401
|
Libby P, Everett BM. Novel Antiatherosclerotic Therapies. Arterioscler Thromb Vasc Biol 2019; 39:538-545. [PMID: 30816799 PMCID: PMC6436984 DOI: 10.1161/atvbaha.118.310958] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Many measures can control lipid risk factors for atherosclerosis. Yet, even with excellent control of dyslipidemia, other sources of risk remain. Hence, we must look beyond lipids to address residual risk. Lifestyle measures should form the foundation of cardiovascular risk control. Many pharmacological interventions targeting oxidation have proven disappointing. A large program tested inhibition of a LpPLA2 (lipoprotein-associated phospholipase A2), culminating in 2 large-scale clinical trials that did not meet their primary end points. A variety of antioxidants have not shown benefit in clinical trials. Numerous laboratory and clinical studies have inculpated inflammatory pathways in the pathogenesis of atherosclerotic events. The p38 MAPK (mitogen-activated protein kinase) inhibitor losmapimod and an inhibitor of a leukocyte adhesion molecule, P-selectin, did not alter adverse events in trials. Low-dose methotrexate, despite the promising observational studies, did not lower biomarkers of inflammation or alter cardiovascular outcomes in the CIRT (cardiovascular inflammation reduction trial). Four large-scale investigations underway will determine colchicine's ability to reduce recurrent events in secondary prevention. The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) showed that an antibody that neutralizes IL (interleukin)-1β can reduce recurrent cardiovascular events in secondary prevention. The success of CANTOS points to the pathway that leads from the NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) inflammasome through IL-1β to IL-6 as an attractive target for further study and clinical development beyond lipid therapies to address the unacceptable burden of risk that remains despite our best current care in secondary prevention.
Collapse
Affiliation(s)
- Peter Libby
- From the Division of Cardiovascular Medicine (P.L., B.M.E.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brendan M Everett
- From the Division of Cardiovascular Medicine (P.L., B.M.E.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Preventive Medicine (B.M.E.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
402
|
Abstract
In addition to their well-known role as the cellular mediators of immunity, key other roles have been identified for neutrophils during septic shock. Importantly, neutrophils indeed play a critical role in the recently described immunothrombosis concept and in septic shock-induced coagulopathy. Septic shock is one of the most severe forms of infection, characterized by an inadequate host response to the pathogenic organism. This host response involves numerous defense mechanisms with an intense cellular activation, including neutrophil activation. Neutrophils are key cells of innate immunity through complex interactions with vascular cells and their activation may participate in systemic tissue damages. Their activation also leads to the emission of neutrophil extracellular traps, which take part in both pathogen circumscription and phagocytosis, but also in coagulation activation. Neutrophils thus stand at the interface between hemostasis and immunity, called immunothrombosis.The present review will develop a cellular approach of septic shock pathophysiology focusing on neutrophils as key players of septic shock-induced vascular cell dysfunction and of the host response, associating immunity and hemostasis. We will therefore first develop the role of neutrophils in the interplay between innate and adaptive immunity, and will then highlight recent advances in our understanding of immunothrombosis septic shock-induced coagulopathy.
Collapse
|
403
|
Mouse venous thrombosis upon silencing of anticoagulants depends on tissue factor and platelets, not FXII or neutrophils. Blood 2019; 133:2090-2099. [PMID: 30898865 DOI: 10.1182/blood-2018-06-853762] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue factor, coagulation factor XII, platelets, and neutrophils are implicated as important players in the pathophysiology of (experimental) venous thrombosis (VT). Their role became evident in mouse models in which surgical handlings were required to provoke VT. Combined inhibition of the natural anticoagulants antithrombin (Serpinc1) and protein C (Proc) using small interfering RNA without additional triggers also results in a venous thrombotic phenotype in mice, most notably with vessel occlusion in large veins of the head. VT is fatal but is fully rescued by thrombin inhibition. In the present study, we used this VT mouse model to investigate the involvement of tissue factor, coagulation factor XII, platelets, and neutrophils. Antibody-mediated inhibition of tissue factor reduced the clinical features of VT, the coagulopathy in the head, and fibrin deposition in the liver. In contrast, genetic deficiency in, and small interfering RNA-mediated depletion of, coagulation factor XII did not alter VT onset, severity, or thrombus morphology. Antibody-mediated depletion of platelets fully abrogated coagulopathy in the head and liver fibrin deposition. Although neutrophils were abundant in thrombotic lesions, depletion of circulating Ly6G-positive neutrophils did not affect onset, severity, thrombus morphology, or liver fibrin deposition. In conclusion, VT after inhibition of antithrombin and protein C is dependent on the presence of tissue factor and platelets but not on coagulation factor XII and circulating neutrophils. This study shows that distinct procoagulant pathways operate in mouse VT, dependent on the triggering stimulus.
Collapse
|
404
|
Neutrophils: back in the thrombosis spotlight. Blood 2019; 133:2186-2197. [PMID: 30898858 DOI: 10.1182/blood-2018-10-862243] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive and clonal neutrophil expansion has been associated with thrombosis, suggesting that neutrophils play a role in this process. However, although there is no doubt that activated monocytes trigger coagulation in a tissue factor-dependent manner, it remains uncertain whether stimulated neutrophils can also directly activate coagulation. After more than a decade of debate, it is now largely accepted that normal human neutrophils do not synthetize tissue factor, the initiator of the extrinsic pathway of coagulation. However, neutrophils may passively acquire tissue factor from monocytes. Recently, the contact system, which initiates coagulation via the intrinsic pathway, has been implicated in the pathogenesis of thrombosis. After the recent description of neutrophil extracellular trap (NET) release by activated neutrophils, some animal models of thrombosis have demonstrated that coagulation may be enhanced by direct NET-dependent activation of the contact system. However, there is currently no consensus on how to assess or quantify NETosis in vivo, and other experimental animal models have failed to demonstrate a role for neutrophils in thrombogenesis. Nevertheless, it is likely that NETs can serve to localize other circulating coagulation components and can also promote vessel occlusion independent of fibrin formation. This article provides a critical appraisal of the possible roles of neutrophils in thrombosis and highlights some existing knowledge gaps regarding the procoagulant activities of neutrophil-derived extracellular chromatin and its molecular components. A better understanding of these mechanisms could guide future approaches to prevent and/or treat thrombosis.
