401
|
Wang J, Zhao R, Zhang Z. Complete chloroplast genome sequences of Acanthocalyx alba and Acanthocalyx nepalensis subsp. delavayi (Caprifoliaceae). Mitochondrial DNA B Resour 2022; 7:1716-1718. [PMID: 36188667 PMCID: PMC9518610 DOI: 10.1080/23802359.2022.2124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the chloroplast genomes of Acanthocalyx alba (Hand.-Mazz., 1925) and Acanthocalyx nepalensis subsp. delavayi (Franchet, 1885) were sequenced, and their total lengths were 148,720 bp and 149,253 bp, respectively. The A. alba genome contained two inverted repeat regions (IRs) of 21,849 bp, a large single-copy region (LSC) of 89,084 bp, and a small single-copy region (SSC) of 15,938 bp, whereas A. nepalensis subsp. delavayi contained two IRs of 21,736 bp, one LSC of 89,034 bp, and one SSC of 16,747 bp. The chloroplast genomes of both A. alba and A. nepalensis subsp. delavayi contained 109 genes, including 72 mRNA, 33 tRNA, and four rRNA genes. Phylogenetic analysis suggested that A. alba is in a clade with A. nepalensis subsp. delavayi. This study provides useful data for further phylogenetic studies of A. alba and A. nepalensis subsp. delavayi.
Collapse
Affiliation(s)
- Junjun Wang
- School of Pharmacy, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, China
| | - Riza Zhao
- School of Pharmacy, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, China
| | - Zhifeng Zhang
- School of Pharmacy, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, China
| |
Collapse
|
402
|
Kim KR, Park SY, Kim SY, Oh YT, Yu JN. The complete chloroplast genome of Persicaria maackiana (Regel) Nakai ex T. Mori (Polygonaceae) in Korea. Mitochondrial DNA B Resour 2022; 7:1669-1671. [PMID: 36147371 PMCID: PMC9487934 DOI: 10.1080/23802359.2022.2119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Persicaria maackiana (Regel) Nakai ex T. Mori (1922), a species of the Polygonaceae family, is an annual plant widely distributed in Northeast Asia. We aimed to sequence the complete chloroplast genome of P. maackiana using Illumina HiSeq paired-end sequencing. The chloroplast genome was determined to be 160,635 bp. The complete chloroplast genome contained 129 genes, including 84 protein-coding genes, 37 tRNA, and eight rRNA genes. Phylogenetic analysis of the chloroplast genome sequences of 15 Polygonaceae plants revealed that P. maackiana was most closely related to P. perfoliata. Our findings might be useful for future phylogenetic studies of Polygonaceae.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Sun-Yu Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Young Taek Oh
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| |
Collapse
|
403
|
Zhong Y, Zhang J, Bao Z. The complete chloroplast genome of Tripterygium wilfordii Hook. f. (Celastraceae). Mitochondrial DNA B Resour 2022; 7:1696-1698. [PMID: 36188665 PMCID: PMC9518234 DOI: 10.1080/23802359.2022.2119103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tripterygium wilfordii is a perennial vine plant with medicinal value and belongs to the family of Celastraceae. In this study, we sequenced and analyzed the complete chloroplast genome of T. wilfordii. The chloroplast genome was 156,700 bp in length with a GC content of 37.47%. It contained two inverted repeat (IR) regions of 26,461 bp; each region was separated by large single-copy and small single-copy regions of 85,409 bp and 18,369 bp, respectively. In total, we annotated 134 unique genes, consisting of 89 protein-encoding genes, 8 rRNAs and 37 tRNAs. Phylogenetic analysis revealed that T. wilfordii was sister to T. regelii in a clade of Tripterygiumii species that was sister to a clade of Euonymus species.
Collapse
Affiliation(s)
- Yuan Zhong
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, P. R. China
| | - Jingzheng Zhang
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Bao
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
404
|
Contreras-Díaz R, Carevic FS, Huanca-Mamani W, Oses R, Arias-Aburto M, Navarrete-Fuentes M. Chloroplast genome structure and phylogeny of Geoffroea decorticans, a native tree from Atacama Desert. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
405
|
Zhang D, Ren Y, Zhang J. Nonadaptive molecular evolution of plastome during the speciation of Actaea purpurea and its relatives. Ecol Evol 2022; 12:e9321. [PMID: 36177132 PMCID: PMC9482002 DOI: 10.1002/ece3.9321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
We have seen an explosive increase of plant plastid genome (plastome) sequences in the last decade, and the view that sequence variation in plastomes is maintained by the mutation-drift balance has been challenged by new evidence. Although comparative genomic and population-level studies provided us with evidence for positive evolution of plastid genes at both the macro- and micro-evolution levels, less studies have systematically investigated how plastomes have evolved during the speciation process. We here sequenced 13 plastomes of Actaea purpurea (P.K. Hsiao) J. Compton, and its closest relatives, and conducted a systematic survey of positive selection in their plastid genes using the McDonald-Kreitman test and codon-based methods using maximum likelihood to estimate the ratio of nonsynonymous to synonymous substitutions (ω) across a phylogeny. We found that during the speciation of A. purpurea and its relatives, all plastid genes evolved neutrally or were under purifying selection. Genome size, gene order, and number were highly conserved. Comparing to A. purpurea, plastomes of Actaea japonica and Actaea biternata had low genetic diversity, consistent with previous studies. Our work not only sheds important light on the evolutionary history of A. purpurea and its kin, but also on the evolution of plastomes during plant speciation.
Collapse
Affiliation(s)
- Dan‐Qing Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaCollege of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of EducationShaanxi Normal UniversityXi'anChina
| | - Yi Ren
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaCollege of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of EducationShaanxi Normal UniversityXi'anChina
| | - Jian‐Qiang Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaCollege of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of EducationShaanxi Normal UniversityXi'anChina
| |
Collapse
|
406
|
Li YK, Harber J, Peng C, Du ZQ, Xing YW, Yu CC. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species. PLANT DIVERSITY 2022; 44:505-517. [PMID: 36187547 PMCID: PMC9512643 DOI: 10.1016/j.pld.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 06/16/2023]
Abstract
Though Berberis (Berberidaceae) is widely distributed across the Eurasian landmass it is most diverse in the Himalaya-Hengduan Mountain (HHM) region. There are more than 200 species in China where it is one of the most common mountain shrubs. The study on the taxonomy and evolution of Berberis in this region can thus provide an important insight into the origin and diversification of its flora. A prerequisite to this is mapping and describing the various species of Berberis in the region - a task that despite recent progress is by no means complete. It is clear that in China there may be a significant number of species still to be described and that even with published species much about their distribution remains to be discovered. As a contribution to the first of these tasks seven new species from the northern Hengduan Mountain of N. Sichuan and S. Qinghai: Berberis chinduensis, Berberis degexianensis, Berberis jiajinshanensis, Berberis jinwu, Berberis litangensis, Berberis longquensis and Berberis riparia, are described here. Differences in overall morphology and especially in floral structures with each other and with similar species of Berberis in the same region are presented. The report is the result of phylogenetic analyses based on plastome and partial nrDNA sequences of both the seven proposed new species and a significant number of similar species already published. Provisional conclusions as to the insights provides on the history of the genetic divergence are discussed.
Collapse
Affiliation(s)
- Yao-Ke Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Julian Harber
- Research Associate, Missouri Botanic Garden, Mytholmroyd, West Yorkshire, UK
| | - Chuan Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Zhi-Qiang Du
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yao-Wu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Chih-Chieh Yu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
407
|
Liu X, Zhang S. Complete chloroplast genome of Cardamine hupingshanensis K.M.Liu, L.B.Chen, H.F.Bai & L.H.Liu (Brassicaceae) in Enshi, Hubei. Mitochondrial DNA B Resour 2022; 7:1574-1576. [PMID: 36051365 PMCID: PMC9427039 DOI: 10.1080/23802359.2022.2113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Cardamine hupingshanensis K.M.Liu, L.B.Chen, H.F.Bai & L.H.Liu 2008, also called Cardamine enshiensis, belongs to the genus Cardamine, Brassicaceae. As a plant with selenium enrichment ability, it has high development value. Here, we analyzed the chloroplast genome of C. hupingshanensis. The complete chloroplast genome had a total size of 154,832 bp with a typical quadripartite structure, including a large single-copy region (LSC, 83,908 bp) and a small single-copy region (SSC, 17,938 bp), separated by a pair of inverted repeat regions (IRs, 26,493 bp). Genome annotation showed the chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. A total of 143 SSRs were found in the chloroplast genome. Phylogenetic analysis showed that C. hupingshanensis was closer to the C. circaeoides and C. lyrata. This chloroplast genome resource will be useful for study of the phylogeny and evolution of Cardamine in the future.
