401
|
Abstract
Cryptochromes are photosensory receptors mediating light regulation of growth and development in plants. Since the isolation of the Arabidopsis CRY1 gene in 1993, cryptochromes have been found in every multicellular eukaryote examined. Most plant cryptochromes have a chromophore-binding domain that shares similar structure with DNA photolyase, and a carboxyl terminal extension that contains a DQXVP-acidic-STAES (DAS) domain conserved from moss, to fern, to angiosperm. In Arabidopsis, cryptochromes are nuclear proteins that mediate light control of stem elongation, leaf expansion, photoperiodic flowering, and the circadian clock. Cryptochromes may act by interacting with proteins such as phytochromes, COP1, and clock proteins, or/and chromatin and DNA. Recent studies suggest that cryptochromes undergo a blue light-dependent phosphorylation that affects the conformation, intermolecular interactions, physiological activities, and protein abundance of the photoreceptors.
Collapse
Affiliation(s)
- Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
402
|
Thin Cell Layer (TCL) Morphogenesis as a Powerful Tool in Woody Plant and Fruit Crop Micropropagation and Biotechnology, Floral Genetics and Genetic Transformation. MICROPROPAGATION OF WOODY TREES AND FRUITS 2003. [DOI: 10.1007/978-94-010-0125-0_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
403
|
Abstract
Many plants use the seasonal change in daylength as a signal for flowering. Daylength sensing in Arabidopsis has now been shown to occur by an external coincidence mechanism, which operates by the circadian and light regulation of CONSTANS.
Collapse
Affiliation(s)
- Seth J Davis
- Department of Plant Development Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne 50829, Germany.
| |
Collapse
|
404
|
Thompson CL, Sancar A. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene 2002; 21:9043-56. [PMID: 12483519 DOI: 10.1038/sj.onc.1205958] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blue light governs a number of cellular responses in bacteria, plants, and animals, including photoreactivation, plant development, and circadian photoentrainment. These activities are mediated by a family of highly conserved flavoproteins, the photolyase/cryptochrome family. Photolyase binds to UV photoproducts in DNA and repairs them in a process called photoreactivation in which blue light is used to initiate a cyclic electron transfer to break bonds and restore the integrity of DNA. Cryptochrome, which has a high degree of sequence identity to photolyase, works as the main circadian photoreceptor and as a component of the molecular clock in animals, including mammals, and regulates growth and development in plants.
Collapse
Affiliation(s)
- Carol L Thompson
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, NC 27599-7260, USA
| | | |
Collapse
|
405
|
Weinig C, Ungerer MC, Dorn LA, Kane NC, Toyonaga Y, Halldorsdottir SS, Mackay TFC, Purugganan MD, Schmitt J. Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 2002; 162:1875-84. [PMID: 12524356 PMCID: PMC1462365 DOI: 10.1093/genetics/162.4.1875] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular biologists are rapidly characterizing the genetic basis of flowering in model species such as Arabidopsis thaliana. However, it is not clear how the developmental pathways identified in controlled environments contribute to variation in reproductive timing in natural ecological settings. Here we report the first study of quantitative trait loci (QTL) for date of bolting (the transition from vegetative to reproductive growth) in A. thaliana in natural seasonal field environments and compare the results with those obtained under typical growth-chamber conditions. Two QTL specific to long days in the chamber were expressed only in spring-germinating cohorts in the field, and two loci specific to short days in the chamber were expressed only in fall-germinating cohorts, suggesting differential involvement of the photoperiod pathway in different seasonal environments. However, several other photoperiod-specific QTL with large effects in controlled conditions were undetectable in natural environments, indicating that expression of allelic variation at these loci was overridden by environmental factors specific to the field. Moreover, a substantial number of QTL with major effects on bolting date in one or more field environments were undetectable under controlled environment conditions. These novel loci suggest the involvement of additional genes in the transition to flowering under ecologically relevant conditions.
Collapse
Affiliation(s)
- Cynthia Weinig
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Abstract
Several organisms have evolved the ability to measure daylength, or photoperiod, allowing them to adjust their development in anticipation of annual seasonal changes. Daylength measurement requires the integration of temporal information, provided by the circadian system, with light/dark discrimination, initiated by specific photoreceptors. Here we demonstrate that in Arabidopsis this integration takes place at the level of CONSTANS (CO) function. CO is a transcriptional activator that accelerates flowering time in long days, at least in part by inducing the expression of FLOWERING LOCUS T (FT). First, we show that precise clock control of the timing of CO expression, such that it is high during daytime only in long days, is critical for daylength discrimination. We then provide evidence that CO activation of FT expression requires the presence of light perceived through cryptochrome 2 (cry2) or phytochrome A (phyA). We conclude that an external coincidence mechanism, based on the endogenous circadian control of CO messenger RNA levels, and the modulation of CO function by light, constitutes the molecular basis for the regulation of flowering time by daylength in Arabidopsis.
Collapse
Affiliation(s)
- Marcelo J Yanovsky
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
407
|
Sawers RJH, Linley PJ, Farmer PR, Hanley NP, Costich DE, Terry MJ, Brutnell TP. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. PLANT PHYSIOLOGY 2002; 130:155-63. [PMID: 12226496 PMCID: PMC166549 DOI: 10.1104/pp.006411] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2002] [Revised: 04/28/2002] [Accepted: 05/05/2002] [Indexed: 05/20/2023]
Abstract
To begin the functional dissection of light signal transduction pathways of maize (Zea mays), we have identified and characterized the light-sensing mutant elm1 (elongated mesocotyl1). Seedlings homozygous for elm1 are pale green, show pronounced elongation of the mesocotyl, and fail to de-etiolate under red or far-red light. Etiolated elm1 mutants contain no spectrally active phytochrome and do not deplete levels of phytochrome A after red-light treatment. High-performance liquid chromatography analyses show that elm1 mutants are unable to convert biliverdin IX alpha to 3Z-phytochromobilin, preventing synthesis of the phytochrome chromophore. Despite the impairment of the phytochrome photoreceptors, elm1 mutants can be grown to maturity in the field. Mature plants retain aspects of the seedling phenotype and flower earlier than wild-type plants under long days. Thus, the elm1 mutant of maize provides the first direct evidence for phytochrome-mediated modulation of flowering time in this agronomically important species.
