401
|
Xu T, Guan K, Peng B, Wei S, Zhao L. Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt. Front Artif Intell 2021; 4:647999. [PMID: 34124647 PMCID: PMC8192978 DOI: 10.3389/frai.2021.647999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Better understanding the variabilities in crop yield and production is critical to assessing the vulnerability and resilience of food production systems. Both environmental (climatic and edaphic) conditions and management factors affect the variabilities of crop yield. In this study, we conducted a comprehensive data-driven analysis in the U.S. Corn Belt to understand and model how rainfed corn yield is affected by climate variability and extremes, soil properties (soil available water capacity, soil organic matter), and management practices (planting date and fertilizer applications). Exploratory data analyses revealed that corn yield responds non-linearly to temperature, while the negative vapor pressure deficit (VPD) effect on corn yield is monotonic and more prominent. Higher mean yield and inter-annual yield variability are found associated with high soil available water capacity, while lower inter-annual yield variability is associated with high soil organic matter (SOM). We also identified region-dependent relationships between planting date and yield and a strong correlation between planting date and the April weather condition (temperature and rainfall). Next, we built machine learning models using the random forest and LASSO algorithms, respectively, to predict corn yield with all climatic, soil properties, and management factors. The random forest model achieved a high prediction accuracy for annual yield at county level as early as in July (R2 = 0.781) and outperformed LASSO. The gained insights from this study lead to improved understanding of how corn yield responds to climate variability and projected change in the U.S. Corn Belt and globally.
Collapse
Affiliation(s)
- Tianfang Xu
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
| | - Kaiyu Guan
- College of Agriculture, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Bin Peng
- College of Agriculture, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shiqi Wei
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
| | - Lei Zhao
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
402
|
Denham SO, Oishi AC, Miniat CF, Wood JD, Yi K, Benson MC, Novick KA. Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. TREE PHYSIOLOGY 2021; 41:944-959. [PMID: 33185239 DOI: 10.1093/treephys/tpaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/24/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic stress in plants occurs under conditions of low water availability (soil moisture; θ) and/or high atmospheric demand for water (vapor pressure deficit; D). Different species are adapted to respond to hydraulic stress by functioning along a continuum where, on one hand, they close stomata to maintain a constant leaf water potential (ΨL) (isohydric species), and on the other hand, they allow ΨL to decline (anisohydric species). Differences in water-use along this continuum are most notable during hydrologic stress, often characterized by low θ and high D; however, θ and D are often, but not necessarily, coupled at time scales of weeks or longer, and uncertainty remains about the sensitivity of different water-use strategies to these variables. We quantified the effects of both θ and D on canopy conductance (Gc) among widely distributed canopy-dominant species along the isohydric-anisohydric spectrum growing along a hydroclimatological gradient. Tree-level Gc was estimated using hourly sap flow observations from three sites in the eastern United States: a mesic forest in western North Carolina and two xeric forests in southern Indiana and Missouri. Each site experienced at least 1 year of substantial drought conditions. Our results suggest that sensitivity of Gc to θ varies across sites and species, with Gc sensitivity being greater in dry than in wet sites, and greater for isohydric compared with anisohydric species. However, once θ limitations are accounted for, sensitivity of Gc to D remains relatively constant across sites and species. While D limitations to Gc were similar across sites and species, ranging from 16 to 34% reductions, θ limitations to Gc ranged from 0 to 40%. The similarity in species sensitivity to D is encouraging from a modeling perspective, though it implies that substantial reduction to Gc will be experienced by all species in a future characterized by higher D.
Collapse
Affiliation(s)
- Sander O Denham
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - A Christopher Oishi
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - Chelcy F Miniat
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - Jeffrey D Wood
- School of Natural Resources, University of Missouri, 1111 Rollins St., Columbia, MO 65211, USA
| | - Koong Yi
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
- Department of Environmental Sciences, University of Virginia, 291 McCormick Rd, Charlottesville, VA 29904, USA
| | - Michael C Benson
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
| |
Collapse
|
403
|
Nadal-Sala D, Medlyn BE, Ruehr NK, Barton CVM, Ellsworth DS, Gracia C, Tissue DT, Tjoelker MG, Sabaté S. Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water. GLOBAL CHANGE BIOLOGY 2021; 27:2970-2990. [PMID: 33694242 DOI: 10.1111/gcb.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Rising atmospheric [CO2 ] (Ca ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to Ca . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated Ca (eCa ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial Ca (ambient =380, elevated =620 μmol mol-1 ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both Ca treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing Ca up to 700 μmol mol-1 alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising Ca will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Carles Gracia
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- CREAF (Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Santi Sabaté
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- CREAF (Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Spain
| |
Collapse
|
404
|
Zandalinas SI, Fritschi FB, Mittler R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. TRENDS IN PLANT SCIENCE 2021; 26:588-599. [PMID: 33745784 DOI: 10.1016/j.tplants.2021.02.011] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Global warming, climate change, and environmental pollution present plants with unique combinations of different abiotic and biotic stresses. Although much is known about how plants acclimate to each of these individual stresses, little is known about how they respond to a combination of many of these stress factors occurring together, namely a multifactorial stress combination. Recent studies revealed that increasing the number of different co-occurring multifactorial stress factors causes a severe decline in plant growth and survival, as well as in the microbiome biodiversity that plants depend upon. This effect should serve as a dire warning to our society and prompt us to decisively act to reduce pollutants, fight global warming, and augment the tolerance of crops to multifactorial stress combinations.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA.
| |
Collapse
|
405
|
Nadal-Sala D, Grote R, Birami B, Lintunen A, Mammarella I, Preisler Y, Rotenberg E, Salmon Y, Tatarinov F, Yakir D, Ruehr NK. Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02312. [PMID: 33630380 DOI: 10.1002/eap.2312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Benjamin Birami
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Ivan Mammarella
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
| | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Eyal Rotenberg
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yann Salmon
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Fedor Tatarinov
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Yakir
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
406
|
Still CJ, Rastogi B, Page GFM, Griffith DM, Sibley A, Schulze M, Hawkins L, Pau S, Detto M, Helliker BR. Imaging canopy temperature: shedding (thermal) light on ecosystem processes. THE NEW PHYTOLOGIST 2021; 230:1746-1753. [PMID: 33666251 DOI: 10.1111/nph.17321] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Canopy temperature Tcan is a key driver of plant function that emerges as a result of interacting biotic and abiotic processes and properties. However, understanding controls on Tcan and forecasting canopy responses to weather extremes and climate change are difficult due to sparse measurements of Tcan at appropriate spatial and temporal scales. Burgeoning observations of Tcan from thermal cameras enable evaluation of energy budget theory and better understanding of how environmental controls, leaf traits and canopy structure influence temperature patterns. The canopy scale is relevant for connecting to remote sensing and testing biosphere model predictions. We anticipate that future breakthroughs in understanding of ecosystem responses to climate change will result from multiscale observations of Tcan across a range of ecosystems.
