401
|
Candeias EM, Sebastião IC, Cardoso SM, Correia SC, Carvalho CI, Plácido AI, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes 2015; 6:807-827. [PMID: 26131323 PMCID: PMC4478577 DOI: 10.4239/wjd.v6.i6.807] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for type 2 diabetes (T2D) treatment have been showing positive and protective effects in several different tissues, including pancreas, heart or even brain. This gut secreted hormone plays a potent insulinotropic activity and an important role in maintaining glucose homeostasis. Furthermore, growing evidences suggest the occurrence of several commonalities between T2D and neurodegenerative diseases, insulin resistance being pointed as a main cause for cognitive decline and increased risk to develop dementia. In this regard, it has also been suggested that stimulation of brain insulin signaling may have a protective role against cognitive deficits. As GLP-1 receptors (GLP-1R) are expressed throughout the central nervous system and GLP-1 may cross the blood-brain-barrier, an emerging hypothesis suggests that they may be promising therapeutic targets against brain dysfunctional insulin signaling-related pathologies. Importantly, GLP-1 actions depend not only on the direct effect mediated by its receptor activation, but also on the gut-brain axis involving an exchange of signals between both tissues via the vagal nerve, thereby regulating numerous physiological functions (e.g., energy homeostasis, glucose-dependent insulin secretion, as well as appetite and weight control). Amongst the incretin/GLP-1 mimetics class of anti-T2D drugs with an increasingly described neuroprotective potential, the already marketed liraglutide emerged as a GLP-1R agonist highly resistant to dipeptidyl peptidase-4 degradation (thereby having an increased half-life) and whose systemic GLP-1R activity is comparable to that of native GLP-1. Importantly, several preclinical studies showed anti-apoptotic, anti-inflammatory, anti-oxidant and neuroprotective effects of liraglutide against T2D, stroke and Alzheimer disease (AD), whereas several clinical trials, demonstrated some surprising benefits of liraglutide on weight loss, microglia inhibition, behavior and cognition, and in AD biomarkers. Herein, we discuss the GLP-1 action through the gut-brain axis, the hormone’s regulation of some autonomic functions and liraglutide’s neuroprotective potential.
Collapse
|
402
|
Trenchevska O, Schaab MR, Nelson RW, Nedelkov D. Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms. Methods 2015; 81:86-92. [PMID: 25752847 PMCID: PMC4574700 DOI: 10.1016/j.ymeth.2015.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Matthew R Schaab
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
403
|
da Silva Júnior WS, de Godoy-Matos AF, Kraemer-Aguiar LG. Dipeptidyl Peptidase 4: A New Link between Diabetes Mellitus and Atherosclerosis? BIOMED RESEARCH INTERNATIONAL 2015; 2015:816164. [PMID: 26146634 PMCID: PMC4471315 DOI: 10.1155/2015/816164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/22/2015] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most prevalent noncommunicable diseases in the past years. It is undoubtedly associated with atherosclerosis and increased risk for cardiovascular diseases. Incretins, which are intestinal peptides secreted during digestion, are able to increase insulin secretion and its impaired function and/or secretion is involved in the pathophysiology of T2DM. Dipeptidyl peptidase 4 (DPP4) is an ubiquitous enzyme that regulates incretins and consequently is related to the pathophysiology of T2DM. DPP4 is mainly secreted by endothelial cells and acts as a regulatory protease for cytokines, chemokines, and neuropeptides involved in inflammation, immunity, and vascular function. In T2DM, the activity of DPP4 seems to be increased and there are a growing number of in vitro and in vivo studies suggesting that this enzyme could be a new link between T2DM and atherosclerosis. Gliptins are a new class of pharmaceutical agents that acts by inhibiting DPP4. Thus, it is expected that gliptin represents a new pharmacological approach not only for reducing glycemic levels in T2DM, but also for the prevention and treatment of atherosclerotic cardiovascular disease in diabetic subjects. We aimed to review the evidences that reinforce the associations between DPP4, atherosclerosis, and T2DM.
Collapse
Affiliation(s)
- Wellington Santana da Silva Júnior
- Postgraduate Program in Clinical and Experimental Physiopathology (FISCLINEX), State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
- Diabetes Department, State Institute of Diabetes and Endocrinology (IEDE), 21330-683 Rio de Janeiro, RJ, Brazil
| | | | - Luiz Guilherme Kraemer-Aguiar
- Obesity Unit, Division of Endocrinology, Department of Internal Medicine, Faculty of Medical Sciences, Policlínica Piquet Carneiro (UERJ), 20551-030 Rio de Janeiro, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology, Biomedical Center, State University of Rio de Janeiro, 20550-013 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
404
|
Sakthimanigandan K, Ganesh M, Kanthikiran V, Sivakumar T, Jang H. Liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of Vildagliptin in rat plasma. ACTA CHROMATOGR 2015. [DOI: 10.1556/achrom.27.2015.2.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
405
|
Baek SH, Kim SH, Kim JW, Kim YJ, Lee KW, Na KY. Effects of a DPP4 inhibitor on cisplatin-induced acute kidney injury: study protocol for a randomized controlled trial. Trials 2015; 16:239. [PMID: 26021829 PMCID: PMC4449575 DOI: 10.1186/s13063-015-0772-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Cisplatin is a potent chemotherapeutic agent, but its nephrotoxicity, which results in acute kidney injury (AKI), often limits its clinical application. Although many studies have attempted to target the mechanism responsible for its nephrotoxicity, no such method has been demonstrated to be effective in clinical trials. Recently, a dipeptidyl peptidase-4 (DPP4) inhibitor has been reported to have a renoprotective effect in a mouse model of cisplatin-induced AKI. Therefore, we will evaluate whether a DPP4 inhibitor protects the kidney from cisplatin-induced injury in humans. Methods/Design This is a single-center, prospective, randomized, double-blind, placebo-controlled trial. A total of 182 participants who are scheduled for cisplatin treatment will be enrolled and randomly assigned to receive either a DPP4 inhibitor (gemigliptin) or a placebo. Participants will take the study drugs for 8 days starting 1 day before cisplatin treatment. The primary outcome of interest is the incidence of AKI at 7 days after finishing treatment with cisplatin. The secondary outcomes include changes in serum creatinine levels and estimated glomerular filtration rates from baseline to 7 days after cisplatin treatment. Discussion This is the first clinical trial to investigate the effect of a DPP4 inhibitor on cisplatin-induced AKI. Trial registration ClinicalTrials.gov number NCT02250872, December 26, 2014.
Collapse
Affiliation(s)
- Seon Ha Baek
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Ki Young Na
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| |
Collapse
|
406
|
Gemigliptin improves renal function and attenuates podocyte injury in mice with diabetic nephropathy. Eur J Pharmacol 2015; 761:116-24. [PMID: 25977232 DOI: 10.1016/j.ejphar.2015.04.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 11/23/2022]
Abstract
Podocytes participate in the formation and regulation of the glomerular filtration barrier. Loss of podocytes occurs during the early stages of diabetic nephropathy and impairs glomerular filtration. Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used as anti-diabetic agents in clinical practice. In this study, we showed that gemigliptin, a novel DPP-4 inhibitor, reduced podocyte apoptosis in type 2 diabetic db/db mice without reducing hyperglycemia. Gemigliptin (100mg/kg/day) was administered orally for 12 weeks in db/db mice. Blood glucose levels and albuminuria were measured. The renal cortex was collected for histological examination, and molecular assays were used to detect 8-hydroxydeoxyguanosine, advanced oxidation protein products (AOPP), the receptor for advanced glycation end products (RAGE), and integrin-linked kinase (ILK). Type 2 diabetic db/db mice exhibited albuminuria, renal histopathological changes, and podocyte loss. Administration of gemigliptin to db/db mice suppressed albuminuria, enzyme activity and expression of DPP-4, and podocyte apoptosis. The effect of gemigliptin on diabetes-induced podocyte loss was associated with the suppression of oxidative damage, AOPP accumulation, RAGE expression, and ILK expression. These results indicate the possible benefits of using gemigliptin in diabetes patients to treat renal impairment without affecting glycemic control.
