401
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
402
|
Affiliation(s)
- Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Correspondence: ;
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, UK
- Correspondence: ;
| |
Collapse
|
403
|
Caarls L, Van der Does D, Hickman R, Jansen W, Verk MCV, Proietti S, Lorenzo O, Solano R, Pieterse CMJ, Van Wees SCM. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. PLANT & CELL PHYSIOLOGY 2017; 58:266-278. [PMID: 27837094 DOI: 10.1093/pcp/pcw187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/27/2016] [Indexed: 05/28/2023]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription.
Collapse
Affiliation(s)
- Lotte Caarls
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Dieuwertje Van der Does
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Wouter Jansen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Silvia Proietti
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Oscar Lorenzo
- Departamento de Fisiologia Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biologia, Universidad de Salamanca, Salamanca, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| |
Collapse
|
404
|
Wasternack C. The Trojan horse coronatine: the COI1-JAZ2-MYC2,3,4-ANAC019,055,072 module in stomata dynamics upon bacterial infection. THE NEW PHYTOLOGIST 2017; 213:972-975. [PMID: 28079932 DOI: 10.1111/nph.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
405
|
Kaurilind E, Brosché M. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal. PLoS One 2017; 12:e0170532. [PMID: 28107453 PMCID: PMC5249244 DOI: 10.1371/journal.pone.0170532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.
Collapse
Affiliation(s)
- Eve Kaurilind
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikael Brosché
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
406
|
Mao YB, Liu YQ, Chen DY, Chen FY, Fang X, Hong GJ, Wang LJ, Wang JW, Chen XY. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat Commun 2017; 8:13925. [PMID: 28067238 PMCID: PMC5233801 DOI: 10.1038/ncomms13925] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/14/2016] [Indexed: 01/20/2023] Open
Abstract
Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation.
Collapse
Affiliation(s)
- Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yao-Qian Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Dian-Yang Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Fang-Yan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Gao-Jie Hong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, People's Republic of China
| |
Collapse
|
407
|
AbuQamar S, Moustafa K, Tran LS. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol 2017; 37:262-274. [PMID: 28056558 DOI: 10.1080/07388551.2016.1271767] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.
Collapse
Affiliation(s)
- Synan AbuQamar
- a Department of Biology , United Arab Emirates University , Al-Ain , UAE
| | - Khaled Moustafa
- b Conservatoire National des Arts et Métiers , Paris , France
| | - Lam Son Tran
- c Plant Abiotic Stress Research Group & Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,d Signaling Pathway Research Unit , RIKEN Center for Sustainable Resource Science , Yokohama , Kanagawa , Japan
| |
Collapse
|
408
|
Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. PROTOPLASMA 2017; 254:401-408. [PMID: 27040682 DOI: 10.1007/s00709-016-0960-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Drought is an important factor limiting plant development and crop production. Dissecting the factors involved in this process is the key for enhancement of plant tolerance to drought stress by genetic approach. Here, we evaluated the regulatory function of a novel rice ethylene response factor (ERF) OsERF109 in drought stress. Expression of OsERF109 was rapidly induced by stress and phytohormones. Subcellular localization and transactivation assay demonstrated that OsERF109 was localized in nucleus and possessed transactivation activity. Transgenic plants overexpressing (OE) and knockdown with RNA interfering (RI) OsERF109 exhibited significantly reduced and improved drought resistance, respectively, indicating that OsERF109 negatively regulates drought resistance in rice. Furthermore, measurement by gas chromatography showed that ethylene contents were less in OE while more in RI lines than these in wild types, supporting the data of drought tolerance and water loss in transgenic lines. Quantitative real-time PCR analysis also proved the regulation of OsERF109 in the expression of OSACS6, OSACO2, and OsERF3, which have been identified to play important roles in ethylene biosynthesis. Based on these results, our data evidence that OsERF109 regulates drought resistance by affecting the ethylene biosynthesis in rice. Overall, our study reveals the negative role of OsERF109 in ethylene biosynthesis and drought tolerance in rice.
Collapse
Affiliation(s)
- Yanwen Yu
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dexin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juntao Gu
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Fengru Wang
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Jingao Dong
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China.
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| |
Collapse
|
409
|
Kuhn H, Lorek J, Kwaaitaal M, Consonni C, Becker K, Micali C, Ver Loren van Themaat E, Bednarek P, Raaymakers TM, Appiano M, Bai Y, Meldau D, Baum S, Conrath U, Feussner I, Panstruga R. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. FRONTIERS IN PLANT SCIENCE 2017; 8:1006. [PMID: 28674541 PMCID: PMC5475338 DOI: 10.3389/fpls.2017.01006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.