Collapse
Affiliation(s)
- Ruairidh J H Sawers
- Boyce Thompson Institute, Cornell University, Tower Road, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
408
|
Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 2002; 16:2006-20. [PMID: 12154129 PMCID: PMC186415 DOI: 10.1101/gad.999202] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 06/11/2002] [Indexed: 11/25/2022]
Abstract
Phytochromes confer the photoperiodic control of flowering in rice (Oryza sativa), a short-day plant. To better understand the molecular mechanisms of day-length recognition, we examined the interaction between phytochrome signals and circadian clocks in photoperiodic-flowering mutants of rice. Monitoring behaviors of circadian clocks revealed that phase setting of circadian clocks is not affected either under short-day (SD) or under long-day (LD) conditions in a phytochrome-deficient mutant that shows an early-flowering phenotype with no photoperiodic response. Non-24-hr-light/dark-cycle experiments revealed that a rice counterpart gene of Arabidopsis CONSTANS (CO), named PHOTOPERIOD SENSITIVITY 1 (Heading date 1) [SE1 (Hd1)], functions as an output of circadian clocks. In addition, the phytochrome deficiency does not affect the diurnal mRNA expression of SE1 upon floral transition. Downstream floral switch genes were further identified with rice orthologs of Arabidopsis FLOWERING LOCUS T (FT). Our RT-PCR data indicate that phytochrome signals repress mRNA expression of FT orthologs, whereas SE1 can function to promote and suppress mRNA expression of the FT orthologs under SD and LD, respectively. This SE1 transcriptional activity may be posttranscriptionally regulated and may depend on the coincidence with Pfr phytochromes. We propose a model to explain how a short-day plant recognizes the day length in photoperiodic flowering.
Collapse
Affiliation(s)
- Takeshi Izawa
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
409
|
Goto SG, Denlinger DL. Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:803-816. [PMID: 12770058 DOI: 10.1016/s0022-1910(02)00108-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Though our knowledge of the molecular details of the circadian clock has advanced rapidly, the functional elements of the photoperiodic clock remain largely unknown. As a first step to approach this issue, we report here the sequences and expression patterns of period (per), timeless (tim), cycle (cyc) and cryptochrome (cry) mRNAs in the flesh fly Sarcophaga crassipalpis. Nucleotide and deduced amino acid sequences of the genes in S. crassipalpis show high similarity to homologous genes in other insects that have been investigated. S. crassipalpis TIM has a unique C-terminus that contains a poly Q region. A diel rhythmicity of per and tim mRNA abundance was detected in the adult heads (peak during scotophase), while cry and cyc mRNA abundance remained fairly constant throughout. The abundance of cyc mRNA was quite low when compared to per, tim and cry mRNA. Rearing temperature affected the amount of per and tim mRNAs: abundance of per mRNA increased at 20 degrees C when compared to 25 degrees C, but that of tim mRNA decreased. Photoperiod influenced the expression patterns of per and tim mRNA: the peak of per mRNA expression shifted in concert with onset of the scotophase, while a shift in tim mRNA expression was less pronounced. The amplitude of tim mRNA was severely dampened under long daylength, but that of per mRNA was not affected. These distinct patterns of expression suggest that this information could be used to determine photoperiodic responses such as diapause.
Collapse
Affiliation(s)
- Shin G. Goto
- Department of Entomology, Ohio State University, 1735 Neil Avenue, 43210, Columbus, OH, USA
| | | |
Collapse
|
410
|
Louis A, Chiapello H, Fabry C, Ollivier E, Hénaut A. Deciphering Arabidopsis thaliana gene neighborhoods through bibliographic co-citations. COMPUTERS & CHEMISTRY 2002; 26:511-9. [PMID: 12144179 DOI: 10.1016/s0097-8485(02)00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the framework of genome annotation, scientific literature is obviously the major source of biological knowledge. The aim of the work described in this paper is to exploit this source of data for the model plant Arabidopsis thaliana. The first step has consisted in constituting a relevant bibliographic references dataset for plant genomic research. Genes co-citations have then been systematically annotated in this reference dataset, starting from the simple idea that if genes are cited in the same publication, they must probably share some related functional properties. In order to deal with the synonymous gene name problem, a gene name reference list has been constituted starting from A. thaliana SwissProt entries. This list was used to build clusters of co-cited genes by a single linkage procedure such that any gene in a given cluster possesses at least one co-cited partner in the same cluster. Analysis of the clusters demonstrate the biological consistency of this approach, with only very few fortuitous links. As an example, a cluster including genes related to flowering time is more deeply described in the paper. Finally, a graphical representation of each cluster was performed, which provides a convenient way to retrieve the genes (the nodes of the graphs) and the references in which they were co-cited (the edges of the graphs). All the results can be accessed at the URL http://chlora.Igi.infobiogen.fr:1234/bib_arath/.
Collapse
Affiliation(s)
- A Louis
- Laboratoire Génome et Informatique, Tour Evry 2, France.
| | | | | | | | | |
Collapse
|
411
|
Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 2002; 417:763-7. [PMID: 12066190 DOI: 10.1038/nature00815] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryptochromes are blue/ultraviolet-A light receptors that mediate various light responses in plants and animals. But the initial photochemical reaction of cryptochrome is still unclear. For example, although most photoreceptors are known to undergo light-dependent protein modification such as phosphorylation, no blue-light dependent phosphorylation has been reported for a cryptochrome. Arabidopsis cryptochrome 2 (cry2) mediates light regulation of seedling development and photoperiodic flowering. The physiological activity and cellular level of cry2 protein are light-dependent, and protein protein interactions are important for cry2 function. Here we report that cry2 undergoes a blue-light-dependent phosphorylation, and that cry2 phosphorylation is associated with its function and regulation. Our results suggest that, in the absence of light, cry2 remains unphosphorylated, inactive and stable; absorption of blue light induces the phosphorylation of cry2, triggering photomorphogenic responses and eventually degradation of the photoreceptor.
Collapse
Affiliation(s)
- Dror Shalitin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
412
|
Møller SG, Ingles PJ, Whitelam GC. The cell biology of phytochrome signalling. THE NEW PHYTOLOGIST 2002; 154:553-590. [PMID: 33873456 DOI: 10.1046/j.1469-8137.2002.00419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome signal transduction has in the past often been viewed as being a nonspatially separated linear chain of events. However, through a combination of molecular, genetic and cell biological approaches, it is becoming increasingly evident that phytochrome signalling constitutes a highly ordered multidimensional network of events. The discovery that some phytochromes and signalling intermediates show light-dependent nucleo-cytoplasmic partitioning has not only led to the suggestion that early signalling events take place in the nucleus, but also that subcellular localization patterns most probably represent an important signalling control point. Moreover, detailed characterization of signalling intermediates has demonstrated that various branches of the signalling network are spatially separated and take place in different cellular compartments including the nucleus, cytosol, and chloroplasts. In addition, proteasome-mediated degradation of signalling intermediates most probably act in concert with subcellular partitioning events as an integrated checkpoint. An emerging view from this is that phytochrome signalling is separated into several subcellular organelles and that these are interconnected in order to execute accurate responses to changes in the light environment. By integrating the available data, both at the cellular and subcellular level, we should be able to construct a solid foundation for further dissection of phytochrome signal transduction in plants. Contents Summary 553 I. Introduction 554 II. Nucleus vs cytoplasm 556 III. The nucleus 562 IV. The cytoplasm 571 V. Interactions with other signalling pathways 577 VI. Conclusions and the future 582 Acknowledgements 583 References 583.
