401
|
Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y. Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 2003; 14:191-8. [PMID: 12948354 DOI: 10.1016/s1084-9521(03)00011-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thanks to advances in the stem cell biology of the central nervous system (CNS), the previously inconceivable regeneration of the damaged CNS is approaching reality. The availability of signals to induce the appropriate differentiation of the transplanted and/or endogenous neural stem cells (NSCs) as well as the timing of the transplantation are important for successful functional recovery of the damaged CNS. Because the immediately post-traumatic microenvironment of the spinal cord is in an acute inflammatory stage, it is not favorable for the survival and differentiation of NSC transplants. On the other hand, in the chronic stage after injury, glial scars form in the injured site that inhibit the regeneration of neuronal axons. Thus, we believe that the optimal timing of transplantation is 1-2 weeks after injury.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
402
|
Ding Z, Haussmann I, Ottiger M, Kubli E. Sex-peptides bind to two molecularly different targets in Drosophila melanogaster females. JOURNAL OF NEUROBIOLOGY 2003; 55:372-84. [PMID: 12717705 DOI: 10.1002/neu.10218] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sex-Peptide (SP) and the peptide DUP99B elicit two postmating responses in Drosophila melanogaster females: receptivity is reduced and oviposition is increased. Both are synthesized in the male genital tract and transferred into the female during copulation. To elucidate their function, we characterized the binding properties of SP and DUP99B in females. Cryostat sections of adult females were incubated with alkaline phosphatase (AP)-tagged peptides. In virgin females, both peptides have specific target sites in the nervous system and in the genital tract. The binding pattern is almost identical for both peptides. Incubation of sections of mated females confirm that some of these target sites correspond to the in vivo targets of the two peptides. Neuronal binding is dependent on an intact C-terminal sequence of SP, binding in the genital tract is less demanding in terms of amino acid sequence requirement. On affinity blots the AP-SP probe binds to membrane proteins extracted from abdomen and head plus thorax, respectively. The binding proteins in the nervous system and the genital tract differ in their molecular properties. Calculation of dissociation constants (K(d)), and also determination of the minimal peptide concentrations necessary for binding, indicate that SP is the more important peptide inducing the postmating responses. Our results suggest that binding of SP in the nervous system is responsible for eliciting the postmating responses, whereas binding in the genital tract reflects the presence of a peptide transporter.
Collapse
Affiliation(s)
- Zhaobing Ding
- Zoologisches Institut Universität Zürich-Irchel, Winterthurerstrasse190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
403
|
Sicotte M, Tsatas O, Jeong SY, Cai CQ, He Z, David S. Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol Cell Neurosci 2003; 23:251-63. [PMID: 12812757 DOI: 10.1016/s1044-7431(03)00053-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have shown previously that immunization with myelin in incomplete Freund's adjuvant (IFA) is able to promote robust regeneration of corticospinal tract fibers in adult mice. In the present study the effectiveness of such immunization with myelin was compared to that of a combination of two axon growth inhibitors in myelin, Nogo-66 (the 66-amino-acid inhibitory region of Nogo-A) and myelin-associated glycoprotein (MAG). The effectiveness of two adjuvants, IFA and aluminum hydroxide (Alum), was also compared, the latter being one that can be used in humans. In addition, larger dorsal overhemisections were made at the lower thoracic level, which resulted in a larger scar. These studies were carried out in SJL/J mice, a mouse strain that is susceptible to autoimmune experimental allergic encephalomyelitis (EAE). None of the immunized mice developed EAE. Long-distance axon regeneration and sprouting of the corticospinal tract was seen in myelin and Nogo-66/MAG immunized mice. Alum was as effective or better than IFA as the adjuvant. Overall, the robustness of axon growth and sprouting was greater in mice immunized with myelin. The abundance of this growth was less than in our earlier work in which smaller lesions were made, pointing to the possible influence of inhibitors in the scar. This work shows, however, that axon growth inhibitors in myelin can be selectively blocked using this immunization approach to promote long-distance axon regeneration in the spinal cord.
