DOI: 10.1016/j.bmc.2013.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/21/2022]
|
420
|
Conen S, Theunissen EL, Vermeeren A, van Ruitenbeek P, Stiers P, Mehta MA, Toennes SW, Ramaekers JG. The role of P-glycoprotein in CNS antihistamine effects. Psychopharmacology (Berl) 2013; 229:9-19. [PMID: 23564211 DOI: 10.1007/s00213-013-3075-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 01/16/2023]
Abstract
RATIONALE P-glycoprotein (P-gp) is a drug efflux pump expressed, amongst others, on the luminal surface of the cerebral endothelial cells forming the blood-brain barrier. Studies in rodents have demonstrated that antihistamines that are substrates of the P-gp transporter display no or minor central nervous system (CNS) effects as compared to antihistamines that are not P-gp transporter substrates. OBJECTIVES The present study explored whether P-gp contributes in similar ways to the occurrence of sedative effects of antihistamines in humans. METHODS An fMRI study was conducted according to a double-blind, randomized, placebo-controlled, cross-over design in 13 healthy volunteers. Participants received cetirizine 15 mg (an antihistamine), verapamil 120 mg (a P-gp blocker), a combination of cetirizine + verapamil, and a placebo. Brain activity was assessed while conducting the attention network test (ANT) in a 3T magnetic resonance scanner. The ANT measures three independent attention domains: i.e., alerting, orienting, and executive attention. It was expected that the combined treatment of cetirizine with verapamil would prevent efflux of cetirizine from the CNS, thus increasing attentional impairment, as compared to cetirizine administered alone. RESULTS The present study provides evidence that the P-gp transporter is involved in central antihistamine effects in humans. Participants were less alert during the combined treatment of cetirizine and verapamil as indicated by longer reaction times and decreased blood oxygen level-dependent response in the right superior temporal gyrus. CONCLUSION It is concluded that the affinity for the P-gp transporter may contribute to the lower incidence of CNS side effects of certain antihistamines.
Collapse
Affiliation(s)
- Silke Conen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
421
|
Wang YH, Pan PP, Dai DP, Wang SH, Geng PW, Cai JP, Hu GX. Effect of 36 CYP2C9 variants found in the Chinese population on losartan metabolismin vitro. Xenobiotica 2013; 44:270-5. [DOI: 10.3109/00498254.2013.820007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
422
|
Konstandi M. Psychophysiological stress: a significant parameter in drug pharmacokinetics. Expert Opin Drug Metab Toxicol 2013; 9:1317-34. [DOI: 10.1517/17425255.2013.816283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
423
|
Levran O, Peles E, Hamon S, Randesi M, Adelson M, Kreek MJ. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict Biol 2013; 18:709-16. [PMID: 21790905 PMCID: PMC3735354 DOI: 10.1111/j.1369-1600.2011.00349.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adequate methadone dosing in methadone maintenance treatment (MMT) for opioid addiction is critical for therapeutic success. One of the challenges in dose determination is the inter-individual variability in dose-response. Methadone metabolism is attributed primarily to cytochrome P450 enzymes CYP3A4, CYP2B6 and CYP2D6. The CYP2B6*6 allele [single nucleotide polymorphisms (SNPs) 785A>G (rs2279343) and 516G>T (rs3745274)] was associated with slow methadone metabolism. To explore the effects of CYP2B6*6 allele on methadone dose requirement, it was genotyped in a well-characterized sample of 74 Israeli former heroin addicts in MMT. The sample is primarily of Middle Eastern/European ancestry, based on ancestry informative markers (AIMs). Only patients with no major co-medication that may affect methadone metabolism were included. The stabilizing daily methadone dose in this sample ranges between 13 and 260mg (mean 140±52mg). The mean methadone doses required by subjects homozygous for the variant alleles of the CYP2B6 SNPs 785A>G and 516G>T (88, 96mg, respectively) were significantly lower than those of the heterozygotes (133, 129mg, respectively) and the non-carriers (150, 151mg, respectively) (nominal P=0.012, 0.048, respectively). The results remain significant after controlling for age, sex and the ABCB1 SNP 1236C>T (rs1128503), which was previously shown to be associated with high methadone dose requirement in this population (P=0.006, 0.030, respectively). An additional 77 CYP2B6, CYP3A4 and CYP2D6 SNPs were genotyped. Of these, 24 SNPs were polymorphic and none showed significant association with methadone dose. Further studies are necessary to replicate these preliminary findings in additional subjects and other populations.