Collapse
Affiliation(s)
- Simon G Møller
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Patricia J Ingles
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Garry C Whitelam
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
413
|
Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. PLANT & CELL PHYSIOLOGY 2002; 43:494-504. [PMID: 12040096 DOI: 10.1093/pcp/pcf059] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To better understand the molecular mechanisms of the photoperiodic regulation of rice, a short-day plant, we isolated 27 cDNAs that were differentially expressed in the photoperiod-insensitive se5 mutant from approximately 8,400 independent mRNA species by the use of a fluorescent differential display (FDD). For this screening, we isolated mRNAs at five different time points during the night and compared their expression patterns between se5 and the wild type. Of 27 cDNAs isolated, 12 showed diurnal expression patterns often associated with genes involved in the determination of the flowering time. In se5, expression of nine cDNAs was increased. Five of these cDNAs were up-regulated under SD, suggesting that they may promote flowering under SD. They included genes encoding a cDNA containing a putative NAC domain, the fructose-bisphosphate aldolase, and a protease inhibitor. Expression of three cDNAs was decreased in se5 but not photoperiodically regulated. These cDNAs included a rice homolog of Arabidopsis GIGANTEA (GI), lir1, and a gene for myo-inositol 1-phosphate synthase, all of which were previously shown to be under the control of circadian clocks. The expression patterns of the rice homolog of GI, OsGI, were similar to those of the Arabidopsis GI, suggesting the conservation of some mechanisms for the photoperiodic regulation of flowering between these two species.
Collapse
Affiliation(s)
- Ryousuke Hayama
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0101 Japan
| | | | | |
Collapse
|
414
|
Abstract
Cryptochromes are a family of flavoproteins found in organisms ranging from Arabidopsis to man. Across phylogeny, these proteins have been used for pleiotropic functions ranging from blue-light-dependent development in plants and blue-light-mediated phase shifting of the circadian clock in insects to a core circadian clock component in mammals. Review of the roles of cryptochromes in model organisms reveals several common themes: Multiple cryptochrome family members within individual organisms have redundant functions; cryptochromes used in photic entrainment pathways of the circadian clock are partially redundant with other photopigments; and cryptochromes may function in circadian phototransduction and core clock mechanisms in the same organism, with different functions in different tissues. The present review summarizes recent research on the functions of cryptochrome in the circadian timekeeping and photic entrainment pathways.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
415
|
Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TFC, Purugganan MD. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 2002; 160:1133-51. [PMID: 11901129 PMCID: PMC1462026 DOI: 10.1093/genetics/160.3.1133] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.
Collapse
Affiliation(s)
- Mark C Ungerer
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
416
|
Fu Z, Inaba M, Noguchi T, Kato H. Molecular cloning and circadian regulation of cryptochrome genes in Japanese quail (Coturnix coturnix japonica). J Biol Rhythms 2002; 17:14-27. [PMID: 11837944 DOI: 10.1177/074873002129002302] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The circadian system is thought to have three components: input, pacemaker (internal clock), and output. Cryptochromes (Cry) are important clock genes, and recent findings indicate that these genes not only act as circadian photoreceptors but are also essential components in the negative feedback of the circadian system. As a first step toward understanding the avian circadian system, the authors tried to clone Japanese quail homologs of mammalian Crys and analyze their expression patterns in different circumstances. Partial cDNAs of qCry1 and qCry2, which are homologs of mammalian Cry1 and Cry2, respectively, were obtained and their gene expressions were analyzed. Both qCry1 and qCry2 mRNAs were present in all the tissues examined. The oscillation patterns of the qCry1 transcripts were tissue specific and generally showed robust changes between daytime and nighttime; except for lung and testis tissues (which showed no detectable changes between daytime and nighttime), daytime levels were higher in all of the tissues examined. This rapid oscillation in qCry1 persisted through constant darkness or constant illumination, indicating that an endogenous clock controls these changes. In contrast, the expression of qCry2 did not oscillate in any tissue examined. In addition, in tissues of the pineal gland and eye, unexpected light exposure in the dark period was able to block the decrease in qCry1 transcripts or induce its expression. These findings, in conjunction with the established roles of CRYs in other species, led the authors to propose that in the circadian system, qCRYs may play important roles similar to the known roles of CRYs of other species, such as acting as circadian photoreceptors and as components of the circadian system.
Collapse
Affiliation(s)
- Zhengwei Fu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
417
|
Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES. FLC, a repressor of flowering, is regulated by genes in different inductive pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:183-91. [PMID: 11851919 DOI: 10.1046/j.0960-7412.2001.01210.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The MADS-box protein encoded by FLOWERING LOCUS C (FLC) is a repressor of flowering. Loci in the autonomous flowering pathway control FLC levels. We show the epistatic groupings of autonomous pathway mutants fca/fy and fve/fpa, based on their effects on flowering time, are consistent with their effects on FLC transcript and protein levels. We demonstrate that synergistic increases in FLC mRNA and protein expression occur in response to interactions between the autonomous pathway mutants fca and fpa and mutants in other pathways (fe, ft, fha) that do not regulate FLC when present as single mutants. These changes in FLC levels provide the molecular basis of the interactions previously shown in genetic analyses. The interactions between genes of multiple pathways emphasize the central position of FLC in the control of floral initiation. FLC protein levels match those of its mRNA for a range of genetic, developmental and environmental variables, indicating that control of FLC is at the level of transcription or transcript stability. The autonomous and photoperiod pathways also interact at the level of SOC1. FLC acts as a repressor of SOC1, and SOC1 levels are low when FLC levels are high. In C24 plants which have moderately high FLC levels, flowering occurs without a decrease in FLC level, but the SOC1 level does increase. Thus SOC1 levels can be upregulated through the activities of other pathways, despite the repression by FLC.
Collapse
Affiliation(s)
- Dean T Rouse
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|
418
|
Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. PLANT PHYSIOLOGY 2001; 127:1425-1429. [PMID: 11743085 DOI: 10.1104/pp.010710] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- M Yano
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-0862, Japan.
| | | | | | | | | |
Collapse
|
419
|
Abstract
At least six light-regulated phenomena are preserved in the eyes of retinally degenerate mice, including the entrainment of circadian rhythms, the gating of ocular immune response, and pupillary reactivity. Some of these phenomena have also been observed in blind human patients. These findings have prompted the search for a non-visual ocular phototransduction mechanism. Molecular genetic studies have identified several candidate genes for these effects. These include genes encoding novel ocular opsins, such as melanopsin, as well as potential flavin-based photopigments. Data linking these potential photoreceptors to these phenomena are discussed, and the clinical implications of these findings are explored.
Collapse
Affiliation(s)
- R N Van Gelder
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
420
|
El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 2001; 29:435-40. [PMID: 11726930 DOI: 10.1038/ng767] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Variation of flowering time is found in the natural populations of many plant species. The underlying genetic variation, mostly of a quantitative nature, is presumed to reflect adaptations to different environments contributing to reproductive success. Analysis of natural variation for flowering time in Arabidopsis thaliana has identified several quantitative trait loci (QTL), which have yet to be characterized at the molecular level. A major environmental factor that determines flowering time is photoperiod or day length, the length of the light period, which changes across the year differently with geographical latitude. We identified the EDI locus as a QTL partly accounting for the difference in flowering response to the photoperiod between two Arabidopsis accessions: the laboratory strain Landsberg erecta (Ler), originating in Northern Europe, and Cvi, collected in the tropical Cape Verde Islands. Positional cloning of the EDI QTL showed it to be a novel allele of CRY2, encoding the blue-light photoreceptor cryptochrome-2 that has previously been shown to promote flowering in long-day (LD) photoperiods. We show that the unique EDI flowering phenotype results from a single amino-acid substitution that reduces the light-induced downregulation of CRY2 in plants grown under short photoperiods, leading to early flowering.