Collapse
Affiliation(s)
- Xiuqing Liu
- Forestry College, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Siying Zhang
- Tourism Management College, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
408
|
Dong S, Zhou M, Zhu J, Wang Q, Ge Y, Cheng R. The complete chloroplast genomes of Tetrastigma hemsleyanum (Vitaceae) from different regions of China: molecular structure, comparative analysis and development of DNA barcodes for its geographical origin discrimination. BMC Genomics 2022; 23:620. [PMID: 36028808 PMCID: PMC9412808 DOI: 10.1186/s12864-022-08755-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetrastigma hemsleyanum is a valuable traditional Chinese medicinal plant widely distributed in the subtropical areas of China. It belongs to the Cayratieae tribe, family Vitaceae, and exhibited significant anti-tumor and anti-inflammatory activities. However, obvious differences were observed on the quality of T. hemsleyanum root from different regions, requiring the discrimination strategy for the geographical origins. RESULT This study characterized five complete chloroplast (cp) genomes of T. hemsleynum samples from different regions, and conducted a comparative analysis with other representing species from family Vitaceae to reveal the structural variations, informative markers and phylogenetic relationships. The sequenced cp genomes of T. hemsleyanum exhibited a conserved quadripartite structure with full length ranging from 160,124 bp of Jiangxi Province to 160,618 bp of Zhejiang Province. We identified 112 unique genes (80 protein-coding, 28 tRNA and 4 rRNA genes) in the cp genomes of T. hemsleyanum with highly similar gene order, content and structure. The IR contraction/expansion events occurred on the junctions of ycf1, rps19 and rpl2 genes with different degrees, causing the differences of genome sizes in T. hemsleyanum and Vitaceae plants. The number of SSR markers discovered in T. hemsleyanum was 56-57, exhibiting multiple differences among the five geographic groups. Phylogenetic analysis based on conserved cp genome proteins strongly grouped the five T. hemsleyanum species into one clade, showing a sister relationship with T. planicaule. Comparative analysis of the cp genomes from T. hemsleyanum and Vitaceae revealed five highly variable spacers, including 4 intergenic regions and one protein-coding gene (ycf1). Furthermore, five mutational hotspots were observed among T. hemsleyanum cp genomes from different regions, providing data for designing DNA barcodes trnL and trnN. The combination of molecular markers of trnL and trnN clustered the T. hemsleyanum samples from different regions into four groups, thus successfully separating specimens of Sichuan and Zhejiang from other areas. CONCLUSION Our study obtained the chloroplast genomes of T. hemsleyanum from different regions, and provided a potential molecular tracing tool for determining the geographical origins of T. hemsleyanum, as well as important insights into the molecular identification approach and and phylogeny in Tetrastigma genus and Vitaceae family.
Collapse
Affiliation(s)
- Shujie Dong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Manjia Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinxing Zhu
- Bureau of Agricultural and Rural Affairs of Suichang, Suichang, China
| | - Qirui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Rubin Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
409
|
Ren W, Jiang Z, Zhang M, Kong L, Zhang H, Liu Y, Fu Q, Ma W. The chloroplast genome of Salix floderusii and characterization of chloroplast regulatory elements. FRONTIERS IN PLANT SCIENCE 2022; 13:987443. [PMID: 36092427 PMCID: PMC9459086 DOI: 10.3389/fpls.2022.987443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Salix floderusii is a rare alpine tree species in the Salix genus. Unfortunately, no extensive germplasm identification, molecular phylogeny, and chloroplast genomics of this plant have been conducted. We sequenced the chloroplast (cp) genome of S. floderusii for the first time using second-generation sequencing technology. The cp genome was 155,540 bp long, including a large single-copy region (LSC, 84,401 bp), a small single-copy region (SSC, 16,221 bp), and inverted repeat regions (IR, 54,918 bp). A total of 131 genes were identified, including 86 protein genes, 37 tRNA genes, and 8 rRNA genes. The S. floderusii cp genome contains 1 complement repeat, 24 forward repeats, 17 palindromic repeats, and 7 reverse repeats. Analysis of the IR borders showed that the IRa and IRb regions of S. floderusii and Salix caprea were shorter than those of Salix cinerea, which may affect plastome evolution. Furthermore, four highly variable regions were found, including the rpl22 coding region, psbM/trnD-GUC non-coding region, petA/psbJ non-coding region, and ycf1 coding region. These high variable regions can be used as candidate molecular markers and as a reference for identifying future Salix species. In addition, phylogenetic analysis indicated that the cp genome of S. floderusii is sister to Salix cupularis and belongs to the Subgenus Vetrix. Genes (Sf-trnI, Sf-PpsbA, aadA, Sf-TpsbA, Sf-trnA) obtained via cloning were inserted into the pBluescript II SK (+) to yield the cp expression vectors, which harbored the selectable marker gene aadA. The results of a spectinomycin resistance test indicated that the cp expression vector had been successfully constructed. Moreover, the aadA gene was efficiently expressed under the regulation of predicted regulatory elements. The present study provides a solid foundation for establishing subsequent S. floderusii cp transformation systems and developing strategies for the genetic improvement of S. floderusii.
Collapse
Affiliation(s)
- Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Meiqi Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Houliang Zhang
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Yunwei Liu
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Qifeng Fu
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
410
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haimei Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wanqi Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qiaoqiao Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
411
|
Complete Chloroplast Genome Features of Dendrocalamusfarinosus and Its Comparison and Evolutionary Analysis with Other Bambusoideae Species. Genes (Basel) 2022; 13:genes13091519. [PMID: 36140690 PMCID: PMC9498922 DOI: 10.3390/genes13091519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrocalamus farinosus is one of the essential bamboo species mainly used for food and timber in the southwestern region of China. In this study, the complete chloroplast (cp) genome of D. farinosus is sequenced, assembled, and the phylogenetic relationship analyzed. The cp genome has a circular and quadripartite structure, has a total length of 139,499 bp and contains 132 genes: 89 protein-coding genes, eight rRNAs and 35 tRNAs. The repeat analyses showed that three types of repeats (palindromic, forward and reverse) are present in the genome. A total of 51 simple sequence repeats are identified in the cp genome. The comparative analysis between different species belonging to Dendrocalamus revealed that although the cp genomes are conserved, many differences exist between the genomes. The analysis shows that the non-coding regions were more divergent than the coding regions, and the inverted repeat regions are more conserved than the single-copy regions. Moreover, these results also indicate that rpoC2 may be used to distinguish between different bamboo species. Phylogenetic analysis results supported that D. farinosus was closely related to D. latiflorus. Furthermore, these bamboo species’ geographical distribution and rhizome types indicate two evolutionary pathways: one is from the tropics to the alpine zone, and the other is from the tropics to the warm temperate zone. Our study will be helpful in the determination of the cp genome sequences of D. farinosus, and provides new molecular data to understand the Bambusoideae evolution.
Collapse
|
412
|
Fu LF, Xiong C, Monro AK, Fan Q, Chen ZX, Wen F, Xin ZB, Wei YG, Liao WB. Pileadanxiaensis (Urticaceae), a new species in the Danxia landform from Guangdong, China including a description of the entire chloroplast genome. PHYTOKEYS 2022; 204:109-119. [PMID: 36760615 PMCID: PMC9848946 DOI: 10.3897/phytokeys.204.86857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Pileadanxiaensis L.F.Fu, A.K.Monro & Y.G.Wei, a new species of Urticaceae from Danxia landform, Guangdong, China, is described and photographed. Phylogenetic analyses based on three DNA regions (ITS, trnL-F and rbcL) suggest that the new species belongs to P.sect.Pilea. Within the section, the new species is morphologically most similar to P.sinocrassifolia and P.peploides. Plastid genome and ribosomal DNA (rDNA) sequences of the new species are assembled and annotated. The plastid genome is 151,857 bp in length and comprises two inverted repeats (IRs) of 25,307 bp separated by a large single-copy of 82,836 bp and a small single-copy of 18,407 bp. A total of 113 functional genes are recovered, comprising 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. A global conservation assessment suggests that P.danxiaensis should be classified as of Least Concern (LC).
Collapse
Affiliation(s)
- Long-Fei Fu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
| | - Chi Xiong
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
| | - Alexandre K. Monro
- The Royal Botanic Gardens, Kew, Identification & Naming Department, Richmond, Surrey TW9 3AE, UK
| | - Qiang Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zai-Xiong Chen
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Wen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
| | - Zi-Bing Xin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
| | - Yi-Gang Wei
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
| | - Wen-Bo Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
413
|
Yue J, Lu Q, Ni Y, Chen P, Liu C. Comparative analysis of the plastid and mitochondrial genomes of Artemisia giraldii Pamp. Sci Rep 2022; 12:13931. [PMID: 35978085 PMCID: PMC9385723 DOI: 10.1038/s41598-022-18387-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
Artemisia giraldii Pamp. is an herbaceous plant distributed only in some areas in China. To understand the evolutionary relationship between plastid and mitochondria in A. giraldii, we sequenced and analysed the plastome and mitogenome of A. giraldii on the basis of Illumina and Nanopore DNA sequencing data. The mitogenome was 194,298 bp long, and the plastome was 151,072 bp long. The mitogenome encoded 56 genes, and the overall GC content was 45.66%. Phylogenetic analysis of the two organelle genomes revealed that A. giraldii is located in the same branching position. We found 13 pairs of homologous sequences between the plastome and mitogenome, and only one of them might have transferred from the plastid to the mitochondria. Gene selection pressure analysis in the mitogenome showed that ccmFc, nad1, nad6, atp9, atp1 and rps12 may undergo positive selection. According to the 18 available plastome sequences, we found 17 variant sites in two hypervariable regions that can be used in completely distinguishing 18 Artemisia species. The most interesting discovery was that the mitogenome of A. giraldii was only 43,226 bp larger than the plastome. To the best of our knowledge, this study represented one of the smallest differences between all sequenced mitogenomes and plastomes from vascular plants. The above results can provide a reference for future taxonomic and molecular evolution studies of Asteraceae species.