Collapse
|
405
|
Yeo LLL, Bhogal P, Gopinathan A, Cunli Y, Tan B, Andersson T. Why Does Mechanical Thrombectomy in Large Vessel Occlusion Sometimes Fail? Clin Neuroradiol 2019; 29:401-414. [DOI: 10.1007/s00062-019-00777-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
|
406
|
Fredman G. Can Inflammation-Resolution Provide Clues to Treat Patients According to Their Plaque Phenotype? Front Pharmacol 2019; 10:205. [PMID: 30899222 PMCID: PMC6416173 DOI: 10.3389/fphar.2019.00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation-resolution is an active process that is governed in part by specialized pro-resolving mediators (SPMs) such as lipoxins, resolvins, protectins, and maresins. SPMs, which are endogenously biosynthesized, quell inflammation and repair tissue damage in a manner that does not compromise host defense. Importantly, failed inflammation-resolution is an important driving force in the progression of several prevalent diseases including atherosclerosis. Atherosclerosis is a leading cause of death worldwide and uncovering mechanisms that underpin defective inflammation-resolution and whether SPMs themselves can revert the progression of the disease are of utmost clinical interest. Because atherosclerosis is a disease in which low-grade persistent inflammation results in tissue injury, SPMs have garnered immense interest as a potential treatment strategy. This mini review will highlight recent work that describes mechanisms associated with defective inflammation-resolution in atherosclerosis, as well as the protective actions of SPMs and their potential use as a therapeutic.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
407
|
Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, Cichon I, Clancy DM, Desai J, Dumych T, Dwivedi N, Gordon RA, Hahn J, Hidalgo A, Hoffmann MH, Kaplan MJ, Knight JS, Kolaczkowska E, Kubes P, Leppkes M, Manfredi AA, Martin SJ, Maueröder C, Maugeri N, Mitroulis I, Munoz LE, Nakazawa D, Neeli I, Nizet V, Pieterse E, Radic MZ, Reinwald C, Ritis K, Rovere-Querini P, Santocki M, Schauer C, Schett G, Shlomchik MJ, Simon HU, Skendros P, Stojkov D, Vandenabeele P, Berghe TV, van der Vlag J, Vitkov L, von Köckritz-Blickwede M, Yousefi S, Zarbock A, Herrmann M. To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 2019; 26:395-408. [PMID: 30622307 PMCID: PMC6370810 DOI: 10.1038/s41418-018-0261-x] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Since the discovery and definition of neutrophil extracellular traps (NETs) 14 years ago, numerous characteristics and physiological functions of NETs have been uncovered. Nowadays, the field continues to expand and novel mechanisms that orchestrate formation of NETs, their previously unknown properties, and novel implications in disease continue to emerge. The abundance of available data has also led to some confusion in the NET research community due to contradictory results and divergent scientific concepts, such as pro- and anti-inflammatory roles in pathologic conditions, demarcation from other forms of cell death, or the origin of the DNA that forms the NET scaffold. Here, we present prevailing concepts and state of the science in NET-related research and elaborate on open questions and areas of dispute.
Collapse
Affiliation(s)
- Sebastian Boeltz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Poorya Amini
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Simon Chatfield
- Inflammation Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Danielle M Clancy
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
| | - Jyaysi Desai
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nishant Dwivedi
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachael Ann Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Andrés Hidalgo
- Department of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Paul Kubes
- Snyder institute of Chronic Diseases, University of Calgary, Calgary, Canada
| | - Moritz Leppkes
- Department of Medicine 1 - Gastroenterology, Pulmonology and Endocrinology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelo A Manfredi
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Christian Maueröder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
| | - Norma Maugeri
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ioannis Mitroulis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Luis E Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Daigo Nakazawa
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Nizet
- UC San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christiane Reinwald
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Michal Santocki
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Mark Jay Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem platform, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ljubomir Vitkov
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, Salzburg, Austria
- Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry & Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Alexander Zarbock
- University of Münster, Department of Anesthesiology, Intensive Care and Pain Medicine, Münster, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| |
Collapse
|
408
|
Lecouffe-Desprets M, Graveleau J, Artifoni M, Connault J, Agard C, Pottier P, Hamidou M, Néel A. [Hemolytic disorders and venous thrombosis: An update]. Rev Med Interne 2019; 40:232-237. [PMID: 30773236 DOI: 10.1016/j.revmed.2018.10.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
Many factors can contribute to the risk of venous thrombosis observed in hemolytic diseases. Some mechanisms are related to hemolysis by itself, while others seem more specific to each disease. Despite recent advances in the quantification of this risk and in understanding its physiopathology, the association of hemolysis with venous thrombosis is often unknown. The purpose of this general review is to clarify the main pro-thrombotic mechanisms during hemolysis and to synthesize the clinical data currently available. We will focus on the main types of hemolytic pathologies encountered in current practice, namely paroxysmal nocturnal hemoglobinuria, hemoglobinopathies, auto-immune hemolytic anemia and thrombotic microangiopathies.
Collapse
Affiliation(s)
- M Lecouffe-Desprets
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - J Graveleau
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - M Artifoni
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - J Connault
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - C Agard
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - P Pottier
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France
| | - A Néel
- Service de médecine interne, CHU de Nantes, 1, place Alexis-Ricordeau, 44093 Nantes, France.
| |
Collapse
|
409
|
Yu X, Diamond SL. Fibrin Modulates Shear-Induced NETosis in Sterile Occlusive Thrombi Formed under Haemodynamic Flow. Thromb Haemost 2019; 119:586-593. [PMID: 30722079 DOI: 10.1055/s-0039-1678529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neutrophils can release extracellular traps (NETs) in infectious, inflammatory and thrombotic diseases. NETs have been detected in deep vein thrombosis, atherothrombosis, stroke, disseminated intravascular coagulation and trauma. We have previously shown that haemodynamic forces trigger rapid NETosis within sterile occlusive thrombi in vitro. Here, we tested the effects of thrombin, fibrin and fibrinolysis on shear-induced NETosis by imaging NETs with Sytox Green during microfluidic perfusion of factor XIIa-inhibited or thrombin-inhibited human whole blood over fibrillar collagen (±tissue factor). For perfusions under venous pressure drops (19 mm Hg/mm-clot), thrombin generation did not alter the near-zero level of NET generation. In contrast, production of thrombin/fibrin led to a twofold reduction in neutrophil accumulation and a sixfold reduction in NET generation after 30 minutes of arterial perfusion (163 mm Hg/mm-clot). Exogenously added tissue type plasminogen activator (tPA) drove robust fibrinolysis; however, tPA did not trigger NETosis under venous flow. In contrast, tPA did enhance NET generation in clots subjected to arterial pressure drops. After 45 minutes of arterial perfusion, clots treated with 30 nM tPA had a threefold increase in total NET production and a twofold increase in normalized NET generation (measured as deoxyribonucleic acid:neutrophil) compared with fibrin-rich clots. Blocking fibrin polymerization resulted in similar level of NET release seen in tPA-treated clots, whereas ε-aminocaproic acid abolished the NET-enhancing effect of tPA. Therefore, fibrin suppresses NET generation and the absence of fibrin promotes NETs. We demonstrated that shear-induced NETosis was strongly inversely correlated with fibrin in sterile occlusive clots.