Collapse
Affiliation(s)
- S El-Din El-Assal
- Laboratory of Genetics, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Graduate School-Experimental Plant Sciences, The Netherlands
| | | | | | | | | |
Collapse
|
421
|
Harari-Steinberg O, Ohad I, Chamovitz DA. Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:986-997. [PMID: 11706180 DOI: 10.1104/pp.010270] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The expression of light-regulated genes in plants is controlled by different classes of photoreceptors that act through a variety of signaling molecules. During photomorphogenesis, the early light-induced protein (Elip) genes are among the first to be induced. To understand the light signal transduction pathways that regulate Elip expression, the two Elip genes, Elip1 and Elip2, in Arabidopsis were studied, taking advantage of the genetic tools available for studying light signaling in Arabidopsis. Using two independent quantitative reverse transcriptase-PCR techniques, we found that red, far-red, and blue lights positively regulate expression of the Elip genes. Phytochrome A and phytochrome B are involved in this signaling. The cryptochrome or phototropin photoreceptors are not required for blue-light induction of either Elip gene, suggesting the involvement of an additional, unidentified, blue-light receptor. Although the COP9 signalosome, a downstream regulator, is involved in dark repression of both Elips, Elip1 and Elip2 show different expression patterns in the dark. The transcription factor HY5 promotes the light induction of Elip1, but not Elip2. A defect in photosystem II activity in greening of hy5 seedlings may result from the loss of Elip1. Heat shock positively controlled Elip1 and Elip2 in a light-independent fashion. This induction is independent of HY5, indicating that heat shock and light activate transcription of the Elip genes through independent pathways.
Collapse
Affiliation(s)
- O Harari-Steinberg
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
422
|
Nakamura TJ, Shinohara K, Funabashi T, Mitsushima D, Kimura F. Circadian and photic regulation of cryptochrome mRNAs in the rat pineal gland. Neurosci Res 2001; 41:25-32. [PMID: 11535290 DOI: 10.1016/s0168-0102(01)00255-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Expressions of Cry1 and Cry2 mRNA in the rat pineal gland were examined by Northern blot. The levels of Cry1 and Cry2 transcript had a marked circadian rhythm with peaks at circadian time (CT) 20 in constant darkness. But the amplitude of the Cry1 rhythm was higher than that of the Cry2 rhythm. Furthermore, a significant increase in Cry1 mRNA levels was caused by light pulse given at CT 16 but not at CT 4, but the expression of Cry2 was not significantly induced by light pulses given at either CT 4 or CT 16. These results suggest that Cry1 in the pineal gland is regulated by photic and circadian information but Cry2 is only regulated by circadian information.
Collapse
Affiliation(s)
- T J Nakamura
- Department of Physiology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan
| | | | | | | | | |
Collapse
|
423
|
Zordan MA, Rosato E, Piccin A, Foster R. Photic entrainment of the circadian clock: from Drosophila to mammals. Semin Cell Dev Biol 2001; 12:317-28. [PMID: 11463216 DOI: 10.1006/scdb.2001.0259] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Entrainment is as fundamental to an organism's circadian timing as are the molecular mechanisms involved in the functioning of the intracellular clock oscillator. In nature, one of the principle, although not the only, circadian entraining stimulus (Zeitgeber) is provided by the daily light--dark cycles. In animals, the visual processing apparatus alone is inadequate to accomplish the task of transducing circadian photic signals to the clockwork machinery. In fact, it is ever more appreciated by circadian biologists that organisms as divergent as plants and mammals have evolved a wonderfully complex array of partly redundant specializations which can guarantee the precise alignment of biological and environmental time. Research in circadian biology is cruising at such a rate that attempts to review the state of the art can only hope, at best, to provide a snapshot of the speeding cruiser from its wake. This paper will hopefully provide a reasonably sharp portrayal of what is at hand.
Collapse
Affiliation(s)
- M A Zordan
- Department of Biology, University of Padova, Italy.
| | | | | | | |
Collapse
|
424
|
Abstract
The flowering of Arabidopsis plants is accelerated by long-day photoperiods, and recent genetic studies have identified elements of the photoperiodic timing mechanism. These elements comprise genes that regulate the function of the circadian clock, photoreceptors, and downstream components of light signaling pathways. These results provide evidence for the role of the circadian clock in photoperiodic time measurement and suggest that photoperiod perception may follow Pittendrigh's external coincidence model. T-cycle experiments indicated that changes in the timing of circadian rhythms, relative to dawn and dusk, correlated with altered flowering time. Thus, the perception of photoperiod maybe mediated by adjustments in the phase of the circadian cycle that arise upon re-entrainment to a different light-dark cycle. The nature of the rhythm underlying the floral response is not known, but candidate molecules have been identified.
Collapse
Affiliation(s)
- I A Carré
- Department of Biological Sciences, University of Warwick, Coventry, England
| |
Collapse
|
425
|
Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN. UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. THE NEW PHYTOLOGIST 2001; 151:121-131. [PMID: 33873370 DOI: 10.1046/j.1469-8137.2001.00151.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UV-B, UV-A and blue light control a variety of aspects of plant development via distinct photoreceptors and signalling pathways. The known photoreceptors for UV-A/blue light are cryptochrome (cry)1 and cry2, and the phototropism photoreceptor, phototropin. Redox processes are important in cry and phototropin signal transduction. A specific photoreceptor for UV-B has not been identified and there appear to be several possible UV-B signalling pathways. We are investigating the UV and blue light regulation of transcription of the chalcone synthase gene (CHS) in Arabidopsis. Experiments with photoreceptor mutants show that distinct UV-A/blue (cry mediated) and UV-B photoreception systems control CHS expression. Experiments with an Arabidopsis cell suspension culture show that the UV-B and cry1 signalling pathways differ kinetically and pharmacologically. In contrast to some other UV-B responses, the UV-B induction of CHS does not appear to involve oxidative stress signalling. Promoter elements and candidate transcription factors that effect CHS induction have been identified. Interactions within a network of UV-B, cry and phytochrome signalling pathways regulate CHS expression. Synergistic interactions between the UV-B pathway and distinct UV-A and blue-light pathways maximize the response. In addition, specific phytochromes positively control the cry1 pathway via distinct potentiation and coaction effects, and negatively regulate the UV-B pathway.