Collapse
Affiliation(s)
- Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
424
|
Pop TR, Vesa ŞC, Trifa AP, Crişan S, Buzoianu AD. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur J Clin Pharmacol 2013; 69:1901-7. [PMID: 23774941 DOI: 10.1007/s00228-013-1551-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
Abstract
AIM To develop and validate an algorithm for the prediction of therapeutic dose of acenocoumarol in Romanian patients. METHODS The inclusion criteria for entry to the study was age ≥ 18 years and starting acenocoumarol treatment for at least one of the following clinical indications: acute deep vein thrombosis of the lower limbs, persistent or permanent atrial fibrillation, and/or the presence of valvular prostheses requiring prolonged oral anticoagulant therapy. The patients were followed up for 3 months. Patients admitted to the internal medicine, cardiology, and geriatrics wards of the Municipal Clinical Hospital, Cluj-Napoca and "Niculae Stăncioiu" Heart Institute between October 2009 and June 2011 who fulfilled the inclusion criteria were included in the study. Clinical and demographic data that could influence the acenocoumarol stable dose were recorded for each patient. Genetic analysis included the genotyping the CYP2C9*2 and *3, and the VKORC1 -1693 G > A polymorphisms. The patients were randomly divided into two groups: (1) the main group on which the development of the clinical and genetic algorithms for acenocoumarol dose prediction was based; (2) the validation group. RESULTS The study included 301 patients, of whom 155 were women (51.5 %) and 146 were men (48.5 %). The median age of the patient cohort was 66 (women, 57; men, 73) years. After randomization the main group comprised 200 patients (66.4 %) and the validation group 101 patients (33.6 %). Age and body mass index explained 18.8 % (R (2)) of the variability in acenocoumarol weekly dose in patients in the main group. When the genetic data were added to the algorithm, the CYP2C9*2 and *3 polymorphisms and the VKORC1 -1693 G > A polymorphism accounted for 4.7 and 19. 6 % of acenocoumarol dose variability, respectively. For the main group, we calculated a mean absolute error of 5 mg/week (0.71 mg/day). In the validation group, clinical parameters explained 22.2 % of the weekly acenocoumarol dose variability. Genetic polymorphisms increased the R(2) coefficient to 32.8 %. CONCLUSION We have developed and validated an accurate algorithm for prediction of the stable therapeutic dose of acenocoumarol in a Romania population.
Collapse
Affiliation(s)
- Tudor Radu Pop
- 5th Department of Surgery, Municipal Hospital of Cluj-Napoca, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 11th Tăbăcarilor Street, 400139, Cluj-Napoca, Cluj, Romania
| | | | | | | | | |
Collapse
|
425
|
Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 2013; 17:165-84. [PMID: 23588782 PMCID: PMC3663206 DOI: 10.1007/s40291-013-0028-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interindividual variability in drug response is a major clinical problem. Polymedication and genetic polymorphisms modulating drug-metabolising enzyme activities (cytochromes P450, CYP) are identified sources of variability in drug responses. We present here the relevant data on the clinical impact of the major CYP polymorphisms (CYP2D6, CYP2C19 and CYP2C9) on drug therapy where genotyping and phenotyping may be considered, and the guidelines developed when available. CYP2D6 is responsible for the oxidative metabolism of up to 25% of commonly prescribed drugs such as antidepressants, antipsychotics, opioids, antiarrythmics and tamoxifen. The ultrarapid metaboliser (UM) phenotype is recognised as a cause of therapeutic inefficacy of antidepressant, whereas an increased risk of toxicity has been reported in poor metabolisers (PMs) with several psychotropics (desipramine, venlafaxine, amitriptyline, haloperidol). CYP2D6 polymorphism influences the analgesic response to prodrug opioids (codeine, tramadol and oxycodone). In PMs for CYP2D6, reduced analgesic effects have been observed, whereas in UMs cases of life-threatening toxicity have been reported with tramadol and codeine. CYP2D6 PM phenotype has been associated with an increased risk of toxicity of metoprolol, timolol, carvedilol and propafenone. Although conflicting results have been reported regarding the association between CYP2D6 genotype and tamoxifen effects, CYP2D6 genotyping may be useful in selecting adjuvant hormonal therapy in postmenopausal women. CYP2C19 is responsible for metabolising clopidogrel, proton pump inhibitors (PPIs) and some antidepressants. Carriers of CYP2C19 variant alleles exhibit a reduced capacity to produce the active metabolite of clopidogrel, and are at increased risk of adverse cardiovascular events. For PPIs, it has been shown that the mean intragastric pH values and the Helicobacter pylori eradication rates were higher in carriers of CYP2C19 variant alleles. CYP2C19 is involved in the metabolism of several antidepressants. As a result of an increased risk of adverse effects in CYP2C19 PMs, dose reductions are recommended for some agents (imipramine, sertraline). CYP2C9 is responsible for metabolising vitamin K antagonists (VKAs), non-steroidal anti-inflammatory drugs (NSAIDs), sulfonylureas, angiotensin II receptor antagonists and phenytoin. For VKAs, CYP2C9 polymorphism has been associated with lower doses, longer time to reach treatment stability and higher frequencies of supratherapeutic international normalised ratios (INRs). Prescribing algorithms are available in order to adapt dosing to genotype. Although the existing data are controversial, some studies have suggested an increased risk of NSAID-associated gastrointestinal bleeding in carriers of CYP2C9 variant alleles. A relationship between CYP2C9 polymorphisms and the pharmacokinetics of sulfonylureas and angiotensin II receptor antagonists has also been observed. The clinical impact in terms of hypoglycaemia and blood pressure was, however, modest. Finally, homozygous and heterozygous carriers of CYP2C9 variant alleles require lower doses of phenytoin to reach therapeutic plasma concentrations, and are at increased risk of toxicity. New diagnostic techniques made safer and easier should allow quicker diagnosis of metabolic variations. Genotyping and phenotyping may therefore be considered where dosing guidelines according to CYP genotype have been published, and help identify the right molecule for the right patient.