Collapse
Affiliation(s)
- Maryline Sicotte
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada, H3G 1A4
| | | | | | | | | | | |
Collapse
|
404
|
Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 2003; 38:201-11. [PMID: 12718855 DOI: 10.1016/s0896-6273(03)00226-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To investigate the role of the myelin-associated protein Nogo-A on axon sprouting and regeneration in the adult central nervous system (CNS), we generated Nogo-A-deficient mice. Nogo-A knockout (KO) mice were viable, fertile, and not obviously afflicted by major developmental or neurological disturbances. The shorter splice form Nogo-B was strongly upregulated in the CNS. The inhibitory effect of spinal cord extract for growing neurites was decreased in the KO mice. Two weeks following adult dorsal hemisection of the thoracic spinal cord, Nogo-A KO mice displayed more corticospinal tract (CST) fibers growing toward and into the lesion compared to their wild-type littermates. CST fibers caudal to the lesion-regenerating and/or sprouting from spared intact fibers-were also found to be more frequent in Nogo-A-deficient animals.
Collapse
Affiliation(s)
- Marjo Simonen
- Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Pignot V, Hein AE, Barske C, Wiessner C, Walmsley AR, Kaupmann K, Mayeur H, Sommer B, Mir AK, Frentzel S. Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptor. J Neurochem 2003; 85:717-28. [PMID: 12694398 DOI: 10.1046/j.1471-4159.2003.01710.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nogo-66 receptor (NgR) has recently been identified as the neuronal receptor of the myelin-associated proteins Nogo-A, oligodendrocyte protein (OMgp) and myelin-associated glycoprotein (MAG), and mediates inhibition of axonal regeneration both in vitro and in vivo. Through database searches, we have identified two novel proteins (NgRH1 and NgRH2) that turned out to be homologous in their primary structures, biochemical properties and expression patterns to NgR. Like NgR, the homologues contain eight leucine-rich repeats (LRR) flanked by a leucine-rich repeat C-terminus (LRRCT) and a leucine-rich repeat N-terminus (LRRNT), and also have a C-terminal GPI signal sequence. Northern blot analysis showed predominant expression of NgRH1 and NgRH2 mRNA in the brain. In situ hybridization and immunohistochemistry on rat brain slices revealed neuronal expression of the genes. NgRH1 and NgRH2 were detected on the cell surface of recombinant cell lines as N-glycosylated GPI anchored proteins and, consistent with other GPI anchored proteins, were localized within the lipid rafts of cellular membranes. In addition, an N-terminal proteolytic fragment of NgR comprising the majority of the ectodomain was found to be constitutively secreted from cells. Our data indicate that NgR, NgRH1 and NgRH2 constitute a novel receptor protein family, which may play related roles within the CNS.
Collapse
Affiliation(s)
- V Pignot
- Novartis Pharma Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 2003; 38:213-24. [PMID: 12718856 DOI: 10.1016/s0896-6273(03)00225-3] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The failure of regeneration of severed axons in the adult mammalian central nervous system is thought to be due partly to the presence of endogenous inhibitors of axon regeneration. The nogo gene encodes three proteins (Nogo-A, -B, and -C) that have been proposed to contribute to this inhibition. To determine whether deletion of nogo enhances regenerative ability, we generated two lines of mutant mice, one lacking Nogo-A and -B but not -C (Nogo-A/B mutant), and one deficient in all three isoforms (Nogo-A/B/C mutant). Although Nogo-A/B-deficient myelin has reduced inhibitory activity in a neurite outgrowth assay in vitro, tracing of corticospinal tract fibers after dorsal hemisection of the spinal cord did not reveal an obvious increase in regeneration or sprouting of these fibers in either mouse line, suggesting that elimination of Nogo alone is not sufficient to induce extensive axon regeneration.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
407
|
Abstract
Nogo-A, a reticulon protein expressed by oligodendrocytes, contributes to the axonal growth inhibitory action of central myelin in growth cone collapse and neurite outgrowth in vitro assays, and antibody and inhibitor studies have implicated a role for Nogo in regeneration in the adult CNS in vivo. Three independent labs have now produced Nogo knockout mice with, quite unexpectedly, three different regeneration phenotypes.