Collapse
Affiliation(s)
- Gareth I Jenkins
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joanne C Long
- present address: Department of Botany, North Carolina State University, Box 7612, Raleigh, NC 27695-7612, USA
| | - Helena K Wade
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew R Shenton
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tatiana N Bibikova
- present address: Biology Department, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
426
|
Abstract
Circadian and photoperiodic timing mechanisms were first described in photosynthetic organisms. These organisms depend upon sunlight for their energy, so adaptation to daily and seasonal fluctuations in light must have generated a strong selective pressure. Studies of the endogenous timekeepers of photosynthetic organisms provide evidence for both a fitness advantage and for selective pressures involved in early evolution of circadian clocks. Photoperiodic timing mechanisms in plants appear to use their circadian timers as the ruler by which the day/night length is measured. As in animals, the overall clock system in plants appears to be complex; the system includes multiple oscillators, several input pathways, and a myriad of outputs. Genes have now been isolated from plants that are likely to encode components of the central clockwork or at least that act very close to the central mechanism. Genetic and biochemical analyses of the central clockwork of a photosynthetic organism are most highly advanced in cyanobacteria, where a cluster of clock genes and interacting factors have been characterized.
Collapse
Affiliation(s)
- C H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
427
|
Mazzella MA, Cerdán PD, Staneloni RJ, Casal JJ. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 2001; 128:2291-9. [PMID: 11493548 DOI: 10.1242/dev.128.12.2291] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In plants, development is a continuing process that takes place under strong fluctuations of the light environment. Here we show that in Arabidopsis thaliana plants grown under intense white light, coupling of the photoreceptor cryptochrome 2 to developmental processes is broader than previously appreciated. Compared to the wild type, the cry2 mutant showed reduced activity of a Lhcb1*2 promoter fused to a reporter, and delayed flowering. The cry2 mutation also reduced the inhibition of hypocotyl growth, the unfolding of the cotyledons, the rate of leaf production during the vegetative phase, and the pace of development after transition to the reproductive stage; but these effects were obvious only in the absence of cryptochrome 1 and in some cases phytochrome A and/or phytochrome B. Complementary, the cry2 mutation uncovered novel roles for cryptochrome 1 and phytochrome A. The activity of the Lhcb1*2 promoter was higher in the cry1 cry2 mutant than in the cry2 mutant, suggesting that cry1 could be involved in blue-light repression of photosynthetic genes. Surprisingly, the phyA cry1 cry2 triple mutant flowered earlier and showed better response to photoperiod than the cry1 cry2 double mutant, indicating that phyA is involved in light repression of flowering. Growth and development were severely impaired in the quadruple phyA phyB cry1 cry2 mutant. We propose that stability and light modulation of development are achieved by simultaneous coupling of phytochrome A, phytochrome B, cryptochrome 1 and cryptochrome 2 to developmental processes, in combination with context-dependent hierarchy of their relative activities.
Collapse
Affiliation(s)
- M A Mazzella
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, 1417-Buenos Aires, Argentina
| | | | | | | |
Collapse
|
428
|
Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:471-8. [PMID: 11439133 DOI: 10.1046/j.1365-313x.2001.01038.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Blue light (BL) rapidly and strongly inhibits hypocotyl elongation during the photomorphogenic response known as de-etiolation, the transformation of a dark-grown seedling into a pigmented, photoautotrophic organism. In Arabidopsis thaliana, high-resolution studies of hypocotyl growth accomplished by computer-assisted electronic image capture and analysis revealed that inhibition occurs in two genetically independent phases, the first beginning within 30 sec of illumination. The present work demonstrates that phototropin (nph1), the photoreceptor responsible for phototropism, is largely responsible for the initial, rapid inhibition. Signaling from phototropin during the curvature response is dependent upon interaction with NPH3, but the results presented here demonstrate that NPH3 is not necessary for phototropin-dependent growth inhibition. Activation of anion channels, which transiently depolarizes the plasma membrane within seconds of BL, is an early event in the cryptochrome signaling pathway leading to a phase of growth inhibition that replaces the transient phototropin-dependent phase after approximately 30 min of BL. Surprisingly, cry1 and cry2 were found to contribute equally and non-redundantly to anion-channel activation and to growth inhibition between 30 and 120 min of BL. Inspection of the inhibition kinetics displayed by nph1 and nph1cry1 mutants revealed that the cryptochrome phase of inhibition is delayed in seedlings lacking phototropin. This result indicates that BL-activation of phototropin influences cryptochrome signaling leading to growth inhibition. Mutations in the NPQ1 gene, which inhibit BL-induced stomatal opening, do not affect any aspect of the growth inhibition within the first 120 min examined here, and NPQ1 does not affect the activation of anion channels.
Collapse
Affiliation(s)
- K M Folta
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
429
|
Boccalandro HE, Mazza CA, Mazzella MA, Casal JJ, Ballaré CL. Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis. PLANT PHYSIOLOGY 2001; 126:780-8. [PMID: 11402206 PMCID: PMC111168 DOI: 10.1104/pp.126.2.780] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 01/10/2001] [Accepted: 03/01/2001] [Indexed: 05/18/2023]
Abstract
Ultraviolet B radiation (UV-B, 290-315 nm) can cause damage and induce photomorphogenic responses in plants. The mechanisms that mediate the photomorphogenic effects of UV-B are unclear. In etiolated Arabidopsis seedlings, a daily exposure to 2.5 h of UV-B enhanced the cotyledon opening response induced by a subsequent red light (R) pulse. An R pulse alone, 2.5 h of UV-B terminated with a far-red pulse, or 2.5 h of continuous R caused very little cotyledon opening. The enhancing effect of UV-B increased with fluence rate up to approximately 7.58 micromol m(-2) s(-1); at higher fluence rates the response to UV-B was greatly reduced. The phyA, phyA cry1, and cry1 cry2 mutants behaved like the wild type when exposed to UV-B followed by an R pulse. In contrast, phyB, phyB cry1, and phyB phyA mutants failed to open the cotyledons. Thus, phytochrome B was required for the cotyledon opening response to UV-B --> R treatments, whereas phytochrome A and cryptochromes 1 and 2 were not necessary under the conditions of our experiments. The enhancing effect of low doses of UV-B on cotyledon opening in uvr1 uvr2 and uvr1 uvr3 mutants, deficient in DNA repair, was similar to that found in the wild type, suggesting that this effect of UV-B was not elicited by signals derived from UV-B-induced DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts). We conclude that low doses of UV-B, perceived by a receptor system different from phytochromes, cryptochromes, or DNA, enhance a de-etiolation response that is induced by active phytochrome B.
Collapse
Affiliation(s)
- H E Boccalandro
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, C1417 DSE Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
430
|
Fleissner G, Loesel R, Fleissner G, Waterkamp M, Kleiner O, Batschauer A, Homberg U. Candidates for extraocular photoreceptors in the cockroach suggest homology to the lamina and lobula organs in beetles. J Comp Neurol 2001; 433:401-14. [PMID: 11298364 DOI: 10.1002/cne.1148] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using light- and electron microscopic methods, we describe two novel putative extraocular photoreceptor organs in the optic lobes of the cockroaches Leucophaea maderae and Blaberus craniifer. The lamina organ is an elongated structure distal to the first optic chiasm, adjacent to the anterior edge of the lamina. The lobula organ is situated on the anterior distal surface of the lobula. In cross sections through the pigment-free organs, cell bodies are arranged in a closed or open circle and are interconnected by desmosomes. They send protrusions with rhabdom-like microvilli into a common, central space apparently filled with extracellular matrix. A different cell type gives rise to electron-dense lamellae, which also extend into the central space and partly join to form a common lamellar bundle. Axonal processes extend from the microvillar cells and run along the outer surface of the organs to the neighboring optic neuropils. The organs receive multiple efferent innervation from neurosecretory axons. Both organs show strong immunostaining with an antiserum against Arabidopsis cryptochrome 2 that is associated with the lamellated structure in the central lumen. The specific features of the organs suggest that they are homologous to similar organs in the optic lobe of beetles and may serve a role as extraocular photoreceptors for light entrainment of the circadian system.