Collapse
|
407
|
Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 2015; 28:465-522. [PMID: 25810418 DOI: 10.1128/cmr.00102-14] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The source of the severe acute respiratory syndrome (SARS) epidemic was traced to wildlife market civets and ultimately to bats. Subsequent hunting for novel coronaviruses (CoVs) led to the discovery of two additional human and over 40 animal CoVs, including the prototype lineage C betacoronaviruses, Tylonycteris bat CoV HKU4 and Pipistrellus bat CoV HKU5; these are phylogenetically closely related to the Middle East respiratory syndrome (MERS) CoV, which has affected more than 1,000 patients with over 35% fatality since its emergence in 2012. All primary cases of MERS are epidemiologically linked to the Middle East. Some of these patients had contacted camels which shed virus and/or had positive serology. Most secondary cases are related to health care-associated clusters. The disease is especially severe in elderly men with comorbidities. Clinical severity may be related to MERS-CoV's ability to infect a broad range of cells with DPP4 expression, evade the host innate immune response, and induce cytokine dysregulation. Reverse transcription-PCR on respiratory and/or extrapulmonary specimens rapidly establishes diagnosis. Supportive treatment with extracorporeal membrane oxygenation and dialysis is often required in patients with organ failure. Antivirals with potent in vitro activities include neutralizing monoclonal antibodies, antiviral peptides, interferons, mycophenolic acid, and lopinavir. They should be evaluated in suitable animal models before clinical trials. Developing an effective camel MERS-CoV vaccine and implementing appropriate infection control measures may control the continuing epidemic.
Collapse
|
408
|
Li Q, Zhou M, Han L, Cao Q, Wang X, Zhao L, Zhou J, Zhang H. Design, Synthesis and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel DPP-4 Inhibitors. Chem Biol Drug Des 2015; 86:849-56. [PMID: 25787859 DOI: 10.1111/cbdd.12560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/01/2022]
Abstract
A new series of DPP-4 inhibitors with imidazo[1,2-a]pyridine scaffold were designed by exploiting scaffold hopping strategy and docking study. Based on docking binding model, structural modifications of 2-benzene ring and pyridine moieties of compound 5a led to the identification of compound 5d with 2, 4-dichlorophenyl group at the 2-position as a potent (IC50 = 0.13 μm), selective (DPP-8/DPP-4 = 215 and DPP-9/DPP-4 = 192) and in vivo efficacious DPP-4 inhibitor. Further, molecular docking revealed that compound 5d could retain key binding features of DPP-4 with the pyridine moiety of imidazo[1,2-a]pyridine ring providing an additional π-π interaction with Phe357 of DPP-4. Compound 5d might be a promising lead for further development of novel DPP-4 inhibitor treating T2DM.
Collapse
Affiliation(s)
- Qing Li
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Muxing Zhou
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Li Han
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Qing Cao
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinning Wang
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - LeiLei Zhao
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Huibin Zhang
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
409
|
Dingenouts CKE, Goumans MJ, Bakker W. Mononuclear cells and vascular repair in HHT. Front Genet 2015; 6:114. [PMID: 25852751 PMCID: PMC4369645 DOI: 10.3389/fgene.2015.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) or Rendu–Osler–Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.
Collapse
Affiliation(s)
- Calinda K E Dingenouts
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Wineke Bakker
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
410
|
Toth PP. Linagliptin: A New DPP-4 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. Postgrad Med 2015; 123:46-53. [DOI: 10.3810/pgm.2011.07.2303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
411
|
Salles TA, dos Santos L, Barauna VG, Girardi ACC. Potential role of dipeptidyl peptidase IV in the pathophysiology of heart failure. Int J Mol Sci 2015; 16:4226-49. [PMID: 25690036 PMCID: PMC4346954 DOI: 10.3390/ijms16024226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water.
Collapse
Affiliation(s)
- Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| |
Collapse
|
412
|
Fujiwara K, Inoue T, Yorifuji N, Iguchi M, Sakanaka T, Narabayashi K, Kakimoto K, Nouda S, Okada T, Ishida K, Abe Y, Masuda D, Takeuchi T, Fukunishi S, Umegaki E, Akiba Y, Kaunitz JD, Higuchi K. Combined treatment with dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin and elemental diets reduced indomethacin-induced intestinal injury in rats via the increase of mucosal glucagon-like peptide-2 concentration. J Clin Biochem Nutr 2015; 56:155-62. [PMID: 25759522 PMCID: PMC4345177 DOI: 10.3164/jcbn.14-111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
The gut incretin glucagon-like peptide-1 (GLP-1) and the intestinotropic hormone GLP-2 are released from enteroendocrine L cells in response to ingested nutrients. Treatment with an exogenous GLP-2 analogue increases intestinal villous mass and prevents intestinal injury. Since GLP-2 is rapidly degraded by dipeptidyl peptidase 4 (DPP4), DPP4 inhibition may be an effective treatment for intestinal ulcers. We measured mRNA expression and DPP enzymatic activity in intestinal segments. Mucosal DPP activity and GLP concentrations were measured after administration of the DPP4 inhibitor sitagliptin (STG). Small intestinal ulcers were induced by indomethacin (IM) injection. STG was given before IM treatment, or orally administered after IM treatment with or without an elemental diet (ED). DPP4 mRNA expression and enzymatic activity were high in the jejunum and ileum. STG dose-dependently suppressed ileal mucosal enzyme activity. Treatment with STG prior to IM reduced small intestinal ulcer scores. Combined treatment with STG and ED accelerated intestinal ulcer healing, accompanied by increased mucosal GLP-2 concentrations. The reduction of ulcers by ED and STG was reversed by co-administration of the GLP-2 receptor antagonist. DPP4 inhibition combined with luminal nutrients, which up-regulate mucosal concentrations of GLP-2, may be an effective therapy for the treatment of small intestinal ulcers.
Collapse
Affiliation(s)
- Kaori Fujiwara
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Takuya Inoue
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Naoki Yorifuji
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Munetaka Iguchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Taisuke Sakanaka
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Ken Narabayashi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Sadaharu Nouda
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Toshihiko Okada
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Kumi Ishida
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Yosuke Abe
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Daisuke Masuda
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Toshihisa Takeuchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Shinya Fukunishi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Eiji Umegaki
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System and School of Medicine, Department of Medicine, University of California, Los Angeles, California, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System and School of Medicine, Department of Medicine, University of California, Los Angeles, California, USA ; Greater Los Angeles Veterans Affairs Healthcare System and School of Medicine, Department of Surgery, University of California, Los Angeles, California, USA
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| |
Collapse
|
413
|
Abstract
DPP-4 specifically degrades the incretin hormone GLP-1 and GIP, both of which are vital modulators of blood glucose homeostasis. Attributed to its potential biological function, DPP-4 inhibition has presently represented an attractive therapeutic strategy for treating diabetes and aroused a significant interest in the pharmaceutical industry. Chemical stability, selectivity and pharmacokinetic properties have been continuously emphasized during the long journey of R&D centered on DPP-4 inhibitors. The current landscape of the development of DPP-4 inhibitors is outlined in this review, with a focus on rational drug design and structural optimization to pursue chemical stability, selectivity and favorable pharmacokinetic properties. In addition, the structure-activity relationships, based on reported DPP-4 inhibitors, will be discussed.
Collapse
|
414
|
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 2015; 16:8. [PMID: 25651499 PMCID: PMC4301800 DOI: 10.1186/s13059-014-0569-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0569-x) contains supplementary material, which is available to authorized users.
Collapse
|
415
|
Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol 2015; 89:3659-70. [PMID: 25589660 DOI: 10.1128/jvi.03427-14] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ∼40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg(+) mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg(+) mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection. IMPORTANCE Small and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this purpose because of availability and the existence of a thorough knowledge base, particularly of genetics and immunology. The standard small animals, mice, hamsters, and ferrets, all lack the functional MERS-CoV receptor and are not susceptible to infection. So, initial studies were done with nonhuman primates, expensive models of limited availability. A mouse lung infection model was described where a mouse adenovirus was used to transfect lung cells for receptor expression. Nevertheless, all generally agree that a transgenic mouse model expressing the DPP4 receptor is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. This new and unique transgenic mouse model will be useful for furthering MERS research.