Collapse
Affiliation(s)
- C F Samer
- Clinical Pharmacology and Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
426
|
Hudson BD, Murdoch H, Milligan G. Minireview: The effects of species ortholog and SNP variation on receptors for free fatty acids. Mol Endocrinol 2013; 27:1177-87. [PMID: 23686113 PMCID: PMC3951919 DOI: 10.1210/me.2013-1085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although it is widely assumed that species orthologs of hormone-responsive G protein-coupled receptors will be activated by the same endogenously produced ligand(s), variation in potency, particularly in cases in which more than 1 receptor responds to the same hormone, can result in challenges in defining the contribution of individual receptors in different species. This can create considerably greater issues when using synthetic chemical ligands and, in some cases, may result in a complete lack of efficacy of such a ligand when used in animal models of pathophysiology. In man, the concept that distinct responses of individuals to medicines may reflect differences in the ability of such drugs to bind to or activate single nucleotide polymorphism variants of receptors is more established as a concept but, in many cases, clear links between such variants that are associated with disease phenotypes and substantial differences in receptor ligand pharmacology have been more difficult to obtain. Herein we consider each of these issues for the group of free fatty acid receptors, FFA1-FFA4, defined to be activated by free fatty acids of varying chain length, which, based on their production by 1 tissue or location and action in distinct locations, have been suggested to possess characteristics of hormones.
Collapse
Affiliation(s)
- Brian D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
427
|
Perera V, Gross AS, Polasek TM, Qin Y, Rao G, Forrest A, Xu J, McLachlan AJ. Considering CYP1A2 phenotype and genotype for optimizing the dose of olanzapine in the management of schizophrenia. Expert Opin Drug Metab Toxicol 2013; 9:1115-37. [PMID: 23641727 DOI: 10.1517/17425255.2013.795540] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Schizophrenia, a mental disorder, is a debilitating condition which typically strikes young people in their early 20's. Antipsychotic medications are widely prescribed for the treatment of schizophrenia however a balancing act is necessary to provide the correct dose to each patient. It is suggested that a large number of patients discontinue antipsychotic pharmacotherapy because the treatments provided do not always reduce the positive symptoms of the disease, while many have adverse effects on the patients. This implies that neither the incorrect drug nor the optimal dosage for that patient is achieved. AREAS COVERED The current review investigates variability in response to olanzapine with a specific focus on the common intrinsic and extrinsic factors that influence both olanzapine and CYP1A2 activity. Furthermore, the authors discuss the utilization of phenotyping and genotyping of CYP1A2 and their potential utility in clinical practice for olanzapine dosing regimens. The authors also consider the potential of pharmacometrics compared to pharmacogenomics as a tool to personalize medicine. EXPERT OPINION Careful consideration must be given to the impact of a genetic variant on the disposition of a drug prior to implementing genetic 'tests' to determine response. CYP1A2 phenotypic assessment can yield important information regarding the disposition of olanzapine; however, it relies on the accuracy of the metric and the minimal impact of other metabolic pathways. The application of pharmacometrics provides an effective method to establish covariates that significantly influence olanzapine disposition which can incorporate phenotype and/or genotype.
Collapse
Affiliation(s)
- Vidya Perera
- University at Buffalo, The State University of New York, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Bains RK, Kovacevic M, Plaster CA, Tarekegn A, Bekele E, Bradman NN, Thomas MG. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet 2013; 14:34. [PMID: 23641907 PMCID: PMC3655848 DOI: 10.1186/1471-2156-14-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
Background Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression levels correlated significantly with aridity measures for 10,000 [Spearmann’s Rho= −0.465, p=0.004] and 50,000 years ago [Spearmann’s Rho= −0.379, p=0.02]. Conclusions Significant intra-African diversity at the CYP3A5 gene is likely to contribute to multiple pharmacogenetic profiles across the continent. Significant correlations between CYP3A5 expression phenotypes and aridity data are consistent with a hypothesis that the enzyme is important in salt-retention adaptation.
Collapse
Affiliation(s)
- Ripudaman K Bains
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
429
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
430
|
Yang L, Price ET, Chang CW, Li Y, Huang Y, Guo LW, Guo Y, Kaput J, Shi L, Ning B. Gene expression variability in human hepatic drug metabolizing enzymes and transporters. PLoS One 2013; 8:e60368. [PMID: 23637747 PMCID: PMC3634068 DOI: 10.1371/journal.pone.0060368] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/26/2013] [Indexed: 12/17/2022] Open
Abstract
Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.