Collapse
Affiliation(s)
- Jingwen Yue
- grid.256111.00000 0004 1760 2876Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shangxiadian Road, Fuzhou, 350002 Fujian People’s Republic of China ,grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Qianqi Lu
- grid.256111.00000 0004 1760 2876Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shangxiadian Road, Fuzhou, 350002 Fujian People’s Republic of China
| | - Yang Ni
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Pinghua Chen
- grid.256111.00000 0004 1760 2876Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shangxiadian Road, Fuzhou, 350002 Fujian People’s Republic of China
| | - Chang Liu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 People’s Republic of China
| |
Collapse
|
414
|
Ni Y, Li J, Chen H, Yue J, Chen P, Liu C. Comparative analysis of the chloroplast and mitochondrial genomes of Saposhnikovia divaricata revealed the possible transfer of plastome repeat regions into the mitogenome. BMC Genomics 2022; 23:570. [PMID: 35945507 PMCID: PMC9364500 DOI: 10.1186/s12864-022-08821-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Saposhnikovia divaricata (Turcz.) Schischk. is a perennial herb whose dried roots are commonly used as a source of traditional medicines. To elucidate the organelle-genome-based phylogeny of Saposhnikovia species and the transfer of DNA between organelle genomes, we sequenced and characterised the mitochondrial genome (mitogenome) of S. divaricata. Results The mitogenome of S. divaricata is a circular molecule of 293,897 bp. The nucleotide composition of the mitogenome is as follows: A, 27.73%; T, 27.03%; C, 22.39%; and G, 22.85. The entire gene content is 45.24%. A total of 31 protein-coding genes, 20 tRNAs and 4 rRNAs, including one pseudogene (rpl16), were annotated in the mitogenome. Phylogenetic analysis of the organelle genomes from S. divaricata and 10 related species produced congruent phylogenetic trees. Selection pressure analysis revealed that most of the mitochondrial genes of related species are highly conserved. Moreover, 2 and 46 RNA-editing sites were found in the chloroplast genome (cpgenome) and mitogenome protein-coding regions, respectively. Finally, a comparison of the cpgenome and the mitogenome assembled from the same dataset revealed 10 mitochondrial DNA fragments with sequences similar to those in the repeat regions of the cpgenome, suggesting that the repeat regions might be transferred into the mitogenome. Conclusions In this study, we assembled and annotated the mitogenome of S. divaricata. This study provides valuable information on the taxonomic classification and molecular evolution of members of the family Apiaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08821-0.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Jingwen Yue
- College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shang Xiadian Road, Fuzhou, Fujian Province, 350002, P. R. China
| | - Pinghua Chen
- College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shang Xiadian Road, Fuzhou, Fujian Province, 350002, P. R. China.
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China.
| |
Collapse
|
415
|
Dong X, Mkala EM, Mutinda ES, Yang JX, Wanga VO, Oulo MA, Onjolo VO, Hu GW, Wang QF. Taxonomy, comparative genomics of Mullein (Verbascum, Scrophulariaceae), with implications for the evolution of Verbascum and Lamiales. BMC Genomics 2022; 23:566. [PMID: 35941527 PMCID: PMC9358837 DOI: 10.1186/s12864-022-08799-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/28/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The genus Verbascum L. (Scrophulariaceae) is distributed in Africa, Europe, and parts of Asia, with the Mediterranean having the most species variety. Several researchers have already worked on the phylogenetic and taxonomic analysis of Verbascum by using ITS data and chloroplast genome fragments and have produced different conclusions. The taxonomy and phylogenetic relationships of this genus are unclear. RESULTS The complete plastomes (cp) lengths for V. chaixii, V. songaricum, V. phoeniceum, V. blattaria, V. sinaiticum, V. thapsus, and V. brevipedicellatum ranged from 153,014 to 153,481 bp. The cp coded 114 unique genes comprising of 80 protein-coding genes, four ribosomal RNA (rRNA), and 30 tRNA genes. We detected variations in the repeat structures, gene expansion on the inverted repeat, and single copy (IR/SC) boundary regions. The substitution rate analysis indicated that some genes were under purifying selection pressure. Phylogenetic analysis supported the sister relationship of (Lentibulariaceae + Acanthaceae + Bignoniaceae + Verbenaceae + Pedaliaceae) and (Lamiaceae + Phyrymaceae + Orobanchaceae + Paulowniaceae + Mazaceae) in Lamiales. Within Scrophulariaceae, Verbascum was sister to Scrophularia, while Buddleja formed a monophyletic clade from (Scrophularia + Verbascum) with high bootstrap support values. The relationship of the nine species within Verbascum was highly supported. CONCLUSION Based on the phylogenetic results, we proposed to reinstate the species status of V. brevipedicellatum (Engl.) Hub.-Mor. Additionally, three genera (Mazus, Lancea, and Dodartia) placed in the Phyrymaceae family formed a separate clade within Lamiaceae. The classification of the three genera was supported by previous studies. Thus, the current study also suggests the circumscription of these genera as documented previously to be reinstated. The divergence time of Lamiales was approximated to be 86.28 million years ago (Ma) (95% highest posterior density (HPD), 85.12-89.91 Ma). The complete plastomes sequence data of the Verbascum species will be important for understanding the Verbascum phylogenetic relationships and evolution in order Lamiales.
Collapse
Affiliation(s)
- Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China.,East African Herbarium, National Museums of Kenya, P.O Box 451660-0100, Nairobi, Kenya
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Victor Omondi Onjolo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China. .,University of Chinese Academy of Sciences, Beijing, CN-100049, China.
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| |
Collapse
|
416
|
Shi X, Xu W, Wan M, Sun Q, Chen Q, Zhao C, Sun K, Shu Y. Comparative analysis of chloroplast genomes of three medicinal Carpesium species: Genome structures and phylogenetic relationships. PLoS One 2022; 17:e0272563. [PMID: 35930571 PMCID: PMC9355210 DOI: 10.1371/journal.pone.0272563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Carpesium (Asteraceae) is a genus that contains many plant species with important medicinal values. However, the lack of chloroplast genome research of this genus has greatly hindered the study of its molecular evolution and phylogenetic relationship. This study used the Illumina sequencing platform to sequence three medicinal plants of the Carpesium genus: Carpesium abrotanoides, Carpesium cernuum, and Carpesium faberi, obtaining three complete chloroplast genome sequences after assembly and annotation. It was revealed that the three chloroplast genomes were typical quadripartite structures with lengths of 151,389 bp (C. abrotanoides), 151,278 bp (C. cernuum), and 151,250 bp (C. faberi), respectively. A total of 114 different genes were annotated, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Abundant SSR loci were detected in all three chloroplast genomes, with most composed of A/T. The expansion and contraction of the IR region indicate that the boundary regions of IR/SC are relatively conserved for the three species. Using C. abrotanoides as a reference, most of the non-coding regions of the chloroplast genomes were significantly different among the three species. Five different mutation hot spots (trnC-GCA-petN, psaI, petA-psbJ, ndhF, ycf1) with high nucleotide variability (Pi) can serve as potential DNA barcodes of Carpesium species. Additionally, phylogenetic evolution analysis of the three species suggests that C. cernuum has a closer genetic relationship to C. faberi than C. abrotanoides. Simultaneously, Carpesium is a monophyletic group closely related to the genus Inula. Complete chloroplast genomes of Carpesium species can help study the evolutionary and phylogenetic relationships and are expected to provide genetic marker assistance to identify Carpesium species.
Collapse
Affiliation(s)
- Xingyu Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenfen Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- * E-mail: (WX); (MW)
| | - Mingxiang Wan
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- * E-mail: (WX); (MW)
| | - Qingwen Sun
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiyu Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chao Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kaifen Sun
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanxia Shu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
417
|
Xu X, Li X, Wang D. New Insights Into the Backbone Phylogeny and Character Evolution of Corydalis (Papaveraceae) Based on Plastome Data. FRONTIERS IN PLANT SCIENCE 2022; 13:926574. [PMID: 35991421 PMCID: PMC9389321 DOI: 10.3389/fpls.2022.926574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/27/2023]
Abstract
A robust backbone phylogeny is fundamental for developing a stable classification and is instructive for further research. However, it was still not available for Corydalis DC., a species-rich (> 500 species), ecologically and medically important, but taxonomically notoriously difficult genus. Here, we constructed backbone phylogeny and estimated the divergence of Corydalis based on the plastome data from 39 Corydalis species (32 newly sequenced), which represent ca. 80% of sections and series across this genus. Our phylogenetic analyses recovered six fully supported main clades (I-VI) and provided full support for the majority of lineages within Corydalis. Section Archaeocapnos was unexpectedly turned out to be sister to the rest of the subg. Corydalis s. l. (clades IV-VI), thus treating as a distinct clade (clade III) to render all the main clades monophyletic. Additionally, some unusual plastome structural rearrangements were constantly detected within Corydalis and were proven to be lineage-specific in this study, which, in turn, provided further support to our phylogeny. A segment containing five genes (trnV-UAC-rbcL) in the plastome's LSC region was either normally located downstream of the ndhC gene in clade I species or translocated downstream of the atpH gene in clade II species or translocated to downstream of the trnK-UUU gene in clade III-VI species. The unique large inversion (ca. 50 kb) in the plastome LSC region of clade III species, representing an intermediate stage of the above translocation in clades IV-VI, firmly supported clade III as a distinct and early diverged clade within this large lineage (clades III-VI). Our phylogeny contradicted substantially with the morphology-based taxonomy, rejected the treatment of tuberous species as an independent evolutionary group, and proved that some commonly used diagnostic characters (e.g., root and rhizome) were results of convergent evolution, suggestive of unreliability in Corydalis. We dated the origin of crown Corydalis to the early Eocene (crown age 49.08 Ma) and revealed possible explosive radiation around 25 Ma, coinciding with the drastic uplift of the Qinghai-Tibetan Plateau in Oligocene and Miocene. This study provided the most reliable and robust backbone phylogeny of Corydalis to date and shed some new insights on the evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuexiu Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Wuhan, China
- Bio-Resources key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
418
|
Xu B, Tan S, Qin X, Huang X, Xi J, Chen H, Qin J, Chen T, Yi K. The complete chloroplast genome of Agave amaniensis (Asparagales: Asparagaceae: Agavoideae). Mitochondrial DNA B Resour 2022; 7:1519-1521. [PMID: 36034534 PMCID: PMC9415635 DOI: 10.1080/23802359.2022.2109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Bochao Xu
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Shibei Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xu Qin
- Guangxi Subtropical Crops Research Institute, Nanning, PR China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Helong Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Jianfeng Qin
- Guangxi Subtropical Crops Research Institute, Nanning, PR China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, PR China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management on Tropical Crops, Haikou, PR China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, PR China
| |
Collapse
|
419
|
Xiao Y, Qu YY, Hao CH, Tang L, Zhang JL. The complete chloroplast genome of Bauhinia racemosa Lam. (Fabaceae): a versatile tropical medicinal plant. Mitochondrial DNA B Resour 2022; 7:1528-1530. [PMID: 36034532 PMCID: PMC9415444 DOI: 10.1080/23802359.2022.2110010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bauhinia racemosa Lam. (1783), a versatile medicinal plant, belongs to the family Fabaceae (subfamily Cercidoideae). In this study, we analyzed the complete chloroplast genome to facilitate its use in genetic research. The complete chloroplast genome of B. racemosa was found to be 155,501 bp long, including two inverted repeat (IR) regions of 25,446 bp, which are separated by a small single-copy (SSC) region of 18,295 bp and a large single-copy (LSC) region of 86,314 bp. The overall GC content is 36.4%. The genome of B. racemosa contains 129 genes, including 83 protein-coding genes, 37 tRNAs, 8 rRNAs, and 1 pseudogene (rps19). Phylogenetic analysis suggests that B. racemosa forms a monophyletic clade with the other four Bauhinia species (B. brachycarpa, B. purpurea, B. blakeana and B. variegata var. variegata).
