401
|
Delker C, Stenzel I, Hause B, Miersch O, Feussner I, Wasternack C. Jasmonate biosynthesis in Arabidopsis thaliana--enzymes, products, regulation. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:297-306. [PMID: 16807821 DOI: 10.1055/s-2006-923935] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Collapse
Affiliation(s)
- C Delker
- Department of Natural Product Biotechnology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
402
|
Terol J, Domingo C, Talón M. The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 2006; 371:279-90. [PMID: 16488558 DOI: 10.1016/j.gene.2005.12.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/12/2005] [Accepted: 12/16/2005] [Indexed: 12/30/2022]
Abstract
The GH3 gene family in Arabidopsis, implicated in hormonal homeostasis through the conjugation of indolacetic and jasmonic acids to amino acids, is involved in a broad range of plant growth and development processes. In this work, the analysis of the GH3 family in the genome of Oryza sativa identified 13 hypothetical ORFs. EST analysis and RT-PCR assays demonstrated that 12 of them were active genes. An extensive EST analysis of the GH3 family performed on 26 plant species was used to estimate the minimum number of GH3 genes en each one. The data indicated that the members of the GH3 family progressively increased in the different plant divisions from Chlorophyta (0), Bryophyta (3), and Coniferophyta (4), to Magnoliophyta (7-19). Phylogenetic analyses showed a high degree of conservation between Arabidopsis and rice GH3 proteins and, in general, in the plant kingdom. The data revealed a homology clustering consistent with the functional classification of the Arabidopsis proteins, since most of the 110 sequences analyzed grouped into 2 main clusters, corresponding to the Arabidopsis functional groups I (jasmonic acid adenylation) and II (indolacetic acid adenylation). And additional cluster including group III (non-adenylation ability) was exclusively composed of proteins from Arabidopsis thaliana, Brassica napus and Gossypium hirsutum.
Collapse
Affiliation(s)
- Javier Terol
- Departamento de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada Náquera Km 4,5, Moncada (Valencia) 46113, Spain.
| | | | | |
Collapse
|
403
|
Niu G, Liu G, Tian Y, Tan H. SanJ, an ATP-dependent picolinate-CoA ligase, catalyzes the conversion of picolinate to picolinate-CoA during nikkomycin biosynthesis in Streptomyces ansochromogenes. Metab Eng 2006; 8:183-95. [PMID: 16464627 DOI: 10.1016/j.ymben.2005.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/23/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Nikkomycins, a group of peptidyl nucleoside antibiotics, are competitive inhibitors of chitin synthase. The nikkomycin biosynthetic gene cluster has been cloned previously from Streptomyces ansochromogenes. The cluster contains 25 complete ORFs including sanJ. The sanJ gene was inactivated by the insertion of a kanamycin resistance gene and the resulting disruption mutants failed to produce nikkomycins. Moreover, the nikkomycin production was restored by complementation with a single copy of sanJ. The deduced product of sanJ bears striking sequence similarity with enzymes belonging to the adenylate-forming superfamily. sanJ was overexpressed as a His6-tagged fusion protein in Escherichia coli and purified to apparent homogeneity by affinity chromatography. The purified SanJ demonstrated adenylate ligase activity in the presence of picolinate or its analogs (benzoate, nicotinate, 4-methoxybenzoate, 4-hydroxybenzoate), ATP and Mg2+. SanJ was also found to catalyze the conversion of picolinate, benzoate, nicotinate to their corresponding CoA esters and 4-methoxybenzoate, 4-hydroxybenzoate to their respective AMP derivatives in vitro. This was unambiguously shown by using HPLC and electrospray ionization mass spectrometry (ESI-MS) or by comparing the reaction product with an authentic standard of benzoyl-CoA. These results indicated that sanJ encodes an ATP-dependent picolinate-CoA ligase which is essential for nikkomycin biosynthesis.
Collapse
Affiliation(s)
- Guoqing Niu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
404
|
Beckers GJM, Spoel SH. Fine-Tuning Plant Defence Signalling: Salicylate versus Jasmonate. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:1-10. [PMID: 16435264 DOI: 10.1055/s-2005-872705] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant defences against pathogens and herbivorous insects form a comprehensive network of interacting signal transduction pathways. The signalling molecules salicylic acid (SA) and jasmonic acid (JA) play important roles in this network. SA is involved in signalling processes providing systemic acquired resistance (SAR), protecting the plant from further infection after an initial pathogen attack. SAR is long-lasting and provides broad spectrum resistance to biotrophic pathogens that feed on a living host cell. The regulatory protein NPR1 is a central positive regulator of SAR. SA-activated NPR1 localizes to the nucleus where it interacts with TGA transcription factors to induce the expression of a large set of pathogenesis-related proteins that contribute to the enhanced state of resistance. In a distinct signalling process, JA protects the plant from insect infestation and necrotrophic pathogens that kill the host cell before feeding. JA activates the regulatory protein COI1 that is part of the E3 ubiquitin ligase-containing complex SCFCOI1, which is thought to derepress JA-responsive genes involved in plant defence. Both synergistic and antagonistic interactions have been observed between SA- and JA-dependent defences. NPR1 has emerged as a critical modulator of cross-talk between the SA and JA signal and is thought to aid in fine tuning defence responses specific to the encountered attacker. Here we review SA- and JA-dependent signal transduction and summarize our current understanding of the molecular mechanisms of cross-talk between these defences.
Collapse
Affiliation(s)
- G J M Beckers
- Plant Biochemistry and Molecular Biology Unit, Department of Plant Physiology, RWTH - Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | |
Collapse
|
405
|
Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. PLANT PHYSIOLOGY 2006; 140:349-64. [PMID: 16377752 PMCID: PMC1326056 DOI: 10.1104/pp.105.067868] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities.
Collapse
Affiliation(s)
- Céline Sorin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Major IT, Constabel CP. Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression. THE NEW PHYTOLOGIST 2006; 172:617-35. [PMID: 17096789 DOI: 10.1111/j.1469-8137.2006.01877.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In order to characterize defense responses of hybrid poplar (Populus trichocarpax P. deltoides), we profiled leaf transcript patterns elicited by wounding and by regurgitant from forest tent caterpillar (FTC; Malacosoma disstria), a Lepidopteran defoliator of poplars. Macroarrays were used to compare transcript profiles. Both FTC-regurgitant (FTC-R) and mechanical wounding with pliers elicited expression of a variety of genes, and for these genes our analysis indicated that these treatments induced qualitatively similar responses. Similarly, a comparison of responses of directly treated and systemically induced leaves indicated extensive overlap in the sets of induced genes. FTC-R was found to contain the insect-derived elicitor volicitin. The simulated herbivory treatments resulted in the induction of genes involved in poplar defense and secondary metabolism. We also identified wound-responsive genes with roles in primary metabolism, including a putative invertase, lipase, and acyl-activating enzyme; some of these genes may have roles in defense signaling. In addition, we found three unknown genes containing a ZIM motif which may represent novel transcription factors.