Collapse
Affiliation(s)
- Clifford J Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
408
|
Abstract
After injury, axons of the adult mammalian brain and spinal cord exhibit little regeneration. It has been suggested that axon growth inhibitors, such as myelin-derived Nogo, prevent CNS axon repair. To investigate this hypothesis, we analyzed mice with a nogo mutation that eliminates Nogo-A/B expression. These mice are viable and exhibit normal locomotion. Corticospinal tract tracing reveals no abnormality in uninjured nogo-A/B(-/-) mice. After spinal cord injury, corticospinal axons of young adult nogo-A/B(-/-) mice sprout extensively rostral to a transection. Numerous fibers regenerate into distal cord segments of nogo-A/B(-/-) mice. Recovery of locomotor function is improved in these mice. Thus, Nogo-A plays a role in restricting axonal sprouting in the young adult CNS after injury.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Neurology, Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
409
|
Abstract
After optic nerve injury in mature mammals, retinal ganglion cells (RGCs) are normally unable to regenerate their axons and undergo delayed apoptosis. However, if the lens is damaged at the time of nerve injury, many RGCs survive axotomy and regenerate their axons into the distal optic nerve. Lens injury induces macrophage activation, and we show here that factors secreted by macrophages stimulate RGCs to regenerate their axons. When macrophages were activated by intravitreal injections of Zymosan, a yeast cell wall preparation, the number of RGC axons regenerating into the distal optic nerve was even greater than after lens injury. These effects were further enhanced if Zymosan was injected 3 d after nerve crush. In a grafting paradigm, intravitreal Zymosan increased the number of RGCs that regenerated their axons through a 1.5 cm peripheral nerve graft twofold relative to uninjected controls and threefold if injections were delayed 3 d. In cell culture, media conditioned by activated macrophages stimulated adult rat RGCs to regenerate their axons; this effect was potentiated by a low molecular weight factor that is constitutively present in the vitreous humor. After gel-filtration chromatography, macrophage-derived proteins > or =30 kDa were found to be toxic to RGCs, whereas proteins <30 kDa reversed this toxicity and promoted axon regeneration. The protein(s) that stimulated axon growth is distinct from identified polypeptide trophic factors that were tested. Thus, macrophages produce proteins with both positive and negative effects on RGCs, and the effects of macrophages can be optimized by the timing of their activation.
Collapse
|
410
|
He XL, Bazan JF, McDermott G, Park JB, Wang K, Tessier-Lavigne M, He Z, Garcia KC. Structure of the Nogo Receptor Ectodomain. Neuron 2003; 38:177-85. [PMID: 12718853 DOI: 10.1016/s0896-6273(03)00232-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Failure of axon regeneration in the adult mammalian central nervous system (CNS) is at least partly due to inhibitory molecules associated with myelin. Recent studies suggest that an axon surface protein, the Nogo receptor (NgR), may play a role in this process through an unprecedented degree of crossreactivity with myelin-associated inhibitory ligands. Here, we report the 1.5 A crystal structure and functional characterization of a soluble extracellular domain of the human Nogo receptor. Nogo receptor adopts a leucine-rich repeat (LRR) module whose concave exterior surface contains a broad region of evolutionarily conserved patches of aromatic residues, possibly suggestive of degenerate ligand binding sites. A deep cleft at the C-terminal base of the LRR may play a role in NgR association with the p75 coreceptor. These results now provide a detailed framework for focused structure-function studies aimed at assessing the physiological relevance of NgR-mediated protein-protein interactions to axon regeneration inhibition.
Collapse
Affiliation(s)
- Xiaolin L He
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
411
|
Abstract
CNS myelin inhibits axonal outgrowth in vitro and is one of several obstacles to functional recovery following spinal cord injury. Central to our current understanding of myelin-mediated inhibition are the membrane protein Nogo and the Nogo-66 receptor (NgR). New findings implicate NgR as a point of convergence in signal transduction for several myelin-associated inhibitors. Additional studies have identified a potential coreceptor for NgR as p75(NTR), and a second-messenger pathway involving RhoA that inhibits neurite elongation. Although these findings expand our understanding of the molecular determinants of adult CNS axonal regrowth, the physiological roles of myelin-associated inhibitors in the intact adult CNS remain ill-defined.