Collapse
Affiliation(s)
- Yan Xiao
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex, UK
| | - Ya-Ya Qu
- State Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Chun-Hui Hao
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Lu Tang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jiao-Lin Zhang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
420
|
Li Z, Zhou N, Liu M, Yin F. Complete chloroplast genome sequence and phylogenetic analysis of Mallotus paniculatus (Lam.) Müll. Arg. ( Euphorbiaceae). Mitochondrial DNA B Resour 2022; 7:1445-1447. [PMID: 35965647 PMCID: PMC9364701 DOI: 10.1080/23802359.2022.2107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mallotus paniculatus (Lam.) Müll. Arg. 1865 (Euphorbiaceae) is a shrub or small tree with medicinal properties that is distributed across Southeast Asia. In this study, we sequenced the complete chloroplast genome of M. paniculatus to study phylogenetic relationships within the family Euphorbiaceae Juss. The complete chloroplast genome of M. paniculatus was 164,455 bp in length, with an overall GC content of 35.3%. It was found to consist of a long single copy region of 89,021 bp, a small single copy region of 18,524 bp, and a pair of inverted repeats of 28,455 bp. Results indicated that the chloroplast genome contains a total of 131 genes, including 78 protein-coding genes, 37 tRNA genes, eight rRNA genes, and eight pseudogenes. The phylogenetic tree showed that M. paniculatus is closely related to Mallotus japonicus and Mallotus peltatus.
Collapse
Affiliation(s)
- Zhuowei Li
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Nong Zhou
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ming Liu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Fuqiang Yin
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
421
|
Wang ZF, Yang XC, Zheng MX, Zhou Q. The complete chloroplast genome of Prunus campanulata ‘Fugui’ (Rosaceae). Mitochondrial DNA B Resour 2022; 7:1534-1535. [PMID: 36046108 PMCID: PMC9423843 DOI: 10.1080/23802359.2022.2106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prunus campanulata ‘Fugui’ is newly bred cultivar. Here, we report its complete chloroplast genome. The length of the P. campanulata ‘Fugui’ chloroplast genome is 157,948 bp, with a large single-copy region of 85,948 bp, a small single-copy region of 19,128 bp and a pair of inverted repeat regions of 26,436 bp each. The genome contains 90 protein-coding genes, 65 transfer RNA genes and 9 ribosomal RNA genes. In addition, the genome contains 67 simple sequence repeats. Phylogenetic analysis revealed that P. campanulata ‘Fugui’ is genetically related to previously reported P. campanulata.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Cheng Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming-Xuan Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
422
|
Buitrago Acosta MC, Montúfar R, Guyot R, Mariac C, Tranbarger TJ, Restrepo S, Couvreur TLP. Bactris gasipaes Kunth var. gasipaes complete plastome and phylogenetic analysis. Mitochondrial DNA B Resour 2022; 7:1540-1544. [PMID: 36046105 PMCID: PMC9423826 DOI: 10.1080/23802359.2022.2109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bactris gasipaes var. gasipaes (Arecaceae, Palmae) is an economically and socially important plant species for populations across tropical South and Central America. It has been domesticated from its wild variety, B. gasipaes var. chichagui, since pre-Columbian times. In this study, we sequenced the plastome of the cultivated variety, B. gasipaes Kunth var. gasipaes and compared it with the published plastome of the wild variety. The chloroplast sequence obtained was 156,580 bp. The cultivated chloroplast sequence was conserved compared to the wild type sequence with 99.8% of nucleotide identity. We did, however, identify multiple Single Nucleotide Variants (SNVs), insertions, microsatellites and a resolved region of missing nucleotides. A SNV in one of the core barcode markers (matK) was detected between the wild and cultivated accessions. Phylogenetic analysis was carried out across the Arecaceae family and compared to previous reports, resulting in an identical topology. This study is a step forward in understanding the genome evolution of this species.
Collapse
Affiliation(s)
| | - Rommel Montúfar
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Romain Guyot
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Cedric Mariac
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia
| | - Thomas L. P. Couvreur
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
423
|
Bai X, Zheng H, Huang X, Li J, Guo T, Luo Q, Zhang Z, Wu W, Yi K. The complete chloroplast genome of Coffea liberica (Gentianales: Rubiaceae). Mitochondrial DNA B Resour 2022; 7:1454-1456. [PMID: 35965645 PMCID: PMC9364704 DOI: 10.1080/23802359.2022.2107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Coffee is one of the most popular beverages around the world. As one of the best-known coffee species, Liberian coffee (Coffea liberica Bull ex Hiern 1876) has a high resistance to leaf rust, a devasting disease caused by Hemileia vastatrix. However, there are few reports on the systematic position and phylogenetic relationship of C. liberica at the chloroplast (cp) genome level. Thus, we successfully assembled its cp genome. The full length is 154,799 bp with a GC content of 37.48%. We have further annotated the cp genome and predicted 85 protein-coding genes together with 8 rRNAs and 37 tRNAs. Furthermore, a large single copy region (LSC), a small single copy region (SSC), an inverted repeat region a (IRa) and an inverted repeat region b (IRb) are identified with lengths of 84,868 bp, 18,121 bp, 25,905 bp and 25,905 bp, respectively. The phylogenetic tree indicates that C. liberica is closely related to C. canephora, which is consistent with a previous result obtained from genotyping‐by‐sequencing.
Collapse
Affiliation(s)
- Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Hongyu Zheng
- China State Farms Economic Development Center, Beijing, PR China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Qin Luo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhirun Zhang
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, PR China
| |
Collapse
|
424
|
Bai X, Peng J, Xiong B. Complete chloroplast genome sequence of a subtropical tree, Actinodaphne cupularis (Lauraceae). Mitochondrial DNA B Resour 2022; 7:1555-1556. [PMID: 36046109 PMCID: PMC9423842 DOI: 10.1080/23802359.2022.2111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Actinodaphne cupularis is a multi-purpose tree that grows in central or southwest China and is one of the primary source plants for making Hawk tea. In this study, we firstly assembled and characterized the complete chloroplast (cp) genome of A. cupularis using Illumina pair-end sequencing. The results revealed that the total length of the cp genome was 152,748 bp with 39% of the guanine-cytosine content, including a pair of 20,066 bp reverse repeat regions, a large single-copy region with 93,788 bp, and a small single-copy region with 18,828 bp. One hundred twenty-four genes were identified, including eight rRNA genes, 36 tRNA genes, and 80 protein-coding genes. In addition, the maximum likelihood phylogenetic tree was constructed between the cp genome of A. cupularis and its related species. The results suggested that A. cupularis was more closely related to Actinodaphne obovate and then formed a sister clade with the Machilus genus. This study not only analyzed the cp genome characteristic information of A. cupularis but also provided a specific basis and foundation for future research.