Collapse
Affiliation(s)
- Xinren Yu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
410
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
411
|
Libby P. Superficial erosion and the precision management of acute coronary syndromes: not one-size-fits-all. Eur Heart J 2019; 38:801-803. [PMID: 28053187 DOI: 10.1093/eurheartj/ehw599] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
412
|
Minasyan H, Flachsbart F. Blood coagulation: a powerful bactericidal mechanism of human innate immunity. Int Rev Immunol 2019; 38:3-17. [DOI: 10.1080/08830185.2018.1533009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hayk Minasyan
- Private laboratory, Immunology Microbiology, Yerevan, Armenia
| | | |
Collapse
|
413
|
Abstract
The mechanisms that underlie superficial erosion, a cause of coronary thrombosis distinct from plaque rupture, have garnered recent interest. In an era of improved control of traditional risk factors, such as LDL (low-density lipoprotein), plaque erosion may assume greater clinical importance. Plaques complicated by erosion tend to be matrix-rich, lipid-poor, and usually lack prominent macrophage collections, unlike plaques that rupture, which characteristically have thin fibrous caps, large lipid pools, and abundant foam cells. Thrombi that complicate superficial erosion seem more platelet-rich than the fibrinous clots precipitated by plaque rupture. The pathogenesis of plaque rupture probably does not pertain to superficial erosion, a process heretofore little understood mechanistically. We review here data that support a substantial shift in the mechanisms of the thrombotic complications of atherosclerosis. We further consider pathophysiologic processes recently implicated in the mechanisms of erosion. Multiple processes likely predispose plaques to superficial erosion, including experiencing disturbed flow, basement membrane breakdown, endothelial cell death, and detachment potentiated by innate immune activation mediated through pattern-recognition receptors and endothelial-to-mesenchymal transition. Monocytes/macrophages predominate in the pathogenesis of plaque rupture and consequent thrombosis, but polymorphonuclear leukocytes likely promote endothelial damage during superficial erosion. The formation of neutrophil extracellular traps probably perpetuates and propagates intimal injury and potentiates thrombosis due to superficial erosion. These considerations have profound clinical implications. Acute coronary syndromes because of erosion may not require immediate invasive therapy. Understanding the biological bases of erosion points to novel therapies for acute coronary syndrome caused by erosion. Future research should probe further the mechanisms of superficial erosion, and develop point-of-care tests to distinguish acute coronary syndromes provoked by erosion versus rupture that may direct more precision management. Future clinical investigations should evaluate intervening on the targets that have emerged from experimental studies and the management strategies that they inform.
Collapse
Affiliation(s)
- Peter Libby
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - Filippo Crea
- F. Policlinico Gemelli – IRCCS, Università Cattolica del Sacro Cuore, Roma
| | - Ik-Kyung Jang
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
414
|
Elevated blood plasma levels of tissue factor-bearing extracellular vesicles in patients with atrial fibrillation. Thromb Res 2019; 173:141-150. [DOI: 10.1016/j.thromres.2018.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
|
415
|
Scharf RE. Acquired Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
416
|
Popovic B, Zannad F, Louis H, Clerc-Urmès I, Lakomy C, Gibot S, Denis CV, Lacolley P, Regnault V. Endothelial-driven increase in plasma thrombin generation characterising a new hypercoagulable phenotype in acute heart failure. Int J Cardiol 2019; 274:195-201. [DOI: 10.1016/j.ijcard.2018.07.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022]
|
417
|
Baker CJ, Smith SA, Morrissey JH. Polyphosphate in thrombosis, hemostasis, and inflammation. Res Pract Thromb Haemost 2019; 3:18-25. [PMID: 30656272 PMCID: PMC6332810 DOI: 10.1002/rth2.12162] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/06/2018] [Indexed: 01/19/2023] Open
Abstract
This illustrated review focuses on polyphosphate as a potent modulator of the plasma clotting cascade, with possible roles in hemostasis, thrombosis, and inflammation. Polyphosphates are highly anionic, linear polymers of inorganic phosphates that are widespread throughout biology. Infectious microorganisms accumulate polyphosphates with widely varying polymer lengths (from a few phosphates to over a thousand phosphates long), while activated human platelets secrete polyphosphate with a very narrow size distribution (about 60-100 phosphates long). Work from our lab and others has shown that long-chain polyphosphate is a potent trigger of clotting via the contact pathway, while polyphosphate of the size secreted by platelets accelerates factor V activation, blocks the anticoagulant activity of tissue factor pathway inhibitor, promotes factor XI activation by thrombin, and makes fibrin fibrils thicker and more resistant to fibrinolysis. Polyphosphate also modulates inflammation by triggering bradykinin release, inhibiting the complement system, and modulating endothelial function. Polyphosphate and nucleic acids have similar physical properties and both will trigger the contact pathway-although polyphosphate is orders of magnitude more procoagulant than either DNA or RNA. Important caveats in these studies include observations that nucleic acids and polyphosphate may co-purify, and that these preparations can be contaminated with highly procoagulant microparticles if silica-based purification methods are employed. Polyphosphate has received attention as a possible therapeutic, with some recent studies exploring the use of polyphosphate in a variety of formulations to control bleeding. Other studies are investigating treatments that block polyphosphate function as novel antithrombotics with the possibility of reduced bleeding side effects.