Collapse
|
416
|
Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7151770 DOI: 10.1016/b978-1-4557-4801-3.00157-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
417
|
Abstract
Dipeptidyl peptidase-4 (DPP4) is a widely expressed enzyme transducing actions through an anchored transmembrane molecule and a soluble circulating protein. Both membrane-associated and soluble DPP4 exert catalytic activity, cleaving proteins containing a position 2 alanine or proline. DPP4-mediated enzymatic cleavage alternatively inactivates peptides or generates new bioactive moieties that may exert competing or novel activities. The widespread use of selective DPP4 inhibitors for the treatment of type 2 diabetes has heightened interest in the molecular mechanisms through which DPP4 inhibitors exert their pleiotropic actions. Here we review the biology of DPP4 with a focus on: 1) identification of pharmacological vs physiological DPP4 substrates; and 2) elucidation of mechanisms of actions of DPP4 in studies employing genetic elimination or chemical reduction of DPP4 activity. We review data identifying the roles of key DPP4 substrates in transducing the glucoregulatory, anti-inflammatory, and cardiometabolic actions of DPP4 inhibitors in both preclinical and clinical studies. Finally, we highlight experimental pitfalls and technical challenges encountered in studies designed to understand the mechanisms of action and downstream targets activated by inhibition of DPP4.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
418
|
Wada R, Yagihashi S. The expression of glucagon-like peptide-1 receptor and dipeptidyl peptidase-IV in neuroendocrine neoplasms of the pancreas and gastrointestinal tract. Endocr Pathol 2014; 25:390-6. [PMID: 25119061 DOI: 10.1007/s12022-014-9326-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neuroendocrine neoplasm (NEN) of the pancreas and gastrointestinal tract is infrequent but often produces hormones to cause distinct clinical features. Glucagon-like peptide-1 receptor (GLP1R) is a G-protein coupled receptor for GLP1, which is cleaved by dipeptidyl peptidase (DPP)-IV, a peptidase that regulates the activity of peptide hormones. Since these molecules are involved in the neuroendocrine function of NEN, they could serve molecular targets for diagnosis and therapy of NEN. However, the expressions of these molecules in NEN are not well studied. We therefore examined the expression of GLP1R and DPP-IV in 22 cases of pancreatic NEN (P-NEN) and 20 cases of gastrointestinal NEN (GI-NEN) by immunostaining. GLP1R was expressed in all eight insulinomas (100 %) but so in only four out of 14 cases (29 %) of non-insulinomas. In contrast to GLP1R, DPP-IV was detected in one out of eight insulinomas (13 %) and in 12 out of 14 cases (86 %) of non-insulinomas. In GI-NEN, GLP1R was negative in all 10 cases of the foregut NEN, whereas it was expressed in all three cases (100 %) of midgut NEN and four out of seven cases (57 %) of hindgut NEN. DPP-IV was expressed in five out of 10 cases (50 %) of the foregut NEN. The expression was detected in two out of three cases (67 %) of midgut NEN and in all seven cases (100 %) of hindgut NEN. In conclusion, we found distinct expression patterns of GLP1R and DPP-IV depending on the neuroendocrine cell types in P-NEN and the anatomical sites in GI-NEN.
Collapse
Affiliation(s)
- Ryuichi Wada
- Department of Pathology and Molecular Medicine, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan,
| | | |
Collapse
|
419
|
Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem Cell Biol 2014; 143:497-504. [PMID: 25361590 DOI: 10.1007/s00418-014-1292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 02/05/2023]
Abstract
Fibroblast activation protein (FAP, seprase, EC 3.4.21.B28) and dipeptidyl peptidase-IV (DPP-IV, CD26, EC 3.4.14.5) are homologous serine proteases implicated in the modulation of the bioavailability and thus the function of a number of biologically active peptides. In spite of their generally nonoverlapping expression patterns, DPP-IV and FAP are co-expressed and probably co-regulated in certain cell types suggesting that for some biological processes their functional synergy is essential. By an in situ enzymatic activity assay, we show an abundant DPP-IV-like enzymatic activity sensitive to a highly specific DPP-IV inhibitor sitagliptin and corresponding DPP-IV immunoreactivity in the adult human islets of Langerhans. Moreover, the homologous protease FAP was present in the human endocrine pancreas and was co-expressed with DPP-IV. DPP-IV and FAP were found in the pancreatic alpha cells as determined by the co-localization with glucagon immunoreactivity. In summary, we show abundant enzymatic activity of the canonical DPP-IV (CD26) in Langerhans islets in the natural tissue context and demonstrate for the first time the co-expression of FAP and DPP-IV in pancreatic alpha cells in adult humans. Given their ability to proteolytically modify several biologically active peptides, both proteases have the potential to modulate the paracrine signaling in the human Langerhans islets.
Collapse
|
420
|
Saleem S, Jafri L, ul Haq I, Chang LC, Calderwood D, Green BD, Mirza B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:26-32. [PMID: 25169215 DOI: 10.1016/j.jep.2014.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two plants investigated here (Fagonia cretica L. and Hedera nepalensis K. Koch) have been previously reported as natural folk medicines for the treatment of diabetes but until now no scientific investigation of potential anti-diabetic effects has been reported. MATERIALS AND METHODS In vitro inhibitory effect of the two tested plants and their five isolated compounds on the dipeptidyl peptidase 4 (DPP-4) was studied for the assessment of anti-diabetic activity. RESULTS A crude extract of Fagonia cretica possessed good inhibitory activity (IC₅₀ value: 38.1 μg/ml) which was also present in its n-hexane (FCN), ethyl acetate (FCE) or aqueous (FCA) fractions. A crude extract of Hedera nepalensis (HNC) possessed even higher inhibitory activity (IC50 value: 17.2 μg/ml) and this activity was largely retained when further fractionated in either ethyl acetate (HNE; IC50: 34.4 μg/ml) or n-hexane (HNN; 34.2 μg/ml). Bioactivity guided isolation led to the identification of four known compounds (isolated for the first time) from Fagonia cretica: quinovic acid (1), quinovic acid-3β-O-β-D-glycopyranoside (2), quinovic acid-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester (3), and stigmasterol (4) all of which inhibited DPP-4 activity (IC₅₀: 30.7, 57.9, 23.5 and >100 µM, respectively). The fifth DPP-4 inhibitor, the triterpenoid lupeol (5) was identified in Hedera nepalensis (IC₅₀: 31.6 μM). CONCLUSION The experimental study revealed that Fagonia cretica and Hedera nepalensis contain compounds with significant DPP-4 inhibitory activity which should be further investigated for their anti-diabetic potential.
Collapse
Affiliation(s)
- Samreen Saleem
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Laila Jafri
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Leng Chee Chang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States.
| | - Danielle Calderwood
- Advanced ASSET Centre, Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Brian D Green
- Advanced ASSET Centre, Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
421
|
Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A. DPP4 inhibition attenuates filtration barrier injury and oxidant stress in the zucker obese rat. Obesity (Silver Spring) 2014; 22:2172-9. [PMID: 24995775 PMCID: PMC4180797 DOI: 10.1002/oby.20833] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity-related glomerulopathy is characterized initially by glomerular hyperfiltration with hypertrophy and then development of proteinuria. Putative mechanisms include endothelial dysfunction and filtration barrier injury due to oxidant stress and immune activation. There has been recent interest in targeting dipeptidyl peptidase 4 (DPP4) enzyme due to increasing role in non-enzymatic cellular processes. METHODS The Zucker obese (ZO) rat (aged 8 weeks) fed a normal chow or diet containing the DPP4 inhibitor linagliptin for 8 weeks (83 mg/kg rat chow) was utilized. RESULTS Compared to lean controls, there were increases in plasma DPP4 activity along with proteinuria in ZO rats. ZO rats further displayed increases in glomerular size and podocyte foot process effacement. These findings occurred in parallel with decreased endothelial stromal-derived factor-1α (SDF-1α), increased oxidant markers, and tyrosine phosphorylation of nephrin and serine phosphorylation of the mammalian target of rapamycin (mTOR). DPP4 inhibition improved proteinuria along with filtration barrier remodeling, circulating and kidney tissue DPP4 activity, increased active glucagon like peptide-1 (GLP-1) as well as SDF-1α, and improved oxidant markers and the podocyte-specific protein nephrin. CONCLUSIONS These data support a role for DPP4 in glomerular filtration function and targeting DPP4 with inhibition improves oxidant stress-related glomerulopathy and associated proteinuria.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Javad Habibi
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Annayya Aroor
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - James R Sowers
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Melvin R Hayden
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
| | - Alex Meuth
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - William Knight
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Tamara Hancock
- College of Veterinary Medicine, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | | | - Vincent G DeMarco
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Adam Whaley-Connell
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| |
Collapse
|
422
|
Röhrborn D, Eckel J, Sell H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett 2014; 588:3870-7. [PMID: 25217834 DOI: 10.1016/j.febslet.2014.08.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 4 is an important drug target for diabetes and a novel adipokine. However, it is unknown how soluble DPP4 (sDPP4) is cleaved from the cell membrane and released into the circulation. We show here that MMP1, MMP2 and MMP14 are involved in DPP4 shedding from human vascular smooth muscle cells (SMC) and MMP9 from adipocytes. Hypoxia increased DPP4 shedding from SMC which is associated with increased mRNA expression of MMP1. Our data suggest that constitutive as well as hypoxia-induced DPP4 shedding occurs due to a complex interplay between different MMPs in cell type-specific manner.