Collapse
Affiliation(s)
- Xue Bai
- College of Tea Science, Guizhou University, Guiyang, China
| | - Juan Peng
- College of Tea Science, Guizhou University, Guiyang, China
| | - Biao Xiong
- College of Tea Science, Guizhou University, Guiyang, China
| |
Collapse
|
425
|
Wan D, Bao H, Danzeng Q, Guo X, Li Q. Chloroplast genome of Corydalis impatiens (Pall.) Fisch. ex DC. (Papaveraceae), a Tibetan medical herb. Mitochondrial DNA B Resour 2022; 7:1413-1415. [PMID: 35937907 PMCID: PMC9347461 DOI: 10.1080/23802359.2022.2104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Corydalis impatiens (Pall.) Fisch. 1821. (Papaveraceae) is a Tibetan medical herb used to reduce pain, treat skin injuries, cure hepatitis, and benefit the circulatory system. In the current study, the chloroplast genome of C. impatiens was sequenced. This complete genome is a circular 197,317 bp sequence consisting of a small single-copy (SSC, 3105 bp) region, a large single-copy (LSC, 89,790 bp) region, and a pair of inverted repeats (IRs, 52,211 bp). This chloroplast genome encodes a total of 127 functional genes, including 81 protein-coding, 38 transfer RNA, and eight ribosomal RNA genes. Furthermore, this chloroplast genome contains six pseudogenes, including a pair of ndhB a pair of ndhD, one ndhC, and one ndhK. The phylogenetic relationship within the genus Corydalis was inferred with the maximum-likelihood method, and the result showed that C. impatiens was most closely related to C. conspersa.
Collapse
Affiliation(s)
- Digao Wan
- Tibetan Medicine Research Center, Tibetan Medical College, Qinghai University, Xining, People’s Republic of China
| | - Haijuan Bao
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining, People’s Republic of China
| | - Qupei Danzeng
- University Tibetan Medicine, Lhasa, People’s Republic of China
| | - Xiao Guo
- Tibetan Medicine Research Center, Tibetan Medical College, Qinghai University, Xining, People’s Republic of China
| | - Qien Li
- Tibetan Medicine Research Center, Tibetan Medical College, Qinghai University, Xining, People’s Republic of China
| |
Collapse
|
426
|
Zhang L, Zhang Y, Jia Y, Ding F, Wang F, Yu G, Wu Y. Characterization of the complete chloroplast genome of Clematoclethra scandens subsp. actinidioides (Actinidiaceae). Mitochondrial DNA B Resour 2022; 7:1548-1549. [PMID: 36081829 PMCID: PMC9448431 DOI: 10.1080/23802359.2022.2110532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clematoclethra scandens subsp. actinidioides (Actinidiaceae) is an endemic medicinal species in China. Here, we first sequenced and characterized the complete chloroplast genome of C. scandens subsp. actinidioides. The chloroplast genome was 159,341 bp in length, containing a large single-copy of 88,351 bp and a small single-copy of 21,580 bp separated by a pair of identical inverted repeat regions of 24,705 bp each. A total of 131 genes were identified, including 84 protein-coding genes, 39 tRNA, and eight rRNA genes. The phylogenetic analysis of C. scandens subsp. actinidioides showed a relatively close relationship with Clematoclethra scandens subsp. hemsleyi.
Collapse
Affiliation(s)
- Lei Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| | - Ying Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| | - Yun Jia
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| | - Fangbing Ding
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| | - Fengwei Wang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| | - Gang Yu
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| | - Yongpeng Wu
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| |
Collapse
|
427
|
Luo Y, Wang R, Li Q, Liu J, Deng Z. The complete chloroplast genome sequence of Nekemias cantoniensis (Hook. et Arn.) Planch 1873 (Vitaceae). Mitochondrial DNA B Resour 2022; 7:1536-1539. [PMID: 36051367 PMCID: PMC9427045 DOI: 10.1080/23802359.2022.2109436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, PR China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi, PR China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture (Hubei Minzu University), Enshi, PR China
| | - Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, PR China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi, PR China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture (Hubei Minzu University), Enshi, PR China
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, PR China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi, PR China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture (Hubei Minzu University), Enshi, PR China
| |
Collapse
|
428
|
Javaid N, Ramzan M, Khan IA, Alahmadi TA, Datta R, Fahad S, Danish S. The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae. BMC PLANT BIOLOGY 2022; 22:384. [PMID: 35918648 PMCID: PMC9344719 DOI: 10.1186/s12870-022-03750-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Musarrat Ramzan
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270 Pakistan
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461 Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Haripur, 22620 Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Punjab Pakistan
| |
Collapse
|
429
|
Yue J, Ni Y, Jiang M, Chen H, Chen P, Liu C. Characterization of Codonopsis pilosula subsp. tangshen plastome and comparative analysis of Codonopsis species. PLoS One 2022; 17:e0271813. [PMID: 35913971 PMCID: PMC9342729 DOI: 10.1371/journal.pone.0271813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Codonopsis pilosula subsp. tangshen is one of the most important medicinal herbs used in traditional Chinese medicine. Correct identification of materials from C. pilosula subsp. tangshen is critical to ensure the efficacy and safety of the associated medicines. Traditional DNA molecular markers could distinguish Codonopsis species well, so we need to develop super or specific molecular markers. In this study, we reported the plastome of Codonopsis pilosula subsp. tangshen (Oliv.) D.Y. Hong conducted phylogenomic and comparative analyses in the Codonopsis genus for the first time. The entire length of the Codonopsis pilosula subsp. tangshen plastome was 170,672 bp. There were 108 genes in the plastome, including 76 protein-coding genes, 28 transfer RNA (tRNA), and four ribosomal RNA (rRNA) genes. Comparative analysis indicated that Codonopsis pilosula subsp. tangshen had an unusual large inversion in the large single-copy (LSC) region compared with the other three Codonopsis species. And there were two dispersed repeat sequences at both ends of the inverted regions, which might mediate the generation of this inversion. We found five hypervariable regions among the four Codonopsis species. PCR amplification and Sanger sequencing experiments demonstrated that two hypervariable regions could distinguish three medicinal Codonopsis species. Results obtained from this study will support taxonomic classification, discrimination, and molecular evolutionary studies of Codonopsis species.
Collapse
Affiliation(s)
- Jingwen Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China
| | - Yang Ni
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Pinghua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China
- * E-mail: (PHC); (CL)
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
- * E-mail: (PHC); (CL)
| |
Collapse
|
430
|
Liu L, Zhang Y, Tumi L, Suni ML, Arakaki M, Burgess KS, Ge X. Genetic markers in Andean Puya species (Bromeliaceae) with implications on plastome evolution and phylogeny. Ecol Evol 2022; 12:e9159. [PMID: 35919393 PMCID: PMC9336176 DOI: 10.1002/ece3.9159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
The Andean plant endemic Puya is a striking example of recent and rapid diversification from central Chile to the northern Andes, tracking mountain uplift. This study generated 12 complete plastomes representing nine Puya species and compared them to five published plastomes for their features, genomic evolution, and phylogeny. The total size of the Puya plastomes ranged from 159,542 to 159,839 bp with 37.3%-37.4% GC content. The Puya plastomes were highly conserved in organization and structure with a typical quadripartite genome structure. Each of the 17 consensus plastomes harbored 133 genes, including 87 protein-coding genes, 38 tRNA (transfer RNA) genes, and eight rRNA (ribosomal RNA) genes; we found 69-78 tandem repeats, 45-60 SSRs (simple sequence repeats), and 8-22 repeat structures among 13 species. Four protein-coding genes were identified under positive site-specific selection in Puya. The complete plastomes and hypervariable regions collectively provided pronounced species discrimination in Puya and a practical tool for future phylogenetic studies. The reconstructed phylogeny and estimated divergence time for the lineage suggest that the diversification of Puya is related to Andean orogeny and Pleistocene climatic oscillations. This study provides plastome resources for species delimitation and novel phylogenetic and biogeographic studies.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu‐Qu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- College of PharmacyShaanxi University of Chinese MedicineXi'anChina
| | - Liscely Tumi
- Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Mery L. Suni
- Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Mónica Arakaki
- Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Kevin S. Burgess
- Department of Biology, Columbus State UniversityUniversity System of GeorgiaColumbusGeorgiaUSA
| | - Xue‐Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Center of Conservation Biology, Core Botanical GardensChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
431
|
Comparative analysis of complete chloroplast genome sequences of five endangered species and new insights into phylogenetic relationships of Paris. Gene 2022; 833:146572. [PMID: 35609799 DOI: 10.1016/j.gene.2022.146572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Paris L. genus has been a precious traditional herb for more than 2000 years in China. However, due to overexploitation and habitat destruction, Paris is threatened by extinction. Similar morphological features cause the classification of Paris species in dispute. The chloroplast (cp) genome approach has been used to investigate the evolution of Paris. However, some studies confirm that the cp genome may result in misleading relationships because of the length variation, gaps/indels deletion, and incorrect models of sequence evolution in concatenated datasets. Therefore, there is a high demand for a reconstructed phylogenetic relationship and developed genetic markers to conserve these species. Recent studies have demonstrated that the protein-coding genes could provide a better phylogenetic relationship in the phylogenetic investigation. In this study, the complete cp genomes of five species were characterized, and the length of five cp genomes ranges from 162,927 bp to 165,267 bp, covering 89 protein-coding genes, 38 tRNA, and eight rRNA. The analysis of the repeat sequences, codon usage, RNA-editing sites, and comparison of cp genomes shared a high degree of conservation. Based on the protein-coding genes, the phylogenetic tree confirmed Paris's position in the order Melanthiaceae, providing maximum support for a sister relationship of the subgenera Paris sensu strict (Paris s.s.) with the Daiswa and Trillium. In addition, the molecular clock showed that subgenus Paris was inferred to have occurred at about 52.81 Mya, whereas subgenus Daiswa has originated at 24.56 Mya, which was consistent with the phylogenetic investigation. This study provided a valuable insight into the evolutionary dynamics of cp genome structure in the family Melanthiaceae, and it also contributes to the bioprospecting and conservation of Paris species.