Collapse
Affiliation(s)
- Lun Yang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Elvin T. Price
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ching-Wei Chang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Yan Li
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Li-Wu Guo
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Yongli Guo
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Jim Kaput
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Leming Shi
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (BN); (LS)
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (BN); (LS)
| |
Collapse
|
431
|
Nishimuta H, Nakagawa T, Nomura N, Yabuki M. Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs. Xenobiotica 2013; 43:948-55. [PMID: 23593983 DOI: 10.3109/00498254.2013.787155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
432
|
Alessandrini M, Asfaha S, Dodgen TM, Warnich L, Pepper MS. Cytochrome P450 pharmacogenetics in African populations. Drug Metab Rev 2013; 45:253-75. [PMID: 23590174 DOI: 10.3109/03602532.2013.783062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Cytochrome P450 (CYP450) family of enzymes is involved in the oxidative metabolism of many therapeutic drugs, carcinogens and various endogenous substrates. These enzymes are highly polymorphic at an inter-individual and inter-ethnic level. Polymorphisms or genetic variations account for up to 30% of inter-individual differences seen in a variety of drug responses. The frequencies of the different metabolizer categories (slow, intermediate, extensive and ultra-rapid), the distribution of genetic variants, genotype-phenotype correlations and the clinical importance of the CYP450 enzymes have been extensively documented in Caucasian and Oriental populations. Limited data exists for African populations, despite the fact that this knowledge is critically important for these populations who experience a heavy burden of communicable and non-communicable diseases. In addition, the costs incurred through adverse drug reactions and non-responsiveness to therapy could be reduced through the wide-scale application of pharmacogenetics. This review provides an overview and investigation of CYP450 genotypic and phenotypic reports published from 1980 to present in African populations. Our findings confirm the high degree of variability that is expected when comparing individuals of African origin to other ethnic groups and also highlight the distribution of clinically relevant CYP450 alleles amongst the various African populations. The notable discordance in genotypic and phenotypic data amongst African populations exemplifies the need for in-depth and well-orchestrated molecular and pharmacological investigations of these populations in the future, for which whole genome sequencing and association studies will be critical.
Collapse
Affiliation(s)
- Marco Alessandrini
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
433
|
Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenet Genomics 2013; 22:812-9. [PMID: 23047293 DOI: 10.1097/fpc.0b013e328358d92b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The redox reaction of cytochrome P450 enzymes (CYP) is an important physiological and biochemical reaction in the human body, as it is involved in the oxidative metabolism of both endogenous and exogenous substrates. Cytochrome P450 oxidoreductase (POR) is the only obligate electron donor for all of the hepatic microsomal CYP enzymes. It plays a crucial role in drug metabolism and treatment by not only acting as an electron donor involved in drug metabolism mediated by CYP enzymes but also by directly inducing the transformation of some antitumor precursors. Studies have found that the gene encoding human POR is highly polymorphic, which is of considerable clinical significance as it affects the metabolism and curative effects of clinically used drugs. This review aims to discuss the effect of POR and its genetic polymorphisms on drug metabolism and therapy, as well as the potential mechanisms of POR pharmacogenetics.
Collapse
|
434
|
Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS JOURNAL 2013; 15:629-45. [PMID: 23543602 DOI: 10.1208/s12248-013-9470-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
Recently, the US Food and Drug Administration and European Medicines Agency have issued new guidance for industry on drug interaction studies, which outline comprehensive recommendations on a broad range of in vitro and in vivo studies to evaluate drug-drug interaction (DDI) potential. This paper aims to provide an overview of these new recommendations and an in-depth scientifically based perspective on issues surrounding some of the recommended approaches in emerging areas, particularly, transporters and complex DDIs. We present a number of theoretical considerations and several case examples to demonstrate complexities in applying (1) the proposed transporter decision trees and associated criteria for studying a broad spectrum of transporters to derive actionable information and (2) the recommended model-based approaches at an early stage of drug development to prospectively predict DDIs involving time-dependent inhibition and mixed inhibition/induction of drug metabolizing enzymes. We hope to convey the need for conducting DDI studies on a case-by-case basis using a holistic scientifically based interrogative approach and to communicate the need for additional research to fill in knowledge gaps in these areas where the science is rapidly evolving to better ensure the safety and efficacy of new therapeutic agents.
Collapse
Affiliation(s)
- Thomayant Prueksaritanont
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Sharp and Dohme Corp., WP 75A-203, West Point, PA 19486, USA,
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Wang TTY, Edwards AJ, Clevidence BA. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms. J Nutr Biochem 2013; 24:1538-46. [PMID: 23517913 DOI: 10.1016/j.jnutbio.2013.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 12/14/2012] [Accepted: 01/08/2013] [Indexed: 02/04/2023]
Abstract
The mechanisms as well the genetics underlying the bioavailability and metabolism of carotenoids in humans remain unclear. To begin to address these questions, we used cluster analysis to examine individual temporal responses of plasma carotenoids from a controlled-diet study of subjects who consumed carotenoid-rich beverages. Treatments, given daily for 3 weeks, were watermelon juice at two levels (20-mg lycopene, 2.5-mg β-carotene, n=23 and 40-mg lycopene, 5-mg β-carotene, n=12) and tomato juice (18-mg lycopene, 0.6-mg β-carotene, n=10). Cluster analysis revealed distinct groups of subjects differing in the temporal response of plasma carotenoids and provided the basis for classifying subjects as strong responders or weak responders for β-carotene, lycopene, phytoene and phytofluene. Individuals who were strong or weak responders for one carotenoid were not necessarily strong or weak responders for another carotenoid. Furthermore, individual responsiveness was associated with genetic variants of the carotenoid metabolizing enzyme β-carotene 15,15'-monooxygenase 1. These results support the concept that individuals absorb or metabolize carotenoids differently across time and suggest that bioavailability of carotenoids may involve specific genetic variants of β-carotene 15,15'-monooxygenase 1.