Collapse
Affiliation(s)
- Diana Röhrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Henrike Sell
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany.
| |
Collapse
|
423
|
Postoperative serum levels of sCD26 for surveillance in colorectal cancer patients. PLoS One 2014; 9:e107470. [PMID: 25210927 PMCID: PMC4161426 DOI: 10.1371/journal.pone.0107470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/13/2014] [Indexed: 12/12/2022] Open
Abstract
One of the main aims of the follow-up after curative resection of colorectal cancer is the early detection and treatment of tumor recurrence. We previously demonstrated decreased preoperative soluble CD26 (sCD26) levels in serum from colorectal cancer patients. We extended now the study to investigate if sCD26 levels in postoperative serum serve as marker of recurrence of the disease during surveillance. Soluble sCD26 was measured in pre- and postoperative serum samples of 43 patients with primary colorectal cancer. Carcinoembryonic antigen, carbohydrate antigen 19.9 and 72.4 levels were also measured during surveillance. The average follow-up period was 41.8±20.8 months. sCD26 levels during follow-up showed well-defined patterns in patients without disease (n = 28), and in patients with tumor persistence (n = 2), local recurrence (n = 3) or distant metastasis (n = 10). Disease-free patients showed stable levels between 460–850 ng/mL during follow-up, while high (over 850 ng/mL) and unstable sCD26 levels were found before recurrence was diagnosed. The mean maximum/minimum sCD26 ratios during surveillance were 1.52, 2.12 and 2.63 for patients with no recurrence, local recurrence and metastasis, respectively (p = 0.005). From the cut-off obtained from a receiver operator characteristics (ROC) curve built with the maximum/minimum sCD26 ratios and the upper and lower cut-offs of sCD26, we were able to discriminate patients with and without recurrent disease. We propose that the measurement of serum sCD26 during the follow-up of patients diagnosed of colorectal cancer could be valuable for the early detection of local and distant recurrence. A large, randomized, prospective trial should be performed to confirm our findings.
Collapse
|
424
|
Grunberger G. Clinical utility of dipeptidyl peptidase-4 inhibitors: a descriptive summary of current efficacy trials. Eur J Clin Pharmacol 2014; 70:1277-89. [DOI: 10.1007/s00228-014-1727-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/30/2014] [Indexed: 01/01/2023]
|
425
|
Glorie L, Behets GJ, Baerts L, De Meester I, D'Haese PC, Verhulst A. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am J Physiol Endocrinol Metab 2014; 307:E447-55. [PMID: 25053403 DOI: 10.1152/ajpendo.00217.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management.
Collapse
Affiliation(s)
- Lorenzo Glorie
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium; and
| | - Geert J Behets
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium; and
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium; and
| | - Anja Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium; and
| |
Collapse
|
426
|
Darsalia V, Nathanson D, Nyström T, Klein T, Sjöholm Å, Patrone C. GLP-1R activation for the treatment of stroke: updating and future perspectives. Rev Endocr Metab Disord 2014; 15:233-42. [PMID: 24777909 DOI: 10.1007/s11154-014-9285-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke is the leading cause of adult disability in Westernized societies with increased incidence along ageing and it represents a major health and economical threat. Inactive lifestyle, smoking, hypertension, atherosclerosis, obesity and diabetes all dramatically increase the risk of stroke. While preventive strategies based on lifestyle changes and risk factor management can delay or decrease the likelihood of having a stroke, post stroke pharmacological strategies aimed at minimizing stroke-induced brain damage are highly needed. Unfortunately, several candidate drugs that have shown significant preclinical neuroprotective efficacy, have failed in clinical trials and no treatment for stroke based on neuroprotection is available today. Glucagon-like peptide 1 (GLP-1) is a peptide originating in the enteroendocrine L-cells of the intestine and secreted upon nutrient ingestion. The activation of the GLP-1R by GLP-1 enhances glucose-dependent insulin secretion, suppresses glucagon secretion and exerts multifarious extrapancreatic effects. Stable GLP-1 analogues and inhibitors of the proteolytic enzyme dipeptidyl peptidase 4 (DPP-4) (which counteract endogenous GLP-1 degradation) have been developed clinically for the treatment of type 2 diabetes. Besides their antidiabetic properties, experimental evidence has shown neurotrophic and neuroprotective effects of GLP-1R agonists and DPP-4 inhibitors in animal models of neurological disorders. Herein, we review recent experimental data on the neuroprotective effects mediated by GLP-1R activation in stroke. Due to the good safety profile of the drugs targeting the GLP-1R, we also discuss the high potential of GLP-1R stimulation in view of developing a safe clinical treatment against stroke based on neuroprotection in both diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, SE-118 83, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
427
|
Nakai N, Katoh N. Maculopapular-type drug eruption caused by sitagliptin phosphate hydrate: a case report and mini-review of the published work. Allergol Int 2014; 63:489-91. [PMID: 24957113 DOI: 10.2332/allergolint.13-le-0669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Noriaki Nakai
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
428
|
Ji X, Xia C, Wang J, Su M, Zhang L, Dong T, Li Z, Wan X, Li J, Li J, Zhao L, Gao Z, Jiang H, Liu H. Design, synthesis and biological evaluation of 4-fluoropyrrolidine-2-carbonitrile and octahydrocyclopenta[b]pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2014; 86:242-56. [PMID: 25164763 DOI: 10.1016/j.ejmech.2014.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/25/2023]
Abstract
Based on the previous work in our group and the principle of computer-aided drug design, a series of novel β-amino pyrrole-2-carbonitrile derivatives was designed and synthesized. Compounds 8l and 9l were efficacious and selective DPP4 inhibitors resulting in decreased blood glucose in vivo. Compound 8l had moderate DPP4 inhibitory activity (IC50 = 0.05 μM) and good oral bioavailability (F = 53.2%). Compound 9l showed excellent DPP4 inhibitory activity (IC50 = 0.01 μM), good selectivity (selective ratio: DPP8/DPP4 = 898.00; DPP9/DPP4 = 566.00) against related peptidases, and good efficacy in an oral glucose tolerance tests in ICR mice and moderate PK profiles (F = 22.8%, t1/2 = 2.74 h). Moreover, compound 9l did not block hERG channel and exhibited no inhibition of liver metabolic enzymes such as CYP2C9.
Collapse
Affiliation(s)
- Xun Ji
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Chunmei Xia
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jiang Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Mingbo Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; East China of Normal University, 3663 Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Tiancheng Dong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Xia Wan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jingya Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jia Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
429
|
Abstract
PURPOSE OF REVIEW Incretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system. RECENT FINDINGS Activation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed. SUMMARY The GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases.