Collapse
|
432
|
Complex Physical Structure of Complete Mitochondrial Genome of Quercus acutissima (Fagaceae): A Significant Energy Plant. Genes (Basel) 2022; 13:genes13081321. [PMID: 35893058 PMCID: PMC9331829 DOI: 10.3390/genes13081321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Quercus acutissima Carruth. is a Chinese important energy plant with high ecological and economic values. While the species chloroplast genome has been reported, its mitochondrial genome (mitogenome) is still unexplored. Here, we assembled and annotated the Q. acutissima mitogenome, and we compared its characteristic differences with several closely related species. The Q. acutissima mitogenome’s main structure is branched with three distinguished contigs (linear molecule 1, circular molecule 2, and circular molecule 3) with 448,982 bp total length and 45.72% GC content. The mitogenome contained 51 genes, including 32 protein-coding, 16 tRNA and 3 rRNA genes. We examined codon usage, repeated sequences, genome recombination, chloroplast to mitochondrion DNA transformation, RNA editing, and synteny in the Q. acutissima mitogenome. Phylogenetic trees based on 29 species mitogenomes clarified the species classification. Our results provided comprehensive information of Q. acutissima mitogenome, and they are expected to provide valuable information for Fagaceae evolutionary biology and to promote the species germplasm utilization.
Collapse
|
433
|
Ren W, Liu C, Yan S, Jiang Z, Wang T, Wang Z, Zhang M, Liu M, Sun J, Gao J, Ma W. Structural Characterization of the Acer ukurunduense Chloroplast Genome Relative to Related Species in the Acer Genus. Front Genet 2022; 13:849182. [PMID: 35910210 PMCID: PMC9329572 DOI: 10.3389/fgene.2022.849182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Acer ukurunduense refers to a deciduous tree distributed in Northeast Asia and is a widely used landscaping tree species. Although several studies have been conducted on the species’ ecological and economic significance, limited information is available on its phylo-genomics. Our study newly constitutes the complete chloroplast genome of A. ukurunduense into a 156,645-bp circular DNA, which displayed a typical quadripartite structure. In addition, 133 genes were identified, containing 88 protein-coding genes, 37 tRNA genes, and eight rRNA genes. In total, 107 simple sequence repeats and 49 repetitive sequences were observed. Thirty-two codons indicated that biased usages were estimated across 20 protein-coding genes (CDS) in A. ukurunduense. Four hotspot regions (trnK-UUU/rps16, ndhF/rpl32, rpl32/trnL-UAG, and ycf1) were detected among the five analyzed Acer species. Those hotspot regions may be useful molecular markers and contribute to future population genetics studies. The phylogenetic analysis demonstrated that A. ukurunduense is most closely associated with the species of Sect. Palmata. A. ukurunduense and A. pubipetiolatum var. pingpienense diverged in 22.11 Mya. We selected one of the hypervariable regions (trnK-UUU/rps16) to develop a new molecular marker and designed primers and confirmed that the molecular markers could accurately discriminate five Acer species through Sanger sequencing. By sequencing the cp genome of A. ukurunduense and comparing it with the relative species of Acer, we can effectively address the phylogenetic problems of Acer at the species level and provide insights into future research on population genetics and genetic diversity.
Collapse
Affiliation(s)
- Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chi Liu
- Faculty of Electrical Engineering and Information Technology, Technical University of Chemnitz, Chemnitz, Germany
| | - Song Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Tianhao Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhen Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaying Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhui Gao
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
- *Correspondence: Jinhui Gao, ; Wei Ma,
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Jinhui Gao, ; Wei Ma,
| |
Collapse
|
434
|
Comparative Analysis of Chloroplast Genome in Saccharum spp. and Related Members of ‘Saccharum Complex’. Int J Mol Sci 2022; 23:ijms23147661. [PMID: 35887005 PMCID: PMC9315705 DOI: 10.3390/ijms23147661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the ‘Saccharum Complex’, and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.
Collapse
|
435
|
Wang Y, Sun J, Zhao Z, Xu C, Qiao P, Wang S, Wang M, Xu Z, Yuan Q, Guo L, Huang L. Multiplexed Massively Parallel Sequencing of Plastomes Provides Insights Into the Genetic Diversity, Population Structure, and Phylogeography of Wild and Cultivated Coptis chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:923600. [PMID: 35873994 PMCID: PMC9302112 DOI: 10.3389/fpls.2022.923600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 05/31/2023]
Abstract
Root rot has been a major problem for cultivated populations of Coptis chinensis var. chinensis in recent years. C. chinensis var. brevisepala, the closest wild relative of C. chinensis var. chinensis, has a scattered distribution across southwestern China and is an important wild resource. Genetic diversity is associated with greater evolutionary potential and resilience of species or populations and is important for the breeding and conservation of species. Here, we conducted multiplexed massively parallel sequencing of the plastomes of 227 accessions of wild and cultivated C. chinensis using 111 marker pairs to study patterns of genetic diversity, population structure, and phylogeography among wild and cultivated C. chinensis populations. Wild and cultivated resources diverged approximately 2.83 Mya. The cultivated resources experienced a severe genetic bottleneck and possess highly mixed germplasm. However, high genetic diversity has been retained in the wild resources, and subpopulations in different locations differed in genotype composition. The significant divergence in the genetic diversity of wild and cultivated resources indicates that they require different conservation strategies. Wild resources require in situ conservation strategies aiming to expand population sizes while maintaining levels of genetic diversity; by contrast, germplasm resource nurseries with genotypes of cultivated resources and planned distribution measures are needed for the conservation of cultivated resources to prevent cultivated populations from undergoing severe genetic bottlenecks. The results of this study provide comprehensive insights into the genetic diversity, population structure, and phylogeography of C. chinensis and will facilitate future breeding and conservation efforts.
Collapse
Affiliation(s)
- Yiheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahui Sun
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ping Qiao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengli Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zegang Xu
- Lichuan Jianzhuxi Huanglian Cooperative, Lichuan, China
| | - Qingjun Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
436
|
Darshetkar AM, Patil SS, Pable AA, Nadaf AB, Barvkar VT. Chloroplast genome sequence of Pandanus odorifer (Forssk.) Kuntze: genome features, mutational hotspots and phylogenetic analyses. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
437
|
Zhang R, Wang Q, Yang S, Huang Z, Wang P, Liao Y, Zhao X. Characterization of the complete chloroplast genome of Clematis potaninii (Ranunculaceae), a medicinal and ornamental plant. Mitochondrial DNA B Resour 2022; 7:1273-1274. [PMID: 35859718 PMCID: PMC9291703 DOI: 10.1080/23802359.2022.2097023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clematis potaninii Maxim. is an important medicinal and ornamental plant. The length of C. potaninii chloroplast genome was 159,691 bp, with a large single-copy region of 79,503 bp, a small single-copy region of 18,106 bp, and two inverted repeat regions of 31,041 bp each. The chloroplast genome contains 138 genes including 94 protein-coding, eight rRNA, and 36 tRNA genes. Phylogenetic analysis showed that C. potaninii is closely related to C. alternata.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Qi Wang
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Sha Yang
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Zhuangzhuang Huang
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Ping Wang
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Yufei Liao
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Xueyan Zhao
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, China
| |
Collapse
|
438
|
Wang D, Zeng QY, Han XM. The complete chloroplast genome of Chinese endemic species Abies ferreana (Pinaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2022; 7:1282-1284. [PMID: 35859719 PMCID: PMC9291656 DOI: 10.1080/23802359.2022.2097028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abies ferreana Bordères & Gaussen 1947 is endemic to China, where it is distributed at 3300–4000 meters in the mountains of Southwest Sichuan and Northwest Yunnan. In this study, the complete chloroplast genome of A. ferreana was reconstructed by de novo assembly using whole-genome sequencing data. The complete chloroplast genome of A. ferreana was 120,049 bp in length with a GC content of 37.9%. A total of 113 genes were identified, including 4 rRNA genes, 35 tRNA genes, and 74 protein-coding genes. Among these, 14 genes contain introns. In the phylogenetic tree with 12 other species of Abies, A. ferreana and Abies fanjingshanensis W. L. Huang et al. 1984 were grouped into the same branch, with a bootstrap value of 100%. The complete chloroplast genome of A. ferreana provides potential genetic resources for further Abies evolutionary and genomic studies.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xue-Min Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
439
|
Wang Z, Yang H, Zhang F, Yin Y, Gu C. Complete chloroplast genome sequence of Kosteletzkya pentacarpos. Mitochondrial DNA B Resour 2022; 7:1232-1233. [PMID: 35814175 PMCID: PMC9262370 DOI: 10.1080/23802359.2022.2093665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Kosteletzkya pentacarpos is a promising plant being developed as a salt-tolerant biofuel crop that also the ability to fix heavy metals. Here, high-throughput sequencing technology was used to sequence and assemble the chloroplast genome of K. pentacarpos. The full length of the chloroplast genome is 161,777 bp, comprising a large single-copy region of 90,019 bp, a small single-copy region of 18,978 bp, and a pair of inverted repeats of 26,390 bp. A total of 113 genes were annotated, including 79 protein-coding, 30 transfer RNA, and 4 ribosomal RNA genes. Phylogenetic analysis based on whole chloroplast genome sequences showed that K. pentacarpos has a close relationship with Abelmoschus in Malvaceae. This study increases the available genomic information on K. pentacarpos, and provides a basis for the rational exploitation and utilization of germplasm resources.