Collapse
Affiliation(s)
- Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Bharat Rastogi
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
- Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 80305, USA
| | - Gerald F M Page
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Dan M Griffith
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam Sibley
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Mark Schulze
- H.J. Andrews Experimental Forest, Oregon State University, Blue River, OR, 97413, USA
| | - Linnia Hawkins
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephanie Pau
- Department of Geography, Florida State University, Tallahassee, FL, 32304, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
407
|
Lee BR, Ibáñez I. Spring phenological escape is critical for the survival of temperate tree seedlings. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Benjamin R. Lee
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| | - Inés Ibáñez
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| |
Collapse
|
408
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
409
|
Fan Y, Tjiputra J, Muri H, Lombardozzi D, Park CE, Wu S, Keith D. Solar geoengineering can alleviate climate change pressures on crop yields. NATURE FOOD 2021; 2:373-381. [PMID: 37117731 DOI: 10.1038/s43016-021-00278-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/16/2021] [Indexed: 04/30/2023]
Abstract
Solar geoengineering (SG) and CO2 emissions reduction can each alleviate anthropogenic climate change, but their impacts on food security are not yet fully understood. Using an advanced crop model within an Earth system model, we analysed the yield responses of six major crops to three SG technologies (SGs) and emissions reduction when they provide roughly the same reduction in radiative forcing and assume the same land use. We found sharply distinct yield responses to changes in radiation, moisture and CO2, but comparable significant cooling benefits for crop yields by all four methods. Overall, global yields increase ~10% under the three SGs and decrease 5% under emissions reduction, the latter primarily due to reduced CO2 fertilization, relative to business as usual by the late twenty-first century. Relative humidity dominates the hydrological effect on yields of rainfed crops, with little contribution from precipitation. The net insolation effect is negligible across all SGs, contrary to previous findings.
Collapse
Affiliation(s)
- Yuanchao Fan
- NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway.
- Center for the Environment, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA.
| | - Jerry Tjiputra
- NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Helene Muri
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Danica Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Chang-Eui Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Shengjun Wu
- Three Gorges Research Center for Ecology and Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - David Keith
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- John F. Kennedy School of Government, Harvard University, Cambridge, MA, USA
| |
Collapse
|
410
|
López J, Way DA, Sadok W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. GLOBAL CHANGE BIOLOGY 2021; 27:1704-1720. [PMID: 33683792 PMCID: PMC8251766 DOI: 10.1111/gcb.15548] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/25/2023]
Abstract
Earth is currently undergoing a global increase in atmospheric vapor pressure deficit (VPD), a trend which is expected to continue as climate warms. This phenomenon has been associated with productivity decreases in ecosystems and yield penalties in crops, with these losses attributed to photosynthetic limitations arising from decreased stomatal conductance. Such VPD increases, however, have occurred over decades, which raises the possibility that stomatal acclimation to VPD plays an important role in determining plant productivity under high VPD. Furthermore, evidence points to more far-ranging and complex effects of elevated VPD on plant physiology, extending to the anatomical, biochemical, and developmental levels, which could vary substantially across species. Because these complex effects are typically not considered in modeling frameworks, we conducted a quantitative literature review documenting temperature-independent VPD effects on 112 species and 59 traits and physiological variables, in order to develop an integrated and mechanistic physiological framework. We found that VPD increase reduced yield and primary productivity, an effect that was partially mediated by stomatal acclimation, and also linked with changes in leaf anatomy, nutrient, and hormonal status. The productivity decrease was also associated with negative effects on reproductive development, and changes in architecture and growth rates that could decrease the evaporative surface or minimize embolism risk. Cross-species quantitative relationships were found between levels of VPD increase and trait responses, and we found differences across plant groups, indicating that future VPD impacts will depend on community assembly and crop functional diversity. Our analysis confirms predictions arising from the hydraulic corollary to Darcy's law, outlines a systemic physiological framework of plant responses to rising VPD, and provides recommendations for future research to better understand and mitigate VPD-mediated climate change effects on ecosystems and agro-systems.
Collapse
Affiliation(s)
- José López
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Danielle A. Way
- Department of BiologyUniversity of Western OntarioLondonONCanada
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraACTAustralia
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
- Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Walid Sadok
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
411
|
Cohen I, Zandalinas SI, Fritschi FB, Sengupta S, Fichman Y, Azad RK, Mittler R. The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. PHYSIOLOGIA PLANTARUM 2021; 172:41-52. [PMID: 33179765 DOI: 10.1111/ppl.13269] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
A combination of drought and heat stress, occurring at the vegetative or reproductive growth phase of many different crops can have a devastating impact on yield. In soybean (Glycine max), a considerable effort has been made to develop genotypes with enhanced yield production under conditions of drought or heat stress. However, how these genotypes perform in terms of growth, physiological responses, and most importantly seed production, under conditions of drought and heat combination is mostly unknown. Here, we studied the impact of water deficit and heat stress combination on the physiology, seed production, and yield per plant of two soybean genotypes, Magellan and Plant Introduction (PI) 548313, that differ in their reproductive responses to heat stress. Our findings reveal that although PI 548313 produced more seeds than Magellan under conditions of heat stress, under conditions of water deficit, and heat stress combination its seed production decreased. Because the number of flowers and pollen germination of PI 548313 remained high under heat or water deficit and heat combination, the reduced seed production exhibited by PI 548313 under the stress combination could be a result of processes that occur at the stigma, ovaries and/or other parts of the flower following pollen germination.
Collapse
Affiliation(s)
- Itay Cohen
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Felix B Fritschi
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Soham Sengupta
- Departments of Biological Sciences, College of Science, University of North Texas, Denton, Texas, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Rajeev K Azad
- Departments of Biological Sciences, College of Science, University of North Texas, Denton, Texas, USA
- Departments of Mathematics, University of North Texas, Denton, Texas, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
412
|
Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. Divergent species-specific impacts of whole ecosystem warming and elevated CO 2 on vegetation water relations in an ombrotrophic peatland. GLOBAL CHANGE BIOLOGY 2021; 27:1820-1835. [PMID: 33528056 DOI: 10.1111/gcb.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO2 could buffer resultant hydraulic stress. We assessed plant water relations of co-occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata) and tree (Picea mariana and Larix laricina) species prior to, and in response to whole ecosystem warming (0 to +9°C) and elevated CO2 using 12.8-m diameter open-top enclosures installed within an ombrotrophic bog. Water relations (water potential [Ψ], turgor loss point, foliar and root hydraulic conductivity) were assessed prior to treatment initiation, then Ψ and peak sap flow (trees only) assessed after 1 or 2 years of treatments. Under the higher temperature treatments, L. laricina Ψ exceeded its turgor loss point, increased its peak sap flow, and was not able to recover Ψ overnight. In contrast, P. mariana operated below its turgor loss point and maintained constant Ψ and sap flow across warming treatments. Similarly, C. calyculata Ψ stress increased with temperature while R. groenlandicum Ψ remained at pretreatment levels. The more anisohydric behavior of L. laricina and C. calyculata may provide greater net C uptake with warming, while the more conservative P. mariana and R. groenlandicum maintained greater hydraulic safety. These latter species also responded to elevated CO2 by reduced Ψ stress, which may also help limit hydraulic failure during periods of extreme drought or heat in the future. Along with Sphagnum moss, the species-specific responses of peatland vascular communities to drier or hotter conditions will shape boreal peatland composition and function in the future.