Collapse
|
430
|
Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int 2014; 86:701-11. [PMID: 25007170 DOI: 10.1038/ki.2014.236] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/26/2014] [Accepted: 05/15/2014] [Indexed: 01/18/2023]
Abstract
Incretin-based drugs, i.e., glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are widely used for the treatment of type 2 diabetes. In addition to the primary role of incretins in stimulating insulin secretion from pancreatic β-cells, they have extra pancreatic functions beyond glycemic control. Indeed, recent studies highlight the potential beneficial effects of incretin-based therapy in diabetic kidney disease (DKD). Experimental studies using various diabetic models suggest that incretins protect the vascular endothelium from injury by binding to GLP-1 receptors, thereby ameliorating oxidative stress and the local inflammatory response, which reduces albuminuria and inhibits glomerular sclerosis. In addition, there is some evidence that GLP-1 receptor agonists and DPP-4 inhibitors mediate sodium excretion and diuresis to lower blood pressure. The pleiotropic actions of DPP-4 inhibitors are ascribed primarily to their effects on GLP-1 signaling, but other substrates of DPP-4, such as brain natriuretic peptide and stromal-derived factor-1α, may have roles. In this review, we summarize recent studies of the roles of incretin-based therapy in ameliorating DKD and its complications.
Collapse
Affiliation(s)
- Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Higashijima
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
431
|
Abstract
Autism spectrum disorder (ASD) is characterised by deficits in the ability to socialise, communicate and use imagination, and displays of stereotypical behaviour. It is widely accepted that ASD involves a disorder in brain development. However, the real causes of the neurodevelopmental disorders associated with ASD are not clear. In this respect, it has been found that a majority of children with ASD display gastrointestinal symptoms, and an increased intestinal permeability. Moreover, large differences in microbiotic composition between ASD patients and controls have been reported. Therefore, nutrition-related factors have been hypothesised to play a causal role in the aetiology of ASD and its symptoms. Through a review of the literature, it was found that abnormalities in carbohydrate digestion and absorption could explain some of the gastrointestinal problems observed in a subset of ASD patients, although their role in the neurological and behavioural problems remains uncertain. In addition, the relationship between an improved gut health and a reduction of symptoms in some patients was evaluated. Recent trials involving gluten-free diets, casein-free diets, and pre- and probiotic, and multivitamin supplementation show contradictive but promising results. It can be concluded that nutrition and other environmental influences might trigger an unstable base of genetic predisposition, which may lead to the development of autism, at least in a subset of ASD patients. Clear directions for further research to improve diagnosis and treatment for the different subsets of the disorder are provided.
Collapse
|
432
|
Hwang HJ, Jung TW, Ryu JY, Hong HC, Choi HY, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH, Yoo HJ. Dipeptidyl petidase-IV inhibitor (gemigliptin) inhibits tunicamycin-induced endoplasmic reticulum stress, apoptosis and inflammation in H9c2 cardiomyocytes. Mol Cell Endocrinol 2014; 392:1-7. [PMID: 24813659 DOI: 10.1016/j.mce.2014.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/07/2014] [Accepted: 04/29/2014] [Indexed: 01/05/2023]
Abstract
The direct effects of dipeptidyl peptidase-IV (DPP-IV) inhibitors on endoplasmic reticulum (ER) stress-induced apoptosis and inflammation in cardiomyocytes have not been elucidated. H9c2 cell viability, which was reduced by tunicamycin, was increased after DPP-IV inhibitor gemigliptin treatment. Gemigliptin significantly decreased the tunicamycin-mediated increase in glucose regulated protein 78 (GRP78) expression and ER stress-mediated signaling molecules such as protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C-EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α)/c-Jun N-terminal kinase (JNK)-p38. Furthermore, gemigliptin effectively induced Akt phosphorylation in a dose-dependent manner. Using flow cytometry and Hoechst staining, we showed that treatment with Akt inhibitor significantly blocked the anti-apoptotic effects mediated by gemigliptin. The reduction in tunicamycin-induced GRP78 level and PERK/CHOP pathway activity by gemigliptin was reversed after treatment with Akt inhibitor. In conclusion, gemigliptin effectively inhibited ER stress-induced apoptosis and inflammation in cardiomyocytes via Akt/PERK/CHOP and IRE1α/JNK-p38 pathways, suggesting its direct protective role in cardiovascular diseases.
Collapse
Affiliation(s)
- Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ja Young Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ho Cheol Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hae Yoon Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dong Seop Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
433
|
Tasyurek HM, Altunbas HA, Balci MK, Sanlioglu S. Incretins: their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev 2014; 30:354-71. [PMID: 24989141 DOI: 10.1002/dmrr.2501] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/18/2022]
Abstract
Therapies targeting the action of incretin hormones have been under close scrutiny in recent years. The incretin effect has been defined as postprandial enhancement of insulin secretion by gut-derived factors. Likewise, incretin mimetics and incretin effect amplifiers are the two different incretin-based treatment strategies developed for the treatment of diabetes. Although, incretin mimetics produce effects very similar to those of natural incretin hormones, incretin effect amplifiers act by inhibiting dipeptidyl peptidase-4 (DPP-4) enzyme to increase plasma concentration of incretins and their biologic effects. Because glucagon-like peptide-1 (GLP-1) is an incretin hormone with various anti-diabetic actions including stimulation of glucose-induced insulin secretion, inhibition of glucagon secretion, hepatic glucose production and gastric emptying, it has been evaluated as a novel therapeutic agent for the treatment of type 2 diabetes mellitus (T2DM). GLP-1 also manifests trophic effects on pancreas such as pancreatic beta cell growth and differentiation. Because DPP-4 is the enzyme responsible for the inactivation of GLP-1, DPP-4 inhibition represents another potential strategy to increase plasma concentration of GLP-1 to enhance the incretin effect. Thus, anti-diabetic properties of these two classes of drugs have stimulated substantial clinical interest in the potential of incretin-based therapeutic agents as a means to control glucose homeostasis in T2DM patients. Despite this fact, clinical use of GLP-1 mimetics and DPP-4 inhibitors have raised substantial concerns owing to possible side effects of the treatments involving increased risk for pancreatitis, and C-cell adenoma/carcinoma. Thus, controversial issues in incretin-based therapies under development are reviewed and discussed in this manuscript.
Collapse
|
434
|
Milne‐Price S, Miazgowicz KL, Munster VJ. The emergence of the Middle East respiratory syndrome coronavirus. Pathog Dis 2014; 71:121-36. [PMID: 24585737 PMCID: PMC4106996 DOI: 10.1111/2049-632x.12166] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/08/2014] [Accepted: 02/17/2014] [Indexed: 12/20/2022] Open
Abstract
On September 20, 2012, a Saudi Arabian physician reported the isolation of a novel coronavirus from a patient with pneumonia on ProMED-mail. Within a few days, the same virus was detected in a Qatari patient receiving intensive care in a London hospital, a situation reminiscent of the role air travel played in the spread of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. SARS-CoV originated in China's Guangdong Province and affected more than 8000 patients in 26 countries before it was contained 6 months later. Over a year after the emergence of this novel coronavirus--Middle East respiratory syndrome coronavirus (MERS-CoV)--it has caused 178 laboratory-confirmed cases and 76 deaths. The emergence of a second highly pathogenic coronavirus within a decade highlights the importance of a coordinated global response incorporating reservoir surveillance, high-containment capacity with fundamental and applied research programs, and dependable communication pathways to ensure outbreak containment. Here, we review the current state of knowledge on the epidemiology, ecology, molecular biology, clinical features, and intervention strategies of the novel coronavirus, MERS-CoV.