Collapse
Affiliation(s)
- Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
| | - Justine Lorek
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Mark Kwaaitaal
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
| | - Chiara Consonni
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Katia Becker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Cristina Micali
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | | | - Paweł Bednarek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tom M. Raaymakers
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Michela Appiano
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Dorothea Meldau
- Department of Plant Biochemistry, Albrecht von Haller Institute, Georg August University GöttingenGöttingen, Germany
| | - Stephani Baum
- Department of Plant Physiology, Institute for Biology III, RWTH Aachen UniversityAachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, Institute for Biology III, RWTH Aachen UniversityAachen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht von Haller Institute, Georg August University GöttingenGöttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences, Georg August University GöttingenGöttingen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Ralph Panstruga
| |
Collapse
|
410
|
An JP, Li HH, Song LQ, Su L, Liu X, You CX, Wang XF, Hao YJ. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:24-31. [PMID: 27404131 DOI: 10.1016/j.plaphy.2016.06.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) Leu zipper transcription factor MYC2 is an important regulator in the Jasmonic acid (JA) signaling pathway. In this study, the apple MdMYC2 gene was isolated and cloned on the basis of its homology with Arabidopsis thaliana MYC2. Quantitative real time PCR (qRT-PCR) analysis demonstrated that MdMYC2 transcripts were induced by Methyl Jasmonate (MeJA) treatment and wounding. The MdMYC2 protein interacted with itself and bound the G-Box motif of the AtJAZ3 gene. MdMYC2 interacted with the MdJAZ2 protein, which is a repressor protein in the JA signaling pathway. Furthermore, we obtained transgenic apple calli that either overexpressed or suppressed the MdMYC2 gene. Expression analysis with qRT-PCR demonstrated that the transcript levels of JA-regulated anthocyanin biosynthetic genes, such as MdDFR, MdUF3GT, MdF3H and MdCHS, were markedly up-regulated in the MdMYC2 overexpressing calli and down-regulated in the suppressing calli compared with the WT control. As a result, the overexpressing calli produced more anthocyanin, and the suppressing calli produced less. Finally, the MdMYC2 gene was ectopically expressed in Arabidopsis. Both phenotypic investigation and expression analysis demonstrated that the MdMYC2 transgenic Arabidopsis lines were more sensitive to MeJA than the WT control. Together, these results indicate that the apple MdMYC2 gene plays a vital role in the JA response.
Collapse
Affiliation(s)
- Jian-Ping An
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hao-Hao Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lai-Qing Song
- Yantai Academy of Agricultural Sciences, Yan'tai, Shandong, 265599, China
| | - Ling Su
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
411
|
Yang L, Li J, Ji J, Li P, Yu L, Abd_Allah EF, Luo Y, Hu L, Hu X. High Temperature Induces Expression of Tobacco Transcription Factor NtMYC2a to Regulate Nicotine and JA Biosynthesis. Front Physiol 2016; 7:465. [PMID: 27833561 PMCID: PMC5081390 DOI: 10.3389/fphys.2016.00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022] Open
Abstract
Environmental stress elevates the level of jasmonic acid (JA) and activates the biosynthesis of nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L.) by up-regulating the expression of putrescine N-methyltransferase 1 (NtPMT1), which encodes a putrescine N-methyl transferase that catalyzes nicotine formation. The JA signal suppressor JASMONATE ZIM DOMAIN 1 (NtJAZ1) and its target protein, NtMYC2a, also regulate nicotine biosynthesis; however, how these proteins interact to regulate abiotic-induced nicotine biosynthesis is poorly understood. In this study, we found that high-temperature (HT) treatment activated transcription of NtMYC2a, which subsequently stimulated the transcription of genes associated with JA biosynthesis, including Lipoxygenase (LOX), Allene oxide synthase (AOS), Allene oxide cyclase (AOC), and 12-oxophytodienodate reductase (OPR). Overexpression of NtMYC2a increased nicotine biosynthesis by enhancing its binding to the promoter of NtPMT1. Overexpression of either NtJAZ1 or proteasome-resistant NtJAZ1ΔC suppressed nicotine production under normal conditions, but overexpression only of the former resulted in low levels of nicotine under HT treatment. These data suggest that HT induces NtMYC2a accumulation through increased transcription to activate nicotine synthesis; meanwhile, HT-induced NtMYC2a can activate JA synthesis to promote additional NtMYC2a activity by degrading NtJAZ1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Liming Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | - Junying Li
- Department of Agronomy, Yunnan Academy of Tobacco Agricultural SciencesKunming, China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Seed Pathology Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Liwei Hu
- Laboratory of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of CNTCZhengzhou, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| |
Collapse
|
412
|
Jia H, Zhang C, Pervaiz T, Zhao P, Liu Z, Wang B, Wang C, Zhang L, Fang J, Qian J. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Funct Integr Genomics 2016; 16:79-94. [PMID: 26498957 DOI: 10.1007/s10142-015-0468-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/10/2023]
Abstract
Fruit ripening is a complex process that is regulated by a signal network. Whereas the regulatory mechanism of abscisic acid has been studied extensively in non-climacteric fruit, little is know about other signaling pathways involved in this process. In this study, we performed that plant hormone jasmonic acid plays an important role in grape fruit coloring and softening by increasing the transcription levels of several ripening-related genes, such as the color-related genes PAL1, DFR, CHI, F3H, GST, CHS, and UFGT; softening-related genes PG, PL, PE, Cell, EG1, and XTH1; and aroma-related genes Ecar, QR, and EGS. Lastly, the fruit anthocyanin, phenol, aroma, and cell wall materials were changed. Jasmonic acid positively regulated its biosynthesis pathway genes LOS, AOS, and 12-oxophytodienoate reductase (OPR) and signal pathway genes COI1 and JMT. RNA interference of grape jasmonic acid pathway gene VvAOS in strawberry fruit appeared fruit un-coloring phenotypes; exogenous jasmonic acid rescued this phenotypes. On the contrary, overexpression of grape jasmonic acid receptor VvCOI1 in the strawberry fruit accelerated the fruit-ripening process and induced some plant defense-related gene expression level. Furthermore, jasmonic acid treatment or strong jasmonic acid signal pathway in strawberry fruit make the fruit resistance against Botrytis cinerea.