Collapse
Affiliation(s)
- Ian T Major
- Centre for Forest Biology and Department of Biology, University of Victoria, Stn CSC, PO Box 3020, Victoria, BC, V8W 3 N5, Canada
| | | |
Collapse
|
407
|
Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D. GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1285-95. [PMID: 16478048 DOI: 10.1094/mpmi-18-1285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The F-box protein gene COI1 from Arabidopsis plays a fundamental role in response to jasmonates, which regulate plant root growth, pollen fertility, wounding and healing, and defense against pathogens and insects. Null mutations in COI1 were previously found to abolish all the jasmonate responses, and the Arabidopsis coil-1 mutant is male sterile and susceptible to pathogen infection. In this study, we isolated an F-box protein gene from soybean, which shares significant homology with the Arabidopsis COI1 and similarly contains an F-box motif and leucine rich repeats (LRR), here designated GmCOI1 (Glycine max L. (Merr.) COI1). To test whether the sequence homology and structural similarity are indicative of functional conservation, we expressed GmCOI1 in the Arabidopsis coil-1 mutant. The transgenic coil-1 plants with expression of the GmCOI1 gene were found to exhibit normal jasmonate responses, including jasmonate-regulated plant defense and fertility. In addition, the chimerical proteins with swapped domain of the F-box motif or LRR between GmCOI1 and COI1 were shown to functionally complement the coil-1 mutation. Furthermore, GmCOI1 was found to assemble into the Skpl-Cullin-F-box (SCF) complexes, similar to the formation of the Arabidopsis SCF(COO1). These data demonstrate the soybean F-box protein gene GmCOI1 is able to mediate jasmonate-regulated plant defense and fertility in Arabidopsis, which implies a generic jasmonate pathway with conserved signal components in different plant species.
Collapse
Affiliation(s)
- Zhilong Wang
- Institute of Molecular and Cell Biology, 61 Biopolis drive, 138673 Singapore
| | | | | | | | | | | | | |
Collapse
|
408
|
Bonsegna S, Slocombe SP, De Bellis L, Baker A. AtLACS7 interacts with the TPR domains of the PTS1 receptor PEX5. Arch Biochem Biophys 2005; 443:74-81. [PMID: 16256065 DOI: 10.1016/j.abb.2005.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/16/2005] [Accepted: 09/17/2005] [Indexed: 11/24/2022]
Abstract
Long-chain acyl-CoA synthetases (LACSs) activate fatty acids for further metabolism and are encoded by a multi-gene family in Arabidopsis. AtLACS6 possesses a type 2 (PTS2) peroxisomal targeting sequence, whilst AtLACS7 has both a type 1 and type 2 peroxisomal targeting sequence. AtLACS7 was used as bait in a yeast two-hybrid screen. Multiple clones of the PTS1 receptor PEX5 were isolated. Quantitative beta-galactosidase assay indicated that full-length PEX5 interacts with AtLACS7 with higher affinity than the TPR domains alone. The interaction between PEX5 and AtLACS7 was confirmed by co-immunoprecipitation and shown to be specific for the PTS1, therefore the AtLACS7 PTS1 is accessible to bind PEX5 in the full-length AtLACS7 protein. The expression profile of AtLACS6, AtLACS7, AtPEX5, and AtPEX7 revealed that AtLACS6 and 7 have distinct patterns of expression and we speculate that the possession of two targeting signals may be advantageous for the import of AtLACS7 when receptors may be limiting.
Collapse
Affiliation(s)
- Stefania Bonsegna
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Italy
| | | | | | | |
Collapse
|
409
|
Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya KI, Shibata D, Ohta H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:653-68. [PMID: 16262714 DOI: 10.1111/j.1365-313x.2005.02560.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Jasmonic acid (JA) and methyl jasmonate (MeJA), collectively termed jasmonates, are ubiquitous plant signalling compounds. Several types of stress conditions, such as wounding and pathogen infection, cause endogenous JA accumulation and the expression of jasmonate-responsive genes. Although jasmonates are important signalling components for the stress response in plants, the mechanism by which jasmonate signalling contributes to stress tolerance has not been clearly defined. A comprehensive analysis of jasmonate-regulated metabolic pathways in Arabidopsis was performed using cDNA macroarrays containing 13516 expressed sequence tags (ESTs) covering 8384 loci. The results showed that jasmonates activate the coordinated gene expression of factors involved in nine metabolic pathways belonging to two functionally related groups: (i) ascorbate and glutathione metabolic pathways, which are important in defence responses to oxidative stress, and (ii) biosynthesis of indole glucosinolate, which is a defence compound occurring in the Brassicaceae family. We confirmed that JA induces the accumulation of ascorbate, glutathione and cysteine and increases the activity of dehydroascorbate reductase, an enzyme in the ascorbate recycling pathway. These antioxidant metabolic pathways are known to be activated under oxidative stress conditions. Ozone (O3) exposure, a representative oxidative stress, is known to cause activation of antioxidant metabolism. We showed that O3 exposure caused the induction of several genes involved in antioxidant metabolism in the wild type. However, in jasmonate-deficient Arabidopsis 12-oxophytodienoate reductase 3 (opr3) mutants, the induction of antioxidant genes was abolished. Compared with the wild type, opr3 mutants were more sensitive to O3 exposure. These results suggest that the coordinated activation of the metabolic pathways mediated by jasmonates provides resistance to environmental stresses.
Collapse
Affiliation(s)
- Yuko Sasaki-Sekimoto
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama, Kanagawa, 226-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Vanneste S, De Rybel B, Beemster GTS, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. THE PLANT CELL 2005; 17:3035-50. [PMID: 16243906 PMCID: PMC1276028 DOI: 10.1105/tpc.105.035493] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the auxin/indole-3-acetic acid (AUX/IAA) signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.
Collapse
Affiliation(s)
- Steffen Vanneste
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Pajerowska KM, Parker JE, Gebhardt C. Potato homologs of Arabidopsis thaliana genes functional in defense signaling--identification, genetic mapping, and molecular cloning. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1107-19. [PMID: 16255250 DOI: 10.1094/mpmi-18-1107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Defense against pests and pathogens is a fundamental process controlled by similar molecular mechanisms in all flowering plants. Using Arabidopsis thaliana as a model, steps of the signal transduction pathways that link pathogen recognition to defense activation have been identified and corresponding genes have been characterized. Defense signaling (DS) genes are functional candidates for controlling natural quantitative variation of resistance to plant pathogens. Nineteen Arabidopsis genes operating in defense signaling cascades were selected. Solanaceae EST (expressed sequence tag) databases were employed to identify the closest homologs of potato (Solanum tuberosum). Sixteen novel DS potato homologs were positioned on the molecular maps. Five DS homologs mapped close to known quantitative resistance loci (QRL) against the oomycete Phytophthora infestans causing late blight and the bacterium Erwinia carotovora subsp. atroseptica causing blackleg of stems and tuber soft rot. The five genes are positional candidates for QRL and are highly sequence related to Arabidopsis genes AtSGT1b, AtPAD4, and AtAOS. Full-length complementary DNA and genomic sequences were obtained for potato genes StSGT1, StPAD4, and StEDS1, the latter being a putative interactor of StPAD4. Our results form the basis for further studies on the contributions of these candidate genes to natural variation of potato disease resistance.