Collapse
Affiliation(s)
- Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anna M Jensen
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Eric J Ward
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - Anirban Guha
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joanne Childs
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stan D Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
413
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
414
|
Baca Cabrera JC, Hirl RT, Schäufele R, Macdonald A, Schnyder H. Stomatal conductance limited the CO 2 response of grassland in the last century. BMC Biol 2021; 19:50. [PMID: 33757496 PMCID: PMC7989024 DOI: 10.1186/s12915-021-00988-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anthropogenic increase of atmospheric CO2 concentration (ca) is impacting carbon (C), water, and nitrogen (N) cycles in grassland and other terrestrial biomes. Plant canopy stomatal conductance is a key player in these coupled cycles: it is a physiological control of vegetation water use efficiency (the ratio of C gain by photosynthesis to water loss by transpiration), and it responds to photosynthetic activity, which is influenced by vegetation N status. It is unknown if the ca-increase and climate change over the last century have already affected canopy stomatal conductance and its links with C and N processes in grassland. RESULTS Here, we assessed two independent proxies of (growing season-integrating canopy-scale) stomatal conductance changes over the last century: trends of δ18O in cellulose (δ18Ocellulose) in archived herbage from a wide range of grassland communities on the Park Grass Experiment at Rothamsted (U.K.) and changes of the ratio of yields to the CO2 concentration gradient between the atmosphere and the leaf internal gas space (ca - ci). The two proxies correlated closely (R2 = 0.70), in agreement with the hypothesis. In addition, the sensitivity of δ18Ocellulose changes to estimated stomatal conductance changes agreed broadly with published sensitivities across a range of contemporary field and controlled environment studies, further supporting the utility of δ18Ocellulose changes for historical reconstruction of stomatal conductance changes at Park Grass. Trends of δ18Ocellulose differed strongly between plots and indicated much greater reductions of stomatal conductance in grass-rich than dicot-rich communities. Reductions of stomatal conductance were connected with reductions of yield trends, nitrogen acquisition, and nitrogen nutrition index. Although all plots were nitrogen-limited or phosphorus- and nitrogen-co-limited to different degrees, long-term reductions of stomatal conductance were largely independent of fertilizer regimes and soil pH, except for nitrogen fertilizer supply which promoted the abundance of grasses. CONCLUSIONS Our data indicate that some types of temperate grassland may have attained saturation of C sink activity more than one century ago. Increasing N fertilizer supply may not be an effective climate change mitigation strategy in many grasslands, as it promotes the expansion of grasses at the disadvantage of the more CO2 responsive forbs and N-fixing legumes.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Regina T Hirl
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Rudi Schäufele
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Andy Macdonald
- Rothamsted Research, Sustainable Agriculture Sciences Department, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Hans Schnyder
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
415
|
Sullivan CN, Koski MH. The effects of climate change on floral anthocyanin polymorphisms. Proc Biol Sci 2021; 288:20202693. [PMID: 33653138 DOI: 10.1098/rspb.2020.2693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pigmentation affords resistance to abiotic stressors, and thus can respond adaptively or plastically to drought and extreme temperatures associated with global change. Plants frequently display variability in flower coloration that is underlain by anthocyanin pigmentation. While anthocyanin polymorphisms impact plant-animal interactions, they also impact reproductive performance under abiotic stress. We used descriptions of flower colour from over 1900 herbarium records representing 12 North American species spanning 124 years to test whether anthocyanin-based flower colour has responded to global change. Based on demonstrated abiotic associations with performance of anthocyanin colour morphs, we predicted pigmentation would increase in species experiencing increased aridity, but decline in those experiencing larger increases in temperature. We found that the frequency of reports of pigmented morphs increased temporally in some taxa but displayed subtle declines in others. Pigmentation was negatively associated with temperature and positively associated with vapour pressure deficit (a metric of aridity) across taxa. Species experiencing larger temperature increases over time displayed reductions in pigmentation, while those experiencing increases in aridity displayed increases in pigmentation. Change in anthocyanin-based floral colour was thus linked with climatic change. Altered flower coloration has the strong potential to impact plant-animal interactions and overall plant reproductive performance.
Collapse
Affiliation(s)
- Cierra N Sullivan
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
416
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
417
|
Machado Filho JA, Rodrigues WP, Baroni DF, Pireda S, Campbell G, de Souza GAR, Verdin Filho AC, Arantes SD, de Oliveira Arantes L, da Cunha M, Gambetta GA, Rakocevic M, Ramalho JC, Campostrini E. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153355. [PMID: 33581558 DOI: 10.1016/j.jplph.2020.153355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.
Collapse
Affiliation(s)
- José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| | - Danilo Força Baroni
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Pireda
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Glaziele Campbell
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Guilherme Augusto Rodrigues de Souza
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Sara Dousseau Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Maura da Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Gregory A Gambetta
- EGFV (UMR 1287), Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Miroslava Rakocevic
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, 2784-505, Oeiras, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eliemar Campostrini
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| |
Collapse
|
418
|
Bartlett MK, Sinclair G. Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1995-2009. [PMID: 33300576 DOI: 10.1093/jxb/eraa577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Selection for crop cultivars has largely focused on reproductive traits, while the impacts of global change on crop productivity are expected to depend strongly on the vegetative physiology traits that drive plant resource use and stress tolerance. We evaluated relationships between physiology traits and growing season climate across wine grape cultivars to characterize trait variation across European growing regions. We compiled values from the literature for seven water use and drought tolerance traits and growing season climate. Cultivars with a lower maximum stomatal conductance were associated with regions with a higher mean temperature and mean and maximum vapor pressure deficit (r2=0.39-0.65, P<0.05, n=14-29). Cultivars with greater stem embolism resistance and more anisohydric stomatal behavior (i.e. a more negative water potential threshold for 50% stomatal closure) were associated with cooler regions (r2=0.48-0.72, P<0.03, n=10-29). Overall, cultivars grown in warmer, drier regions exhibited traits that would reduce transpiration and conserve soil water longer into the growing season, but potentially increase stomatal and temperature limitations on photosynthesis under future, hotter conditions.
Collapse
Affiliation(s)
- Megan K Bartlett
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| | - Gabriela Sinclair
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| |
Collapse
|
419
|
Mathias JM, Thomas RB. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO 2 and modulated by climate and plant functional types. Proc Natl Acad Sci U S A 2021; 118:e2014286118. [PMID: 33558233 PMCID: PMC7896309 DOI: 10.1073/pnas.2014286118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2 (Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Ca was a dominant environmental driver of iWUE, the effects of increasing Ca were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon-oxygen isotope approach revealed that increases in Anet dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in Anet, whereas reductions in gs occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Ca and other environmental factors have important implications for the coupled carbon-hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in gs as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | - Richard B Thomas
- Department of Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
420
|
Kacjan Maršić N, Štolfa P, Vodnik D, Košmelj K, Mikulič-Petkovšek M, Kump B, Vidrih R, Kokalj D, Piskernik S, Ferjančič B, Dragutinović M, Veberič R, Hudina M, Šircelj H. Physiological and Biochemical Responses of Ungrafted and Grafted Bell Pepper Plants ( Capsicum annuum L. var. grossum (L.) Sendtn.) Grown under Moderate Salt Stress. PLANTS 2021; 10:plants10020314. [PMID: 33562107 PMCID: PMC7915883 DOI: 10.3390/plants10020314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
The response of grafted bell pepper plants (Capsicum annuum L. var. grossum (L.) Sendtn.) to salt stress was investigated by analyzing the photosynthetic traits and mineral content of the plants and the metabolic composition of the fruit. The bell pepper variety “Vedrana” was grafted onto the salt-tolerant rootstock “Rocal F1” and grown at two salinities (20 mM and 40 mM NaCl) and control (0 mM NaCl) during the spring–summer period. On a physiological level, similar stomatal restriction of photosynthesis in grafted and ungrafted plants indicated that grafting did not alleviate water balance disturbances under increased salt exposure. Measurements of midday water potential did not show improved water status of grafted plants. The similar metabolic changes in grafted and ungrafted plants were also reflected in similarly reduced fruit yields. Thus, this grafting did not reduce the risk of ionic and osmotic imbalance in pepper plants grown under moderate salt treatment. Changes in the biochemical profiles of the pepper fruit were seen for both added-salt treatments. The fruit phenolic compounds were affected by rootstock mediation, although only for the July harvest, where total phenolics content increased with 40 mM NaCl treatment. Fruit ascorbic acid content increased with the duration of salt stress, without the mediation of the rootstock. The high salt dependence of this quality trait in pepper fruit appears to lead to more limited rootstock mediation effects.