Collapse
Affiliation(s)
- Shauna Milne‐Price
- Division of Intramural ResearchLaboratory of VirologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMTUSA
| | - Kerri L. Miazgowicz
- Division of Intramural ResearchLaboratory of VirologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMTUSA
| | - Vincent J. Munster
- Division of Intramural ResearchLaboratory of VirologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMTUSA
| |
Collapse
|
435
|
Wronkowitz N, Görgens SW, Romacho T, Villalobos LA, Sánchez-Ferrer CF, Peiró C, Sell H, Eckel J. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1613-21. [PMID: 24928308 DOI: 10.1016/j.bbadis.2014.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 12/27/2022]
Abstract
DPP4 is an ubiquitously expressed cell-surface protease that is shedded to the circulation as soluble DPP4 (sDPP4). We recently identified sDPP4 as a novel adipokine potentially linking obesity to the metabolic syndrome. The aim of this study was to investigate direct effects of sDPP4 on human vascular smooth muscle cells (hVSMCs) and to identify responsible signaling pathways. Using physiological concentrations of sDPP4, we could observe a concentration-dependent activation of ERK1/2 (3-fold) after 6h, which remained stable for up to 24h. Additionally, sDPP4 treatment induced a 1.5-fold phosphorylation of the NF-κB subunit p65. In accordance with sDPP4-induced stress and inflammatory signaling, sDPP4 also stimulates hVSMC proliferation. Furthermore we could observe an increased expression and secretion of pro-inflammatory cytokines like interleukin (IL)-6, IL-8 and MCP-1 (2.5-, 2.4- and 1.5-fold, respectively) by the sDPP4 treatment. All direct effects of sDPP4 on signaling, proliferation and inflammation could completely be prevented by DPP4 inhibition. Bioinformatic analysis and signaling signature induced by sDPP4 suggest that sDPP4 might be an agonist for PAR2. After the silencing of PAR2, the sDPP4-induced ERK activation as well as the proliferation was totally abolished. Additionally, the sDPP4-induced upregulation of IL-6 and IL-8 could completely be prevented by the PAR2 silencing. In conclusion, we show for the first time that sDPP4 directly activates the MAPK and NF-κB signaling cascade involving PAR2 and resulting in the induction of inflammation and proliferation of hVSMC. Thus, our in vitro data might extend the current view of sDPP4 action and shed light on cardiovascular effects of DPP4-inhibitors.
Collapse
Affiliation(s)
- Nina Wronkowitz
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, 40225 Düsseldorf, Germany
| | - Sven W Görgens
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, 40225 Düsseldorf, Germany
| | - Tania Romacho
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, 40225 Düsseldorf, Germany
| | - Laura A Villalobos
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Henrike Sell
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, 40225 Düsseldorf, Germany.
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, 40225 Düsseldorf, Germany
| |
Collapse
|
436
|
Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol 2014; 88:9220-32. [PMID: 24899185 DOI: 10.1128/jvi.00676-14] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir. IMPORTANCE The ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 701 laboratory-confirmed cases to date, with 249 fatalities. Although bats and dromedary camels have been identified as potential MERS-CoV hosts, the virus has so far not been isolated from any species other than humans. The inability of MERS-CoV to infect commonly used animal models, such as hamster, mice, and ferrets, indicates the presence of a species barrier. We show that the MERS-CoV receptor DPP4 plays a pivotal role in the observed species tropism of MERS-CoV and subsequently identified the amino acids in DPP4 responsible for this restriction. Using a combined modeling and experimental approach, we predict that, based on the ability of MERS-CoV to utilize the DPP4 of common Middle East livestock species, such as camels, goats, sheep, and cows, these form a potential MERS-CoV intermediate host reservoir species.
Collapse
|
437
|
Inoue T, Higashiyama M, Kaji I, Rudenkyy S, Higuchi K, Guth PH, Engel E, Kaunitz JD, Akiba Y. Dipeptidyl peptidase IV inhibition prevents the formation and promotes the healing of indomethacin-induced intestinal ulcers in rats. Dig Dis Sci 2014; 59:1286-95. [PMID: 24379150 PMCID: PMC4196264 DOI: 10.1007/s10620-013-3001-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS AND AIMS We studied the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) as a possible therapy for non-steroidal anti-inflammatory drug (NSAID)-induced intestinal ulcers. Luminal nutrients release endogenous GLP-2 from enteroendocrine L cells. Since GLP-2 is degraded by dipeptidyl peptidase IV (DPPIV), we hypothesized that DPPIV inhibition combined with luminal administration of nutrients potentiates the effects of endogenous GLP-2 on intestinal injury. METHODS Intestinal injury was induced by indomethacin (10 mg/kg, sc) in fed rats. The long-acting DPPIV inhibitor K579 was given intragastrically (ig) or intraperitoneally (ip) before or after indomethacin treatment. L-Alanine (L-Ala) and inosine 5'-monophosphate (IMP) were co-administered ig after the treatment. RESULTS Indomethacin treatment induced intestinal ulcers that gradually healed after treatment. Pretreatment with ig or ip K579 given at 1 mg/kg reduced total ulcer length, whereas K579 at 3 mg/kg had no effect. Exogenous GLP-2 also reduced intestinal ulcers. The preventive effect of K579 was dose-dependently inhibited by a GLP-2 receptor antagonist. Daily treatment with K579 (1 mg/kg), GLP-2, or L-Ala + IMP after indomethacin treatment reduced total ulcer length. Co-administration (ig) of K579 and L-Ala + IMP further accelerated intestinal ulcer healing. CONCLUSION DPPIV inhibition and exogenous GLP-2 prevented the formation and promoted the healing of indomethacin-induced intestinal ulcers, although high-dose DPPIV inhibition reversed the preventive effect. Umami receptor agonists also enhanced the healing effects of the DPPIV inhibitor. The combination of DPPIV inhibition and luminal nutrient-induced GLP-2 release may be a useful therapeutic tool for the treatment of NSAIDs-induced intestinal ulcers.
Collapse
Affiliation(s)
- Takuya Inoue
- Department of Medicine, School of Medicine, University of California, Los Angeles
- The Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Higashiyama
- Department of Medicine, School of Medicine, University of California, Los Angeles
| | - Izumi Kaji
- Department of Medicine, School of Medicine, University of California, Los Angeles
| | - Sergiy Rudenkyy
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
| | - Kazuhide Higuchi
- The Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Paul H. Guth
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
| | - Eli Engel
- Department of Biomathematics, University of California, Los Angeles
| | - Jonathan D Kaunitz
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
- Department of Medicine, School of Medicine, University of California, Los Angeles
- Brentwood Biomedical Research Institute, Los Angeles, CA 90073, USA
| | - Yasutada Akiba
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
- Department of Medicine, School of Medicine, University of California, Los Angeles
- Brentwood Biomedical Research Institute, Los Angeles, CA 90073, USA
| |
Collapse
|
438
|
Bashir S, AL-Ayadhi L. Alterations in plasma dipeptidyl peptidase IV in autism: A pilot study. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.npbr.2014.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
439
|
Sulaiman AA. Effect of single oral dose of proanthocyanidin on postprandial hyperglycemia in healthy rats: A comparative study with sitagliptin. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2014; 3:73-7. [PMID: 26401351 PMCID: PMC4576795 DOI: 10.5455/jice.20140409032513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/19/2014] [Indexed: 12/31/2022]
Abstract
Background: Many of flavonoid rich natural products found to have a significant influence on postprandial hyperglycemia, a major risk factor for diabetic complications. Enhancement of insulinotropic gut hormones by inhibition of dipeptidyl peptidase-IV (DPP-IV) are among the newest strategies for treatments of Type 2 diabetes which thought to be the underlying action through which flavonoid can reduce postprandial hyperglycemia. Aim: This study aim was designed to investigate the potential role of standardized grape seed proanthocyanidin in controlling postprandial hyperglycemia by enhancing the regulatory incretin effect of gut hormones in response to oral and intraperitoneal (I.P) glucose load in healthy rats. Materials and Methods: Five groups of animals each of six rats were used in this study, which was conducted in March 2013. Groups (II and V) treated with single oral dose of proanthocyanidin (50 mg/kg), Group III received single oral dose of sitagliptin (40 mg/kg) and Groups (I and IV) treated with vehicle serve as control groups. All treatments were given 30 min before oral or I.P glucose load. Blood glucose was estimated over 2 h duration at (0, 30, 60, 90, and 120) min from glucose load. Result: Both proanthocyanidin and sitagliptin significantly improve hyperglycemia induced by oral glucose load relative to control. While non-significant changes were achieved by proanthocyanidin after I.P glucose challenge compared to untreated control group. Conclusion: The result of this study indicated that proanthocyanidin may possess an enhancement of incretin effect of gut peptides, which could be responsible for some of its action on glucose homeostasis. This finding may provide an opportunity for further pharmacological studies using more specific models to clarify the possible action of proanthocyanidin as a natural DPP-IV inhibitor.