Collapse
|
412
|
Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:532-40. [PMID: 16039901 DOI: 10.1016/j.pbi.2005.07.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/12/2005] [Indexed: 05/03/2023]
Abstract
Many plant developmental and stress responses require the coordinated interaction of the jasmonate and other signalling pathways, such as those for ethylene, salicylic acid and abscisic acid. Recent research in Arabidopsis has uncovered several key players that regulate crosstalk between these signalling pathways and that shed light on the molecular mechanisms modulating this coordinated interaction. Genes that are involved in the regulation of protein stability through the ubiquitin-proteasome pathway (COI1, AXR1 and SGT1b), signalling proteins (MPK4) and transcription factors (AtMYC2, ERF1, NPR1 and WRKY70) form a regulatory network that allows the plant to fine-tune specific responses to different stimuli.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
413
|
Kishimoto K, Matsui K, Ozawa R, Takabayashi J. Volatile C6-aldehydes and Allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2005; 46:1093-102. [PMID: 15879447 DOI: 10.1093/pcp/pci122] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Green leafy volatiles or isoprenoids are produced after mechanical wounding or pathogen/herbivore attacks in higher plants. We monitored expression profiles of the genes involved in defense responses upon exposing Arabidopsis thaliana to the volatiles. Among the genes investigated, those known to be induced by mechanical wounding and/or jasmonate application, such as chalcone synthase (CHS), caffeic acid-O-methyltransferase (COMT), diacylglycerol kinase1 (DGK1), glutathione-S-transferase1 (GST1) and lipoxygenase2 (LOX2), were shown to be induced with (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenol or allo-ocimene (2,6-dimethyl-2,4,6-octatriene). A salicylic acid-responsive gene, pathogenesis-related protein2 (PR2), was not induced by the volatiles. Detailed analyses of the expression profiles showed that the manner of induction varied depending on either the gene monitored or the volatile used. A chemically inert compound, (Z)-3-hexenol, was also potent, which suggested that chemical reactivity was not the sole requisite for the inducing activity. With a jasmonate-insensitive mutant (jar1), the induction by the volatiles was mostly suppressed, however, that of LOX2 was unaltered. An ethylene-insensitive mutant (etr1) showed responses almost identical to the wild type, with minor exceptions. From these observations, it was suggested that both the jasmonate-dependent and -independent pathways were operative upon perception of the volatiles, while the ETR1-dependent pathway was not directly involved. When Botrytis cinerea was inoculated after the volatile treatment, retardation of disease development could be seen. It appears that volatile treatment could make the plants more resistant against the fungal disease.
Collapse
Affiliation(s)
- Kyutaro Kishimoto
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, 332-0012 Japan
| | | | | | | |
Collapse
|
414
|
Okushima Y, Mitina I, Quach HL, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:29-46. [PMID: 15960614 DOI: 10.1111/j.1365-313x.2005.02426.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
AUXIN RESPONSE FACTORS (ARFs) regulate auxin-mediated transcriptional activation/repression. They are encoded by a gene family in Arabidopsis, and each member is thought to play a central role in various auxin-mediated developmental processes. We have characterized three arf2 mutant alleles, arf2-6, arf2-7 and arf2-8. The mutants exhibit pleiotropic developmental phenotypes, including large, dark green rosette leaves, delayed flowering, thick and long inflorescence, abnormal flower morphology and sterility in early formed flowers, large organ size and delayed senescence and abscission, compared with wild-type plants. In addition, arf2 mutant seedlings have elongated hypocotyls with enlarged cotyledons under various light conditions. The transcription of ACS2, ACS6 and ACS8 genes is impaired in the developing siliques of arf2-6. The phenotypes of all three alleles are similar to those of the loss-of-function mutants obtained by RNA interference or co-suppression. There is no significant effect of the mutation on global auxin-regulated gene expression in young seedlings, suggesting that ARF2 does not participate in auxin signaling at that particular developmental stage of the plant life cycle. Because ARF2 is thought to function as a transcriptional repressor, the prospect arises that its pleiotropic effects may be mediated by negatively modulating the transcription of downstream genes in signaling pathways that are involved in cell growth and senescence.
Collapse
Affiliation(s)
- Yoko Okushima
- Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
415
|
Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. PLANT MOLECULAR BIOLOGY 2005; 58:497-513. [PMID: 16021335 DOI: 10.1007/s11103-005-7306-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/12/2005] [Indexed: 05/03/2023]
Abstract
The Arabidopsis gene COI1 is required for jasmonic acid (JA)-induced growth inhibition, resistance to insect herbivory, and resistance to pathogens. In addition, COI1 is also required for transcription of several genes induced by wounding or by JA. Here, we use microarray gene transcription profiling of wild type and coi1 mutant plants to examine the extent of the requirement of COI1 for JA-induced and wound-induced gene transcription. We show that COI1 is required for expression of approximately 84% of 212 genes induced by JA, and for expression of approximately 44% of 153 genes induced by wounding. Surprisingly, COI1 was also required for repression of 53% of 104 genes whose expression was suppressed by JA, and for repression of approximately 46% of 83 genes whose expression was suppressed by wounding. These results indicate that COI1 plays a pivotal role in wound- and JA signalling.
Collapse
Affiliation(s)
- Alessandra Devoto
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
416
|
Baier M, Dietz KJ. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1449-62. [PMID: 15863449 DOI: 10.1093/jxb/eri161] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.
Collapse
Affiliation(s)
- Margarete Baier
- Biochemistry and Physiology of Plants, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | |
Collapse
|
417
|
Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. THE PLANT CELL 2005. [PMID: 15829601 DOI: 10.1105/tpc.105.031625.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Adventitious rooting is a quantitative genetic trait regulated by both environmental and endogenous factors. To better understand the physiological and molecular basis of adventitious rooting, we took advantage of two classes of Arabidopsis thaliana mutants altered in adventitious root formation: the superroot mutants, which spontaneously make adventitious roots, and the argonaute1 (ago1) mutants, which unlike superroot are barely able to form adventitious roots. The defect in adventitious rooting observed in ago1 correlated with light hypersensitivity and the deregulation of auxin homeostasis specifically in the apical part of the seedlings. In particular, a clear reduction in endogenous levels of free indoleacetic acid (IAA) and IAA conjugates was shown. This was correlated with a downregulation of the expression of several auxin-inducible GH3 genes in the hypocotyl of the ago1-3 mutant. We also found that the Auxin Response Factor17 (ARF17) gene, a potential repressor of auxin-inducible genes, was overexpressed in ago1-3 hypocotyls. The characterization of an ARF17-overexpressing line showed that it produced fewer adventitious roots than the wild type and retained a lower expression of GH3 genes. Thus, we suggest that ARF17 negatively regulates adventitious root formation in ago1 mutants by repressing GH3 genes and therefore perturbing auxin homeostasis in a light-dependent manner. These results suggest that ARF17 could be a major regulator of adventitious rooting in Arabidopsis.
Collapse
Affiliation(s)
- Céline Sorin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. THE PLANT CELL 2005; 17:1360-75. [PMID: 15829600 PMCID: PMC1091760 DOI: 10.1105/tpc.105.031716] [Citation(s) in RCA: 591] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/20/2005] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin plays critical roles during plant growth, many of which are mediated by the auxin response transcription factor (ARF) family. MicroRNAs (miRNAs), endogenous 21-nucleotide riboregulators, target several mRNAs implicated in auxin responses. miR160 targets ARF10, ARF16, and ARF17, three of the 23 Arabidopsis thaliana ARF genes. Here, we describe roles of miR160-directed ARF17 posttranscriptional regulation. Plants expressing a miRNA-resistant version of ARF17 have increased ARF17 mRNA levels and altered accumulation of auxin-inducible GH3-like mRNAs, YDK1/GH3.2, GH3.3, GH3.5, and DFL1/GH3.6, which encode auxin-conjugating proteins. These expression changes correlate with dramatic developmental defects, including embryo and emerging leaf symmetry anomalies, leaf shape defects, premature inflorescence development, altered phyllotaxy along the stem, reduced petal size, abnormal stamens, sterility, and root growth defects. These defects demonstrate the importance of miR160-directed ARF17 regulation and implicate ARF17 as a regulator of GH3-like early auxin response genes. Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for phenotypes previously associated with more general disruptions of miRNA function.