Collapse
|
421
|
Luo Y, Ho CL, Helliker BR, Katifori E. Leaf Water Storage and Robustness to Intermittent Drought: A Spatially Explicit Capacitive Model for Leaf Hydraulics. FRONTIERS IN PLANT SCIENCE 2021; 12:725995. [PMID: 34721457 PMCID: PMC8551678 DOI: 10.3389/fpls.2021.725995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 05/11/2023]
Abstract
Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.
Collapse
Affiliation(s)
- Yongtian Luo
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Yongtian Luo
| | - Che-Ling Ho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Brent R. Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Eleni Katifori
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
- Eleni Katifori
| |
Collapse
|
422
|
Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P. Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. THE NEW PHYTOLOGIST 2021; 229:213-229. [PMID: 32790914 DOI: 10.1111/nph.16872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 05/17/2023]
Abstract
A valid representation of intra-annual wood formation processes in global vegetation models is vital for assessing climate change impacts on the forest carbon stock. Yet, wood formation is generally modelled with photosynthesis, despite mounting evidence that cambial activity is rather directly constrained by limiting environmental factors. Here, we apply a state-of-the-art turgor-driven growth model to simulate 4 yr of hourly stem radial increment from Picea abies (L.) Karst. and Larix decidua Mill. growing along an elevational gradient. For the first time, wood formation observations were used to validate weekly to annual stem radial increment simulations, while environmental measurements were used to assess the climatic constraints on turgor-driven growth. Model simulations matched the observed timing and dynamics of wood formation. Using the detailed model outputs, we identified a strict environmental regulation on stem growth (air temperature > 2°C and soil water potential > -0.6 MPa). Warmer and drier summers reduced the growth rate as a result of turgor limitation despite warmer temperatures being favourable for cambial activity. These findings suggest that turgor is a central driver of the forest carbon sink and should be considered in next-generation vegetation models, particularly in the context of global warming and increasing frequency of droughts.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, Basel, CH-4056, Switzerland
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Henri E Cuny
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Institut National de l'Information Géographique et Forestière (IGN), 1 rue des blanches terres, Champigneulles, 54115, France
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - David C Frank
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Laboratory of Tree-Ring Research, 1215 E. Lowell Street, Tucson, AZ, 8572, USA
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| | | | - Antoine Cabon
- Joint Research Unit CTFC - AGROTECNIO, Solsona, E-25280, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
423
|
de Borja Reis AF, Moro Rosso L, Purcell LC, Naeve S, Casteel SN, Kovács P, Archontoulis S, Davidson D, Ciampitti IA. Environmental Factors Associated With Nitrogen Fixation Prediction in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:675410. [PMID: 34211487 PMCID: PMC8239404 DOI: 10.3389/fpls.2021.675410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 05/10/2023]
Abstract
Biological nitrogen (N)-fixation is the most important source of N for soybean [Glycine max (L.) Merr.], with considerable implications for sustainable intensification. Therefore, this study aimed to investigate the relevance of environmental factors driving N-fixation and to develop predictive models defining the role of N-fixation for improved productivity and increased seed protein concentration. Using the elastic net regularization of multiple linear regression, we analyzed 40 environmental factors related to weather, soil, and crop management. We selected the most important factors associated with the relative abundance of ureides (RAU) as an indicator of the fraction of N derived from N-fixation. The most relevant RAU predictors were N fertilization, atmospheric vapor pressure deficit (VPD) and precipitation during early reproductive growth (R1-R4 stages), sowing date, drought stress during seed filling (R5-R6), soil cation exchange capacity (CEC), and soil sulfate concentration before sowing. Soybean N-fixation ranged from 60 to 98% across locations and years (n = 95). The predictive model for RAU showed relative mean square error (RRMSE) of 4.5% and an R2 value of 0.69, estimated via cross-validation. In addition, we built similar predictive models of yield and seed protein to assess the association of RAU and these plant traits. The variable RAU was selected as a covariable for the models predicting yield and seed protein, but with a small magnitude relative to the sowing date for yield or soil sulfate for protein. The early-reproductive period VPD affected all independent variables, namely RAU, yield, and seed protein. The elastic net algorithm successfully depicted some otherwise challenging empirical relationships to assess with bivariate associations in observational data. This approach provides inference about environmental variables while predicting N-fixation. The outcomes of this study will provide a foundation for improving the understanding of N-fixation within the context of sustainable intensification of soybean production.
Collapse
Affiliation(s)
- André Froes de Borja Reis
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: André Froes de Borja Reis, ; Ignacio A. Ciampitti,
| | - Luiz Moro Rosso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Seth Naeve
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Shaun N. Casteel
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Péter Kovács
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | | | - Dan Davidson
- Davidson Agronomics and Consulting, Omaha, NE, United States
| | - Ignacio A. Ciampitti
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: André Froes de Borja Reis, ; Ignacio A. Ciampitti,
| |
Collapse
|
424
|
Zhang Z, Gong J, Li X, Ding Y, Wang B, Shi J, Liu M, Yang B. Underlying mechanism on source-sink carbon balance of grazed perennial grass during regrowth: Insights into optimal grazing regimes of restoration of degraded grasslands in a temperate steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111439. [PMID: 33035939 DOI: 10.1016/j.jenvman.2020.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Overgrazing is the main driver of grassland degradation and productivity reduction in northern China. The restoration of degraded grasslands depends on optimal grazing regimes that modify the source-sink balance to promote best carbon (C) assimilation and allocation, thereby promoting rapid compensatory growth of the grazed plants. We used in situ13CO2 labeling and field regrowth studies of Stipa grandis P.A. Smirn.to examine the effects of different grazing intensities (light, medium, heavy, and grazing exclusion) on photosynthetic C assimilation and partitioning, on reallocation of non-structural carbohydrates during regrowth, and on the underlying regulatory mechanisms. Light grazing increased the sink demand of newly expanded leaves and significantly promoted 13C fixation by increasing the photosynthetic capacity of the leaves and accelerating fructose transfer from the stem. Although C assimilation decreased under medium and heavy grazing, S. grandis exhibited a tolerance strategy that preferentially allocated more starch and 13C to the roots for storage to balance sink competition between newly expanded leaves and the roots. Sucrose phosphate synthase (SPS), sucrose synthase (SS), and other plant hormones regulated source-sink imbalances during regrowth. Abscisic acid promoted accumulation of aboveground biomass by stimulating stem SPS activity, whereas jasmonate increased root starch synthesis, thereby increasing belowground biomass. Overall, S. grandis could optimize source-sink relationships and above- and belowground C allocation to support regrowth after grazing by the regulating activities of SPS, SS and other hormones. These results provide new insights into C budgets under grazing and guidance for sustainable grazing management in semi-arid grasslands.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Yong Ding
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, 120 Ulanqab East Street, Saihan District, Hohhot, Inner Mongolia, 010021, China.