Collapse
Affiliation(s)
- Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hong Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
440
|
Li JJ, Qiu Q, Yin FQ, Liu M. Complete chloroplast genome of Zanthoxylum avicennae (Lam.) DC (Rutaceae: Zanthoxylum). Mitochondrial DNA B Resour 2022; 7:1329-1331. [PMID: 35898663 PMCID: PMC9310787 DOI: 10.1080/23802359.2022.2097894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Jin-jin Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Qian Qiu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Fu-qiang Yin
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ming Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
441
|
He ST, Wu JC, Zheng YX, Zhang YP, Li SH, Peng XM. The complete chloroplast genome of the genus Azadirachta. Mitochondrial DNA B Resour 2022; 7:1267-1269. [PMID: 35859717 PMCID: PMC9291716 DOI: 10.1080/23802359.2022.2095230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Azadirachta consists of 2 species and 1 variety indigenous to the tropical areas of the Indo-Malayan region. They are evergreen trees for multi-purpose utilization featured by containing azadirachtin. The complete chloroplast (cp) genome of Azadirachta indica, A. indica var. siamensis and Azadirachta excelsa were reported in this study, which was 160,876 bp, 160,477 bp, and 160,361 bp in length respectively. The whole cp genomes encode 131 genes (37 tRNA genes, 8 rRNA genes, and 86 protein-coding genes) in both A. indica and A. excelsa, while A. indica var. siamensis do not have the rrn4.5S gene in the inverted repeat regions. The phylogenetic analysis indicated that A. indica var. siamensis and A. exselsa were closely related and A. indica was separated from these two species, which suggested that A. siamensis could be a species rather than a variety.
Collapse
Affiliation(s)
- Si-Teng He
- Institute of Highland Forest Science, Chinese Academy of Forestry (CAF), Kunming, China
- Nanjing Forestry University, Nanjing, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Pu’er, China
| | - Jiang-Chong Wu
- Institute of Highland Forest Science, Chinese Academy of Forestry (CAF), Kunming, China
| | - Yi-Xing Zheng
- Institute of Highland Forest Science, Chinese Academy of Forestry (CAF), Kunming, China
| | - Yan-Ping Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry (CAF), Kunming, China
| | - Shu-Hui Li
- Institute of Highland Forest Science, Chinese Academy of Forestry (CAF), Kunming, China
- Forestry and Grassland Research Institute of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Xing-Min Peng
- Institute of Highland Forest Science, Chinese Academy of Forestry (CAF), Kunming, China
| |
Collapse
|
442
|
Gentallan Jr. RP, Quiñones KJO, Bartolome MCB, Madayag RE, Vera Cruz JRA, Cirunay AT, Endonela LE, Borromeo TH, Altoveros NC, Lalusin AG, Alvaran BBS, Magtoltol JB, Cejalvo RDC. The complete chloroplast genome of Vitex trifolia L. (Lamiaceae). Mitochondrial DNA B Resour 2022; 7:1316-1318. [PMID: 35866139 PMCID: PMC9295813 DOI: 10.1080/23802359.2022.2097027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The three-leaved chaste tree (Vitex trifolia) is a medicinal and ornamental plant widely distributed from East Africa to the Pacific but has no complete chloroplast genome sequence. We assembled and characterized the V. trifolia accession from the germplasm collection of the Institute of Crop Science, University of the Philippines Los Baños. The complete plastome sequence is 154,444-bp long with 131 coding genes comprising 87 mRNA genes, 36 tRNA genes, and 8 rRNA genes. A phylogenetic analysis of the assembled genome, together with nine other Lamiaceae species, identified V. rotundifolia as its closest relative with available complete cpDNA sequence. The clustering also supports the genotypic similarity of the species belonging to trifolia group of the genus Vitex.
Collapse
Affiliation(s)
- Renerio P. Gentallan Jr.
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Kristine J. O. Quiñones
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Michael C. B. Bartolome
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Roselle E. Madayag
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Juan R. A. Vera Cruz
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Angeleigh T. Cirunay
- Institute of Food Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Leah E. Endonela
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Teresita H. Borromeo
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Nestor C. Altoveros
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Antonio G. Lalusin
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Bartimeus B. S. Alvaran
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
- Institute of Food Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Jessabel B. Magtoltol
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
- Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Reneliza D. C. Cejalvo
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| |
Collapse
|
443
|
Carvalho Leonardo I, Barreto Crespo MT, Capelo J, Bustos Gaspar F. The complete plastome of Nonea vesicaria (L.) Rchb. (Boraginaceae), the first chloroplast genome belonging to the Nonea genus. Mitochondrial DNA B Resour 2022; 7:1302-1304. [PMID: 35874278 PMCID: PMC9297717 DOI: 10.1080/23802359.2022.2095233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The predominantly Western Mediterranean weed Nonea vesicaria (L.) Rchb. can be found in agricultural or other man-made environments. Despite containing some beneficial compounds, extracts from this plant have also been described as detrimental and should be carefully monitored. In this study, the complete chloroplast of N. vesicaria isolate BPTPS250 is described, being the first available plastome from an isolate belonging to the Nonea genus. The chloroplast genome is 151,099 bp in length with a 37.3% GC content. It displays a quadripartite structure that contains a pair of inverted repeat regions (27,012 bp) that separate a large single-copy region (80,041 bp) and a small single-copy region (17,034 bp). A total of 134 genes were predicted, including 89 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogenetic analysis confirmed the placement of N. vesicaria under the Boraginaceae family, belonging to the Boraginales order, with a close relationship with Borago officinalis L. This study will contribute to conservation, phylogenetic, and evolutionary studies, as well as DNA barcoding applications for food and feed safety and quality.
Collapse
Affiliation(s)
- Inês Carvalho Leonardo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria Teresa Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jorge Capelo
- ECOCHANGE, CIBIO-InBIO – Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Vairão, Portugal
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária I.P., Quinta do Marquês, Oeiras, Portugal
| | - Frédéric Bustos Gaspar
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
444
|
Yuan L, Yan X, Chen X, Zhu X. The complete chloroplast genome of Tulipa gesneriana (Liliaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2022; 7:1255-1256. [PMID: 35837493 PMCID: PMC9275478 DOI: 10.1080/23802359.2022.2093676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The complete chloroplast genome sequence of Tulipa gesneriana L. was determined to investigate its phylogenetic position. This plastome is 151,958 base pairs (bp) in length, and comprises two inverted repeat (IRa and IRb) regions of 26,352 bp, a small single-copy region of 17,123 bp and a large single-copy region of 82,131 bp. The GC contents of the cp genome were 36.6%. In total, we annotated 126 genes including 81 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis based on nine chloroplast genomes indicates that T. gesneriana is closely related to T. iliensis and T. thianschanica.
Collapse
Affiliation(s)
- Lingli Yuan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xiaozhi Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xian Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xingfu Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
445
|
Peng X, Ye H, Liu H, Zhao Z, Hu G, Zhao P. Characterization of the complete chloroplast genome of orchid family species Paphiopedilum bellatulum. Mitochondrial DNA B Resour 2022; 7:1310-1312. [PMID: 35874282 PMCID: PMC9297714 DOI: 10.1080/23802359.2022.2096417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genus Paphiopedilum is well known as the lady’s slipper orchid in Orchidaceae family. Paphiopedilum bellatulum (Rchb.f.) Stein 1892, has important medicinal and ornamental value, which occurs in the tropical Asia. However, in recent decades, it was threatened with extinction by significantly reduced small population size. In this study, we sequenced and characterized the complete chloroplast genome of P. bellatulum based on the Illumina Hiseq platform. The size of P. bellatulum chloroplast genome was 156,567 bp, including a large single-copy (LSC) region of 88,243 bp, a small single-copy (SSC) region of 3652 bp, and two inverted repeat regions (IRs) of 32,336 bp. The overall GC contents of the chloroplast genome were 35.71%. A total of 122 genes were annotated, including 76 protein-coding genes, 38 transfer RNAs (tRNAs), and eight ribosomal RNAs (rRNAs). The phylogenetic analysis indicated that P. bellatulum formed a close relationship with another Paphiopedilum species P. wenshanense. The results will provide helpful genetic resource for further phylogenetic studies of the genus Paphiopedilum.
Collapse
Affiliation(s)
- Xiaobang Peng
- College of Urban, Rural Planning and Architectural Engineering, Shangluo University, Shangluo, China
| | - Hang Ye
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Hengzhao Liu
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Zixin Zhao
- Accademia di Belle, Arti di Milano “Brera”, Milano, Italy
| | - Guojia Hu
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Peng Zhao
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| |
Collapse
|
446
|
Li Y, Wang TR, Kozlowski G, Liu MH, Yi LT, Song YG. Complete Chloroplast Genome of an Endangered Species Quercus litseoides, and Its Comparative, Evolutionary, and Phylogenetic Study with Other Quercus Section Cyclobalanopsis Species. Genes (Basel) 2022; 13:genes13071184. [PMID: 35885967 PMCID: PMC9316884 DOI: 10.3390/genes13071184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Quercus litseoides, an endangered montane cloud forest species, is endemic to southern China. To understand the genomic features, phylogenetic relationships, and molecular evolution of Q. litseoides, the complete chloroplast (cp) genome was analyzed and compared in Quercus section Cyclobalanopsis. The cp genome of Q. litseoides was 160,782 bp in length, with an overall guanine and cytosine (GC) content of 36.9%. It contained 131 genes, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. A total of 165 simple sequence repeats (SSRs) and 48 long sequence repeats with A/T bias were identified in the Q. litseoides cp genome, which were mainly distributed in the large single copy region (LSC) and intergenic spacer regions. The Q. litseoides cp genome was similar in size, gene composition, and linearity of the structural region to those of Quercus species. The non-coding regions were more divergent than the coding regions, and the LSC region and small single copy region (SSC) were more divergent than the inverted repeat regions (IRs). Among the 13 divergent regions, 11 were in the LSC region, and only two were in the SSC region. Moreover, the coding sequence (CDS) of the six protein-coding genes (rps12, matK, atpF, rpoC2, rpoC1, and ndhK) were subjected to positive selection pressure when pairwise comparison of 16 species of Quercus section Cyclobalanopsis. A close relationship between Q. litseoides and Quercus edithiae was found in the phylogenetic analysis of cp genomes. Our study provided highly effective molecular markers for subsequent phylogenetic analysis, species identification, and biogeographic analysis of Quercus.