Collapse
Affiliation(s)
- Allison C Mallory
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
419
|
Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. THE PLANT CELL 2005; 17:1343-59. [PMID: 15829601 PMCID: PMC1091759 DOI: 10.1105/tpc.105.031625] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 03/20/2005] [Indexed: 05/18/2023]
Abstract
Adventitious rooting is a quantitative genetic trait regulated by both environmental and endogenous factors. To better understand the physiological and molecular basis of adventitious rooting, we took advantage of two classes of Arabidopsis thaliana mutants altered in adventitious root formation: the superroot mutants, which spontaneously make adventitious roots, and the argonaute1 (ago1) mutants, which unlike superroot are barely able to form adventitious roots. The defect in adventitious rooting observed in ago1 correlated with light hypersensitivity and the deregulation of auxin homeostasis specifically in the apical part of the seedlings. In particular, a clear reduction in endogenous levels of free indoleacetic acid (IAA) and IAA conjugates was shown. This was correlated with a downregulation of the expression of several auxin-inducible GH3 genes in the hypocotyl of the ago1-3 mutant. We also found that the Auxin Response Factor17 (ARF17) gene, a potential repressor of auxin-inducible genes, was overexpressed in ago1-3 hypocotyls. The characterization of an ARF17-overexpressing line showed that it produced fewer adventitious roots than the wild type and retained a lower expression of GH3 genes. Thus, we suggest that ARF17 negatively regulates adventitious root formation in ago1 mutants by repressing GH3 genes and therefore perturbing auxin homeostasis in a light-dependent manner. These results suggest that ARF17 could be a major regulator of adventitious rooting in Arabidopsis.
Collapse
Affiliation(s)
- Céline Sorin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. THE PLANT CELL 2005. [PMID: 15829600 DOI: 10.1105/tpc.105.031716.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone auxin plays critical roles during plant growth, many of which are mediated by the auxin response transcription factor (ARF) family. MicroRNAs (miRNAs), endogenous 21-nucleotide riboregulators, target several mRNAs implicated in auxin responses. miR160 targets ARF10, ARF16, and ARF17, three of the 23 Arabidopsis thaliana ARF genes. Here, we describe roles of miR160-directed ARF17 posttranscriptional regulation. Plants expressing a miRNA-resistant version of ARF17 have increased ARF17 mRNA levels and altered accumulation of auxin-inducible GH3-like mRNAs, YDK1/GH3.2, GH3.3, GH3.5, and DFL1/GH3.6, which encode auxin-conjugating proteins. These expression changes correlate with dramatic developmental defects, including embryo and emerging leaf symmetry anomalies, leaf shape defects, premature inflorescence development, altered phyllotaxy along the stem, reduced petal size, abnormal stamens, sterility, and root growth defects. These defects demonstrate the importance of miR160-directed ARF17 regulation and implicate ARF17 as a regulator of GH3-like early auxin response genes. Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for phenotypes previously associated with more general disruptions of miRNA function.
Collapse
Affiliation(s)
- Allison C Mallory
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
421
|
Jain M, Kaur N, Tyagi AK, Khurana JP. The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 2005; 6:36-46. [PMID: 15856348 DOI: 10.1007/s10142-005-0142-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 12/01/2022]
Abstract
Auxin regulates plant growth and development by altering the expression of diverse genes. Among these, the genes of Aux/IAA, SAUR, and GH3 classes have been extensively studied in dicots, but little information is available on monocots. We have identified 12 members of GH3 gene family in rice using sequences of full-length cDNA clones available from KOME and analysis of the whole genome sequence of rice. The genomic organization as well as chromosomal location of all the OsGH3 genes is reported. The rice GH3 proteins can be classified in two groups (groups I and II) on the basis of their phylogenetic relationship with Arabidopsis GH3 proteins. Based upon the sequences available in the database, not a single group III GH3 protein could be identified in rice. An extensive survey of EST sequences of other monocots led to the conclusion that although GH3 gene family is highly conserved in both dicots and monocots but the group III is conspicuous by its absence in monocots. The in silico analysis has been complemented with experimental data to quantify transcript levels of all GH3 gene family members. Using real-time polymerase chain reaction, the organ-specific expression of individual OsGH3 genes in light- and dark-grown seedlings/plants has been examined. The transcript abundance of nearly all OsGH3 genes is enhanced on auxin treatment, with the effect more pronounced on OsGH3-1, -2, and -4. The functional validation of these genes in transgenics or analysis of gene-specific insertional mutants will help in elucidating their precise role in auxin signal transduction.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | |
Collapse
|
422
|
Abstract
BACKGROUND The phytohormone auxin is critical for plant growth and orchestrates many developmental processes. SCOPE This review considers the complex array of mechanisms plants use to control auxin levels, the movement of auxin through the plant, the emerging view of auxin-signalling mechanisms, and several interactions between auxin and other phytohormones. Though many natural and synthetic compounds exhibit auxin-like activity in bioassays, indole-3-acetic acid (IAA) is recognized as the key auxin in most plants. IAA is synthesized both from tryptophan (Trp) using Trp-dependent pathways and from an indolic Trp precursor via Trp-independent pathways; none of these pathways is fully elucidated. Plants can also obtain IAA by beta-oxidation of indole-3-butyric acid (IBA), a second endogenous auxin, or by hydrolysing IAA conjugates, in which IAA is linked to amino acids, sugars or peptides. To permanently inactivate IAA, plants can employ conjugation and direct oxidation. Consistent with its definition as a hormone, IAA can be transported the length of the plant from the shoot to the root; this transport is necessary for normal development, and more localized transport is needed for tropic responses. Auxin signalling is mediated, at least in large part, by an SCFTIR1 E3 ubiquitin ligase complex that accelerates Aux/IAA repressor degradation in response to IAA, thereby altering gene expression. Two classes of auxin-induced genes encode negatively acting products (the Aux/IAA transcriptional repressors and GH3 family of IAA conjugating enzymes), suggesting that timely termination of the auxin signal is crucial. Auxin interaction with other hormone signals adds further challenges to understanding auxin response. CONCLUSIONS Nearly six decades after the structural elucidation of IAA, many aspects of auxin metabolism, transport and signalling are well established; however, more than a few fundamental questions and innumerable details remain unresolved.
Collapse
|
423
|
Capitani F, Biondi S, Falasca G, Ziosi V, Balestrazzi A, Carbonera D, Torrigiani P, Altamura MM. Methyl jasmonate disrupts shoot formation in tobacco thin cell layers by over-inducing mitotic activity and cell expansion. PLANTA 2005; 220:507-19. [PMID: 15365837 DOI: 10.1007/s00425-004-1362-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/29/2004] [Indexed: 05/24/2023]
Abstract
The aim of the present study was to determine early cyto-histological events associated with the reduced number of shoots formed at the end of culture in tobacco (Nicotiana tabacum L.) thin cell layers treated with methyl jasmonate (MJ) [S. Biondi et al. (2001) J Exp Bot 52:1-12]. The results show that 0.1-10 microM MJ strongly stimulated mitotic activity early in culture relative to untreated controls. Treatment with MJ also induced anomalous mitoses. Enhanced proliferative growth was confirmed by northern analysis and in situ hybridisation using cDNA probes of the G1/S phase-specific genes ubiquitin carboxyl-extension protein (ubi-CEP), topoisomerase 1 (top1) and ribonucleotide reductase (RNR). The formation of meristematic cell clusters on day 5 was also enhanced by 1 muM MJ, but subsequent development of these cell clusters into meristemoids and shoot primordia was reduced by all MJ concentrations in a dose-dependent manner. Cell expansion was stimulated by MJ concentrations ranging from 0.001 to 10 microM; expanded cells frequently occurred around and within meristemoids and shoot primordia, and displayed thickened and suberised cell walls; cell wall thickness increased with increasing MJ concentration. These cytological events caused alterations in the tunica and stem differentiation of the shoot dome. The apparently paradoxical role of MJ, which deregulates shoot formation through a stimulation of growth events, i.e., mitotic activity and cell expansion, is discussed.