Collapse
Affiliation(s)
- Catherine J. Baker
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Stephanie A. Smith
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - James H. Morrissey
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichigan
| |
Collapse
|
418
|
Salhi L, Rompen E, Sakalihasan N, Laleman I, Teughels W, Michel JB, Lambert F. Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review. Angiology 2018; 70:479-491. [DOI: 10.1177/0003319718821243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Leila Salhi
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Eric Rompen
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Surgical Research Centre, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Isabelle Laleman
- Department of Oral Health Sciences, KU Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Periodontology, Research Group for Microbial Adhesion, Catholic University Leuven, Leuven, Belgium
| | - Jean-Baptiste Michel
- DRE Laboratory for Translational Vascular Science, Inserm Denis Diderot University, Paris, France
| | - France Lambert
- Dental Biomaterials Research Unit, Head of Clinic, Department of Periodontology and Oral Surgery, University of Liège, Liège, Belgium
| |
Collapse
|
419
|
Damnjanović Z. CIRCADIAN PATTERN OF DEEP VEIN THROMBOSIS - TRUE OR FALSE. ACTA MEDICA MEDIANAE 2018. [DOI: 10.5633/amm.2018.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
420
|
Yehya N, Thomas NJ. Sepsis and Pediatric Acute Respiratory Distress Syndrome. J Pediatr Intensive Care 2018; 8:32-41. [PMID: 31073506 DOI: 10.1055/s-0038-1676133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
The epidemiology of the acute respiratory distress syndrome (ARDS) in pediatric sepsis is poorly defined. With significant data extrapolated from adult studies in sepsis and ARDS, sometimes with uncertain applicability, better pediatric-specific guidelines and dedicated investigations are warranted. The recent publication of a consensus definition for pediatric ARDS (PARDS) is the first step in addressing this knowledge gap. The aim of this review is to frame our current understanding of PARDS as it relates to pediatric sepsis, encompassing epidemiology, pathophysiology, and management. We argue that addressing the role of PARDS in pediatric sepsis requires significant attention to details with respect to how PARDS and sepsis are defined to accurately describe their epidemiology, natural history, and outcomes. Finally, we highlight certain aspects of PARDS management as they relate to the septic child and offer suggestion for future directions in this field.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Neal J Thomas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Public Health Science, Penn State Hershey Children's Hospital, Hershey, Pennsylvania, United States
| |
Collapse
|
421
|
Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front Vet Sci 2018; 5:291. [PMID: 30547040 PMCID: PMC6280561 DOI: 10.3389/fvets.2018.00291] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 01/03/2023] Open
Abstract
Sepsis is the leading cause of critical illness and mortality in human beings and animals. Neutrophils are the primary effector cells of innate immunity during sepsis. Besides degranulation and phagocytosis, neutrophils also release neutrophil extracellular traps (NETs), composed of cell-free DNA, histones, and antimicrobial proteins. Although NETs have protective roles in the initial stages of sepsis, excessive NET formation has been found to induce thrombosis and multiple organ failure in murine sepsis models. Since the discovery of NETs nearly a decade ago, many investigators have identified NETs in various species. However, many questions remain regarding the exact mechanisms and fate of neutrophils following NET formation. In humans and mice, platelet-neutrophil interactions via direct binding or soluble mediators seem to play an important role in mediating NET formation during sepsis. Preliminary data suggest that these interactions may be species dependent. Regardless of these differences, there is increasing evidence in human and veterinary medicine suggesting that NETs play a crucial role in the pathogenesis of intravascular thrombosis and multiple organ failure in sepsis. Because the outcome of sepsis is highly dependent on early recognition and intervention, detection of NETs or NET components can aid in the diagnosis of sepsis in humans and veterinary species. In addition, the use of novel therapies such as deoxyribonuclease and non-anticoagulant heparin to target NET components shows promising results in murine septic models. Much work is needed in translating these NET-targeting therapies to clinical practice.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Radiological and Surgical Sciences, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| |
Collapse
|
422
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
423
|
Abstract
Cerebral ischemic stroke treatment may change significantly now that clots are actually physically removed from the patient using thrombectomy. This allows for an analysis of the content of the clots as well as the correlation of the imaging findings and the clot behavior and morphology. This article illustrates how the interaction of different clots varies in the clinical setting and how analysis of clot composition, as well as the search for new pharmacologic targets, can lead to a better understanding of the pathophysiology and therapy resistance, in turn providing possibilities for a better approach in the treatment.
Collapse
Affiliation(s)
- Patrick A. Brouwer
- Neuroradiology Department, Neurointervention section, Karolinska University Hospital Stockholm, Sweden
| | - Waleed Brinjikji
- Departments of Radiology and Neurosurgery, Mayo Clinic Rochester MN, USA
- Joint Department of Medical Imaging, Toronto Western Hospital, Toronto ON, Canada
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
424
|
Sakalihasan N, Michel JB, Katsargyris A, Kuivaniemi H, Defraigne JO, Nchimi A, Powell JT, Yoshimura K, Hultgren R. Abdominal aortic aneurysms. Nat Rev Dis Primers 2018; 4:34. [PMID: 30337540 DOI: 10.1038/s41572-018-0030-7] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilatation of the infrarenal aorta. AAA is a multifactorial disease, and genetic and environmental factors play a part; smoking, male sex and a positive family history are the most important risk factors, and AAA is most common in men >65 years of age. AAA results from changes in the aortic wall structure, including thinning of the media and adventitia due to the loss of vascular smooth muscle cells and degradation of the extracellular matrix. If the mechanical stress of the blood pressure acting on the wall exceeds the wall strength, the AAA ruptures, causing life-threatening intra-abdominal haemorrhage - the mortality for patients with ruptured AAA is 65-85%. Although AAAs of any size can rupture, the risk of rupture increases with diameter. Intact AAAs are typically asymptomatic, and in settings where screening programmes with ultrasonography are not implemented, most cases are diagnosed incidentally. Modern functional imaging techniques (PET, CT and MRI) may help to assess rupture risk. Elective repair of AAA with open surgery or endovascular aortic repair (EVAR) should be considered to prevent AAA rupture, although the morbidity and mortality associated with both techniques remain non-negligible.
Collapse
Affiliation(s)
- Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, CHU Liège, University of Liège, Liège, Belgium. .,Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium.
| | - Jean-Baptiste Michel
- UMR 1148, INSERM Paris 7, Denis Diderot University, Xavier Bichat Hospital, Paris, France
| | - Athanasios Katsargyris
- Department of Vascular and Endovascular Surgery, Paracelsus Medical University, Nuremberg, Germany
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Jean-Olivier Defraigne
- Department of Cardiovascular and Thoracic Surgery, CHU Liège, University of Liège, Liège, Belgium.,Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Alain Nchimi
- Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium.,Department of Medical Imaging, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Janet T Powell
- Vascular Surgery Research Group, Imperial College London, London, UK
| | - Koichi Yoshimura
- Graduate School of Health and Welfare, Yamaguchi Prefectural University, Yamaguchi, Japan.,Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
425
|
Bilyy R, Unterweger H, Weigel B, Dumych T, Paryzhak S, Vovk V, Liao Z, Alexiou C, Herrmann M, Janko C. Inert Coats of Magnetic Nanoparticles Prevent Formation of Occlusive Intravascular Co-aggregates With Neutrophil Extracellular Traps. Front Immunol 2018; 9:2266. [PMID: 30333831 PMCID: PMC6176021 DOI: 10.3389/fimmu.2018.02266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023] Open
Abstract
If foreign particles enter the human body, the immune system offers several mechanisms of response. Neutrophils forming the first line of the immune defense either remove pathogens by phagocytosis, inactivate them by degranulation or release of reactive oxygen species or immobilize them by the release of chromatin decorated with the granular proteins from cytoplasm as neutrophil extracellular traps (NETs). Besides viable microbes like fungi, bacteria or viruses, also several sterile inorganic particles including nanoparticles reportedly activate NET formation. The physicochemical nanoparticle characteristics fostering NET formation are still elusive. Here we show that agglomerations of non-stabilized superparamagnetic iron oxide nanoparticles (SPIONs) induce NET formation by isolated human neutrophils, in whole blood experiments under static and dynamic conditions as well as in vivo. Stabilization of nanoparticles with biocompatible layers of either human serum albumin or dextran reduced agglomeration and NET formation by neutrophils. Importantly, this passivation of the SPIONs prevented vascular occlusions in vivo even when magnetically accumulated. We conclude that higher order structures formed during nanoparticle agglomeration primarily trigger NET formation and the formation of SPION-aggregated NET-co-aggregates, whereas colloid-disperse nanoparticles behave inert and are alternatively cleared by phagocytosis.