Collapse
|
413
|
Kroes A, Broekgaarden C, Castellanos Uribe M, May S, van Loon JJA, Dicke M. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia 2016; 183:107-120. [PMID: 27771762 PMCID: PMC5239811 DOI: 10.1007/s00442-016-3758-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/16/2016] [Indexed: 01/09/2023]
Abstract
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory.
Collapse
Affiliation(s)
- Anneke Kroes
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Marcos Castellanos Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Sean May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
414
|
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:147-156. [PMID: 27490895 DOI: 10.1016/j.pbi.2016.07.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are essential phytohormones regulating plant development and environmental adaptation. Many components of the JA-signalling pathway have been identified. However, our insight into the mechanisms by which a single bioactive JA hormone can regulate a myriad of physiological processes and provide specificity in the response remains limited. Recent findings on molecular components suggest that, despite apparent redundancy, specificity is achieved by (1) distinct protein-protein interactions forming unique JAZ/transcription factor complexes, (2) discrete spatiotemporal expression of specific components, (3) variable hormone thresholds for the formation of multiple JA receptor complexes and (4) integration of several signals by JA-pathway components. The molecular modularity that is thereby created enables a single bioactive hormone to specifically modulate multiple JA-outputs in response to different environmental and developmental cues.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
415
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
416
|
Abstract
Jasmonates (JAs) are a class of plant hormones that play essential roles in response to tissue wounding. They act on gene expression to slow down growth and to redirect metabolism towards producing defense molecules and repairing damage. These responses are systemic and have dramatic impacts on yields, making JAs a very active research area. JAs interact with many other plant hormones and therefore also have essential functions throughout development, notably during plant reproduction, leaf senescence and in response to many biotic and abiotic stresses.
Collapse
Affiliation(s)
- Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
417
|
Zhao G, Song Y, Wang C, Butt HI, Wang Q, Zhang C, Yang Z, Liu Z, Chen E, Zhang X, Li F. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton. Mol Genet Genomics 2016; 291:2173-2187. [PMID: 27640194 PMCID: PMC5080297 DOI: 10.1007/s00438-016-1248-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 09/02/2016] [Indexed: 11/26/2022]
Abstract
Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H2O2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.
Collapse
Affiliation(s)
- Ge Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Caixiang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hamama Islam Butt
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qianhua Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
418
|
Allu AD, Brotman Y, Xue GP, Balazadeh S. Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection. EMBO Rep 2016; 17:1578-1589. [PMID: 27632992 DOI: 10.15252/embr.201642197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/23/2016] [Indexed: 11/09/2022] Open
Abstract
Responses to pathogens, including host transcriptional reprogramming, require partially antagonistic signalling pathways dependent on the phytohormones salicylic (SA) and jasmonic (JA) acids. However, upstream factors modulating the interplay of these pathways are not well characterized. Here, we identify the transcription factor ANAC032 from Arabidopsis thaliana as one such regulator in response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). ANAC032 directly represses MYC2 activation upon Pst attack, resulting in blockage of coronatine-mediated stomatal reopening which restricts entry of bacteria into plant tissue. Furthermore, ANAC032 activates SA signalling by repressing NIMIN1, a key negative regulator of SA-dependent defence. Finally, ANAC032 reduces expression of JA-responsive genes, including PDF1.2A Thus, ANAC032 enhances resistance to Pst by generating an orchestrated transcriptional output towards key SA- and JA-signalling genes coordinated through direct binding of ANAC032 to the MYC2, NIMIN1 and PDF1.2A promoters.