Collapse
Affiliation(s)
- F Capitani
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
424
|
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. THE PLANT CELL 2005; 17:444-63. [PMID: 15659631 PMCID: PMC548818 DOI: 10.1105/tpc.104.028316] [Citation(s) in RCA: 768] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/15/2004] [Indexed: 05/18/2023]
Abstract
The AUXIN RESPONSE FACTOR (ARF) gene family products, together with the AUXIN/INDOLE-3-ACETIC ACID proteins, regulate auxin-mediated transcriptional activation/repression. The biological function(s) of most ARFs is poorly understood. Here, we report the identification and characterization of T-DNA insertion lines for 18 of the 23 ARF gene family members in Arabidopsis thaliana. Most of the lines fail to show an obvious growth phenotype except of the previously identified arf2/hss, arf3/ett, arf5/mp, and arf7/nph4 mutants, suggesting that there are functional redundancies among the ARF proteins. Subsequently, we generated double mutants. arf7 arf19 has a strong auxin-related phenotype not observed in the arf7 and arf19 single mutants, including severely impaired lateral root formation and abnormal gravitropism in both hypocotyl and root. Global gene expression analysis revealed that auxin-induced gene expression is severely impaired in the arf7 single and arf7 arf19 double mutants. For example, the expression of several genes, such as those encoding members of LATERAL ORGAN BOUNDARIES domain proteins and AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE, are disrupted in the double mutant. The data suggest that the ARF7 and ARF19 proteins play essential roles in auxin-mediated plant development by regulating both unique and partially overlapping sets of target genes. These observations provide molecular insight into the unique and overlapping functions of ARF gene family members in Arabidopsis.
Collapse
Affiliation(s)
- Yoko Okushima
- Plant Gene Expression Center, Albany, California 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. THE PLANT CELL 2005; 17:616-27. [PMID: 15659623 PMCID: PMC548830 DOI: 10.1105/tpc.104.026690] [Citation(s) in RCA: 736] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 11/19/2004] [Indexed: 05/18/2023]
Abstract
Substantial evidence indicates that amino acid conjugates of indole-3-acetic acid (IAA) function in auxin homeostasis, yet the plant enzymes involved in their biosynthesis have not been identified. We tested whether several Arabidopsis thaliana enzymes that are related to the auxin-induced soybean (Glycine max) GH3 gene product synthesize IAA-amino acid conjugates. In vitro reactions with six recombinant GH3 enzymes produced IAA conjugates with several amino acids, based on thin layer chromatography. The identity of the Ala, Asp, Phe, and Trp conjugates was verified by gas chromatography-mass spectrometry. Insertional mutations in GH3.1, GH3.2, GH3.5, and GH3.17 resulted in modestly increased sensitivity to IAA in seedling root. Overexpression of GH3.6 in the activation-tagged mutant dfl1-D did not significantly alter IAA level but resulted in 3.2- and 4.5-fold more IAA-Asp than in wild-type seedlings and mature leaves, respectively. In addition to IAA, dfl1-D was less sensitive to indole-3-butyric acid and naphthaleneacetic acid, consistent with the fact that GH3.6 was active on each of these auxins. By contrast, GH3.6 and the other five enzymes tested were inactive on halogenated auxins, and dfl1-D was not resistant to these. This evidence establishes that several GH3 genes encode IAA-amido synthetases, which help to maintain auxin homeostasis by conjugating excess IAA to amino acids.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | | | | | | | | | | | |
Collapse
|
426
|
Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis? FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:1-19. [PMID: 32689107 DOI: 10.1071/fp04135] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/19/2004] [Indexed: 05/27/2023]
Abstract
To overcome the attack of invading pathogens, a plant's defence system relies on preformed and induced responses. The induced responses are activated following detection of a pathogen, with the subsequent transmission of signals and orchestrated cellular events aimed at eliminating the pathogen and preventing its spread. Numerous studies are proving that the activated signalling pathways are not simply linear, but rather, form complex networks where considerable cross talk takes place. This review covers the recent application of powerful genetic and genomic approaches to identify key defence signalling pathways in the model plant Arabidopsis thaliana (L.) Heynh. The identification of key regulatory components of these pathways may offer new approaches to increase the defence capabilities of crop plants.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Jonathan P Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
427
|
Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible HP. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 2005; 280:13962-72. [PMID: 15677481 DOI: 10.1074/jbc.m413578200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arabidopsis thaliana contains a large number of genes that encode carboxylic acid-activating enzymes, including nine long-chain fatty acyl-CoA synthetases, four 4-coumarate:CoA ligases (4CL), and 25 4CL-like proteins of unknown biochemical function. Because of their high structural and sequence similarity with bona fide 4CLs and their highly hydrophobic putative substrate-binding pockets, the 4CL-like proteins At4g05160 and At5g63380 were selected for detailed analysis. Following heterologous expression, the purified proteins were subjected to a large scale screen to identify their preferred in vitro substrates. This study uncovered a significant activity of At4g05160 with medium-chain fatty acids, medium-chain fatty acids carrying a phenyl substitution, long-chain fatty acids, as well as the jasmonic acid precursors 12-oxo-phytodienoic acid and 3-oxo-2-(2'-pentenyl)-cyclopentane-1-hexanoic acid. The closest homolog of At4g05160, namely At5g63380, showed high activity with long-chain fatty acids and 12-oxo-phytodienoic acid, the latter representing the most efficiently converted substrate. By using fluorescent-tagged variants, we demonstrated that both 4CL-like proteins are targeted to leaf peroxisomes. Collectively, these data demonstrate that At4g05160 and At5g63380 have the capacity to contribute to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors.
Collapse
Affiliation(s)
- Katja Schneider
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:205-27. [PMID: 16078883 DOI: 10.1146/annurev.phyto.43.040204.135923] [Citation(s) in RCA: 2403] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
Collapse
Affiliation(s)
- Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
429
|
Danon A, Miersch O, Felix G, Camp RGL, Apel K. Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:68-80. [PMID: 15610350 DOI: 10.1111/j.1365-313x.2004.02276.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen ((1)O(2)), a non-radical reactive oxygen species that is restricted to the plastid compartment. Immediately after the shift, plants stop growing and develop necrotic lesions. We have established a protoplast system, which allows detection and characterization of the death response in flu induced by the release of (1)O(2). Vitamin B6 that quenches (1)O(2) in fungi was able to protect flu protoplasts from cell death. Blocking ethylene production was sufficient to partially inhibit the death reaction. Similarly, flu mutant seedlings expressing transgenic NahG were partially protected from the death provoked by the release of (1)O(2), indicating a requirement for salicylic acid (SA) in this process, whereas in cells depleted of both, ethylene and SA, the extent of cell death was reduced to the wild-type level. The flu mutant was also crossed with the jasmonic acid (JA)-depleted mutant opr3, and with the JA, OPDA and dinor OPDA (dnOPDA)-depleted dde2-2 mutant. Analysis of the resulting double mutants revealed that in contrast to the JA-induced suppression of H(2)O(2)/superoxide-dependent cell death reported earlier, JA promotes singlet oxygen-mediated cell death in flu, whereas other oxylipins such as OPDA and dnOPDA antagonize this death-inducing activity of JA.
Collapse
Affiliation(s)
- Antoine Danon
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH - 8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
430
|
Lahey KA, Yuan R, Burns JK, Ueng PP, Timmer LW, Kuang-Ren C. Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1394-401. [PMID: 15597745 DOI: 10.1094/mpmi.2004.17.12.1394] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Colletotrichum acutatum infects citrus petals and induces premature fruit drop and the formation of persistent calyces. The accumulation of hormones and other growth regulators, and differential gene expression in affected flowers and young fruit, was examined following fungal infection. Ethylene evolution increased threefold and indole-3-acetic acid (IAA) accumulation was as much as 140 times. Abscisic acid (ABA) levels showed no significant response. After infection, both trans- and cis-12-oxo-phytodienoic acid increased 8- to 10-fold. No significant difference of transjasmonic acid (JA) was observed in citrus flower petals or pistils. However, a fivefold increase of cis-JA was detected. The amount of salicylic acid (SA) was elevated twofold in affected petals, but not in pistils. Northern blot analyses revealed that the genes encoding ACC oxidase or ACC synthase, and 12-oxo-phytodienoic acid (12-oxo-PDA) reductase, were highly expressed in affected flowers. The genes encoding auxin-related proteins also were upregulated. Application of 2-(4-chlorophenoxy)-2-methyl-propionic acid (clofibrate; a putative auxin inhibitor), 2,3,5-triiodobenzolic acid (an auxin transport inhibitor), or SA after inoculation significantly decreased the accumulation of the gene transcripts of auxin-responsive, GH3-like protein and 12-oxo-PDA reductase, but resulted in higher percentages of young fruit retention. The results indicate that imbalance of IAA, ethylene, and JA in C. acutatum-infected flowers may be involved in symptom development and young fruit drop.