Collapse
Affiliation(s)
- Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Harald Unterweger
- Section of Experimental Oncology and Nanomedicine (SEON), Department of Otorhinolaryngology, Head and Neck Surgery, Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bianca Weigel
- Section of Experimental Oncology and Nanomedicine (SEON), Department of Otorhinolaryngology, Head and Neck Surgery, Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Volodymyr Vovk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ziyu Liao
- Section of Experimental Oncology and Nanomedicine (SEON), Department of Otorhinolaryngology, Head and Neck Surgery, Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.,Master Programme in Advanced Materials and Processes, Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Department of Otorhinolaryngology, Head and Neck Surgery, Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Section of Experimental Oncology and Nanomedicine (SEON), Department of Otorhinolaryngology, Head and Neck Surgery, Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
426
|
Blanco-Abad V, Noia M, Valle A, Fontenla F, Folgueira I, De Felipe AP, Pereiro P, Leiro J, Lamas J. The coagulation system helps control infection caused by the ciliate parasite Philasterides dicentrarchi in the turbot Scophthalmus maximus (L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:147-156. [PMID: 29935288 DOI: 10.1016/j.dci.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Many studies have shown that coagulation systems play an important role in the defence against pathogens in invertebrates and vertebrates. In vertebrates, particularly in mammals, it has been established that the coagulation system participates in the entrapment of pathogens and activation of the early immune response. However, functional studies investigating the importance of the fish coagulation system in host defence against pathogens are scarce. In the present study, injection of turbot (Scopthalamus maximus) with the pathogenic ciliate Philasterides dicentrarchi led to the formation of macroscopic intraperitoneal clots in the fish. The clots contained abundant, immobilized ciliates, many of which were lysed. We demonstrated that the plasma clots immobilize and kill the ciliates in vitro. To test the importance of plasma clotting in ciliate killing, we inhibited the process by adding a tetrapeptide known to inhibit fibrinogen/thrombin clotting in mammals. Plasma tended to kill P. dicentrarchi slightly faster when clotting was inhibited by the tetrapeptide, although the total mortality of ciliates was similar. We also found that kaolin, a particulate activator of the intrinsic pathway in mammals, accelerates plasma clotting in turbot. In addition, PMA-stimulated neutrophils, living ciliates and several ciliate components such as cilia, proteases and DNA also displayed procoagulant activity in vitro. Injection of fish with the ciliates generated the massive release of neutrophils to the peritoneal cavity, with formation of large aggregates in those fish with live ciliates in the peritoneum. We observed, by SEM, numerous fibrin-like fibres in the peritoneal exudate, many of which were associated with peritoneal leukocytes and ciliates. Expression of the CD18/CD11b gene, an integrin associated with cell adhesion and the induction of fibrin formation, was upregulated in the peritoneal leukocytes. In conclusion, the findings of the present study show that P. dicentrarchi induces the formation of plasma clots and that the fish coagulation system may play an important role in immobilizing and killing this parasite.
Collapse
Affiliation(s)
- V Blanco-Abad
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Noia
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Valle
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - F Fontenla
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Folgueira
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A P De Felipe
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - P Pereiro
- Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - J Leiro
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J Lamas
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
427
|
Gollomp K, Kim M, Johnston I, Hayes V, Welsh J, Arepally GM, Kahn M, Lambert MP, Cuker A, Cines DB, Rauova L, Kowalska MA, Poncz M. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight 2018; 3:99445. [PMID: 30232279 PMCID: PMC6237233 DOI: 10.1172/jci.insight.99445] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is an immune-mediated thrombocytopenic disorder associated with a severe prothrombotic state. We investigated whether neutrophils and neutrophil extracellular traps (NETs) contribute to the development of thrombosis in HIT. Using an endothelialized microfluidic system and a murine passive immunization model, we show that HIT induction leads to increased neutrophil adherence to venous endothelium. In HIT mice, endothelial adherence is enhanced immediately downstream of nascent venous thrombi, after which neutrophils undergo retrograde migration via a CXCR2-dependent mechanism to accumulate into the thrombi. Using a microfluidic system, we found that PF4 binds to NETs, leading them to become compact and DNase resistant. PF4-NET complexes selectively bind HIT antibodies, which further protect them from nuclease digestion. In HIT mice, inhibition of NET formation through Padi4 gene disruption or DNase treatment limited venous thrombus size. PAD4 inactivation did affect arterial thrombi or severity of thrombocytopenia in HIT. Thus, neutrophil activation contributes to the development of venous thrombosis in HIT by enhancing neutrophil-endothelial adhesion and neutrophil clot infiltration, where incorporated PF4-NET-HIT antibody complexes lead to thrombosis propagation. Inhibition of neutrophil endothelial adhesion, prevention of neutrophil chemokine-dependent recruitment of neutrophils to thrombi, or suppression of NET release should be explored as strategies to prevent venous thrombosis in HIT.
Collapse
Affiliation(s)
- Kandace Gollomp
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| | - Minna Kim
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - John Welsh
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gowthami M Arepally
- Deparment of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| | - Adam Cuker
- Department of Pathology, and.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B Cines
- Department of Pathology, and.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| | - M Anna Kowalska
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | - Mortimer Poncz
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| |
Collapse
|
428
|
Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, Duplaa C, Renault MA, Denis C, Villeval JL, Boulaftali Y, Jandrot-Perrus M, Couffinhal T, James C. Vascular endothelial cell expression of JAK2 V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica 2018; 104:70-81. [PMID: 30171023 PMCID: PMC6312008 DOI: 10.3324/haematol.2018.195321] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
Thrombosis is the main cause of morbidity and mortality in patients with JAK2V617F myeloproliferative neoplasms. Recent studies have reported the presence of JAK2V617F in endothelial cells of some patients with myeloproliferative neoplasms. We investigated the role of endothelial cells that express JAK2V617F in thrombus formation using an in vitro model of human endothelial cells overexpressing JAK2V617F and an in vivo model of mice with endothelial-specific JAK2V617F expression. Interestingly, these mice displayed a higher propensity for thrombus. When deciphering the mechanisms by which JAK2V617F-expressing endothelial cells promote thrombosis, we observed that they have a pro-adhesive phenotype associated with increased endothelial P-selectin exposure, secondary to degranulation of Weibel-Palade bodies. We demonstrated that P-selectin blockade was sufficient to reduce the increased propensity of thrombosis. Moreover, treatment with hydroxyurea also reduced thrombosis and decreased the pathological interaction between leukocytes and JAK2V617F-expressing endothelial cells through direct reduction of endothelial P-selectin expression. Taken together, our data provide evidence that JAK2V617F-expressing endothelial cells promote thrombosis through induction of endothelial P-selectin expression, which can be reversed by hydroxyurea. Our findings increase our understanding of thrombosis in patients with myeloproliferative neoplasms, at least those with JAK2V617F-positive endothelial cells, and highlight a new role for hydroxyurea. This novel finding provides the proof of concept that an acquired genetic mutation can affect the pro-thrombotic nature of endothelial cells, suggesting that other mutations in endothelial cells could be causal in thrombotic disorders of unknown cause, which account for 50% of recurrent venous thromboses.