Collapse
Affiliation(s)
- Annapurna Devi Allu
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.,Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yariv Brotman
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Gang-Ping Xue
- CSIRO Agriculture Flagship, St. Lucia, QLD, Australia
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany .,Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
419
|
Yan Q, Cui X, Lin S, Gan S, Xing H, Dou D. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses. PLoS One 2016; 11:e0162253. [PMID: 27588421 PMCID: PMC5010195 DOI: 10.1371/journal.pone.0162253] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Cui
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shuai Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Shuping Gan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
420
|
Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K. Overexpression of OsMYC2 Results in the Up-Regulation of Early JA-Rresponsive Genes and Bacterial Blight Resistance in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:1814-27. [PMID: 27335352 DOI: 10.1093/pcp/pcw101] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/12/2016] [Indexed: 05/22/2023]
Abstract
JASMONATE ZIM-domain (JAZ) proteins act as transcriptional repressors of jasmonic acid (JA) responses and play a crucial role in the regulation of host immunity in plants. Here, we report that OsMYC2, a JAZ-interacting transcription factor in rice (Oryza sativa L.), plays an important role in the resistance response against rice bacterial blight, which is one of the most serious diseases in rice, caused by Xanthomonas oryzae pv. oryzae (Xoo). The results showed that OsMYC2 interacted with some OsJAZ proteins in a JAZ-interacting domain (JID)-dependent manner. The up-regulation of OsMYC2 in response to JA was regulated by OsJAZ8. Transgenic rice plants overexpressing OsMYC2 exhibited a JA-hypersensitive phenotype and were more resistant to Xoo. A large-scale microarray analysis revealed that OsMYC2 up-regulated OsJAZ10 as well as many other defense-related genes. OsMYC2 selectively bound to the G-box-like motif of the OsJAZ10 promoter in vivo and regulated the expression of early JA-responsive genes, but not of late JA-responsive genes. The nuclear localization of OsMYC2 depended on a nuclear localization signal within JID. Overall, we conclude that OsMYC2 acts as a positive regulator of early JA signals in the JA-induced resistance against Xoo in rice.
Collapse
Affiliation(s)
- Yuya Uji
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795 Japan
| | - Shiduku Taniguchi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795 Japan
| | - Daisuke Tamaoki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795 Japan
| | - Hodaka Shishido
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795 Japan
| | - Kazuya Akimitsu
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795 Japan
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795 Japan
| |
Collapse
|
421
|
Nguyen D, Rieu I, Mariani C, van Dam NM. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. PLANT MOLECULAR BIOLOGY 2016; 91:727-40. [PMID: 27095445 PMCID: PMC4932144 DOI: 10.1007/s11103-016-0481-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/09/2016] [Indexed: 05/18/2023]
Abstract
Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments.
Collapse
Affiliation(s)
- Duy Nguyen
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Ivo Rieu
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Celestina Mariani
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany.
| |
Collapse
|
422
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
423
|
de Ollas C, Dodd IC. Physiological impacts of ABA-JA interactions under water-limitation. PLANT MOLECULAR BIOLOGY 2016; 91:641-50. [PMID: 27299601 PMCID: PMC4932129 DOI: 10.1007/s11103-016-0503-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/18/2016] [Indexed: 05/03/2023]
Abstract
Plant responses to drought stress depend on highly regulated signal transduction pathways with multiple interactions. This complex crosstalk can lead to a physiological outcome of drought avoidance or tolerance/resistance. ABA is the principal mediator of these responses due to the regulation of stomatal closure that determines plant growth and survival, but also other strategies of drought resistance such as osmotic adjustment. However, other hormones such as JA seem responsible for regulating a subset of plant responses to drought by regulating ABA biosynthesis and accumulation and ABA-dependent signalling, but also by ABA independent pathways. Here, we review recent reports of ABA-JA hormonal and molecular interactions within a physiological framework of drought tolerance. Understanding the physiological significance of this complex regulation offers opportunities to find strategies of drought tolerance that avoid unwanted side effects that limit growth and yield, and may allow biotechnological crop improvement.
Collapse
Affiliation(s)
- Carlos de Ollas
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C. Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
424
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:673-89. [PMID: 27086135 DOI: 10.1007/s11103-016-0480-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/09/2016] [Indexed: 05/20/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
425
|
Molecular Responses to Small Regulating Molecules against Huanglongbing Disease. PLoS One 2016; 11:e0159610. [PMID: 27459099 PMCID: PMC4961454 DOI: 10.1371/journal.pone.0159610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. Two trials were conducted: one in the greenhouse and the other in the orchard. In the greenhouse study, responses of 42 key genes involved in sugar and starch metabolism, hormone-related pathways, biotic stress responses, and secondary metabolism in treated and untreated mature leaves were analyzed. TGA5 was significantly induced by arginine. Benzyladenine and gibberellins enhanced two important genes involved in biotic stress responses: WRKY54 and WRKY59. Sucrose combined with atrazine mainly upregulated key genes involved in carbohydrate metabolism such as sucrose-phosphate synthase, sucrose synthase, starch synthase, and α-amylase. Atrazine also affected expression of some key genes involved in systemic acquired resistance such as EDS1, TGA6, WRKY33, and MYC2. Several treatments upregulated HSP82, which might help protect protein folding and integrity. A subset of key genes was chosen as biomarkers for molecular responses to treatments under field conditions. GPT2 was downregulated by all small-molecule treatments. Arginine-induced genes involved in systemic acquired resistance included PR1, WRKY70, and EDS1. These molecular data encourage long-term application of treatments that combine these regulating molecules in field trials.