Collapse
Affiliation(s)
- Aaron W McGee
- Departments of Neurology and Neurobiology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520, USA.
| | | |
Collapse
|
412
|
Abstract
Reticulons (RTNs) are a relatively new eukaryotic gene family with unknown functions but broad expression and peculiar topological features. RTNs are widely distributed in plants, yeast and animals and are characterized by a approximately 200-amino-acid C-terminal domain, including two long hydrophobic sequences. Nogo/RTN4 can inhibit neurite growth from the cell surface via specific receptors, whereas more general, 'ancestral', RTN functions might relate to those of the endoplasmic reticulum - for example, intracellular trafficking, cell division and apoptosis. Here, we review the taxonomic distribution and tissue expression of RTNs, summarize recent discoveries about RTN localization and membrane topology, and discuss the possible functions of RTNs.
Collapse
Affiliation(s)
- Thomas Oertle
- Brain Research Institute, University of Zurich and Dept of Biology, ETH Zurich, Winterthurerstrasse 190, Switzerland
| | | |
Collapse
|
413
|
Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4:299-309. [PMID: 12671646 DOI: 10.1038/nrn1078] [Citation(s) in RCA: 1729] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
414
|
Abstract
Myelin-associated inhibitors limit axonal regeneration in the injured brain and spinal cord. A common target of many neurite outgrowth inhibitors is the Rho family of small GTPases. Activation of Rho and a downstream effector of Rho, p160ROCK, inhibits neurite outgrowth. Here, we demonstrate that Rho is directly activated by the myelin-associated inhibitor Nogo-66. Using a binding assay to measure Rho activity, we detected increased levels of GTP Rho in PC12 and dorsal root ganglion (DRG) cell lysates after Nogo-66 stimulation. Rho activity levels were not affected by Amino-Nogo stimulation. Rho inactivation with C3 transferase promotes neurite outgrowth of chick DRG neurons in vitro, but with the delivery method used here, it fails to promote neurite outgrowth after corticospinal tract (CST) lesions in the adult rat. Inhibition of p160ROCK with Y-27632 also promotes neurite outgrowth on myelin-associated inhibitors in vitro. Furthermore, Y-27632 enhances sprouting of CST fibers in vivo and accelerates locomotor recovery after CST lesions in adult rats.
Collapse
|
415
|
Abstract
Molecules that are found in the extracellular environment at a CNS lesion site, or that are associated with myelin, inhibit axon growth. In addition, neuronal changes--such as an age-dependent reduction in concentrations of cyclic AMP--render the neuron less able to respond to axotomy by a rapid, forward, actin-dependent movement. An alternative mechanism, based on the protrusive forces generated by microtubule elongation or the anterograde transport of cytoskeletal elements, may underlie a slower form of axon elongation that happens during regeneration in the mature CNS. Therapeutic approaches that restore the extracellular CNS environment or the neuron's characteristics back to a more embryonic state increase axon regeneration and improve functional recovery after injury. These advances in the understanding of regeneration in the CNS have major implications for neurorehabilitation and for the use of axonal regeneration as a therapeutic approach to disorders of the CNS such as spinal-cord injury.
Collapse
|
416
|
Vinson M, Rausch O, Maycox PR, Prinjha RK, Chapman D, Morrow R, Harper AJ, Dingwall C, Walsh FS, Burbidge SA, Riddell DR. Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Mol Cell Neurosci 2003; 22:344-52. [PMID: 12691736 DOI: 10.1016/s1044-7431(02)00031-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interaction between myelin-associated glycoprotein (MAG), expressed at the periaxonal membrane of myelin, and receptors on neurons initiates a bidirectional signalling system that results in inhibition of neurite outgrowth and maintenance of myelin integrity. We show that this involves a lipid-raft to lipid-raft interaction on opposing cell membranes. MAG is exclusively located in low buoyancy Lubrol WX-insoluble membrane fractions isolated from whole brain, primary oligodendrocytes, or MAG-expressing CHO cells. Localisation within these domains is dependent on cellular cholesterol and occurs following terminal glycosylation in the trans-Golgi network, characteristics of association with lipid rafts. Furthermore, a recombinant form of MAG interacts specifically with lipid-raft fractions from whole brain and cultured cerebellar granule cells, containing functional MAG receptors GT1b and Nogo-66 receptor and molecules required for transduction of signal from MAG into neurons. The localisation of both MAG and MAG receptors within lipid rafts on the surface of opposing cells may create discrete areas of high avidity multivalent interaction, known to be critical for signalling into both cell types. Localisation within lipid rafts may provide a molecular environment that facilitates the interaction between MAG and multiple receptors and also between MAG ligands and molecules involved in signal transduction.