Collapse
Affiliation(s)
- Amal Ajaweed Sulaiman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
440
|
Darsalia V, Olverling A, Larsson M, Mansouri S, Nathanson D, Nyström T, Klein T, Sjöholm Å, Patrone C. Linagliptin enhances neural stem cell proliferation after stroke in type 2 diabetic mice. ACTA ACUST UNITED AC 2014; 190-191:25-31. [PMID: 24821550 DOI: 10.1016/j.regpep.2014.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors are current drugs for the treatment of type 2 diabetes (T2D) based on their main property to enhance endogenous glucagon-like peptide-1 (GLP-1) levels, thus increasing insulin secretion. However, the mechanism of action of DPP-4 inhibition in extra pancreatic tissues has been poorly investigated and it might occur differently from that induced by GLP-1R agonists. Increased adult neurogenesis by GLP-1R agonists has been suggested to play a role in functional recovery in animal models of brain disorders. We recently showed that the DPP-4 inhibitor linagliptin reduces brain damage after stroke in normal and type 2 diabetic (T2D) mice. The aim of this study was to determine whether linagliptin impacts stroke-induced neurogenesis. T2D was induced by 25 weeks of high-fat diet. Linagliptin treatment was carried out for 7 weeks. Standard diet fed-mice were used as controls. Stroke was induced by middle cerebral artery occlusion 4 weeks into the linagliptin treatment. Neural stem cell (NSC) proliferation/neuroblast formation and striatal neurogenesis/gliogenesis were assessed 3 weeks after stroke. The effect of linagliptin on NSC viability was also determined in vitro. The results show that linagliptin enhances NSC proliferation in T2D mice but not in normal mice. Linagliptin did not increase NSC number in vitro indicating that the effect of linagliptin on NSC proliferation in T2D is indirect. Neurogenesis and gliogenesis were not affected. In conclusion, we found no correlation between acute neuroprotection (occurring in both T2D and normal mice) and increased NSC proliferation (occurring only in T2D mice). However, our results show that linagliptin evokes a differential response on NSC proliferation after stroke in normal and T2D mice suggesting that DPP-4 inhibition effect in the CNS might go beyond the well known increase of GLP-1.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Anna Olverling
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Martin Larsson
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Shiva Mansouri
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - David Nathanson
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Nyström
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Åke Sjöholm
- University of South Alabama, College of Medicine, Department of Biochemistry and Molecular Biology, Mobile, AL, USA; Department of Internal Medicine, Diabetes Research Unit, Södertälje Hospital, Södertälje, Sweden
| | - Cesare Patrone
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden.
| |
Collapse
|
441
|
Steinhagen M, Hoffmeister PG, Nordsieck K, Hötzel R, Baumann L, Hacker MC, Schulz-Siegmund M, Beck-Sickinger AG. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5891-5899. [PMID: 24646074 DOI: 10.1021/am500794q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.
Collapse
Affiliation(s)
- Max Steinhagen
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig , Brüderstraße 34, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Bosch BJ, Smits SL, Haagmans BL. Membrane ectopeptidases targeted by human coronaviruses. Curr Opin Virol 2014; 6:55-60. [PMID: 24762977 PMCID: PMC4072739 DOI: 10.1016/j.coviro.2014.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
Six coronaviruses, including the recently identified Middle East respiratory syndrome coronavirus, are known to target the human respiratory tract causing mild to severe disease. Their interaction with receptors expressed on cells located in the respiratory tract is an essential first step in the infection. Thus far three membrane ectopeptidases, dipeptidyl peptidase 4 (DPP4), angiotensin-converting enzyme 2 (ACE2) and aminopeptidase N (APN), have been identified as entry receptors for four human-infecting coronaviruses. Although the catalytic activity of the ACE2, APN, and DPP4 peptidases is not required for virus entry, co-expression of other host proteases allows efficient viral entry. In addition, evolutionary conservation of these receptors may permit interspecies transmissions. Because of the physiological function of these peptidase systems, pathogenic host responses may be potentially amplified and cause acute respiratory distress.
Collapse
Affiliation(s)
- Berend Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, the Netherlands
| | - Saskia L Smits
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
443
|
Lacroix IME, Li-Chan ECY. Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides 2014; 54:39-48. [PMID: 24440459 DOI: 10.1016/j.peptides.2014.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 12/21/2022]
Abstract
Inhibition of the enzyme dipeptidyl peptidase (DPP)-IV is one of the strategies used for the treatment of type 2 diabetes. In the present study, pepsin-treated whey protein isolate (WPI) and α-lactalbumin displaying DPP-IV inhibitory activity were fractionated by successive chromatographic steps and the resulting active fractions analyzed for their constituent peptides by liquid chromatography-electrospray ionization-tandem mass spectrometry. Among the identified sequences, 24 peptides derived from α-lactalbumin and 11 from β-lactoglobulin were synthesized and their effects on DPP-IV activity assessed. The most potent fragments, LKPTPEGDL and LKPTPEGDLEIL (IC50=45 and 57 μM, respectively), were found to inhibit DPP-IV in an un-competitive manner. Although several of the peptides tested showed some inhibitory activity, only two were as effective as the un-fractionated WPI hydrolysate and none were as potent as the un-fractionated α-lactalbumin hydrolysate. The peptides' structural features, including length and amino acid composition, were found to impact their inhibitory activity. This study provides new insights on the active components responsible for the DPP-IV inhibitory activity of pepsin-treated whey proteins.
Collapse
Affiliation(s)
- Isabelle M E Lacroix
- The University of British Columbia, Faculty of Land & Food Systems, Food Nutrition & Health Program, 2205 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Eunice C Y Li-Chan
- The University of British Columbia, Faculty of Land & Food Systems, Food Nutrition & Health Program, 2205 East Mall, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
444
|
Egan JM, Chia CW. Incretin therapy and pancreatic pathologies: background pathology versus drug-induced pathology in rats. Diabetes 2014; 63:1174-8. [PMID: 24651798 PMCID: PMC3964500 DOI: 10.2337/db13-1909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
445
|
Barnett MPG, McNabb WC, Roy NC, Woodford KB, Clarke AJ. Dietary A1 β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 β-casein in Wistar rats. Int J Food Sci Nutr 2014; 65:720-7. [PMID: 24649921 DOI: 10.3109/09637486.2014.898260] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We compared the gastrointestinal effects of milk-based diets in which the β-casein component was either the A1 or A2 type in male Wistar rats fed the experimental diets for 36 or 84 h. Gastrointestinal transit time was significantly greater in the A1 group, as measured by titanium dioxide recovery in the last 24 h of feeding. Co-administration of naloxone decreased gastrointestinal transit time in the A1 diet group but not in the A2 diet group. Colonic myeloperoxidase and jejunal dipeptidyl peptidase (DPP)-4 activities were greater in the A1 group than in the A2 group. Naloxone attenuated the increase in myeloperoxidase activity but not that in DPP-4 activity in the A1 group. Naloxone did not affect myeloperoxidase activity or DPP-4 activity in the A2 group. These results confirm that A1 β-casein consumption has direct effects on gastrointestinal function via opioid-dependent (gastrointestinal transit and myeloperoxidase activity) and opioid-independent (DPP-4 activity) pathways.
Collapse
|
446
|
Jadav P, Bahekar R, Shah SR, Patel D, Joharapurkar A, Jain M, Sairam KVVM, Singh PK. Design, synthesis and biological evaluation of novel aminomethyl-piperidones based DPP-IV inhibitors. Bioorg Med Chem Lett 2014; 24:1918-22. [PMID: 24675378 DOI: 10.1016/j.bmcl.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 02/08/2023]
Abstract
A series of novel aminomethyl-piperidones were designed and evaluated as potential DPP-IV inhibitors. Optimized analogue 12v ((4S,5S)-5-(aminomethyl)-1-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-4-(2,5-difluorophenyl)piperidin-2-one) showed excellent in vitro potency and selectivity for DPP-IV over other serine proteases. The lead compound 12v showed potent and long acting antihyperglycemic effects (in vivo), along with improved pharmacokinetic profile.