Collapse
Affiliation(s)
- Alexandre Guy
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | | | | | - Claire Peghaire
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Badr Kilani
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | | | - Cécile Duplaa
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Marie-Ange Renault
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Cécile Denis
- Inserm U1176, Hemostasis Inflammation Thrombosis, Le Kremlin-Bicêtre
| | | | | | | | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac.,CHU de Bordeaux, Service des Maladies Cardiaques et Vasculaires, Pessac
| | - Chloe James
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac .,CHU de Bordeaux, Laboratoire d'Hématologie, Pessac, France
| |
Collapse
|
429
|
Circulating H3Cit is elevated in a human model of endotoxemia and can be detected bound to microvesicles. Sci Rep 2018; 8:12641. [PMID: 30140006 PMCID: PMC6107669 DOI: 10.1038/s41598-018-31013-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Early diagnosis of sepsis is crucial since prompt interventions decrease mortality. Citrullinated histone H3 (H3Cit), released from neutrophil extracellular traps (NETs) upon binding of platelets to neutrophils following endotoxin stimulation, has recently been proposed a promising blood biomarker in sepsis. Moreover, microvesicles (MVs), which are released during cell activation and apoptosis and carry a variety of proteins from their parental cells, have also been shown to be elevated in sepsis. In a randomized and placebo-controlled human model of endotoxemia (lipopolysaccharide injection; LPS), we now report significant LPS-induced elevations of circulating H3Cit in 22 healthy individuals. We detected elevations of circulating H3Cit by enzyme-linked immunosorbent assay (ELISA), as well as bound to MVs quantified by flow cytometry. H3Cit-bearing MVs expressed neutrophil and/or platelet surface markers, indicating platelet-neutrophil interactions. In addition, in vitro experiments revealed that H3Cit can bind to phosphatidylserine exposed on platelet derived MVs. Taken together; our results demonstrate that NETs can be detected in peripheral blood during endotoxemia by two distinct H3Cit-specific methods. Furthermore, we propose a previously unrecognized mechanism by which H3Cit may be disseminated throughout the vasculature by the binding to MVs.
Collapse
|
430
|
Monti M, De Rosa V, Iommelli F, Carriero MV, Terlizzi C, Camerlingo R, Belli S, Fonti R, Di Minno G, Del Vecchio S. Neutrophil Extracellular Traps as an Adhesion Substrate for Different Tumor Cells Expressing RGD-Binding Integrins. Int J Mol Sci 2018; 19:ijms19082350. [PMID: 30096958 PMCID: PMC6121671 DOI: 10.3390/ijms19082350] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022] Open
Abstract
Neutrophil extracellular traps (NETs), in addition to their function as a host defense mechanism, play a relevant role in thrombus formation and metastatic dissemination of cancer cells. Here we screened different cancer cell lines endogenously expressing a variety of integrins for their ability to bind to NETs. To this end, we used NETs isolated from neutrophil-like cells as a substrate for adhesion assays of HT1080, U-87 MG, H1975, DU 145, PC-3 and A-431 cells. Levels of α5, αIIb, αv, β1, β3 and β5 chains were determined by western blot analysis in all cell lines and levels of whole integrins on the plasma membrane were assessed by fluorescence-activated cell sorting (FACS) analysis. We found that high levels of α5β1, αvβ3 and αvβ5 enhance cell adhesion to NETs, whereas low expression of α5β1 prevents cell attachment to NETs. Excess of cyclic RGD peptide inhibited cell adhesion to NETs by competing with fibronectin within NETs. The maximal reduction of such adhesion was similar to that obtained by DNase 1 treatment causing DNA degradation. Our findings indicate that NETs from neutrophil-like cells may be used as a substrate for large screening of the adhesion properties of cancer cells expressing a variety of RGD-binding integrins.
Collapse
Affiliation(s)
- Marcello Monti
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Naples, Italy.
| | - Viviana De Rosa
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
| | - Francesca Iommelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
| | - Maria Vincenza Carriero
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80145 Naples, Italy.
| | - Cristina Terlizzi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80145 Naples, Italy.
| | - Rosa Camerlingo
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80145 Naples, Italy.
| | - Stefania Belli
- Istituto di Genetica e Biofisica, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy.
| | - Rosa Fonti
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
| | - Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Naples, Italy.
| | - Silvana Del Vecchio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80145 Naples, Italy.
| |
Collapse
|
431
|
Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38:1901-1912. [PMID: 29976772 PMCID: PMC6202190 DOI: 10.1161/atvbaha.118.311150] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1β-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.