Collapse
Affiliation(s)
- Thomas T Y Wang
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | | | | |
Collapse
|
436
|
Ding G, Xu W, Liu H, Zhang M, Huang Q, Liao Z. CYP1A1 MspI polymorphism is associated with prostate cancer susceptibility: evidence from a meta-analysis. Mol Biol Rep 2013; 40:3483-91. [PMID: 23475304 DOI: 10.1007/s11033-012-2423-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/18/2012] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1), an important phase I xenobiotic metabolizing enzyme, is responsible for metabolizing numerous carcinogens, particularly polycyclic aromatic hydrocarbons. The genetic polymorphism of CYP1A1 at the site of MspI (CYP1A1 MspI) has been implicated in prostate cancer risk, but the results of individual studies remain conflicting and inconclusive. The aim of this meta-analysis was to investigate the association of CYP1A1 MspI polymorphism with prostate cancer risk more precisely. We performed a comprehensive search of the PubMed, Embase, Web of Science, and China National Knowledge Infrastructure databases from their inception up to September 20, 2012 for relevant publications. The pooled odds ratios with the corresponding 95% confidence intervals (95% CIs) were calculated to assess the association of CYP1A1 MspI polymorphism with prostate cancer risk. In addition, stratified analyses by ethnicity and sensitivity analyses were conducted for further estimation. Sixteen eligible publications with 6,411 subjects were finally included into the meta-analysis after checking the retrieved papers. Overall, meta-analysis of total studies suggested that individuals carrying the TC genotype and a combined C genotype (CC + TC) were more susceptible to prostate cancer (OR(TC vs. TT) = 1.33, 95% CI 1.10-1.61, P(OR) = 0.004; OR(CC+TC vs. TT) = 1.27, 95% CI 1.05-1.55, P(OR) = 0.016). Stratified analysis of high quality studies also confirmed the significant association (OR(TC vs. TT) = 1.32, 95% CI 1.04-1.67, P(OR) = 0.024; OR(CC+TC vs. TT) = 1.30, 95% CI 1.02-1.66, P(OR) = 0.035). In subgroup analyses by ethnicity, a significant association between the CYP1A1 MspI polymorphism and risk of prostate cancer was found among Asians (OR(TC vs. TT) = 1.44, 95% CI 1.20-1.72, P(OR) < 0.001; OR(CC+TC vs. TT) = 1.33, 95% CI 1.12-1.58, P(OR) = 0.001), but not in Caucasians or mixed populations. The meta-analysis suggests an important role of the CYP1A1 MspI polymorphism in the risk of developing prostate cancer, especially in Asians.
Collapse
Affiliation(s)
- Gang Ding
- Department of Oncology, Chongming Branch of Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 202150, China
| | | | | | | | | | | |
Collapse
|
437
|
Meier F, Kontekakis A, Schöffski O. Bewertung der Einsparpotenziale in der Arzneimitteltherapie durch Dosisanpassung an die Polymorphismen im Cytochrom P450. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/bf03320779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
438
|
Varshney E, Saha N, Tandon M, Shrivastava V, Ali S. Genotype-phenotype correlation of cytochrome P450 2C9 polymorphism in Indian National Capital Region. Eur J Drug Metab Pharmacokinet 2013; 38:275-82. [PMID: 23446815 DOI: 10.1007/s13318-013-0124-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 02/13/2013] [Indexed: 01/31/2023]
Abstract
Identification of polymorphism of cytochrome P450 2C9 (CYP2C9) enzymes in different ethnic populations is important to understand the differences in clinical responses to drugs. This study determines the CYP2C9 genetic polymorphism in Indian National Capital Region and correlates the phenotype-genotype. Losartan (25 mg) was administered to 107 volunteers to assess CYP2C9 activity, and, on the basis of results, volunteers were categorized as rapid and poor metabolizers. Molecular typing of CYP2C9*1 (wild type), CYP2C9*2, and CYP2C9*3 (the most common variant) was carried out by single-base primer extension technology for 37 subjects, of which 9 were poor metabolizers, and 28 were rapid metabolizers. 14.28 % of the studied population was identified as poor metabolizer for the category of drugs metabolized by CYP2C9. Significant difference was observed between the mean ratio (drug/metabolite) of poor (11.38 ± 5.88) and rapid (1.18 ± 1.11) drug metabolizers. The study suggests that phenotyping of CYP2C9 is desirable before enrollment of subjects for clinical trials or for deciding drug dose regimen as 14.28 % of study population was found to be poor metabolizer for the category of drugs metabolized by CYP2C9. This study establishes phenotype-genotype correlation, and proposes to use genotyping or phenotyping to evaluate the status of drug metabolizing capacity of CYP2C9 as a primary screening procedure before enrolling subjects in clinical trials or in clinical practice.
Collapse
Affiliation(s)
- Ekta Varshney
- Department of Biochemistry, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | | | | | | | | |
Collapse
|
439
|
Morigaki K, Mizutani K, Saito M, Okazaki T, Nakajima Y, Tatsu Y, Imaishi H. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2722-2730. [PMID: 23347422 DOI: 10.1021/la304747e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.