Collapse
Affiliation(s)
- Yu Li
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Correspondence: (L.-T.Y.); (Y.-G.S.)
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
- Correspondence: (L.-T.Y.); (Y.-G.S.)
| |
Collapse
|
447
|
Song S, Zubov D, Comes HP, Li H, Liu X, Zhong X, Lee J, Yang Z, Li P. Plastid Phylogenomics and Plastome Evolution of Nandinoideae (Berberidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:913011. [PMID: 35873997 PMCID: PMC9302238 DOI: 10.3389/fpls.2022.913011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Subfamily Nandinoideae Heintze (Berberidaceae), comprising four genera and ca. 19 species, is disjunctively distributed in eastern North America vs. Eurasia (eastern Asia, Central Asia, Middle East, and southeastern Europe), and represents an ideal taxon to explore plastid phylogenomics and plastome evolution in Berberidaceae. Many species of this subfamily have been listed as national or international rare and endangered plants. In this study, we sequenced and assembled 20 complete plastomes, representing three genera and 13 species of Nandinoideae. Together with six plastomes from GenBank, a total of 26 plastomes, representing all four genera and 16 species of Nandinoideae, were used for comparative genomic and phylogenomic analyses. These plastomes showed significant differences in overall size (156,626-161,406 bp), which is mainly due to the expansion in inverted repeat (IR) regions and/or insertion/deletion (indel) events in intergenic spacer (IGS) regions. A 75-bp deletion in the ndhF gene occurred in Leontice and Gymnospermium when compared with Nandina and Caulophyllum. We found a severe truncation at the 5' end of ycf1 in three G. altaicum plastomes, and a premature termination of ropC1 in G. microrrhynchum. Our phylogenomic results support the topology of {Nandina, [Caulophyllum, (Leontice, Gymnospermium)]}. Within the core genus Gymnospermium, we identified G. microrrhynchum from northeastern Asia (Clade A) as the earliest diverging species, followed by G. kiangnanense from eastern China (Clade B), while the rest species clustered into the two sister clades (C and D). Clade C included three species from West Tianshan (G. albertii, G. darwasicum, G. vitellinum). Clade D consisted of G. altaicum from northern Central Asia, plus one species from the Caucasus Mountains (G. smirnovii) and three from southeastern Europe (G. odessanum, G. peloponnesiacum, G. scipetarum). Overall, we identified 21 highly variable plastome regions, including two coding genes (rpl22, ycf1) and 19 intergenic spacer (IGS) regions, all with nucleotide diversity (Pi) values > 0.02. These molecular markers should serve as powerful tools (including DNA barcodes) for future phylogenetic, phylogeographic and conservation genetic studies.
Collapse
Affiliation(s)
- Shiqiang Song
- College of Life Sciences and Technologies, Tarim University, Alar, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Dmitriy Zubov
- National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Hans Peter Comes
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Haiwen Li
- College of Life Sciences and Technologies, Tarim University, Alar, China
| | - Xuelian Liu
- College of Life Science, Tonghua Normal University, Tonghua, China
| | - Xin Zhong
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
| | - Zhaoping Yang
- College of Life Sciences and Technologies, Tarim University, Alar, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biosystem Homeostasis and Protection, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
448
|
Li J, Li J, Ma Y, Kou L, Wei J, Wang W. The complete mitochondrial genome of okra (Abelmoschus esculentus): using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. BMC Genomics 2022; 23:481. [PMID: 35768783 PMCID: PMC9245263 DOI: 10.1186/s12864-022-08706-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Okra (Abelmoschus esculentus L. Moench) is an economically important crop and is known for its slimy juice, which has significant scientific research value. The A. esculentus chloroplast genome has been reported; however, the sequence of its mitochondrial genome is still lacking. RESULTS We sequenced the plastid and mitochondrial genomes of okra based on Illumina short reads and Nanopore long reads and conducted a comparative study between the two organelle genomes. The plastid genome of okra is highly structurally conserved, but the mitochondrial genome of okra has been confirmed to have abundant subgenomic configurations. The assembly results showed that okra's mitochondrial genome existed mainly in the form of two independent molecules, which could be divided into four independent molecules through two pairs of long repeats. In addition, we found that four pairs of short repeats could mediate the integration of the two independent molecules into one complete molecule at a low frequency. Subsequently, we also found extensive sequence transfer between the two organelles of okra, where three plastid-derived genes (psaA, rps7 and psbJ) remained intact in the mitochondrial genome. Furthermore, psbJ, psbF, psbE and psbL were integrated into the mitochondrial genome as a conserved gene cluster and underwent pseudogenization as nonfunctional genes. Only psbJ retained a relatively complete sequence, but its expression was not detected in the transcriptome data, and we speculate that it is still nonfunctional. Finally, we characterized the RNA editing events of protein-coding genes located in the organelle genomes of okra. CONCLUSIONS In the current study, our results not only provide high-quality organelle genomes for okra but also advance our understanding of the gene dialogue between organelle genomes and provide information to breed okra cultivars efficiently.
Collapse
Affiliation(s)
- Jihan Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Yubo Ma
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Lu Kou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Juanjuan Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, No.2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, No.2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| |
Collapse
|
449
|
Shen Y, Li W, Zeng Y, Li Z, Chen Y, Zhang J, Zhao H, Feng L, Ma D, Mo X, Ouyang P, Huang L, Wang Z, Jiao Y, Wang HB. Chromosome-level and haplotype-resolved genome provides insight into the tetraploid hybrid origin of patchouli. Nat Commun 2022; 13:3511. [PMID: 35717499 PMCID: PMC9206139 DOI: 10.1038/s41467-022-31121-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Patchouli (Pogostemon cablin (Blanco) Benth.), a member of the Lamiaceae family, is an important aromatic plant that has been widely used in medicine and perfumery. Here, we report a 1.94 Gb chromosome-scale assembly of the patchouli genome (contig N50 = 7.97 Mb). The gene annotation reveals that tandem duplication of sesquiterpene biosynthetic genes may be a major contributor to the biosynthesis of patchouli bioactivity components. We further phase the genome into two distinct subgenomes (A and B), and identify a chromosome substitution event that have occurred between them. Further investigations show that a burst of universal LTR-RTs in the A subgenome lead to the divergence between two subgenomes. However, no significant subgenome dominance is detected. Finally, we track the evolutionary scenario of patchouli including whole genome tetraploidization, subgenome divergency, hybridization, and chromosome substitution, which are the key forces to determine the complexity of patchouli genome. Our work sheds light on the evolutionary history of patchouli and offers unprecedented genomic resources for fundamental patchouli research and elite germplasm development. The ploidy level of patchouli, an aromatic plant in the Lamiaceae family, remain unclear. Here, the authors assemble a chromosome-level and haplotype-resolved genome for patchouli and reveal that it is tetraploid hybrid as well as compensated aneuploidy.
Collapse
Affiliation(s)
- Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China. .,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Wanying Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zeng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhipeng Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiqiong Chen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jixiang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lingfang Feng
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Dongming Ma
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Xiaolu Mo
- School of Traditional Chinese Medicine, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Puyue Ouyang
- School of Traditional Chinese Medicine, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Lili Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Bin Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
450
|
Characterization of the Complete Chloroplast Genome Sequence of the Socotra Dragon`s Blood Tree (Dracaena cinnabari Balf.). FORESTS 2022. [DOI: 10.3390/f13060932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Socotra dragon`s blood tree (Dracaena cinnabari Balf.) is endemic to the island of Socotra in Yemen. This iconic species plays an essential role in the survival of associated organisms, acting as an umbrella tree. Overexploitation, overgrazing by livestock, global climate change, and insufficient regeneration mean that the populations of this valuable species are declining in the wild. Although there are many studies on the morphology, anatomy, and physiology of D. cinnabari, no genomic analysis of this endangered species has been performed so far. Therefore, the main aim of this study was to characterize the complete chloroplast sequence genome of D. cinnabari for conservation purposes. The D. cinnabari chloroplast genome is 155,371 bp with a total GC content of 37.5%. It has a quadripartite plastid genome structure composed of one large single-copy region of 83,870 bp, one small single-copy region of 18,471 bp, and two inverted repeat regions of 26,515 bp each. One hundred and thirty-two genes were annotated, 86 of which are protein-coding genes, 38 are transfer RNAs, and eight are ribosomal RNAs. Forty simple sequence repeats have also been identified in this chloroplast genome. Comparative analysis of complete sequences of D. cinnabari chloroplast genomes with other species of the genus Dracaena showed a very high conservativeness of their structure and organization. Phylogenetic inference showed that D. cinnabari is much closer to D. draco, D. cochinchinensis, and D. cambodiana than to D. terniflora, D. angustifolia, D. hokouensis, and D. elliptica. The results obtained in this study provide new and valuable omics data for further phylogenetic studies of the genus Dracaena as well as enable the protection of genetic resources of highly endangered D. cinnabari.
Collapse
|