Collapse
Affiliation(s)
- Eduardo J Folco
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Thomas L Mawson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Amélie Vromman
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Breno Bernardes-Souza
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Grégory Franck
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Oscar Persson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Momotaro Nakamura
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Gail Newton
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francis W Luscinskas
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| |
Collapse
|
432
|
Budnik I, Brill A. Immune Factors in Deep Vein Thrombosis Initiation. Trends Immunol 2018; 39:610-623. [PMID: 29776849 PMCID: PMC6065414 DOI: 10.1016/j.it.2018.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Deep vein thrombosis (DVT) is a major origin of morbidity and mortality. While DVT has long been considered as blood coagulation disorder, several recent lines of evidence demonstrate that immune cells and inflammatory processes are involved in DVT initiation. Here, we discuss these mechanisms, in particular, the role of immune cells in endothelial activation, and the immune cascades leading to expression of adhesion receptors on endothelial cells. We analyze the specific recruitment and functional roles of different immune cells, such as mast cells and leukocytes, in DVT. Importantly, we also speculate how immune modulation could be used for DVT prevention with a lower risk of bleeding complications than conventional therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Budnik
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Brill
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
433
|
Greco M, Palumbo C, Sicuro F, Lobreglio G. Soluble Fms-Like Tyrosine Kinase-1 Is A Marker of Endothelial Dysfunction During Sepsis. J Clin Med Res 2018; 10:700-706. [PMID: 30116440 PMCID: PMC6089578 DOI: 10.14740/jocmr3505w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022] Open
Abstract
Background Sepsis is currently defined as a life-threatening organ dysfunction caused by a deregulated host response to infection. There is increasing evidence that the endothelium plays a crucial and pathogenic role in sepsis. Profound alterations of the endothelium associated with sepsis include increased leucocytes adhesions, shift to a procoagulant state, vasodilatation, altered barrier function with more permeable capillaries and tissue edema. The vascular endothelial growth factor (VEGF) pathway is involved in the control of microvascular permeability and has been involved in the pathogenesis of conditions associated with endothelial barrier disruption such as sepsis. sFlt-1 is a soluble variant of the VEGF receptor (Fms-like tyrosine kinase-1, Flt-1 or VEGFR-1) able to down-regulate the effects of VEGF by decreasing its signaling. We investigated the possible involvement of sFlt-1 as biomarker of endothelial alteration during sepsis, organ dysfunction and death. Methods Serum levels of s-Flt1 were measured in 170 hospitalized patients (77 with sepsis, confirmed by positive blood culture), and in 18 healthy volunteers. The sequential organ failure assessment (SOFA) score was determined by using biochemical and clinical parameters. In a small number of patients (9 individuals), s-Flt1 concentration was evaluated after negativization of the blood culture. Results Serum level of s-Flt1 was significantly higher in septic patients than blood culture-negative patients (277.7 ± 52.7 and 133.4 ± 12.4 pg/mL, respectively, P = 0.0088), both groups of patients had significantly higher concentration of sFlt-1 than healthy individuals (78.9 ± 2.5 pg/mL). Among sepsis cases, 68% was caused by Gram-negative bacteria, 27% by Gram-positive bacteria and 8% by Candida species. Serum level of s-Flt1 showed a significant difference between Gram-negative (274.1 pg/mL) and Gram-positive (145.7 pg/mL) sepsis. SOFA score (evaluated in 20 patients with sFlt-1 >190 pg/mL) showed a positive trend of correlation with the increasing sFlt-1 level. After blood culture negativization, serum level of sFlt-1 decreased (37%). Conclusion Our findings confirm, in a larger population of patients with sepsis, recent evidences that sFlt-1 levels are higher in patients with complicated-sepsis that evolve to septic shock and suggest that sFlt-1 could be a useful biomarker for sepsis severity. An anti-VEGF effect mediated by sFlt-1 could be hypothesized as salvage compensatory mechanism activated in response to sepsis.
Collapse
Affiliation(s)
- Marilena Greco
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Claudio Palumbo
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Fernando Sicuro
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Giambattista Lobreglio
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| |
Collapse
|
434
|
Hegerova L, Bachan A, Cao Q, Vu HX, Rogosheske J, Reding MT, Brunstein CG, Arora M, Ustun C, Vercellotti GM, Bachanova V. Catheter-Related Thrombosis in Patients with Lymphoma or Myeloma Undergoing Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant 2018; 24:e20-e25. [PMID: 30053647 DOI: 10.1016/j.bbmt.2018.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 01/21/2023]
Abstract
Catheter-related thrombosis (CRT) occurs frequently during autologous hematopoietic cell transplantation (AHCT) and data regarding the incidence, risk factors, and management are understudied. We evaluated 789 consecutive patients with lymphoma and myeloma that underwent AHCT over 10 years (2006 to 2016) and detected the incidence of CRT was 6.3%; only 32% of CRT were symptomatic. The majority occurred within 100 days of AHCT (86%) and median time from tunneled line placement to CRT was 44 days (range, 11 to 89 days). Outcomes of these 50 patients with CRT were compared with age- and disease-matched AHCT control subjects to identify risk factors. History of prior venous thromboembolism (VTE) (20.9% versus 7.0%, P = .02) was the only significant risk factor. Treatment with low-molecular-weight heparin was tolerated with rare minor bleeding (4%), although CRT recurrence or extension (10%) and subsequent VTE (12%) were common. CRT did not impact on nonrelapse mortality or risk of relapse; 2-year progression-free survival was 55% in CRT cases versus 54% in control subjects (P = .42). CRT appears to be common in patients with lymphoma and myeloma undergoing AHCT and significantly contributes to morbidity. Further study to determine mitigating strategies and modify risk factors for CRT is warranted.
Collapse
Affiliation(s)
- Livia Hegerova
- Center for Blood Disorders and Stem Cell Transplantation, Swedish Cancer Institute, Seattle, Washington.
| | - Adam Bachan
- Department of Medicine, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Huong X Vu
- Department of Clinical Pharmacology, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - John Rogosheske
- Department of Clinical Pharmacology, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Mark T Reding
- Center for Bleeding and Clotting Disorders, University of Minnesota Medical Center, Minneapolis, Minnesota; Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Claudio G Brunstein
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center, Minneapolis, Minnesota; Blood and Marrow Transplantation Program, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center, Minneapolis, Minnesota; Blood and Marrow Transplantation Program, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Celalettin Ustun
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center, Minneapolis, Minnesota; Blood and Marrow Transplantation Program, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center, Minneapolis, Minnesota; Blood and Marrow Transplantation Program, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center, Minneapolis, Minnesota; Blood and Marrow Transplantation Program, University of Minnesota Medical Center, Minneapolis, Minnesota
| |
Collapse
|
435
|
Edelmann B, Gupta N, Schnoeder TM, Oelschlegel AM, Shahzad K, Goldschmidt J, Philipsen L, Weinert S, Ghosh A, Saalfeld FC, Nimmagadda SC, Müller P, Braun-Dullaeus R, Mohr J, Wolleschak D, Kliche S, Amthauer H, Heidel FH, Schraven B, Isermann B, Müller AJ, Fischer T. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest 2018; 128:4359-4371. [PMID: 30024857 DOI: 10.1172/jci90312] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
JAK2-V617F-positive chronic myeloproliferative neoplasia (CMN) commonly displays dysfunction of integrins and adhesion molecules expressed on platelets, erythrocytes, and leukocytes. However, the mechanism by which the 2 major leukocyte integrin chains, β1 and β2, may contribute to CMN pathophysiology remained unclear. β1 (α4β1; VLA-4) and β2 (αLβ2; LFA-1) integrins are essential regulators for attachment of leukocytes to endothelial cells. We here showed enhanced adhesion of granulocytes from mice with JAK2-V617F knockin (JAK2+/VF mice) to vascular cell adhesion molecule 1- (VCAM1-) and intercellular adhesion molecule 1-coated (ICAM1-coated) surfaces. Soluble VCAM1 and ICAM1 ligand binding assays revealed increased affinity of β1 and β2 integrins for their respective ligands. For β1 integrins, this correlated with a structural change from the low- to the high-affinity conformation induced by JAK2-V617F. JAK2-V617F triggered constitutive activation of the integrin inside-out signaling molecule Rap1, resulting in translocation toward the cell membrane. Employing a venous thrombosis model, we demonstrated that neutralizing anti-VLA-4 and anti-β2 integrin antibodies suppress pathologic thrombosis as observed in JAK2+/VF mice. In addition, aberrant homing of JAK2+/VF leukocytes to the spleen was inhibited by neutralizing anti-β2 antibodies and by pharmacologic inhibition of Rap1. Thus, our findings identified cross-talk between JAK2-V617F and integrin activation promoting pathologic thrombosis and abnormal trafficking of leukocytes to the spleen.