Collapse
Affiliation(s)
- Katherine A Lahey
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | | | | | | | | | | |
Collapse
|
431
|
Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:333-43. [PMID: 15469491 DOI: 10.1111/j.1365-313x.2004.02220.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin response factor (ARF) family genes play a central role in controlling sensitivity to the plant hormone auxin. We characterized the function of ARF8 in Arabidopsis by investigating a T-DNA insertion line (arf8-1) and overexpression lines (ARF8 OX) of ARF8. arf8-1 showed a long-hypocotyl phenotype in either white, blue, red or far-red light conditions, in contrast to ARF8 OX that displayed short hypocotyls in the light. Stronger and weaker apical dominance, and promotion and inhibition of lateral root formation were observed in arf8-1 and ARF8 OX respectively. Sensitivity to auxin was unaltered in arf8-1 hypocotyls with respect to growth inhibition caused by exogenously applied auxin and growth promotion induced by higher temperatures. ARF8 expression was observed constitutively in shoot and root apexes, and was induced in the light condition in hypocotyls. Free IAA contents were approximately 30% reduced in light-grown hypocotyls of ARF8 OX, but were similar between those of arf8-1 and wild type. Expression of the three GH3 genes was reduced in arf8-1 and increased in ARF8 OX, indicating that they are targets of ARF8 transcriptional control. Because the three GH3 proteins may be involved in the conjugation of IAA as suggested by Staswick et al. (2002), and because two of the three GH3 genes are auxin inducible, ARF8 may control the free IAA level in a negative feedback fashion by regulating GH3 gene expression. ARF family genes seem to control both auxin sensitivity and homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Chang-En Tian
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
432
|
Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE. A conserved transcript pattern in response to a specialist and a generalist herbivore. THE PLANT CELL 2004; 16:3132-47. [PMID: 15494554 PMCID: PMC527203 DOI: 10.1105/tpc.104.026120] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.
Collapse
Affiliation(s)
- Philippe Reymond
- Gene Expression Laboratory, Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
433
|
Nickstadt A, Thomma BPHJ, Feussner I, Kangasjärvi J, Zeier J, Loeffler C, Scheel D, Berger S. The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. MOLECULAR PLANT PATHOLOGY 2004; 5:425-34. [PMID: 20565618 DOI: 10.1111/j.1364-3703.2004.00242.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
SUMMARY Jasmonic acid and related oxylipin compounds are plant signalling molecules that are involved in the response to pathogens, insects, wounding and ozone. To explore further the role of jasmonates in stress signal transduction, the response of two jasmonate-signalling mutants, jin1 and jin4, to pathogens and ozone was analysed in this study. Upon treatment with the biotrophic bacterial pathogen Pseudomonas syringae, endogenous jasmonate levels increased in jin1 and jin4 similar to wild-type, demonstrating that these mutants are not defective in jasmonate biosynthesis. Jin1 but not jin4 is more resistant to P. syringae and this higher resistance is accompanied by higher levels of salicylic acid. Jin1 is also more resistant to the necrotrophic fungal pathogen Botrytis cinerea and shows wild-type sensitivity to ozone whereas jin4 is more susceptible to B. cinerea and ozone. These results indicate that the mutations in jin1 and jin4 affect different branches of the jasmonate signalling pathway. Additionally, in this combination of phenotypes, jin1 is unique among all other jasmonate-related mutants described thus far. These data also provide support for a crosstalk between the jasmonate and salicylate pathways.
Collapse
Affiliation(s)
- Anja Nickstadt
- Institut für Pflanzenbiochemie, Weinberg 3, 06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Reumann S, Ma C, Lemke S, Babujee L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. PLANT PHYSIOLOGY 2004; 136:2587-608. [PMID: 15333753 PMCID: PMC523325 DOI: 10.1104/pp.104.043695] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 05/17/2023]
Abstract
To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783-800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in beta-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid alpha-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes.
Collapse
Affiliation(s)
- Sigrun Reumann
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, D-37077 Goettingen, Germany.
| | | | | | | |
Collapse
|
435
|
Stuhlfelder C, Mueller MJ, Warzecha H. Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. ACTA ACUST UNITED AC 2004; 271:2976-83. [PMID: 15233793 DOI: 10.1111/j.1432-1033.2004.04227.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Jasmonic acid and its methyl ester are ubiquitous plant signalling compounds necessary for the regulation of growth and development, as well as for the response of plants to environmental stress factors. To date, it is not clear whether methyl jasmonate itself acts as a signal or if its conversion to jasmonic acid is mandatory prior to the induction of a defense response. We have cloned a cDNA, encoding a methyl jasmonate-cleaving enzyme, from tomato cell suspension cultures. Sequence analysis revealed significant similarity to plant esterases and to (S)-hydroxynitrile lyases with an alpha/beta-hydrolase fold structure. The coding sequence was heterologously expressed in Escherichia coli and purified in a catalytically active form. Transcript levels, as well as enzymatic activity, were determined in different tomato tissues. High transcript levels and enzyme activities were found in roots and flowers, while the mRNA level and activity were low in stems and leaves. Moreover, when tested in methyl jasmonate- and elicitor-treated cell suspension cultures, transcript levels were found to decrease, indicating that this particular enzyme might be a regulator of jasmonate signalling.
Collapse
Affiliation(s)
- Christiane Stuhlfelder
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany
| | | | | |
Collapse
|
436
|
Boter M, Ruíz-Rivero O, Abdeen A, Prat S. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 2004; 18:1577-91. [PMID: 15231736 PMCID: PMC443520 DOI: 10.1101/gad.297704] [Citation(s) in RCA: 426] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Jasmonates (JA) are important regulators of plant defense responses that activate expression of many wound-induced genes including the tomato proteinase inhibitor II (pin2) and leucine aminopeptidase (LAP) genes. Elements required for JA induction of the LAP gene are all present in the -317 to -78 proximal promoter region. Using yeast one-hybrid screening, we have identified the bHLH-leu zipper JAMYC2 and JAMYC10 proteins, specifically recognizing a T/G-box AACGTG motif in this promoter fragment. Mutation of the G-box element decreases JA-responsive LAP promoter expression. Expression of JAMYC2 and JAMYC10 is induced by JA, with a kinetics that precedes that of the LAP or pin2 transcripts. JAMYC overexpression enhanced JA-induced expression of these defense genes in potato, but did not result in constitutive transcript accumulation. Using footprinting assays, an additional protected element was identified, located directly adjacent to the T/G-box motif. Mutation of this element abolishes JA response, showing that recognition of this duplicated element is also required for gene expression. Knockout mutants in the AtMYC2 homolog gene of Arabidopsis are insensitive to JA and exhibit a decreased activation of the JA-responsive genes AtVSP and JR1. Activation of the PDF1.2 and b-CHI, ethylene/JA-responsive genes, is, however, increased in these mutants. These results show that the JAMYC/AtMYC2 transcription factors function as members of a MYC-based regulatory system conserved in dicotyledonous plants with a key role in JA-induced defense gene activation.