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jiayu Shi
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Min Liu
- Key Laboratory of Tourism and Resources Environment, Taishan University, Tai'an, Shandong province, 271021, China.
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
425
|
Rollinson CR, Alexander MR, Dye AW, Moore DJP, Pederson N, Trouet V. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 2020; 102:e03264. [PMID: 33325555 DOI: 10.1002/ecy.3264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 11/07/2022]
Abstract
The response of understory trees to climate variability is key to understanding current and future forest dynamics. However, analyses of climatic effects on tree growth have primarily focused on the upper canopy, leaving understory dynamics unresolved. We analyzed differences in climate sensitivity based on canopy position of four common tree species (Acer rubrum, Fagus grandifolia, Quercus rubra, and Tsuga canadensis) using growth information from 1,084 trees across eight sites in the northeastern United States. Effects of canopy position on climate response varied, but were significant and often nonlinear, for all four species. Compared to overstory trees, understory trees showed stronger reductions in growth at high temperatures and varied shifts in precipitation response. This contradicts the prevailing assumption that climate responses, particularly to temperature, of understory trees are buffered by the overstory. Forest growth trajectories are uncertain in compositionally and structurally complex forests, and future demography and regeneration dynamics may be misinferred if not all canopy levels are represented in future forecasts.
Collapse
Affiliation(s)
| | | | - Alex W Dye
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, 97333, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, 85721, USA
| | - Neil Pederson
- Harvard University, Petersham, Massachusetts, 01366, USA
| | - Valerie Trouet
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
426
|
Nazari M, Riebeling S, Banfield CC, Akale A, Crosta M, Mason-Jones K, Dippold MA, Ahmed MA. Mucilage Polysaccharide Composition and Exudation in Maize From Contrasting Climatic Regions. FRONTIERS IN PLANT SCIENCE 2020; 11:587610. [PMID: 33363554 PMCID: PMC7752898 DOI: 10.3389/fpls.2020.587610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/18/2020] [Indexed: 05/28/2023]
Abstract
Mucilage, a gelatinous substance comprising mostly polysaccharides, is exuded by maize nodal and underground root tips. Although mucilage provides several benefits for rhizosphere functions, studies on the variation in mucilage amounts and its polysaccharide composition between genotypes are still lacking. In this study, eight maize (Zea mays L.) genotypes from different globally distributed agroecological zones were grown under identical abiotic conditions in a randomized field experiment. Mucilage exudation amount, neutral sugars and uronic acids were quantified. Galactose (∼39-42%), fucose (∼22-30%), mannose (∼11-14%), and arabinose (∼8-11%) were the major neutral sugars in nodal root mucilage. Xylose (∼1-4%), and glucose (∼1-4%) occurred only in minor proportions. Glucuronic acid (∼3-5%) was the only uronic acid detected. The polysaccharide composition differed significantly between maize genotypes. Mucilage exudation was 135 and 125% higher in the Indian (900 M Gold) and Kenyan (DH 02) genotypes than in the central European genotypes, respectively. Mucilage exudation was positively associated with the vapor pressure deficit of the genotypes' agroecological zone. The results indicate that selection for environments with high vapor pressure deficit may favor higher mucilage exudation, possibly because mucilage can delay the onset of hydraulic failure during periods of high vapor pressure deficit. Genotypes from semi-arid climates might offer sources of genetic material for beneficial mucilage traits.
Collapse
Affiliation(s)
- Meisam Nazari
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Sophie Riebeling
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Callum C. Banfield
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Asegidew Akale
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Margherita Crosta
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Michaela A. Dippold
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Mutez Ali Ahmed
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
427
|
Bayliss SLJ, Mueller LO, Ware IM, Schweitzer JA, Bailey JK. Plant genetic variation drives geographic differences in atmosphere-plant-ecosystem feedbacks. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:166-180. [PMID: 37284209 PMCID: PMC10168077 DOI: 10.1002/pei3.10031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 06/08/2023]
Abstract
The objective of this study was to understand how genetic variation in a riparian species, Populus angustifolia, affects mass and energy exchange between the land and atmosphere across ~1,700 km of latitude of the western United States. To examine the potential for large-scale land-atmosphere feedbacks in hydrologic processes driven by geographic differences in plant population traits, we use a physical hydrology model, paired field, and greenhouse observations of plant traits, and stable isotope compositions of soil, stem, and leaf water of P. angustifolia populations. Populations show patterns of local adaptation in traits related to landscape hydrologic functioning-a 47% difference in stomatal density in greenhouse conditions and a 74% difference in stomatal ratio in the field. Trait and stable isotope differences reveal that populations use water differently which is related to historical landscape hydrologic functioning (evapotranspiration and streamflow). Overall, results suggest that populations from landscapes with different hydrologic histories will differ in their ability to maintain favorable water balance with changing atmospheric demands for water, with ecosystem consequences.
Collapse
Affiliation(s)
| | - Liam O. Mueller
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Ian M. Ware
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
- USDA Forest ServicePacific Southwest Research StationInstitute of Pacific Islands ForestryHiloHIUSA
| | | | - Joseph K. Bailey
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
428
|
Knowles JF, Scott RL, Biederman JA, Blanken PD, Burns SP, Dore S, Kolb TE, Litvak ME, Barron-Gafford GA. Montane forest productivity across a semiarid climatic gradient. GLOBAL CHANGE BIOLOGY 2020; 26:6945-6958. [PMID: 32886444 DOI: 10.1111/gcb.15335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
High-elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying. At colder locations, the seasonal evolution of gross primary productivity (GPP) was characterized by a single broad maximum during the summer that corresponded to snow melt-derived moisture and a transition from winter dormancy to spring activity. Conversely, winter dormancy was transient at warmer locations, and GPP was responsive to both winter and summer precipitation such that two distinct GPP maxima were separated by a period of foresummer drought. This resulted in a predictable sequence of primary limiting factors to GPP beginning with air temperature in winter and proceeding to moisture and leaf area during the summer. Due to counteracting winter (positive) and summer (negative) GPP responses to warming, leaf area index and moisture availability were the best predictors of annual GPP differences across sites. Overall, mean annual GPP was greatest at the warmest site due to persistent vegetation photosynthetic activity throughout the winter. These results indicate that the trajectory of this region's carbon sequestration will be sensitive to reduced or delayed summer precipitation, especially if coupled to snow drought and earlier soil moisture recession, but summer precipitation changes remain highly uncertain. Given the demonstrated potential for seasonally offsetting responses to warming, we project that decadal semiarid montane forest carbon sequestration will remain relatively stable in the absence of severe disturbance.