Collapse
|
426
|
Nguyen D, D'Agostino N, Tytgat TOG, Sun P, Lortzing T, Visser EJW, Cristescu SM, Steppuhn A, Mariani C, van Dam NM, Rieu I. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara. PLANT, CELL & ENVIRONMENT 2016; 39:1485-99. [PMID: 26759219 DOI: 10.1111/pce.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants.
Collapse
Affiliation(s)
- Duy Nguyen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per l'orticoltura, 84098, Pontecagnano, (SA), Italy
| | - Tom O G Tytgat
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Pulu Sun
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
- Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet, 42023, Saint-Etienne, France
| | - Tobias Lortzing
- Molecular Ecology Group, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163, Berlin, Germany
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Anke Steppuhn
- Molecular Ecology Group, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163, Berlin, Germany
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Ecology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| |
Collapse
|
427
|
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Sci Rep 2016; 6:28941. [PMID: 27357749 PMCID: PMC4928087 DOI: 10.1038/srep28941] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 01/30/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.
Collapse
Affiliation(s)
- Fernando Aleman
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Junshi Yazaki
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Melissa Lee
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Yohei Takahashi
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Alice Y. Kim
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Zixing Li
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Joseph R. Ecker
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
428
|
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Sci Rep 2016; 6:28941. [PMID: 27357749 DOI: 10.1038/srep2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 05/26/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.
Collapse
Affiliation(s)
- Fernando Aleman
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Junshi Yazaki
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Melissa Lee
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Yohei Takahashi
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Alice Y Kim
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Zixing Li
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Joseph R Ecker
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
429
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
430
|
Abstract
Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.
Collapse
|
431
|
Wang C, Zhang X, Mou Z. Comparison of nicotinamide adenine dinucleotide phosphate-induced immune responses against biotrophic and necrotrophic pathogens in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2016; 11:e1169358. [PMID: 27031653 PMCID: PMC4973797 DOI: 10.1080/15592324.2016.1169358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 05/20/2023]
Abstract
The pyridine nucleotide nicotinamide adenine dinucleotide phosphate (NADP) is a universal coenzyme in anabolic reactions and also functions in intracellular signaling by serving as a substrate for production of the Ca(2+)-mobilizing agent nicotinic acid adenine dinucleotide phosphate (NAADP). It has recently been shown that, in mammalian cells, cellular NADP can be released into the extracellular compartment (ECC) upon environmental stresses by active exocytosis or diffusion through transmembrane transporters in living cells or passive leakage across the membrane in dying cells. In the ECC, NADP can either serve as a substrate for production of NAADP or act directly on purinoceptors to activate transmembrane signaling. In the last several years, extracellular NADP has also been suggested to function in plant immune responses. Here, we compared exogenous NADP-induced immune responses against biotrophic and necrotrophic pathogens in the Arabidopsis thaliana ecotype Columbia and found that NADP addition induces salicylic acid-mediated defense signaling but not jasmonic acid/ethylene-mediated defense responses. These results suggest the specificity of exogenous NADP-activated signaling in plants.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- CONTACT Zhonglin Mou
| |
Collapse
|
432
|
Davila Olivas NH, Coolen S, Huang P, Severing E, van Verk MC, Hickman R, Wittenberg AHJ, de Vos M, Prins M, van Loon JJA, Aarts MGM, van Wees SCM, Pieterse CMJ, Dicke M. Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory. THE NEW PHYTOLOGIST 2016; 210:1344-56. [PMID: 26847575 DOI: 10.1111/nph.13847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/06/2015] [Indexed: 05/07/2023]
Abstract
In nature, plants are exposed to biotic and abiotic stresses that often occur simultaneously. Therefore, plant responses to combinations of stresses are most representative of how plants respond to stresses. We used RNAseq to assess temporal changes in the transcriptome of Arabidopsis thaliana to herbivory by Pieris rapae caterpillars, either alone or in combination with prior exposure to drought or infection with the necrotrophic fungus Botrytis cinerea. Pre-exposure to drought stress or Botrytis infection resulted in a significantly different timing of the caterpillar-induced transcriptional changes. Additionally, the combination of drought and P. rapae induced an extensive downregulation of A. thaliana genes involved in defence against pathogens. Despite a more substantial growth reduction observed for plants exposed to drought plus P. rapae feeding compared with P. rapae feeding alone, this did not affect weight increase of this specialist caterpillar. Plants respond to combined stresses with phenotypic and transcriptional changes that differ from the single stress situation. The effect of a previous exposure to drought or B. cinerea infection on transcriptional changes to caterpillars is largely overridden by the stress imposed by caterpillars, indicating that plants shift their response to the most recent stress applied.