Collapse
Affiliation(s)
- Marta Boter
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona, CID-CSIC, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
437
|
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. THE PLANT CELL 2004; 16:2117-2127. [PMID: 15258265 DOI: 10.1105/tpc.104.02354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | |
Collapse
|
438
|
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. THE PLANT CELL 2004. [PMID: 15258265 DOI: 10.1105/tpc.104.023549.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | |
Collapse
|
439
|
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. THE PLANT CELL 2004; 16:2117-27. [PMID: 15258265 PMCID: PMC519202 DOI: 10.1105/tpc.104.023549] [Citation(s) in RCA: 725] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 05/12/2004] [Indexed: 05/17/2023]
Abstract
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | |
Collapse
|
440
|
Cipollini D, Enright S, Traw MB, Bergelson J. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol Ecol 2004; 13:1643-53. [PMID: 15140107 DOI: 10.1111/j.1365-294x.2004.02161.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the generalist herbivore, Spodoptera exigua, in wild-type and mutant Arabidopsis thaliana genotypes that varied genetically in their ability to mount SA- and JA-mediated defence responses. In one experiment, growth of S. exigua larvae was highest on the Wassilewskija wild-type, intermediate on the Columbia wild-type and the JA-deficient fad mutant, and lowest on the nim1-1 and jar1-mutants, which are defective in the SA and JA pathways, respectively. Activity of guaiacol peroxidase, polyphenoloxidase, n-acetylglucosaminidase, and trypsin inhibitor varied by genotype but did not correlate with insect performance. SA treatment increased growth of S. exigua larvae by approximately 35% over all genotypes, but had no discernable effect on activities of the four defence proteins. In a second experiment, growth of S. exigua was highest across treatments on the cep1 mutant, a constitutive expressor of high SA levels and systemic acquired resistance, and lowest on the fad mutant, which is JA-deficient. JA treatment generally increased activity of all four defence proteins, increased total glucosinolate levels and reduced insect growth by approximately 25% over all genotypes. SA generally inhibited expression of JA-induced resistance to S. exigua when both hormones were applied simultaneously. Across genotypes and treatments, larval mass was negatively correlated with the activity of trypsin inhibitor and polyphenoloxidase and with total glucosinolate levels, and insect damage was negatively correlated with the activity of polyphenoloxidase. SA had little effect on the induction of defence protein activity by JA. However, SA attenuated the induction of glucosinolates by JA and therefore may explain better the interactive effects of SA and JA on insect performance. This study illustrates that direct and indirect cross-effects of SA on resistance to S. exigua can occur in A. thaliana. Effects of SA may be mediated through effects on plant defence chemistry or other aspects of the suitability of foliage for insect feeding and growth.
Collapse
Affiliation(s)
- D Cipollini
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | | | |
Collapse
|
441
|
Affiliation(s)
- Haiyang Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| |
Collapse
|
442
|
Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. THE PLANT CELL 2004. [PMID: 15208388 DOI: 10.1105/tpc.022319.with] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In spite of the importance of jasmonates (JAs) as plant growth and stress regulators, the molecular components of their signaling pathway remain largely unknown. By means of a genetic screen that exploits the cross talk between ethylene (ET) and JAs, we describe the identification of several new loci involved in JA signaling and the characterization and positional cloning of one of them, JASMONATE-INSENSITIVE1 (JAI1/JIN1). JIN1 encodes AtMYC2, a nuclear-localized basic helix-loop-helix-leucine zipper transcription factor, whose expression is rapidly upregulated by JA, in a CORONATINE INSENSITIVE1-dependent manner. Gain-of-function experiments confirmed the relevance of AtMYC2 in the activation of JA signaling. AtMYC2 differentially regulates the expression of two groups of JA-induced genes. The first group includes genes involved in defense responses against pathogens and is repressed by AtMYC2. Consistently, jin1 mutants show increased resistance to necrotrophic pathogens. The second group, integrated by genes involved in JA-mediated systemic responses to wounding, is activated by AtMYC2. Conversely, Ethylene-Response-Factor1 (ERF1) positively regulates the expression of the first group of genes and represses the second. These results highlight the existence of two branches in the JA signaling pathway, antagonistically regulated by AtMYC2 and ERF1, that are coincident with the alternative responses activated by JA and ET to two different sets of stresses, namely pathogen attack and wounding.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
443
|
Bierfreund NM, Tintelnot S, Reski R, Decker EL. Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:823-835. [PMID: 15310072 DOI: 10.1016/j.jplph.2003.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Auxin-induced gene expression is described for a variety of different genes including the SAUR-, Aux/IAA- and GH3-families, members of which have been found in seed plants. The precise function of GH3-like proteins in plant development is not well characterised yet. Mutant analysis in Arabidopsis thaliana indicates a possible role for GH3-like proteins in connecting auxin and light signal transduction. Here, we report the isolation of three different GH3-like homologues from a lower land plant, the moss Physcomitrella patens. Two of the GH3-like homologues were chosen for further characterisation. Both genes are expressed in gametophytic tissues, with expression starting very early in moss development. Knockout plants were generated and analysed. In comparison to white-light growth, cultivation of the wild type and knockout plants under red-light conditions resulted in a delay in gametophytic tissue development. The leafy moss plants displayed an elongated phenotype. Growth delay and elongation were even stronger under far-red light conditions. No obvious differences between wild type and knockout plants could be detected under the examined conditions, indicating functional redundancy of the two genes.
Collapse
|
444
|
Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. THE PLANT CELL 2004; 16:1938-50. [PMID: 15208388 PMCID: PMC514172 DOI: 10.1105/tpc.022319] [Citation(s) in RCA: 911] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In spite of the importance of jasmonates (JAs) as plant growth and stress regulators, the molecular components of their signaling pathway remain largely unknown. By means of a genetic screen that exploits the cross talk between ethylene (ET) and JAs, we describe the identification of several new loci involved in JA signaling and the characterization and positional cloning of one of them, JASMONATE-INSENSITIVE1 (JAI1/JIN1). JIN1 encodes AtMYC2, a nuclear-localized basic helix-loop-helix-leucine zipper transcription factor, whose expression is rapidly upregulated by JA, in a CORONATINE INSENSITIVE1-dependent manner. Gain-of-function experiments confirmed the relevance of AtMYC2 in the activation of JA signaling. AtMYC2 differentially regulates the expression of two groups of JA-induced genes. The first group includes genes involved in defense responses against pathogens and is repressed by AtMYC2. Consistently, jin1 mutants show increased resistance to necrotrophic pathogens. The second group, integrated by genes involved in JA-mediated systemic responses to wounding, is activated by AtMYC2. Conversely, Ethylene-Response-Factor1 (ERF1) positively regulates the expression of the first group of genes and represses the second. These results highlight the existence of two branches in the JA signaling pathway, antagonistically regulated by AtMYC2 and ERF1, that are coincident with the alternative responses activated by JA and ET to two different sets of stresses, namely pathogen attack and wounding.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
445
|
Tuominen H, Overmyer K, Keinänen M, Kollist H, Kangasjärvi J. Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:59-69. [PMID: 15200642 DOI: 10.1111/j.1365-313x.2004.02107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ethylene (ET) and jasmonic acid (JA) have opposite effects on ozone (O(3))-induced spreading cell death; ET stimulates, and is required for the spreading cell death, whereas JA protects tissues. We studied the underlying molecular mechanisms with the O(3)-sensitive, JA-insensitive jasmonate resistant 1 (jar1), and the O(3)-tolerant, ET-insensitive ethylene insensitive 2 (ein2) mutants. Blocking ET perception pharmacologically with norbornadiene (NBD) in jar1, or ET signaling genetically in the jar1 ein2 double mutant prevented the spread of cell death. This suggests that EIN2 function is epistatic to JAR1, and that the JAR1-dependent JA pathway halts oxidative cell death by directly inhibiting ET signaling. JAR1-dependent suppression of the ET pathway was apparent also as increased EIN2-dependent gene expression and ET hypersensitivity of jar1. Physiological experiments suggested that the target of JA is upstream of Constitutive Triple Response 1 (CTR1), but downstream of ET biosynthesis. Gene expression analysis of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated and O(3)-exposed ein2 and jar1 revealed reciprocal antagonism: the EIN2-mediated suppression of the JA pathway. The results imply that the O(3)-induced spreading cell death is stimulated by early, rapid accumulation of ET, which can suppress the protecting function of JA thereby allowing cell death to proceed. Extended spreading cell death induces late accumulation of JA, which inhibits the propagation of cell death through inhibition of the ET pathway.