Collapse
Affiliation(s)
- Pradip Jadav
- Zydus Research Centre, Sarkhej-Bavla N.H. 8A Moraiya, Ahmedabad 382210, India; Department of Chemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390002, India.
| | - Rajesh Bahekar
- Zydus Research Centre, Sarkhej-Bavla N.H. 8A Moraiya, Ahmedabad 382210, India.
| | - Shailesh R Shah
- Department of Chemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390002, India.
| | - Dipam Patel
- Zydus Research Centre, Sarkhej-Bavla N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Amit Joharapurkar
- Zydus Research Centre, Sarkhej-Bavla N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Mukul Jain
- Zydus Research Centre, Sarkhej-Bavla N.H. 8A Moraiya, Ahmedabad 382210, India
| | | | - Praveen Kumar Singh
- Zydus Research Centre, Sarkhej-Bavla N.H. 8A Moraiya, Ahmedabad 382210, India
| |
Collapse
|
447
|
Charest-Morin X, Roy C, Fortin EJ, Bouthillier J, Marceau F. Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase-activated B2 receptor agonists. Front Pharmacol 2014; 5:32. [PMID: 24639651 PMCID: PMC3945637 DOI: 10.3389/fphar.2014.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/17/2014] [Indexed: 12/19/2022] Open
Abstract
While bradykinin (BK) is known to be degraded by angiotensin converting enzyme (ACE), we have recently discovered that Met-Lys-BK-Ser-Ser is paradoxically activated by ACE. We designed and evaluated additional "prodrug" peptides extended around the BK sequence as potential ligands that could be locally activated by vascular or blood plasma peptidases. BK regeneration was estimated using the contractility of the human umbilical vein as model of vascular functions mediated by endogenous B2 receptors (B2Rs) and the endocytosis of the fusion protein B2R-green fluorescent protein (B2R-GFP) expressed in Human Embryonic Kidney 293 cells. Of three BK sequences extended by a C-terminal dipeptide, BK-His-Leu had the most desirable profile, exhibiting little direct affinity for the receptor but a significant one for ACE (as shown by competition of [(3)H]BK binding to B2R-GFP or of [(3)H]enalaprilat to recombinant ACE, respectively). The potency of the contractile effect of this analog on the vein was reduced 18-fold by the ACE inhibitor enalaprilat, pharmacologically evidencing BK regeneration in situ. BK-Arg, a potential substrate of arginine carboxypeptidases, had a low affinity for B2Rs and its potency as a contractile agent was reduced 15-fold by tissue treatment with an inhibitor of these enzymes, Plummer's inhibitor. B2R-GFP internalization in response to 100 nM of the extended peptides recapitulated these findings, as enalaprilat selectively inhibited the effect of BK-His-Leu and Plummer's inhibitor, that of BK-Arg. The two peptidase inhibitors did not affect BK-induced effects in either assay. The novel C-terminally extended BKs had no or very little affinity for the kinin B1 receptor (competition of [(3)H]Lys-des-Arg(9)-BK binding). The feasibility of peptidase-activated B2R agonists is illustrated by C-terminal extensions of the BK sequence.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - Caroline Roy
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - Emile-Jacques Fortin
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - Johanne Bouthillier
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - François Marceau
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| |
Collapse
|
448
|
Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Douhara A, Moriya K, Kawaratani H, Shirai Y, Yoshii J, Yanase K, Kitade M, Namisaki T, Fukui H. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 2014; 49:481-491. [PMID: 23475323 DOI: 10.1007/s00535-013-0783-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/19/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dipeptidyl peptidase-4 inhibitor (DPP4-I) is clinically used as a new oral antidiabetic agent. Although DPP4 is reportedly associated with the progression of chronic liver diseases, the effect of DPP4-I on liver fibrosis development is still obscure. This study was designed to elucidate the effect of DPP4-I on liver fibrosis development in conjunction with the activated hepatic stellate cells (Ac-HSCs). METHODS The antifibrotic effect of DPP4-I was assessed in vivo and in vitro using porcine serum-induced experimental liver fibrosis model. DPP4-I, sitagliptin, at a clinically comparable low dose was administered by gavage daily. RESULTS DPP4-I significantly attenuated liver fibrosis development along with the suppression of hepatic transforming growth factor (TGF)-β1, total collagen, and tissue inhibitor of metalloproteinases-1 in a dose-dependent manner. These suppressive effects occurred almost concurrently with the attenuation of HSCs activation. Our in vitro studies showed that DPP4-I inhibited platelet-derived growth factor-BB-mediated proliferation of the Ac-HSCs as well as upregulation of TGF-β1 and α1(I)-procollagen at magnitudes similar to those of the in vivo studies. The inhibitory effects of DPP4-I against HSCs proliferation and fibrogenic gene expression are mediated through the inhibition of the phosphorylation of ERK1/2, p38 and Smad2/3, respectively. CONCLUSIONS DPP4-I markedly inhibits liver fibrosis development in rats via suppression of HSCs proliferation and collagen synthesis. These suppressive effects are associated with dephosphorylation of ERK1/2, p38 and Smad2/3 in the HSCs. Since DPP4-I is widely used in clinical practice, this drug may represent a potential new therapeutic strategy against liver fibrosis in the near future.
Collapse
Affiliation(s)
- Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Mahagamasekera PG, Ruygrok PN, Palmer SC, Richards AM, Ansell GS, Nicholls MG, Pemberton CJ, Lewis LK, Yandle TG. B-Type Natriuretic Peptide Forms within the Heart, Coronary Sinus, and Peripheral Circulation in Humans: Evidence for Degradation before Secretion. Clin Chem 2014; 60:549-58. [DOI: 10.1373/clinchem.2013.210435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
BACKGROUND
The B-type natriuretic peptides (BNP and N-terminal pro-BNP) are secreted by the heart and, in the case of BNP, serve to maintain circulatory homeostasis through renal and vascular actions and oppose many effects of the renin-angiotensin system. Recent evidence suggests that in patients with severe heart failure, circulating immunoreactive BNP is made up mainly of metabolites that may have reduced bioactivity. We hypothesized that BNP may be degraded before it even leaves the heart.
METHODS
Peripheral venous plasma plus atrial and ventricular tissue, obtained from explanted hearts at the time of transplantation, were collected from 3 patients with end-stage heart failure. In a separate study, plasma was collected from the coronary sinus and femoral artery of 3 separate patients undergoing cardiac catheterization. Plasma C18 reverse-phase extracts were separated on reverse-phase HPLC, and the collected fractions were subjected to RIAs with highly specific antisera directed to the amino- and carboxy-terminal ends of BNP(1–32).
RESULTS
ProBNP, BNP(1–32), and 2 major BNP metabolites were present in atrial and ventricular tissue, where BNP(1–32) represented 45% and 70% of total processed BNP, respectively. Neither BNP(1–32) nor the 2 metabolites were detected in peripheral venous plasma. Nor was BNP(1–32) detected in matching coronary sinus and femoral artery plasma from the 3 patients undergoing cardiac catheterization.
CONCLUSIONS
BNP(1–32) is partly degraded within the hearts of patients with end-stage heart failure, and even in patients with relatively well-preserved left ventricular systolic function, only BNP metabolites enter the systemic circulation.
Collapse
Affiliation(s)
| | | | - Suetonia C Palmer
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - A Mark Richards
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Gareth S Ansell
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - M Gary Nicholls
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | | | - Lynley K Lewis
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Timothy G Yandle
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
450
|
Evaluation of pleural effusion sCD26 and DPP-IV as diagnostic biomarkers in lung disease. Sci Rep 2014; 4:3999. [PMID: 24499783 PMCID: PMC3915277 DOI: 10.1038/srep03999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/16/2014] [Indexed: 12/13/2022] Open
Abstract
In this study, we measured ADA and DPP-IV enzymatic activity and sCD26 concentration in 150 pleural effusion (PE) samples and tested for correlations between these and other cellular and biochemical measures. We found that DPP-IV in particular might improve the specificity (but not the sensitivity) of the ADA test for diagnosis of pulmonary tuberculosis, since half of the false ADA positive results in non-tuberculous PE were also DPP-IV positive. A percentage of patients with malignant PE were sCD26 or DPP-IV positive; however, some patients with benign PE also tested positive. As a pattern associated with DPP-IV (but not the CD26 protein) was observed in PE, we searched for a finding that might increase the value of these biomarkers for diagnosis of malignancy. The observed pattern was related to the presence of leukocytes, as indicated by correlations with the cell count, and to a band of 180 kDa, detected by immunoblotting.
Collapse
|