Collapse
Affiliation(s)
- G Fleissner
- Zoologisches Institut, Johann Wolfgang Goethe-Universität, D-60054 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
431
|
Weller JL, Beauchamp N, Kerckhoffs LH, Platten JD, Reid JB. Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:283-94. [PMID: 11439117 DOI: 10.1046/j.1365-313x.2001.01027.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.
Collapse
Affiliation(s)
- J L Weller
- School of Plant Science, University of Tasmania, GPO Box 252-55 Hobart, Tasmania 7001, Australia.
| | | | | | | | | |
Collapse
|
432
|
Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001; 410:1116-20. [PMID: 11323677 DOI: 10.1038/35074138] [Citation(s) in RCA: 892] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Flowering is often triggered by exposing plants to appropriate day lengths. This response requires an endogenous timer called the circadian clock to measure the duration of the day or night. This timer also controls daily rhythms in gene expression and behavioural patterns such as leaf movements. Several Arabidopsis mutations affect both circadian processes and flowering time; but how the effect of these mutations on the circadian clock is related to their influence on flowering remains unknown. Here we show that expression of CONSTANS (CO), a gene that accelerates flowering in response to long days, is modulated by the circadian clock and day length. Expression of a CO target gene, called FLOWERING LOCUS T (FT), is restricted to a similar time of day as expression of CO. Three mutations that affect circadian rhythms and flowering time alter CO and FT expression in ways that are consistent with their effects on flowering. In addition, the late flowering phenotype of such mutants is corrected by overexpressing CO. Thus, CO acts between the circadian clock and the control of flowering, suggesting mechanisms by which day length regulates flowering time.
Collapse
Affiliation(s)
- P Suárez-López
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
433
|
Affiliation(s)
- J M Christie
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA
| | | |
Collapse
|
434
|
Wade HK, Bibikova TN, Valentine WJ, Jenkins GI. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:675-85. [PMID: 11319034 DOI: 10.1046/j.1365-313x.2001.01001.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis gene encoding the key flavonoid biosynthesis enzyme chalcone synthase (CHS) is regulated by several environmental and endogenous stimuli. Here we dissect the network of light signalling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (phy) deficient mutants. The UV-A/blue light induction of CHS is mediated principally by cry1, but neither cry1 nor cry2 is involved in UV-B induction or in the UV-A and blue light signalling pathways that interact synergistically with the UV-B pathway to enhance CHS expression. Moreover, these synergistic responses do not require phyA or phyB. Phytochrome is a positive regulator of the cry1 inductive pathway, mediating distinct potentiation and coaction effects. A red light pretreatment enhances subsequent cry1-mediated CHS induction. This potentiation is unaltered in phyA and phyB mutants but much reduced in a phyA phyB double mutant, indicating that it requires principally phyA or phyB. In contrast, the cry1-mediated induction of CHS, without pretreatment, is much reduced in phyB but not phyA mutants, indicating coaction between cry1 and phyB. Further experiments with phy-deficient mutants demonstrate that phyB is a negative regulator of the UV-B inductive pathway. We further show that phyB acts upstream of the points of interaction of the UV-A and blue synergism pathways with the UV-B pathway. We propose that phyB functions to balance flux through the cry1 and UV-B signalling pathways.
Collapse
Affiliation(s)
- H K Wade
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
435
|
Sancar A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu Rev Biochem 2001; 69:31-67. [PMID: 10966452 DOI: 10.1146/annurev.biochem.69.1.31] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Circadian rhythms are oscillations in the biochemical, physiological, and behavioral functions of organisms that occur with a periodicity of approximately 24 h. They are generated by a molecular clock that is synchronized with the solar day by environmental photic input. The cryptochromes are the mammalian circadian photoreceptors. They absorb light and transmit the electromagnetic signal to the molecular clock using a pterin and flavin adenine dinucleotide (FAD) as chromophore/cofactors, and are evolutionarily conserved and structurally related to the DNA repair enzyme photolyase. Humans and mice have two cryptochrome genes, CRY1 and CRY2, that are differentially expressed in the retina relative to the opsin-based visual photoreceptors. CRY1 is highly expressed with circadian periodicity in the mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN). Mutant mice lacking either Cry1 or Cry2 have impaired light induction of the clock gene mPer1 and have abnormally short or long intrinsic periods, respectively. The double mutant has normal vision but is defective in mPer1 induction by light and lacks molecular and behavioral rhythmicity in constant darkness. Thus, cryptochromes are photoreceptors and central components of the molecular clock. Genetic evidence also shows that cryptochromes are circadian photoreceptors in Drosophila and Arabidopsis, raising the possibility that they may be universal circadian photoreceptors. Research on cryptochromes may provide new understanding of human diseases such as seasonal affective disorder and delayed sleep phase syndrome.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| |
Collapse
|
436
|
Weller JL, Perrotta G, Schreuder ME, van Tuinen A, Koornneef M, Giuliano G, Kendrick RE. Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:427-40. [PMID: 11260499 DOI: 10.1046/j.1365-313x.2001.00978.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several novel allelic groups of tomato (Solanum lycopersicum L.) mutants with impaired photomorphogenesis have been identified after gamma-ray mutagenesis of phyA phyB1 double-mutant seed. Recessive mutants in one allelic group are characterized by retarded hook opening, increased hypocotyl elongation and reduced hypocotyl chlorophyll content under white light (WL). These mutants showed a specific impairment in response to blue light (BL) resulting from lesions in the gene encoding the BL receptor cryptochrome 1 (cry1). Phytochrome A and cry1 are identified as the major photoreceptors mediating BL-induced de-etiolation in tomato, and act under low and high irradiances, respectively. Phytochromes B1 and B2 also contribute to BL sensing, and the relative contribution of each of these four photoreceptors differs according to the light conditions and the specific process examined. Development of the phyA phyB1 phyB2 cry1 quadruple mutant under WL is severely impaired, and seedlings die before flowering. The quadruple mutant is essentially blind to BL, but experiments employing simultaneous irradiation with BL and red light suggest that an additional non-phytochrome photoreceptor may be active under short daily BL exposures. In addition to effects on de-etiolation, cry1 is active in older, WL-grown plants, and influences stem elongation, apical dominance, and the chlorophyll content of leaves and fruit. These results provide the first mutant-based characterization of cry1 in a plant species other than Arabidopsis.