Collapse
Affiliation(s)
- Nelson H Davila Olivas
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Pingping Huang
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Edouard Severing
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Bioinformatics, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | | | - Martin de Vos
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, the Netherlands
| | - Marcel Prins
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, the Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
433
|
Shen Q, Lu X, Yan T, Fu X, Lv Z, Zhang F, Pan Q, Wang G, Sun X, Tang K. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2016; 210:1269-81. [PMID: 26864531 DOI: 10.1111/nph.13874] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/22/2015] [Indexed: 05/19/2023]
Abstract
The plant Artemisia annua is well known due to the production of artemisinin, a sesquiterpene lactone that is widely used in malaria treatment. Phytohormones play important roles in plant secondary metabolism, such as jasmonic acid (JA), which can induce artemisinin biosynthesis in A. annua. Nevertheless, the JA-inducing mechanism remains poorly understood. The expression of gene AaMYC2 was rapidly induced by JA and AaMYC2 binds the G-box-like motifs within the promoters of gene CYP71AV1 and DBR2, which are key structural genes in the artemisinin biosynthetic pathway. Overexpression of AaMYC2 in A. annua significantly activated the transcript levels of CYP71AV1 and DBR2, which resulted in an increased artemisinin content. By contrast, artemisinin content was reduced in the RNAi transgenic A. annua plants in which the expression of AaMYC2 was suppressed. Meanwhile, the RNAi transgenic A. annua plants showed lower sensitivity to methyl jasmonate treatment than the wild-type plants. These results demonstrate that AaMYC2 is a positive regulator of artemisinin biosynthesis and is of great value in genetic engineering of A. annua for increased artemisinin production.
Collapse
Affiliation(s)
- Qian Shen
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tingxiang Yan
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongyou Lv
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Zhang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qifang Pan
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guofeng Wang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
434
|
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. PLANT, CELL & ENVIRONMENT 2016; 39:1127-39. [PMID: 26763171 DOI: 10.1111/pce.12712] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
435
|
Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3383-96. [PMID: 27107291 PMCID: PMC4892728 DOI: 10.1093/jxb/erw159] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Gerrie L Wiegers
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Biointeractions & Plant Health, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jan C van Haarst
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Maarten A Jongsma
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
436
|
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC PLANT BIOLOGY 2016; 16:86. [PMID: 27079791 PMCID: PMC4831116 DOI: 10.1186/s12870-016-0771-y] [Citation(s) in RCA: 1006] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. RESULTS Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. CONCLUSIONS The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of genetic control that can be useful to engineer stress tolerant crops.
Collapse
Affiliation(s)
- Vivek Verma
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- />Present address: School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Pratibha Ravindran
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| | - Prakash P. Kumar
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| |
Collapse
|
437
|
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2519-2532. [PMID: 26931169 PMCID: PMC4809300 DOI: 10.1093/jxb/erw071] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Nobuhiro Akiyoshi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
438
|
Mason GA, Lemus T, Queitsch C. The Mechanistic Underpinnings of an ago1-Mediated, Environmentally Dependent, and Stochastic Phenotype. PLANT PHYSIOLOGY 2016; 170:2420-31. [PMID: 26872948 PMCID: PMC4825122 DOI: 10.1104/pp.15.01928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 05/07/2023]
Abstract
The crucial role of microRNAs in plant development is exceedingly well supported; their importance in environmental robustness is studied in less detail. Here, we describe a novel, environmentally dependent phenotype in hypomorphic argonaute1 (ago1) mutants and uncover its mechanistic underpinnings in Arabidopsis (Arabidopsis thaliana). AGO1 is a key player in microRNA-mediated gene regulation. We observed transparent lesions on embryonic leaves of ago1 mutant seedlings. These lesions increased in frequency in full-spectrum light. Notably, the lesion phenotype was most environmentally responsive in ago1-27 mutants. This allele is thought to primarily affect translational repression, which has been linked with the response to environmental perturbation. Using several lines of evidence, we found that these lesions represent dead and dying tissues due to an aberrant hypersensitive response. Although all three canonical defense hormone pathways (salicylic acid, jasmonate, and jasmonate/ethylene pathways) were up-regulated in ago1 mutants, we demonstrate that jasmonate perception drives the lesion phenotype. Double mutants of ago1 and coronatine insensitive1, the jasmonate receptor, showed greatly decreased frequency of affected seedlings. The chaperone HEAT SHOCK PROTEIN 90 (HSP90), which maintains phenotypic robustness in the face of environmental perturbations, is known to facilitate AGO1 function. HSP90 perturbation has been shown previously to up-regulate jasmonate signaling and to increase plant resistance to herbivory. Although single HSP90 mutants showed subtly elevated levels of lesions, double mutant analysis disagreed with a simple epistatic model for HSP90 and AGO1 interaction; rather, both appeared to act nonadditively in producing lesions. In summary, our study identifies AGO1 as a major, largely HSP90-independent, factor in providing environmental robustness to plants.
Collapse
Affiliation(s)
- G Alex Mason
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Tzitziki Lemus
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Christine Queitsch
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| |
Collapse
|
439
|
Sharma KD, Nayyar H. Regulatory Networks in Pollen Development under Cold Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:402. [PMID: 27066044 PMCID: PMC4814731 DOI: 10.3389/fpls.2016.00402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Cold stress modifies anthers' metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA) metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs), GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here, we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.