Collapse
Affiliation(s)
- Kenichi Morigaki
- Research Center for Environmental Genomics, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
440
|
Dai DP, Xu RA, Hu LM, Wang SH, Geng PW, Yang JF, Yang LP, Qian JC, Wang ZS, Zhu GH, Zhang XH, Ge RS, Hu GX, Cai JP. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database. THE PHARMACOGENOMICS JOURNAL 2013; 14:85-92. [DOI: 10.1038/tpj.2013.2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/09/2012] [Accepted: 01/03/2013] [Indexed: 12/20/2022]
|
441
|
Chaudhuri SR, Mukherjee S, Paul RR, Haldar A, Chaudhuri K. CYP1AI and CYP2E1 gene polymorphisms may increase susceptibility to Oral Submucous Fibrosis among betel quid chewers of Eastern India. Gene 2013; 513:268-71. [DOI: 10.1016/j.gene.2012.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 01/24/2023]
|
442
|
Abstract
Polymorphisms in genes encoding drug metabolizing enzymes, drug transporters, and drug targets can influence drug effects and contribute to inter-individual differences in drug response. Genotype for drug metabolizing enzymes and drug transporters can influence drug disposition in the body (pharmacokinetics), whereas genotype for drug targets may influence sensitivity to a drug (pharmacodynamics). In some cases, response to a particular drug is contingent on genotype for both drug disposition and drug target proteins. For example, warfarin dose requirements are influenced by both cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex 1 (VKORC1) genotypes. The goal of pharmacogenetics is to maximize drug effectiveness while limiting drug toxicity, based on an individual's DNA. Over 80 drugs now contain genetic information in their FDA-approved labeling. In addition to influencing warfarin dose requirements, genotype contributes to the efficacy of clopidogrel in coronary artery disease, risk for hypersensitivity reactions to abacavir in the treatment of human immunodeficiency virus, risk for statin-induced myopathy, and responses to numerous other drugs. Genetic information is routinely integrated into decisions regarding cancer chemotherapy and treatment for human immunodeficiency virus. Clinical implementation of pharmacogenetics is becoming a reality in other therapeutic areas, such as for patients requiring dual antiplatelet therapy following coronary artery stent implantation. In the future, it is possible that individuals will be broadly genotyped so that genetic information can guide drug therapy decisions throughout their lifetime.
Collapse
Affiliation(s)
- Larisa H Cavallari
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
443
|
Does cytochrome P450 1A1 MspI polymorphism increase acute lymphoblastic leukemia risk? Evidence from 2013 cases and 2903 controls. Gene 2012; 510:14-21. [DOI: 10.1016/j.gene.2012.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/20/2012] [Accepted: 08/25/2012] [Indexed: 12/11/2022]
|
444
|
Hu LM, Dai DP, Hu GX, Yang JF, Xu RA, Yang LP, Qian JC, Ge RS, Cai JP. Genetic polymorphisms and novel allelic variants of CYP2C19 in the Chinese Han population. Pharmacogenomics 2012; 13:1571-81. [PMID: 23148634 DOI: 10.2217/pgs.12.141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: This study aims to systematically investigate the genetic polymorphisms of the CYP2C19 gene and provide accurate data of the allele distribution pattern in the Chinese Han population. Materials & Methods: We amplified all nine exons of the CYP2C19 gene in 2127 unrelated healthy Chinese Han subjects from two geographical locations (Zhejiang province, n = 1127; Hebei province, n = 1000), using direct sequencing. Results: In total, six previously reported alleles were found in our study, in which two alleles CYP2C19*6 and CYP2C19*18 were reported for the first time in Chinese Han subjects. In addition, 35 novel variants were detected in the present work, which included 11 new named alleles, 12 nonsynonymous mutations and one insert variant. Conclusion: This study provides important data on the pattern of CYP2C19 polymorphisms in Chinese Han subjects, using the largest group of individuals. Furthermore, the study also detects the largest number of novel alleles in one population. These findings are of potential benefit to the development of personalized medicine for the Chinese Han population. Original submitted 25 June 2012; Revision submitted 20 August 2012
Collapse
Affiliation(s)
- Li-Ming Hu
- Graduate School, Wenzhou Medical College, University-Town, Wenzhou, Zhejiang 325035, People’s Republic of China
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, No. 1, Dahua Road, Dongdan, Beijing 100730, People’s Republic of China
- Department of Pharmacology, Wenzhou Medical College, University-Town, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, No. 1, Dahua Road, Dongdan, Beijing 100730, People’s Republic of China
| | - Guo-Xin Hu
- Department of Pharmacology, Wenzhou Medical College, University-Town, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, Ministry of Health, No. 1, Dahua Road, Dongdan, Beijing 100730, People’s Republic of China
| | - Ren-Ai Xu
- Graduate School, Wenzhou Medical College, University-Town, Wenzhou, Zhejiang 325035, People’s Republic of China
- The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Li-Ping Yang
- Department of Pharmacy, Beijing Hospital, Ministry of Health, No. 1, Dahua Road, Dongdan, Beijing 100730, People’s Republic of China
| | - Jian-Chang Qian
- Graduate School, Wenzhou Medical College, University-Town, Wenzhou, Zhejiang 325035, People’s Republic of China
- The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Ren-Shan Ge
- Department of Pharmacology, Wenzhou Medical College, University-Town, Wenzhou, Zhejiang 325035, People’s Republic of China
- The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325027, People’s Republic of China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, No. 1, Dahua Road, Dongdan, Beijing 100730, People’s Republic of China
| |
Collapse
|
445
|