Collapse
Affiliation(s)
- Mary Vinson
- Neurology Centre of Excellence for Drug Discovery, Glaxo SmithKline, New Frontiers Science Park North, Harlow, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Spencer T, Domeniconi M, Cao Z, Filbin MT. New roles for old proteins in adult CNS axonal regeneration. Curr Opin Neurobiol 2003; 13:133-9. [PMID: 12593992 DOI: 10.1016/s0959-4388(03)00012-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The past year has yielded many insights and a few surprises in the field of axonal regeneration. The identification of oligodendrocyte-myelin glycoprotein as an inhibitor of axonal growth, and the discovery that the three major myelin-associated inhibitors of CNS regeneration share the same functional receptor, has launched a new wave of studies that aim to identify the signaling components of these inhibitory pathways. These findings also offer new avenues of research directed toward blocking possible therapeutic targets that inhibit regeneration and toward encouraging axonal regeneration in the CNS after injury.
Collapse
Affiliation(s)
- Timothy Spencer
- Department of Biological Sciences, Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
418
|
Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 2002. [PMID: 12451136 DOI: 10.1523/jneurosci.22-23-10368.2002] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adult mammalian CNS has a limited capacity for nerve regeneration and structural plasticity. The presence of glia-derived inhibitory factors myelin-associated glycoprotein (MAG) and Nogo-A have been suggested to provide a nonpermissive environment for elongating nerve fibers. In particular, Nogo-A, an integral membrane protein predominantly expressed by oligodendrocytes, has been demonstrated to impair neurite growth in vitro and in vivo. Structure function analysis revealed that Nogo-A protein contains at least two active domains, NiG and Nogo-66, with diverse effects on neurite outgrowth and cell spreading. We now provide evidence that these inhibitory domains mediate their effects via an antagonistic regulation of the small GTPases RhoA and Rac1, resulting in activation of RhoA and suppression of Rac1. By inactivating RhoA with C3 transferase or the downstream effector Rho-kinase ROCK with, the inhibitory effects of both Nogo-A fragments and MAG on neurite outgrowth and oligodendrocyte-mediated growth cone collapse were abolished. Furthermore, we show that the recently cloned receptor for Nogo-66 and MAG, NgR, is not necessary for either NiG- or MAG-induced RhoA activation.
Collapse
|
419
|
Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 2002; 5:1302-8. [PMID: 12426574 DOI: 10.1038/nn975] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 10/28/2002] [Indexed: 12/16/2022]
Abstract
Myelin-associated glycoprotein (MAG), an inhibitor of axon regeneration, binds with high affinity to the Nogo-66 receptor (NgR). Here we report that the p75 neurotrophin receptor (p75(NTR)) is a co-receptor of NgR for MAG signaling. In cultured human embryonic kidney (HEK) cells expressing NgR, p75(NTR) was required for MAG-induced intracellular Ca2+ elevation. Co-immunoprecipitation showed an association of NgR with p75(NTR) that can be disrupted by an antibody against p75(NTR) (NGFR5), and extensive coexpression was observed in the developing rat nervous system. Furthermore, NGFR5 abolished MAG-induced repulsive turning of Xenopus axonal growth cones and Ca2+ elevation, both in neurons and in NgR/p75(NTR)-expressing HEK cells. Thus we conclude that p75(NTR) is a co-receptor of NgR for MAG signaling and a potential therapeutic target for promoting nerve regeneration.