Collapse
Affiliation(s)
- John F Knowles
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Joel A Biederman
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Peter D Blanken
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
| | - Sean P Burns
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Sabina Dore
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas E Kolb
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Greg A Barron-Gafford
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
429
|
Thoma DP, Tercek MT, Schweiger EW, Munson SM, Gross JE, Olliff ST. Water balance as an indicator of natural resource condition: Case studies from Great Sand Dunes National Park and Preserve. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
430
|
Lavergne A, Sandoval D, Hare VJ, Graven H, Prentice IC. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data. GLOBAL CHANGE BIOLOGY 2020; 26:7158-7172. [PMID: 32970907 DOI: 10.1111/gcb.15364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/15/2020] [Indexed: 05/08/2023]
Abstract
Atmospheric aridity and drought both influence physiological function in plant leaves, but their relative contributions to changes in the ratio of leaf internal to ambient partial pressure of CO2 (χ) - an index of adjustments in both stomatal conductance and photosynthetic rate to environmental conditions - are difficult to disentangle. Many stomatal models predicting χ include the influence of only one of these drivers. In particular, the least-cost optimality hypothesis considers the effect of atmospheric demand for water on χ but does not predict how soils with reduced water further influence χ, potentially leading to an overestimation of χ under dry conditions. Here, we use a large network of stable carbon isotope measurements in C3 woody plants to examine the acclimated response of χ to soil water stress. We estimate the ratio of cost factors for carboxylation and transpiration (β) expected from the theory to explain the variance in the data, and investigate the responses of β (and thus χ) to soil water content and suction across seed plant groups, leaf phenological types and regions. Overall, β decreases linearly with soil drying, implying that the cost of water transport along the soil-plant-atmosphere continuum increases as water available in the soil decreases. However, despite contrasting hydraulic strategies, the stomatal responses of angiosperms and gymnosperms to soil water tend to converge, consistent with the optimality theory. The prediction of β as a simple, empirical function of soil water significantly improves χ predictions by up to 6.3 ± 2.3% (mean ± SD of adjusted-R2 ) over 1980-2018 and results in a reduction of around 2% of mean χ values across the globe. Our results highlight the importance of soil water status on stomatal functions and plant water-use efficiency, and suggest the implementation of trait-based hydraulic functions into the model to account for soil water stress.
Collapse
Affiliation(s)
- Aliénor Lavergne
- Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK
| | - David Sandoval
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Vincent J Hare
- Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK
- Stable Light Isotope Laboratory, University of Cape Town, Cape Town, South Africa
| | - Heather Graven
- Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK
| | - Iain Colin Prentice
- Department of Life Sciences, Imperial College London, Ascot, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
431
|
Gains or Losses in Forest Productivity under Climate Change? The Uncertainty of CO2 Fertilization and Climate Effects. CLIMATE 2020. [DOI: 10.3390/cli8120141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global warming poses great challenges for forest managers regarding adaptation strategies and species choices. More frequent drought events and heat spells are expected to reduce growth and increase mortality. Extended growing seasons, warming and elevated CO2 (eCO2) can also positively affect forest productivity. We studied the growth, productivity and mortality of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) in the Black Forest (Germany) under three climate change scenarios (representative concentration pathways (RCP): RCP2.6, RCP4.5, RCP8.5) using the detailed biogeochemical forest growth model GOTILWA+. Averaged over the entire simulation period, both species showed productivity losses in RCP2.6 (16–20%) and in RCP4.5 (6%), but productivity gains in RCP8.5 (11–17%). However, all three scenarios had a tipping point (between 2035–2060) when initial gains in net primary productivity (NPP) (6–29%) eventually turned into losses (1–26%). With eCO2 switched off, the losses in NPP were 26–51% in RCP2.6, 36–45% in RCP4.5 and 33–71% in RCP8.5. Improved water-use efficiency dampened drought effects on NPP between 4 and 5%. Tree mortality increased, but without notably affecting forest productivity. Concluding, cultivation of beech and fir may still be possible in the study region, although severe productivity losses can be expected in the coming decades, which will strongly depend on the dampening CO2 fertilization effect.
Collapse
|
432
|
Venancio LP, Filgueiras R, Mantovani EC, do Amaral CH, da Cunha FF, Dos Santos Silva FC, Althoff D, Dos Santos RA, Cavatte PC. Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State, Brazil. Sci Rep 2020; 10:19719. [PMID: 33184345 PMCID: PMC7665182 DOI: 10.1038/s41598-020-76713-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
Droughts are major natural disasters that affect many parts of the world all years and recently affected one of the major conilon coffee-producing regions of the world in state of Espírito Santo, which caused a huge crisis in the sector. Therefore, the objective of this study was to conduct an analysis with technical-scientific basis of the real impact of drought associated with high temperatures and irradiances on the conilon coffee (Coffea canephora Pierre ex Froehner) plantations located in the north, northwest, and northeast regions of the state of Espírito Santo, Brazil. Data from 2010 to 2016 of rainfall, air temperature, production, yield, planted area and surface remote sensing were obtained from different sources, statistically analyzed, and correlated. The 2015/2016 season was the most affected by the drought and high temperatures (mean annual above 26 °C) because, in addition to the adverse weather conditions, coffee plants were already damaged by the climatic conditions of the previous season. The increase in air temperature has higher impact (negative) on production than the decrease in annual precipitation. The average annual air temperatures in the two harvest seasons that stood out for the lowest yields (i.e. 2012/2013 and 2015/2016) were approximately 1 °C higher than in the previous seasons. In addition, in the 2015/2016 season, the average annual air temperature was the highest in the entire series. The spatial and temporal distribution of Enhanced Vegetation Index values enabled the detection and perception of droughts in the conilon coffee-producing regions of Espírito Santo. The rainfall volume accumulated in the periods from September to December and from April to August are the ones that most affect coffee yield. The conilon coffee plantations in these regions are susceptible to new climate extremes, as they continue to be managed under irrigation and full sun. The adoption of agroforestry systems and construction of small reservoirs can be useful to alleviate these climate effects, reducing the risk of coffee production losses and contributing to the sustainability of crops in Espírito Santo.
Collapse
Affiliation(s)
- Luan Peroni Venancio
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil.