Collapse
Affiliation(s)
- J L Weller
- Laboratory of Plant Physiology, Graduate School for Experimental Plant Sciences, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
437
|
Guo H, Mockler T, Duong H, Lin C. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 2001; 291:487-90. [PMID: 11161203 DOI: 10.1126/science.291.5503.487] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cryptochromes and phytochromes are the major photosensory receptors in plants and often regulate similar photomorphogenic responses. The molecular mechanisms underlying functional interactions of cryptochromes and phytochromes remain largely unclear. We have identified an Arabidopsis photomorphogenic mutant, sub1, which exhibits hypersensitive responses to blue light and far-red light. Genetic analyses indicate that SUB1 functions as a component of a cryptochrome signaling pathway and as a modulator of a phytochrome signaling pathway. The SUB1 gene encodes a Ca2+-binding protein that suppresses light-dependent accumulation of the transcription factor HY5.
Collapse
Affiliation(s)
- H Guo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
438
|
Metzler DE, Metzler CM, Sauke DJ. Light and Life. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
439
|
Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. THE PLANT CELL 2001; 13:113-23. [PMID: 11158533 PMCID: PMC102203 DOI: 10.1105/tpc.13.1.113] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Accepted: 11/30/2000] [Indexed: 05/17/2023]
Abstract
Plants respond to day/night cycling in a number of physiological ways. At the mRNA level, the expression of some genes changes during the 24-hr period. To identify novel genes regulated in this way, we used microarrays containing 11,521 Arabidopsis expressed sequence tags, representing an estimated 7800 unique genes, to determine gene expression levels at 6-hr intervals throughout the day. Eleven percent of the genes, encompassing genes expressed at both high and low levels, showed a diurnal expression pattern. Approximately 2% cycled with a circadian rhythm. By clustering microarray data from 47 additional nonrelated experiments, we identified groups of genes regulated only by the circadian clock. These groups contained the already characterized clock-associated genes LHY, CCA1, and GI, suggesting that other key circadian clock genes might be found within these clusters.
Collapse
Affiliation(s)
- R Schaffer
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | | | | | | | | | |
Collapse
|
440
|
Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:591-9. [PMID: 11123798 DOI: 10.1046/j.1365-313x.2000.00906.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowering time in many plants is triggered by environmental factors that lead to uniform flowering in plant populations, ensuring higher reproductive success. So far, several genes have been identified that are involved in flowering time control. AGL20 (AGAMOUS LIKE 20) is a MADS domain gene from Arabidopsis that is activated in shoot apical meristems during the transition to flowering. By transposon tagging we have identified late flowering agl20 mutants, showing that AGL20 is involved in flowering time control. In previously described late flowering mutants of the long-day and constitutive pathways of floral induction the expression of AGL20 is down-regulated, demonstrating that AGL20 acts downstream to the mutated genes. Moreover, we can show that AGL20 is also regulated by the gibberellin (GA) pathway, indicating that AGL20 integrates signals of different pathways of floral induction and might be a central component for the induction of flowering. In addition, the constitutive expression of AGL20 in Arabidopsis is sufficient for photoperiod independent flowering and the over-expression of the orthologous gene from mustard, MADSA, in the classical short-day tobacco Maryland Mammoth bypasses the strict photoperiodic control of flowering.
Collapse
Affiliation(s)
- R Borner
- Swiss Federal Institute of Technology, Institute for Plant Sciences, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
441
|
Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 2000; 103:815-27. [PMID: 11114337 DOI: 10.1016/s0092-8674(00)00184-7] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cryptochrome blue light photoreceptors share sequence similarity to photolyases, flavoproteins that mediate light-dependent DNA repair. However, cryptochromes lack photolyase activity and are characterized by distinguishing C-terminal domains. Here we show that the signaling mechanism of Arabidopsis cryptochrome is mediated through the C terminus. On fusion with beta-glucuronidase (GUS), both the Arabidopsis CRY1 C-terminal domain (CCT1) and the CRY2 C-terminal domain (CCT2) mediate a constitutive light response. This constitutive photomorphogenic (COP) phenotype was not observed for mutants of cct1 corresponding to previously described cry1 alleles. We propose that the C-terminal domain of Arabidopsis cryptochrome is maintained in an inactive state in the dark. Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain.
Collapse
Affiliation(s)
- H Q Yang
- Plant Science Institute Department of Biology University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
442
|
Abstract
Light is a crucial environmental signal that controls many photomorphogenic and circadian responses in plants. Perception and transduction of light is achieved by at least two principal groups of photoreceptors, phytochromes and cryptochromes. Phytochromes are red/far-red light-absorbing receptors encoded by a gene family of five members (phyA to phyE) in Arabidopsis. Cryptochrome 1 (cry1), cryptochrome 2 (cry2) and phototropin are the blue/ultraviolet-A light receptors that have been characterized in Arabidopsis. Previous studies showed that modulation of many physiological responses in plants is achieved by genetic interactions between different photoreceptors; however, little is known about the nature of these interactions and their roles in the signal transduction pathway. Here we show the genetic interaction that occurs between the Arabidopsis photoreceptors phyB and cry2 in the control of flowering time, hypocotyl elongation and circadian period by the clock. PhyB interacts directly with cry2 as observed in co-immunoprecipitation experiments with transgenic Arabidopsis plants overexpressing cry2. Using fluorescent resonance energy transfer microscopy, we show that phyB and cry2 interact in nuclear speckles that are formed in a light-dependent fashion.
Collapse
Affiliation(s)
- P Más
- Department of Cell Biology and National Science Foundation Center for Biological Timing, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
443
|
Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 2000; 14:2366-76. [PMID: 10995392 PMCID: PMC316936 DOI: 10.1101/gad.813600] [Citation(s) in RCA: 487] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The very late-flowering behavior of Arabidopsis winter-annual ecotypes is conferred mainly by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). A MADS-domain gene, AGAMOUS-LIKE 20 (AGL20), was identified as a dominant FRI suppressor in activation tagging mutagenesis. Overexpression of AGL20 suppresses not only the late flowering of plants that have functional FRI and FLC alleles but also the delayed phase transitions during the vegetative stages of plant development. Interestingly, AGL20 expression is positively regulated not only by the redundant vernalization and autonomous pathways of flowering but also by the photoperiod pathway. Our results indicate that AGL20 is an important integrator of three pathways controlling flowering in Arabidopsis.
Collapse
Affiliation(s)
- H Lee
- School of Biological Sciences and Research Center for Cell Differentiation, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells 2000; 5:725-38. [PMID: 10971654 DOI: 10.1046/j.1365-2443.2000.00364.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cryptochromes (CRY), members of the DNA photolyase/cryptochrome protein family, regulate the circadian clock in animals and plants. Two types of animal CRYs are known, mammalian CRY and Drosophila CRY. Both CRYs participate in the regulation of circadian rhythm, but they have different light dependencies for their reactions and have different effects on the negative feedback loop which generates a circadian oscillation of gene expression. Mammalian CRYs act as a potent inhibitor of transcriptional activator whose reactions do not depend on light, but Drosophila CRY functions as a light-dependent suppressor of transcriptional inhibitor. RESULTS We cloned seven zebrafish genes that carry members of the DNA photolyase/cryptochrome protein family; one (6-4)photolyase and six cry genes. A sequence analysis and determination of their in vitro functions showed that these zebrafish cry genes constitute two groups. One has a high sequence similarity to mammalian cry genes and inhibits CLOCK:BMAL1 mediated transcription. The other, which has a higher sequence similarity to the Drosophila cry gene rather than the mammalian cry genes, does not carry transcription inhibitor activity. The expressions of these cry genes oscillate in a circadian manner, but their patterns differ. CONCLUSIONS These findings suggest that functionally diverse cry genes are present in zebrafish and each gene has different role in the molecular clock.