Wang CM, Xu SY, Lai S, Geng D, Huang JM, Huo XY. Curculigo orchioides (Xian Mao) modifies the activity and protein expression of CYP3A in normal and Kidney-Yang Deficiency model rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:33-38. [PMID: 22974543 DOI: 10.1016/j.jep.2012.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/17/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
AIM OF THE STUDY In Chinese medicine clinics, traditional Chinese herbs are used to treat disorders of Yin and Yang balance, including Kidney-Yang Deficiency. The activity of the hepatic cytochrome P450 3A (CYP3A) is closely associated with body status. The aim of the present study is to investigate CYP3A enzymatic activity and CYP3A4 protein expression using a Kidney-Yang Deficiency rat model and furthermore to investigate the intervention effects of the Pungent-hot herb Xian Mao. This work contributes rationale for personalized medicine and enhances our understanding of herb-drug interactions. MATERIALS AND METHODS Rats were randomly divided into three groups: the model group, the Xian Mao group and the intervention group (model rats treated with Xian Mao). The model rats were given an intramuscular injection of hydrocortisone for 14 days, and the control rats were given normal saline. The Xian Mao group consisted of normal rats treated with Xian Mao by oral gavage for 7 days. The intervention group was given Xian Mao for 7 days after treatment with hydrocortisone. The activity of CYP3A was detected by using the erythromycin-N-demethylase method. CYP3A4 protein expression level was detected by Western-blot. RESULTS CYP3A enzymatic activity in the Kidney-Yang Deficiency rat was decreased by 44% compared to normal animals. The relative CYP3A4 protein expression level of the Kidney-Yang Deficiency rat (mean value 0.663±0.188) was 20% lower than that of normal rat (0.830±0.199). The in vitro data showed that CYP3A activity was significantly (P<0.001) inhibited (decreased by 59%) by Xian Mao concentrations of 1mg/mL. The in vivo data also showed that CYP3A activity was significantly decreased in the rats treated with the three doses of Xian Mao. The CYP3A4 protein expression was significantly decreased by Xian Mao treatment at the high and intermediate doses (30 and 20 g/kg, respectively) compared with the normal group. However, the intervention group (the Kidney-Yang Deficiency rat treated with Xian Mao at 20 and 30 g/kg) showed an increased CYP3A activity and CYP3A4 protein expression compared with the herb-untreated model rats. CONCLUSION CYP3A enzymatic activity and CYP3A4 protein expression could be inhibited by Xian Mao. The CYP3A activity and CYP3A4 expression in the Kidney-Yang Deficiency model rat were lower than that of normal rat but this deficiency could be rescued by treatment with Xian Mao.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Department of Biological Pharmaceutics, School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | |
Collapse
|
446
|
Sumantran VN, Tillu G. Insights on personalized medicine from Ayurveda. J Altern Complement Med 2012; 19:370-5. [PMID: 23098697 DOI: 10.1089/acm.2011.0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The "omics" era of research has provided vital information on the genetic and biochemical diversity of individuals. This has lead to the emergence of "personalized medicine," wherein one aims to design specific drugs for individual patients or subtypes of patients. Indeed, the ongoing patent wars on this matter, suggest that personalized medicine represents a major goal for today's pharmaceutical industries. Although the concept of personalized medicine is new to modern medicine, it is a well-established concept in Ayurveda, the traditional system of Indian medicine that is still being practiced. Therefore, this article discusses topics that are crucial for the advancement of modern personalized medicine. These topics include disease susceptibility, disease subtypes, and Ayurvedic therapeutics. First, we explain how Ayurveda, Traditional Chinese Medicine, and Traditional Korean medicine or Sasang Constitutional medicine; conceptualize disease susceptibility and disease subtypes. Next, we focus on conceptual similarities between molecular medicine and Ayurvedic concepts of disease susceptibility and disease subtypes. For each topic, we explain the relevant experimental evidence reported in the literature. We also propose new hypotheses and suggest experimental approaches for their testing and validation.
Collapse
Affiliation(s)
- Venil N Sumantran
- Department of Biotechnology, Indian Institute of Technology-Madras, India.
| | | |
Collapse
|
447
|
Pincus D, Gomes T, Hellings C, Zheng H, Paterson JM, Mamdani MM, Juurlink DN. A population-based assessment of the drug interaction between levothyroxine and warfarin. Clin Pharmacol Ther 2012; 92:766-70. [PMID: 23093318 DOI: 10.1038/clpt.2012.171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most drug interaction resources suggest that levothyroxine can dramatically potentiate the effect of warfarin. However, the mechanistic basis of the interaction is speculative, and little evidence supports a meaningful drug interaction. We conducted a population-based nested case-control study to examine the risk of hospitalization for hemorrhage following the initiation of levothyroxine in a cohort of 260,076 older patients receiving warfarin. In this group, we identified 10,532 case subjects hospitalized for hemorrhage and 40,595 controls. In the primary analysis, we found no association between hospitalization for hemorrhage during warfarin therapy and initiation of levothyroxine in the preceding 30 days (adjusted odds ratio 1.11, 95% confidence interval 0.67-1.86). Secondary analyses using more remote initiation of levothyroxine also found no association. These findings suggest that concerns about a clinically meaningful levothyroxine-warfarin drug interaction are not justified. Drug interaction resources that presently characterize this interaction as important should reevaluate this classification.