Collapse
Affiliation(s)
- Scott T Wong
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
420
|
Wang KC, Kim JA, Sivasankaran R, Segal R, He Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 2002; 420:74-8. [PMID: 12422217 DOI: 10.1038/nature01176] [Citation(s) in RCA: 615] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 10/03/2002] [Indexed: 11/09/2022]
Abstract
In inhibiting neurite outgrowth, several myelin components, including the extracellular domain of Nogo-A (Nogo-66), oligodendrocyte myelin glycoprotein (OMgp) and myelin-associated glycoprotein (MAG), exert their effects through the same Nogo receptor (NgR). The glycosyl phosphatidylinositol (GPI)-anchored nature of NgR indicates the requirement for additional transmembrane protein(s) to transduce the inhibitory signals into the interior of responding neurons. Here, we demonstrate that p75, a transmembrane protein known to be a receptor for the neurotrophin family of growth factors, specifically interacts with NgR. p75 is required for NgR-mediated signalling, as neurons from p75 knockout mice are no longer responsive to myelin and to each of the known NgR ligands. Blocking the p75-NgR interaction also reduces the activities of these inhibitors. Moreover, a truncated p75 protein lacking the intracellular domain, when overexpressed in primary neurons, attenuates the same set of inhibitory activities, suggesting that p75 is a signal transducer of the NgR-p75 receptor complex. Thus, interfering with p75 and its downstream signalling pathways may allow lesioned axons to overcome most of the inhibitory activities associated with central nervous system myelin.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Line
- Cells, Cultured
- Chick Embryo
- Cricetinae
- GPI-Linked Proteins
- Ganglia, Spinal/cytology
- Humans
- Mice
- Mice, Knockout
- Myelin Proteins/chemistry
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Myelin-Associated Glycoprotein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Growth Factor/pharmacology
- Neurites/drug effects
- Neurites/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Nogo Proteins
- Nogo Receptor 1
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptor, Nerve Growth Factor
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Kevin C Wang
- Division of Neuroscience, Children's Hospital and Program in Neuroscience, Harvard Medical School, 320 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
421
|
Blight AR. Miracles and molecules--progress in spinal cord repair. Nat Neurosci 2002; 5 Suppl:1051-4. [PMID: 12403984 DOI: 10.1038/nn939] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Accepted: 07/19/2002] [Indexed: 11/09/2022]
Abstract
Severe spinal cord injury (SCI) leads to devastating loss of neurological function below the level of injury and adversely affects multiple body systems. Most basic research on SCI is designed to find ways to improve the unsatisfactory cellular and molecular responses of spinal cord to injury, which include an array of early processes of autodestruction and a subsequent lack of functional tissue repair. This research has brought us to the threshold of practical application along three lines of approach, derived from animal model studies: acute neuroprotection, enhanced axonal regeneration or plasticity, and treatment of demyelination. There is a growing commercial interest in this previously neglected therapeutic area.
Collapse
Affiliation(s)
- Andrew R Blight
- Acorda Therapeutics, 15 Skyline Drive, Hawthorne, New York 10532, USA.
| |
Collapse
|
422
|
Abstract
Growth inhibition in the central nervous system (CNS) is a major barrier to axon regeneration. Recent findings indicate that three distinct myelin proteins, myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte-myelin glycoprotein (OMgp), inhibit axon growth by binding a common receptor, the Nogo66 receptor (NgR), and likely converge on a common signaling cascade.
Collapse
Affiliation(s)
- Lisa McKerracher
- Département de Pathologie et biologie cellulaire, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada.
| | | |
Collapse
|
423
|
Abstract
Three different myelin proteins, Nogo, MAG, and OMgp, inhibit regenerating axons after CNS injury. New work reveals that they all share a common receptor and that blockade of this receptor promotes CNS repair and functional recovery.
Collapse
Affiliation(s)
- Trent A Watkins
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Building D129, 299 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
424
|
Abstract
Stem cells within the adult brain can be stimulated by injury and growth factor treatment to replace damaged neurons, even neurons that are not normally generated in adults. Coupled with recent insights into the mechanism by which Nogo inhibits axonal regeneration, this discovery may inspire new treatments for central nervous system injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Genevieve M Kruger
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
425
|
Affiliation(s)
- Clifford J Woolf
- Neural Plasticity Research Group, Department of Anesthesia, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|