Collapse
Affiliation(s)
- Y Kobayashi
- Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyoku, Kyoto 606-8501 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Kiyosue T, Wada M. LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:807-15. [PMID: 10998191 DOI: 10.1046/j.1365-313x.2000.00850.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In plants, light is not only an energy source but also a very important signal that modulates development and differentiation. Here, we report a putative photo-regulatory factor sequence in LKP1 (LOV kelch protein 1). LKP1 cDNA encodes a protein of 610 amino acids and with a molecular weight of 65 905 with an LOV domain and kelch repeats. LOV domains are present in a number of sensor proteins involved in the detection of light, oxygen or voltage. The LKP1 LOV is very similar to the LOV domains in NPH1, a plasma membrane-associated blue light receptor kinase that regulates phototropism (Huala, E., Oeller, P.W., Liscum, E., Han, I-S., Larsen, E. & Briggs, W.R. (1997) Science, 278, 2120-2123). LKP1 mRNA accumulates in roots, stems, flowers and siliques. It is most abundant in leaves, and least abundant in seeds. Transgenic plants with a beta-glucuronidase (GUS) reporter gene driven by a 1.5 kb LKP1 promoter display strong GUS activity in leaves. Transgenic plants with a 35S:LKP1 cDNA gene overexpress LKP1 mRNA. These plants have elongated hypocotyls and petioles with elongated cells, and exhibit distinct cotyledon movement during the day. Expression of 35S:LKP1 in transgenic Arabidopsis promotes late flowering in plants grown under long-day, but not under short-day conditions. Vernalization does not affect the late flowering phenotype of the 35S:LKP1 plants. Transgenic plants possessing the 35S:GFP-LKP1 construct also have long hypocotyles and petioles, and a late flowering phenotype, suggesting that the GFP-LKP1 fusion protein is active. The GFP-associated fluorescence in 35S:GFP-LKP1 plants is observed in nuclei and cytosol, indicating that LKP1 is a new nucleo-cytoplasmic factor that influences flowering time in the long day pathway of Arabidopsis.
Collapse
Affiliation(s)
- T Kiyosue
- Gene Research Center, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | | |
Collapse
|
446
|
|
447
|
Abstract
Time measurement and light detection are inextricably linked. Cryptochromes, the blue-light photoreceptors shared between plants and animals, are critical for circadian rhythms in flies and mice [1-3]. WC-1, a putative blue-light photoreceptor, is also essential for the maintenance of circadian rhythms in Neurospora [4]. In contrast, we report here that in Arabidopsis thaliana the double mutant lacking the cryptochromes cry1 and cry2, and even a quadruple mutant lacking the red/ far-red photoreceptor phytochromes phyA and phyB as well as cry1 and cry2, retain robust circadian rhythmicity. Interestingly, the quadruple mutant was nearly blind for developmental responses but perceived a light cue for entraining the circadian clock. These results indicate that cryptochromes and phytochromes are not essential components of the central oscillator in Arabidopsis and suggest that plants could possess specific photosensory mechanisms for temporal orientation, in addition to cryptochromes and phytochromes, which are used for both spatial and temporal adaptation.
Collapse
Affiliation(s)
- M J Yanovsky
- IFEVA, Facultad de Agronomía-UBA, Buenos Aires, Argentina
| | | | | |
Collapse
|
448
|
Abstract
Plants have several blue-light receptors, which regulate different aspects of growth and development. Recent studies have identified three such receptors: cryptochrome 1, cryptochrome 2 and phototropin. Cryptochromes 1 and 2 are photolyase-like receptors that regulate hypocotyl growth and flowering time; phototropin mediates phototropism in response to blue light. In addition, phytochrome A has also been found to mediate various blue-light responses. Although the signal-transduction mechanisms of blue-light receptors remain largely unclear, phototropin is probably a protein kinase that regulates cytoplasmic calcium concentrations, whereas the cryptochromes might regulate anion-channel activity and changes in gene expression.
Collapse
Affiliation(s)
- C Lin
- Dept of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 C. Young Dr. South, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
449
|
Yanovsky MJ, Izaguirre M, Wagmaister JA, Gatz C, Jackson SD, Thomas B, Casal JJ. Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:223-232. [PMID: 10929116 DOI: 10.1046/j.1365-313x.2000.00775.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenic potatoes (Solanum tuberosum) with either increased (sense transformants) or reduced (antisense transformants) phytochrome A (phyA) levels were used, in combination with specific light treatments, to investigate the involvement of phyA in the perception of signals that entrain the circadian clock. Far-red or far-red plus red light treatments given during the night reset the circadian rhythm of leaf movements in wild-type plants and phyA over-expressors, but had little effect in phyA under-expressors. Far-red light was also able to reset the rhythm of leaf movement in wild-type Arabidopsis thaliana but was not effective in mutants without phyA. Blue light was necessary to reset the rhythm in phyA-deficient potato plants. Resetting of the rhythm by far-red plus red light was only slightly affected in transgenic plants with reduced levels of phytochrome B. The production of tubers was delayed by day extensions with far-red plus red light, but this effect was reduced in transgenic lines deficient in phyA. We conclude that phyA is involved in resetting the circadian clock controlling leaf movements and in photoperiod sensing in light-grown potato plants.
Collapse
Affiliation(s)
- M J Yanovsky
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417-Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
450
|
Nikaido SS, Johnson CH. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 2000; 71:758-65. [PMID: 10857373 DOI: 10.1562/0031-8655(2000)071<0758:dacvis>2.0.co;2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The survival of organisms depends on their ability to adapt to their environment, one important aspect of which is the daily cycle of day and night. During the day, organisms use a variety of strategies to protect themselves from deleterious ultraviolet (UV) wavelengths of sunlight. Among those strategies could be timing of UV-sensitive cellular processes to occur at night to avoid UV-induced damage. We tested whether the unicellular alga Chlamydomonas reinhardtii uses this strategy by measuring the survival of cells following exposure to UV radiation at different phases of the day. Chlamydomonas cells displayed a rhythm of survival from UV radiation where the most sensitive phases occurred during the end of the day and at the beginning of the night. This phase of sensitivity corresponds to the time of nuclear division. The rhythm continues in constant light indicating control by a circadian clock. The results presented here suggest a hypothesis of how circadian clocks may have evolved; a temporal program whereby light-sensitive processes are timed to avoid sunlight-induced damage would be advantageous and therefore selected.
Collapse
Affiliation(s)
- S S Nikaido
- Department of Biology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|