Collapse
Affiliation(s)
- D Pincus
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
448
|
Xia L, Gao J, Liu Y, Wu K. Significant association between CYP1A1 T3801C polymorphism and cervical neoplasia risk: a systematic review and meta-analysis. Tumour Biol 2012; 34:223-30. [DOI: 10.1007/s13277-012-0542-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/23/2012] [Indexed: 01/10/2023] Open
|
449
|
Zhuo W, Zhang L, Zhu B, Qiu Z, Chen Z. Association between CYP1A1 Ile462Val variation and acute leukemia risk: meta-analyses including 2164 cases and 4160 controls. PLoS One 2012; 7:e46974. [PMID: 23056546 PMCID: PMC3464280 DOI: 10.1371/journal.pone.0046974] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Previously, CYP1A1 Ile462Val polymorphism has been indicated to be a risk factor for several malignancies. Increasing reports have focused on the association of CYP1A1 Ile462Val polymorphisms with susceptibility to acute leukemia and have generated controversial results. The goal of the present study was to derive a more precise estimation of the relationship. METHODS Relevant literature has been rigorously searched and screened. Eligible studies were identified for the period up to Apr 2012. Meta-analyses evaluating the association of CYP1A1 Ile462Val variation with acute leukemia were carried out. Subgroup analyses on ethnicity, clinical types and source of controls were further performed. RESULTS A total of thirteen publications including fourteen case-control studies with 2164 cases and 4160 controls were selected for analysis. The overall data indicated a significant association of CYP1A1 Ile462Val polymorphism with acute leukemia risk (Val/Val vs Ile/Ile OR = 1.49; 95% CI = 1.11-1.98; dominant model: OR = 1.26; 95% CI = 1.05-1.51; recessive model: OR = 1.38; 95% CI = 1.04-1.83). In subgroup analysis on ethnicity, increased risk was shown among mixed ethnicities (Val/Val vs Ile/Ile: OR = 2.36; 95% CI = 1.46-3.82; dominant model: OR = 1.37; 95% CI = 1.01-1.86; recessive model: OR = 2.20; 95% CI = 1.37-3.53) but not Asians or Caucasians. In subgroup analysis on clinical types, increased risk was observed in the acute lymphocytic leukemia (ALL) subgroup (Val/Val vs Ile/Ile: OR = 2.06; 95% CI = 1.42-3.01; recessive model: OR = 1.91; 95% CI = 1.32-2.76) but not in the acute myeloid leukemia (AML) subgroup. CONCLUSION The results of the present study suggest that CYP1A1 Ile462Val polymorphism might be a low-penetrant risk factor for acute leukemia. Subgroup analyses suggest that homozygous Val/Val alleles might modify the susceptibility to ALL.
Collapse
Affiliation(s)
- Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
450
|
Rietjens SJ, Hondebrink L, Westerink RHS, Meulenbelt J. Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug-drug interactions. Crit Rev Toxicol 2012; 42:854-76. [PMID: 23030234 DOI: 10.3109/10408444.2012.725029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical outcome following 3,4-methylenedioxymethamphetamine (MDMA) intake ranges from mild entactogenic effects to a life-threatening intoxication. Despite ongoing research, the clinically most relevant mechanisms causing acute MDMA-induced adverse effects remain largely unclear. This complicates the triage and treatment of MDMA users needing medical care. The user's genetic profile and interactions resulting from polydrug use are key factors that modulate the individual response to MDMA and influence MDMA pharmacokinetics and dynamics, and thus clinical outcome. Polymorphisms in CYP2D6, resulting in poor metabolism status, as well as co-exposure of MDMA with specific substances (e.g. selective serotonin reuptake inhibitors (SSRIs)) can increase MDMA plasma levels, but can also decrease the formation of toxic metabolites and subsequent cellular damage. While pre-exposure to e.g. SSRIs can increase MDMA plasma levels, clinical effects (e.g. blood pressure, heart rate, body temperature) can be reduced, possibly due to a pharmacodynamic interaction at the serotonin reuptake transporter (SERT). Pretreatment with inhibitors of the dopamine or norepinephrine reuptake transporter (DAT or NET), 5-HT(2A) or α-β adrenergic receptor antagonists or antipsychotics prior to MDMA exposure can also decrease one or more MDMA-induced physiological and/or subjective effects. Carvedilol, ketanserin and haloperidol can reduce multiple MDMA-induced clinical and neurotoxic effects. Thus besides supportive care, i.e. sedation using benzodiazepines, intravenous hydration, aggressive cooling and correction of electrolytes, it is worthwhile to investigate the usefulness of carvedilol, ketanserin and haloperidol in the treatment of MDMA-intoxicated patients.
Collapse
Affiliation(s)
- Saskia J Rietjens
- University Medical Center Utrecht, Division of Anesthesiology, Intensive Care and Emergency Medicine, National Poisons Information Center (NVIC), P.O. box 85500, 3508 GA, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|