Collapse
Affiliation(s)
- Kamal D. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
440
|
Peng X, Liu H, Wang D, Shen S. Genome-wide identification of the Jatropha curcas MYB family and functional analysis of the abiotic stress responsive gene JcMYB2. BMC Genomics 2016; 17:251. [PMID: 27004683 PMCID: PMC4804483 DOI: 10.1186/s12864-016-2576-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The MYB family is one of the most abundant transcription factor families in plants. MYB proteins are involved in plant development, abiotic stress tolerance, hormone signal transduction and disease resistance. Here we perform genome-wide identification of MYB family transcription factors in an energy plant J. curcas, including determining family composition, phylogenetic evolution and functional prediction analysis. In addition, we further elucidate the function of the JcMYB2 gene. METHODS The phylogenetic trees were constructed by using the neighbor-joining method in MEGA 5.2. The biological functions of some JcMYBs were predicted according to orthology. The full length cDNA of JcMYB2 was cloned by using the RACE method. GUS histochemical staining was used to test the activity of the JcMYB2 promoter. Expression patterns of JcMYB2 were detected by using qPCR Transcriptional activity JcMYB2 were confirmed through yeast one hybrid. Subcellular Localization of JcMYB2 Protein were demonstrated by transient expression in the tobacco leaf. The function of JcMYB2 in salt and freezing tolerance were detected in transgenic plants. RESULTS A genome-wide analysis identified 128 MYB genes, including 123 R2R3-MYBs, 4 R1R2R3-MYBs and 1 4R-MYB. All of the R2R3-MYBs are further classified into 19 groups which indicated functional conservation among previously identified groups of R2R3-MYB proteins. Among of these newly identified MYBs, the JcMYB2 belongs to group G11 and its expression is induced obviously by cold, salt and MeJA (Methyl Jasmonate) and slightly by ABA (abscisic acid). JcMYB2 is localized to the nucleus and has transcriptional activity. JcMYB2 overexpressing plants are more tolerant to salt and cold stress than wild type plants. Tissue specific expression profiles showed that the JcMYB2 gene was expressed ubiquitously throughout the plant, with higher expression levels observed in the root. CONCLUSION A comprehensive genome-wide analysis and phylogenetic relationship of R2R3-MYB subfamily in J. curcas present the global identification and functional prediction of JcR2R3-MYBs. Additionally, JcMYB2 regulates the stress response signaling networks by interacting with MeJA and ABA signaling pathway and functions in the root development of J. curcas.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Dan Wang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
441
|
Poudel AN, Zhang T, Kwasniewski M, Nakabayashi R, Saito K, Koo AJ. Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1396-1408. [PMID: 26968098 DOI: 10.1016/j.bbalip.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 03/06/2016] [Indexed: 12/17/2022]
Abstract
Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the regulation of the JA pathway are still not well understood. One key unknown is the inactivation mechanism of the JA pathway and its relationship with plant response to wounding. Arabidopsis cytochrome P450 enzymes in the CYP94 clade metabolize jasmonoyl-L-isoleucine (JA-Ile), a major metabolite of JA responsible for many biological effects attributed to the JA signaling pathway; thus, CYP94s are expected to contribute to the attenuation of JA-Ile-dependent wound responses. To directly test this, we created the double and triple knock-out mutants of three CYP94 genes, CYP94B1, CYP94B3, and CYP94C1. The mutations blocked the oxidation steps and caused JA-Ile to accumulate 3-4-fold the WT levels in the wounded leaves. Surprisingly, over accumulation of JA-Ile did not lead to a stronger wound response. On the contrary, the mutants displayed a series of symptoms reminiscent of JA-Ile deficiency, including resistance to wound-induced growth inhibition, decreased anthocyanin and trichomes, and increased susceptibility to insects. The mutants, however, responded normally to exogenous JA treatments, indicating that JA perception or signaling pathways were intact. Untargeted metabolite analyses revealed >40% reduction in wound-inducible metabolites in the mutants. These observations raise questions about the current JA signaling model and point toward a more complex model perhaps involving JA derivatives and/or feedback mechanisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Arati N Poudel
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Misha Kwasniewski
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
442
|
Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P, Matsuura H, Koo AJ. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2107-20. [PMID: 26672615 PMCID: PMC4793799 DOI: 10.1093/jxb/erv521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Jasmonate (JA) and auxin are essential hormones in plant development and stress responses. While the two govern distinct physiological processes, their signaling pathways interact at various levels. Recently, members of the Arabidopsis indole-3-acetic acid (IAA) amidohydrolase (IAH) family were reported to metabolize jasmonoyl-isoleucine (JA-Ile), a bioactive form of JA. Here, we characterized three IAH members, ILR1, ILL6, and IAR3, for their function in JA and IAA metabolism and signaling. Expression of all three genes in leaves was up-regulated by wounding or JA, but not by IAA. Purified recombinant proteins showed overlapping but distinct substrate specificities for diverse amino acid conjugates of JA and IAA. Perturbed patterns of the endogenous JA profile in plants overexpressing or knocked-out for the three genes were consistent with ILL6 and IAR3, but not ILR1, being the JA amidohydrolases. Increased turnover of JA-Ile in the ILL6- and IAR3-overexpressing plants created symptoms of JA deficiency whereas increased free IAA by overexpression of ILR1 and IAR3 made plants hypersensitive to exogenous IAA conjugates. Surprisingly, ILL6 overexpression rendered plants highly resistant to exogenous IAA conjugates, indicating its interference with IAA conjugate hydrolysis. Fluorescent protein-tagged IAR3 and ILL6 co-localized with the endoplasmic reticulum-localized JA-Ile 12-hydroxylase, CYP94B3. Together, these results demonstrate that in wounded leaves JA-inducible amidohydrolases contribute to regulate active IAA and JA-Ile levels, promoting auxin signaling while attenuating JA signaling. This mechanism represents an example of a metabolic-level crosstalk between the auxin and JA signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Arati N Poudel
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68521, USA
| | - Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
443
|
Xu YH, Liao YC, Zhang Z, Liu J, Sun PW, Gao ZH, Sui C, Wei JH. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci Rep 2016; 6:21843. [PMID: 26902148 PMCID: PMC4763180 DOI: 10.1038/srep21843] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023] Open
Abstract
Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis.