| | - Roberto Filgueiras
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | | | - Cibele Hummel do Amaral
- Forest Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Fernando França da Cunha
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | | | - Daniel Althoff
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Robson Argolo Dos Santos
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Paulo Cezar Cavatte
- Biology Department, Federal University of Espírito Santo (UFES), Alegre, 29500-000, Brazil
| |
Collapse
|
433
|
Exogenous Abscisic Acid Can Influence Photosynthetic Processes in Peas through a Decrease in Activity of H +-ATP-ase in the Plasma Membrane. BIOLOGY 2020; 9:biology9100324. [PMID: 33020382 PMCID: PMC7650568 DOI: 10.3390/biology9100324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Numerous stressors (drought, low and high temperatures, mechanical damages, etc.) act on plants under environmental conditions, suppressing their physiological processes (in particular, photosynthesis). Abscisic acid (ABA) is an important hormone, which participates in increasing plant tolerance to the action of stressors; as a result, treatment by exogenous ABA is a perspective way of regulating the tolerance in agriculture. We investigated the influence of ABA spraying on photosynthetic processes, as well as on their heat tolerance and their regulation by electrical signals propagating after local burning and modifying photosynthesis. It was shown that ABA spraying decreased photosynthetic activity and increased photosynthetic heat tolerance; additionally, the ABA treatment weakened the influence of electrical signals on photosynthesis. We revealed that these responses could be caused by a decrease in activity of H+-ATP-ase, which is an important ion transporter in plant cell plasma membrane that supports efflux of H+ from cytoplasm. As a whole, our results show the potential influence of the ABA treatment on photosynthetic processes, which is related to a decrease in activity of H+-ATP-ase. The result can be potentially useful for development of new methods of management of plant tolerance in agriculture. Abstract Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence of the ABA treatment on photosynthetic processes require further investigations. The aim of our work was to investigate the participation of inactivation of the plasma membrane H+-ATP-ase on the influence of ABA treatment on photosynthetic processes and their regulation by electrical signals in peas. The ABA treatment of seedlings was performed by spraying them with aqueous solutions (10−5 M). The combination of a Dual-PAM-100 PAM fluorometer and GFS-3000 infrared gas analyzer was used for photosynthetic measurements; the patch clamp system on the basis of a SliceScope Pro 2000 microscope was used for measurements of electrical activity. It was shown that the ABA treatment stimulated the cyclic electron flow around photosystem I and decreased the photosynthetic CO2 assimilation, the amplitude of burning-induced electrical signals (variation potentials), and the magnitude of photosynthetic responses relating to these signals; in contrast, treatment with exogenous ABA increased the heat tolerance of photosynthesis. An investigation of the influence of ABA treatment on the metabolic component of the resting potential showed that this treatment decreased the activity of the H+-ATP-ase in the plasma membrane. Inhibitor analysis using sodium orthovanadate demonstrated that this decrease may be a mechanism of the ABA treatment-induced changes in photosynthetic processes, their heat tolerance, and regulation by electrical signals.
Collapse
|
434
|
Smith MN, Taylor TC, van Haren J, Rosolem R, Restrepo-Coupe N, Adams J, Wu J, de Oliveira RC, da Silva R, de Araujo AC, de Camargo PB, Huxman TE, Saleska SR. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. NATURE PLANTS 2020; 6:1225-1230. [PMID: 33051618 DOI: 10.1038/s41477-020-00780-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests may be vulnerable to climate change1-3 if photosynthetic carbon uptake currently operates near a high temperature limit4-6. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)7, and biochemical restrictions (H2), a direct temperature response8,9. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. 10). If elevated [CO2] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized9,11, tropical forest photosynthesis may have a margin of resilience to future warming.
Collapse
Affiliation(s)
- Marielle N Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
- Department of Forestry, Michigan State University, East Lansing, MI, USA.
| | - Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Rafael Rosolem
- Department of Civil Engineering, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - John Adams
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Rodrigo da Silva
- Department of Environmental Physics, University of Western Pará (UFOPA), Santarém, Brazil
| | - Alessandro C de Araujo
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
- Embrapa Amazônia Oriental, Belém, Brazil
| | - Plinio B de Camargo
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, Brazil
| | - Travis E Huxman
- Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
435
|
Zhang M, Yuan X, Otkin JA. Remote sensing of the impact of flash drought events on terrestrial carbon dynamics over China. CARBON BALANCE AND MANAGEMENT 2020; 15:20. [PMID: 32964321 PMCID: PMC7510300 DOI: 10.1186/s13021-020-00156-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flash drought poses a great threat to terrestrial ecosystems and influences carbon dynamics due to its unusually rapid onset and increasing frequency in a warming climate. Understanding the response of regional terrestrial carbon dynamics to flash drought requires long-term observations of carbon fluxes and soil moisture at a large scale. Here, MODIS satellite observations of ecosystem productivity and ERA5 reanalysis modeling of soil moisture are used to detect the response of ecosystems to flash drought over China. RESULTS The results show that GPP, NPP, and LAI respond to 79-86% of the flash drought events over China, with highest and lowest response frequency for NPP and LAI, respectively. The discrepancies in the response of GPP, NPP, and LAI to flash drought result from vegetation physiological and structural changes. The negative anomalies of GPP, NPP, and LAI occur within 19 days after the start of flash drought, with the fastest response occurring over North China, and slower responses in southern and northeastern China. Water use efficiency (WUE) is increased in most regions of China except for western regions during flash drought, illustrating the resilience of ecosystems to rapid changes in soil moisture conditions. CONCLUSIONS This study shows the rapid response of ecosystems to flash drought based on remote-sensing observations, especially for northern China with semiarid climates. Besides, NPP is more sensitive than GPP and LAI to flash drought under the influence of vegetation respiration and physiological regulations. Although the mean WUE increases during flash drought over most of China, western China shows less resilience to flash drought with little changes in WUE during the recovery stage. This study highlights the impacts of flash drought on ecosystems and the necessity to monitor rapid drought intensification.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Yuan
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jason A Otkin
- Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
436
|
Devaney JL, Marone D, McElwain JC. Impact of soil salinity on mangrove restoration in a semiarid region: a case study from the Saloum Delta, Senegal. Restor Ecol 2020. [DOI: 10.1111/rec.13186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- John L. Devaney
- Botany Department, Trinity College Dublin The University of Dublin Dublin 2 Ireland
- Smithsonian Environmental Research Center Edgewater MD USA
| | - Diatta Marone
- Institut Sénégalais de Recherches Agricoles, Centre de recherche agricole de Saint‐Louis BP 240, Saint‐Louis Senegal
| | - Jennifer C. McElwain
- Botany Department, Trinity College Dublin The University of Dublin Dublin 2 Ireland
| |
Collapse
|
437
|
The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. FORESTS 2020. [DOI: 10.3390/f11090932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review paper is the first that summarizes many aspects of the ecological role of trees in urban landscapes while considering their growth conditions. Research Highlights are: (i) Plant growth conditions in cities are worsening due to high urbanization rates and new stress factors; (ii) Urban trees are capable of alleviating the stress factors they are exposed to; (iii) The size and vitality of trees is related to the ecological services they can provide. Our review shows, in a clear way, that the phenomenon of human-related environmental degradation, which generates urban tree stress, can be effectively alleviated by the presence of trees. The first section reviews concerns related to urban environment degradation and its influence on trees. Intense urbanization affects the environment of plants, raising the mortality rate of urban trees. The second part deals with the dieback of city trees, its causes and scale. The average life expectancy of urban trees is relatively low and depends on factors such as the specific location, proper care and community involvement, among others. The third part concerns the ecological and economic advantages of trees in the city structure. Trees affect citizen safety and health, but also improve the soil and air environment. Finally, we present the drawbacks of tree planting and discuss if they are caused by the tree itself or rather by improper tree management. We collect the latest reports on the complicated state of urban trees, presenting new insights on the complex issue of trees situated in cities, struggling with stress factors. These stressors have evolved over the decades and emphasize the importance of tree presence in the city structure.