Collapse
Affiliation(s)
- Hannele Tuominen
- Department of Biological and Environmental Sciences, Plant Biology, University of Helsinki, PO Box 56, Viikinkaari 9, FI-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
446
|
van Poecke RMP, Dicke M. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:387-401. [PMID: 15248121 DOI: 10.1055/s-2004-820887] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In their defence against pathogens, herbivorous insects, and mites, plants employ many induced responses. One of these responses is the induced emission of volatiles upon herbivory. These volatiles can guide predators or parasitoids to their herbivorous prey, and thus benefit both plant and carnivore. This use of carnivores by plants is termed indirect defence and has been reported for many plant species, including elm, pine, maize, Lima bean, cotton, cucumber, tobacco, tomato, cabbage, and Arabidopsis thaliana. Herbivory activates an intricate signalling web and finally results in defence responses such as increased production of volatiles. Although several components of this signalling web are known (for example the plant hormones jasmonic acid, salicylic acid, and ethylene), our understanding of how these components interact and how other components are involved is still limited. Here we review the knowledge on elicitation and signal transduction of herbivory-induced volatile production. Additionally, we discuss how use of the model plant Arabidopsis thaliana can enhance our understanding of signal transduction in indirect defence and how cross-talk and trade-offs with signal transduction in direct defence against herbivores and pathogens influences plant responses.
Collapse
Affiliation(s)
- R M P van Poecke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
447
|
Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. PLANT PHYSIOLOGY 2004; 135:978-88. [PMID: 15155875 PMCID: PMC514132 DOI: 10.1104/pp.104.039677] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Auxins are hormones important for numerous processes throughout plant growth and development. Plants use several mechanisms to regulate levels of the auxin indole-3-acetic acid (IAA), including the formation and hydrolysis of amide-linked conjugates that act as storage or inactivation forms of the hormone. Certain members of an Arabidopsis amidohydrolase family hydrolyze these conjugates to free IAA in vitro. We examined amidohydrolase gene expression using northern and promoter-beta-glucuronidase analyses and found overlapping but distinct patterns of expression. To examine the in vivo importance of auxin-conjugate hydrolysis, we generated a triple hydrolase mutant, ilr1 iar3 ill2, which is deficient in three of these hydrolases. We compared root and hypocotyl growth of the single, double, and triple hydrolase mutants on IAA-Ala, IAA-Leu, and IAA-Phe. The hydrolase mutant phenotypic profiles on different conjugates reveal the in vivo activities and relative importance of ILR1, IAR3, and ILL2 in IAA-conjugate hydrolysis. In addition to defective responses to exogenous conjugates, ilr1 iar3 ill2 roots are slightly less responsive to exogenous IAA. The triple mutant also has a shorter hypocotyl and fewer lateral roots than wild type on unsupplemented medium. As suggested by the mutant phenotypes, ilr1 iar3 ill2 imbibed seeds and seedlings have lower IAA levels than wild type and accumulate IAA-Ala and IAA-Leu, conjugates that are substrates of the absent hydrolases. These results indicate that amidohydrolases contribute free IAA to the auxin pool during germination in Arabidopsis.
Collapse
Affiliation(s)
- Rebekah A Rampey
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
448
|
LeClere S, Rampey RA, Bartel B. IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1alpha homolog. PLANT PHYSIOLOGY 2004; 135:989-99. [PMID: 15173569 PMCID: PMC514133 DOI: 10.1104/pp.104.040519] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/20/2004] [Accepted: 03/21/2004] [Indexed: 05/17/2023]
Abstract
The formation and hydrolysis of indole-3-acetic acid (IAA) conjugates represent a potentially important means for plants to regulate IAA levels and thereby auxin responses. The identification and characterization of mutants defective in these processes is advancing the understanding of auxin regulation and response. Here we report the isolation and characterization of the Arabidopsis iar4 mutant, which has reduced sensitivity to several IAA-amino acid conjugates. iar4 is less sensitive to a synthetic auxin and low concentrations of an ethylene precursor but responds to free IAA and other hormones tested similarly to wild type. The gene defective in iar4 encodes a homolog of the E1alpha-subunit of mitochondrial pyruvate dehydrogenase, which converts pyruvate to acetyl-coenzyme A. We did not detect glycolysis or Krebs-cycle-related defects in the iar4 mutant, and a T-DNA insertion in the IAR4 coding sequence conferred similar phenotypes as the originally identified missense allele. In contrast, we found that disruption of the previously described mitochondrial pyruvate dehydrogenase E1alpha-subunit does not alter IAA-Ala responsiveness or confer any obvious phenotypes. It is possible that IAR4 acts in the conversion of indole-3-pyruvate to indole-3-acetyl-coenzyme A, which is a potential precursor of IAA and IAA conjugates.
Collapse
Affiliation(s)
- Sherry LeClere
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
449
|
Bücking H, Förster H, Stenzel I, Miersch O, Hause B. Applied jasmonates accumulate extracellularly in tomato, but intracellularly in barley. FEBS Lett 2004; 562:45-50. [PMID: 15044000 DOI: 10.1016/s0014-5793(04)00178-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 11/22/2022]
Abstract
Jasmonic acid (JA) and its derivatives are well-characterized signaling molecules in plant defense and development, but the site of their localization within plant tissue is entirely unknown. To address the question whether applied JA accumulates extracellularly or intracellularly, leaves of tomato and barley were fed with 14C-labeled JA and the label was localized in cryofixed and lyophilized leaf tissues by microautoradiography. In tomato the radioactivity was detectable within the apoplast, but no label was found within the mesophyll cells. By contrast, in barley leaf tissues, radioactivity was detected within the mesophyll cells suggesting a cellular uptake of exogenously applied JA. JA, applied to leaves of both plants as in the labeling experiments, led in all leaf cells to the expression of JA-inducible genes indicating that the perception is completed by JA signal transduction.
Collapse
Affiliation(s)
- Heike Bücking
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | | | | | | | | |
Collapse
|
450
|
Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. PLANT PHYSIOLOGY 2004. [PMID: 15122038 DOI: 10.1111/j.0031-9317.2004.00339.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Ler) and Shakdara (Sha). A set of 114 F9 recombinant inbred lines was genotyped with 65 polymerase chain reaction-based markers and the phenotypic marker erecta. The traits analyzed were dormancy, speed of germination, seed sugar content, seed germination after a controlled deterioration test, hydrogen peroxide (H2O2) treatment, and on abscisic acid. Furthermore, the effects of heat stress, salt (NaCl) stress, osmotic (mannitol) stress, and natural aging were analyzed. For all traits one or more QTLs were identified, with some QTLs for different traits colocating. The relevance of colocation for mechanisms underlying the various traits is discussed.
Collapse
Affiliation(s)
- Emile J M Clerkx
- Graduate School of Experimental Plant Science and Laboratory of Genetics, Wageningen University, NL-6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|