Collapse
Affiliation(s)
- Yan-Hong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yong-Cui Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Hainan Branch Institute of Medicinal Plant, Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China
| | - Juan Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Pei-Wen Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhi-Hui Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chun Sui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Hainan Branch Institute of Medicinal Plant, Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China
| |
Collapse
|
444
|
Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection. Sci Rep 2016; 6:21600. [PMID: 26883568 PMCID: PMC4756370 DOI: 10.1038/srep21600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.
Collapse
|
445
|
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34:441-449. [PMID: 26876016 DOI: 10.1016/j.biotechadv.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies.
Collapse
Affiliation(s)
- Meiliang Zhou
- Institute of Biology, Leiden University, Sylvius Laboratory, P.O. Box 9505, 2300 RA, Leiden, The Netherlands; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Johan Memelink
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
446
|
de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. THE NEW PHYTOLOGIST 2016; 209:1120-34. [PMID: 26428397 PMCID: PMC4791170 DOI: 10.1111/nph.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 05/21/2023]
Abstract
Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.
Collapse
Affiliation(s)
- Marta de Torres Zabala
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Bing Zhai
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Siddharth Jayaraman
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Garoufalia Eleftheriadou
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Ron Yang
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - William Truman
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMN55108USA
| | - Saijung Tang
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Murray Grant
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| |
Collapse
|
447
|
Havko NE, Major IT, Jewell JB, Attaran E, Browse J, Howe GA. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth-Defense Tradeoffs. PLANTS 2016; 5:plants5010007. [PMID: 27135227 PMCID: PMC4844420 DOI: 10.3390/plants5010007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 12/02/2022]
Abstract
Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span.
Collapse
Affiliation(s)
- Nathan E Havko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Ian T Major
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Elham Attaran
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
448
|
Rosas-Díaz T, Macho AP, Beuzón CR, Lozano-Durán R, Bejarano ER. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. PLANTS 2016; 5:plants5010008. [PMID: 27135228 PMCID: PMC4844413 DOI: 10.3390/plants5010008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
An increasing body of evidence points at a role of the plant hormones jasmonates (JAs) in determining the outcome of plant-virus interactions. Geminiviruses, small DNA viruses infecting a wide range of plant species worldwide, encode a multifunctional protein, C2, which is essential for full pathogenicity. The C2 protein has been shown to suppress the JA response, although the current view on the extent of this effect and the underlying molecular mechanisms is incomplete. In this work, we use a combination of exogenous hormone treatments, microarray analysis, and pathogen infections to analyze, in detail, the suppression of the JA response exerted by C2. Our results indicate that C2 specifically affects certain JA-induced responses, namely defence and secondary metabolism, and show that plants expressing C2 are more susceptible to pathogen attack. We propose a model in which C2 might interfere with the JA response at several levels.
Collapse
Affiliation(s)
- Tábata Rosas-Díaz
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Alberto P Macho
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Carmen R Beuzón
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
| | - Rosa Lozano-Durán
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Eduardo R Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, E-29071 Malaga, Spain.
| |
Collapse
|
449
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
450
|
Widemann E, Smirnova E, Aubert Y, Miesch L, Heitz T. Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana. PLANTS 2016; 5:plants5010004. [PMID: 27135224 PMCID: PMC4844418 DOI: 10.3390/plants5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022]
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an intermediate situation where young flower buds show detectable jasmonate oxidation (probably originating from stamen metabolism) which becomes exacerbated upon flower opening. Our data illustrate that in spite conserved enzymatic routes, the jasmonate metabolic grid shows considerable flexibility and dynamically equilibrates into specific blends in different physiological situations.
Collapse
Affiliation(s)
- Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Yann Aubert
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Unité Mixte de Recherche 7177, Université de Strasbourg, 67008 Strasbourg Cedex, France.
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|