Collapse
|
438
|
Bauters M, Meeus S, Barthel M, Stoffelen P, De Deurwaerder HPT, Meunier F, Drake TW, Ponette Q, Ebuy J, Vermeir P, Beeckman H, Wyffels F, Bodé S, Verbeeck H, Vandelook F, Boeckx P. Century-long apparent decrease in intrinsic water-use efficiency with no evidence of progressive nutrient limitation in African tropical forests. GLOBAL CHANGE BIOLOGY 2020; 26:4449-4461. [PMID: 32364642 DOI: 10.1111/gcb.15145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Forests exhibit leaf- and ecosystem-level responses to environmental changes. Specifically, rising carbon dioxide (CO2 ) levels over the past century are expected to have increased the intrinsic water-use efficiency (iWUE) of tropical trees while the ecosystem is gradually pushed into progressive nutrient limitation. Due to the long-term character of these changes, however, observational datasets to validate both paradigms are limited in space and time. In this study, we used a unique herbarium record to go back nearly a century and show that despite the rise in CO2 concentrations, iWUE has decreased in central African tropical trees in the Congo Basin. Although we find evidence that points to leaf-level adaptation to increasing CO2 -that is, increasing photosynthesis-related nutrients and decreasing maximum stomatal conductance, a decrease in leaf δ13 C clearly indicates a decreasing iWUE over time. Additionally, the stoichiometric carbon to nitrogen and nitrogen to phosphorus ratios in the leaves show no sign of progressive nutrient limitation as they have remained constant since 1938, which suggests that nutrients have not increasingly limited productivity in this biome. Altogether, the data suggest that other environmental factors, such as increasing temperature, might have negatively affected net photosynthesis and consequently downregulated the iWUE. Results from this study reveal that the second largest tropical forest on Earth has responded differently to recent environmental changes than expected, highlighting the need for further on-ground monitoring in the Congo Basin.
Collapse
Affiliation(s)
- Marijn Bauters
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | - Matti Barthel
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | | - Hannes P T De Deurwaerder
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Félicien Meunier
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Travis W Drake
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Quentin Ponette
- UCL-ELI, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jerôme Ebuy
- UCL-ELI, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Université de Kisangani (UNIKIS/FGRNR), Kisangani, République Démocratique du Congo
| | - Pieter Vermeir
- Laboratory for Chemical Analyses - LCA, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | | | - Francis Wyffels
- AIRO, Electronics and Information Systems Department, Ghent University-Imec, Ghent, Belgium
| | - Samuel Bodé
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Hans Verbeeck
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
439
|
Longo M, Saatchi S, Keller M, Bowman K, Ferraz A, Moorcroft PR, Morton DC, Bonal D, Brando P, Burban B, Derroire G, dos‐Santos MN, Meyer V, Saleska S, Trumbore S, Vincent G. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2020; 125:e2020JG005677. [PMID: 32999796 PMCID: PMC7507752 DOI: 10.1029/2020jg005677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/31/2023]
Abstract
Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems.
Collapse
Affiliation(s)
- Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Sassan Saatchi
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| | - Michael Keller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- International Institute of Tropical ForestryUSDA Forest ServiceRio PiedrasPuerto Rico
- Embrapa Informática AgropecuáriaCampinasBrazil
| | - Kevin Bowman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - António Ferraz
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| | - Paul R. Moorcroft
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | | | - Damien Bonal
- Université de Lorraine, INRAE, AgroParisTech, UMR SilvaNancyFrance
| | - Paulo Brando
- Department of Earth System ScienceUniversity of CaliforniaIrvineCAUSA
- Woods Hole Research CenterWoods HoleMAUSA
- Instituto de Pesquisa Ambiental da AmazôniaBrasíliaBrazil
| | - Benoît Burban
- Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UMR 0745 EcoFoG, Campus AgronomiqueKourouFrance
| | - Géraldine Derroire
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de Guyane), Campus AgronomiqueKourouFrance
| | | | - Victoria Meyer
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Scott Saleska
- Ecology and Evolutionary BiologyUniversity of ArizonaTucsonAZUSA
| | | | - Grégoire Vincent
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAEMontpellierFrance
| |
Collapse
|
440
|
Aparecido LMT, Woo S, Suazo C, Hultine KR, Blonder B. High water use in desert plants exposed to extreme heat. Ecol Lett 2020; 23:1189-1200. [PMID: 32436365 DOI: 10.1111/ele.13516] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 01/06/2023]
Abstract
Many plant water use models predict leaves maximize carbon assimilation while minimizing water loss via transpiration. Alternate scenarios may occur at high temperature, including heat avoidance, where leaves increase water loss to evaporatively cool regardless of carbon uptake; or heat failure, where leaves non-adaptively lose water also regardless of carbon uptake. We hypothesized that these alternative scenarios are common in species exposed to hot environments, with heat avoidance more common in species with high construction cost leaves. Diurnal measurements of leaf temperature and gas exchange for 11 Sonoran Desert species revealed that 37% of these species increased transpiration in the absence of increased carbon uptake. High leaf mass per area partially predicted this behaviour (r2 = 0.39). These data are consistent with heat avoidance and heat failure, but failure is less likely given the ecological dominance of the focal species. These behaviours are not yet captured in any extant plant water use model.
Collapse
Affiliation(s)
- Luiza M T Aparecido
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85821, USA
| | - Sabrina Woo
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85821, USA
| | - Crystal Suazo
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85821, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N. Galvin Parkway, Phoenix, AZ, 85008, USA
| | - Benjamin Blonder
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85821, USA.,Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
441
|
Differences in Near Isohydric and Anisohydric Behavior of Contrasting Poplar Hybrids (I-101 (Populus alba L.) × 84K (Populus alba L. × Populus glandulosa Uyeki)) under Drought-Rehydration Treatments. FORESTS 2020. [DOI: 10.3390/f11040402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbon starvation and hydraulic failure are considered important factors in determining the mechanisms associated with tree mortality. In this study, iso/anisohydric classification was used to assess drought resistance and mortality mechanisms in two contrasting poplar species, as it is generally believed that isohydric species are more susceptible to carbon starvation, while anisohydric species are more susceptible to hydraulic failure. However, these assumptions are rarely tested in poplar genotypes with contrasting growth strategies. Thus, we subjected potted poplar genotypes (I-101 (Populus alba L.) × 84K (Populus alba L. × Populus glandulosa Uyeki)) with fast and slow growth rates to drought–rehydration treatments. The slow-growing genotype maintained higher stomatal conductance and lower predawn leaf water potential than the fast-growing genotype, thus exhibiting a near-anisohydric stomatal behavior throughout the treatment period. The nonstructural carbohydrate (NSC) content indicated that the two genotypes had the same trend of carbon change (e.g., the NSC content in the leaves increased with drought and then decreased). However, when NSC content data were combined with the growth and photosynthetic data, it was observed that the slow-growing genotype mobilized carbon to maintain hydraulic safety, while the NSC content of the fast-growing genotype among tissues was static. The percent loss of hydraulic conductivity in the branches during treatments indicated that the fast-growing genotype could recover more quickly from xylem embolism than the slow-growing genotype. The slow-growing genotype with a slow growth recovery after rehydration showed a significant increase in carbon consumption, combined with a significant increase in the hydraulic safety threshold value, indicating that there may be drought tolerance. In comparison, the fast-growing genotype showed a faster hydraulic recovery ability that had no effect on the NSC content in the leaves and roots. Our findings demonstrate intraspecific isohydric behavior in poplar; however, the trade-off between carbon distribution and stomatal regulation should be considered separately within genotypes of the same species. In addition, NSC plays an important role in water–carbon balance in the drought–rehydration cycle.
Collapse
|