Collapse
Affiliation(s)
- Bärbel Edelmann
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Nibedita Gupta
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Tina M Schnoeder
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Internal Medicine II, Hematology and Oncology, University Hospital Jena, Jena, Germany.,Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Anja M Oelschlegel
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Anatomy
| | | | | | - Lars Philipsen
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and
| | - Soenke Weinert
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Department of Cardiology and Angiology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Aniket Ghosh
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Felix C Saalfeld
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Müller
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Rüdiger Braun-Dullaeus
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Department of Cardiology and Angiology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Mohr
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and
| | - Denise Wolleschak
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and
| | - Holger Amthauer
- Department of Radiology and Nuclear Medicine, University Hospital, Magdeburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Internal Medicine II, Hematology and Oncology, University Hospital Jena, Jena, Germany.,Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and.,Helmholtz Centre for Infection Research, Department of Immune Control, Braunschweig, Germany
| | - Berend Isermann
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry
| | - Andreas J Müller
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and.,Helmholtz Centre for Infection Research, Department of Immune Control, Braunschweig, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
436
|
Ramos G, Frantz S. Beyond longevity: novel roles of Sirtuin-3 in thrombosis. Cardiovasc Res 2018; 114:1060-1062. [PMID: 29800363 DOI: 10.1093/cvr/cvy116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gustavo Ramos
- Department of Internal Medicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
437
|
Wong SL, Wagner DD. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J 2018; 32:fj201800691R. [PMID: 29924943 PMCID: PMC6219837 DOI: 10.1096/fj.201800691r] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Peptidylarginine deiminase 4 (PAD4) is a nuclear citrullinating enzyme that is critically involved in the release of decondensed chromatin from neutrophils as neutrophil extracellular traps (NETs). NETs, together with fibrin, are implicated in host defense against pathogens; however, the formation of NETs (NETosis) has injurious effects that may outweigh their protective role. For example, PAD4 activity produces citrullinated neoantigens that promote autoimmune diseases, such as rheumatoid arthritis, to which PAD4 is genetically linked and where NETosis is prominent. NETs are also generated in basic sterile inflammatory responses that are induced by many inflammatory stimuli, including cytokines, hypoxia, and activated platelets. Mice that lack PAD4-deficient in NETosis-serve as an excellent tool with which to study the importance of NETs in disease models. In recent years, animal and human studies have demonstrated that NETs contribute to the etiology and propagation of many common noninfectious diseases, the focus of our review. We will discuss the role of NETs in thrombotic and cardiovascular disease, the induction of NETs by cancers and its implications for cancer progression and cancer-associated thrombosis, and elevated NETosis in diabetes and its negative impact on wound healing, and will propose a link between PAD4/NETs and age-related organ fibrosis. We identify unresolved issues and new research directions.-Wong, S. L., Wagner, D. D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging.
Collapse
Affiliation(s)
- Siu Ling Wong
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
438
|
Chunilal SD, Wood EM. Red cell transfusion and clinical outcomes in acute pulmonary embolism: Harmful therapy or an indicator of sicker patients with poor prognosis? Respirology 2018; 23:887-888. [PMID: 29890567 DOI: 10.1111/resp.13331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sanjeev D Chunilal
- Department of Haematology, Monash Health, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Erica M Wood
- Department of Haematology, Monash Health, Melbourne, VIC, Australia.,Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
439
|
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β 2GPI/β 2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018; 138:140-150. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a large group of heterogeneous antibodies that bind to anionic phospholipids alone or in combination with phospholipid binding proteins. Increasing evidence has converged to indicate that aPLs especially anti-β2 glycoprotein I antibody (anti-β2GPI) correlate with stroke severity and outcome. Though studies have shown that aPLs promote thrombus formation in a neutrophil-dependent way, the underlying mechanisms remain largely unknown. In the present study, we investigated the effect of anti-β2GPI in complex with β2GPI (anti-β2GPI/β2GPI) on neutrophil extracellular traps (NETs) formation and thrombus generation in vitro and in vivo. We found that anti-β2GPI/β2GPI immune complex induced NETs formation in a time- and concentration-dependent manner. This effect was mediated by its interaction with TLR4 and the production of ROS. We demonstrated that MyD88-IRAKs-MAPKs, an intracellular signaling pathway, was involved in anti-β2GPI/β2GPI-induced NETs formation. We also presented evidence that tissue factor was expressed on anti-β2GPI/β2GPI-induced NETs, and NETs could promote platelet aggregation in vitro. In addition, we identified that anti-β2GPI/β2GPI-induced NETs enhanced thrombus formation in vivo, and this effect was counteracted by using DNase I. Our data suggest that anti-β2GPI/β2GPI induces NETs formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation, and could be a potentially novel target for aPLs related ischemic stroke.
Collapse
Affiliation(s)
- Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fei Gao
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiali Xu
- Laboratory of Endocrinology and Metabolism Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
440
|
Abstract
Neutrophils are essential to the homeostatic mission of safeguarding host tissues, responding rapidly and diversely to breaches of the host's barriers to infection, and returning tissues to a sterile state. In response to specific stimuli, neutrophils extrude modified chromatin structures decorated with specific cytoplasmic and granular proteins called neutrophil extracellular traps (NETs). Several pathways lead to this unique form of cell death (NETosis). Extracellular chromatin may have evolved to defend eukaryotic organisms against infection, and its release has at least three functions: trapping and killing of microbes, amplifying immune responses, and inducing coagulation. Here we review neutrophil development and heterogeneity with a focus on NETs, NET formation, and their relevance in host defense and disease.
Collapse
|
441
|
Muñoz LE, Leppkes M, Fuchs TA, Hoffmann M, Herrmann M. Missing in action-The meaning of cell death in tissue damage and inflammation. Immunol Rev 2018; 280:26-40. [PMID: 29027227 DOI: 10.1111/imr.12569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Billions of cells die every day in higher organisms as part of the normal process of tissue homeostasis. During special conditions like in development, acute infections, mechanical injuries, and immunity, cell death is a common denominator and it exerts profound effects in the outcome of these scenarios. To prevent the accumulation of aged, superfluous, infected, damaged and dead cells, professional phagocytes act in a rapid and efficient manner to clear the battle field and avoid spread of the destruction. Neutrophils are the most abundant effector immune cells that extravasate into tissues and can turn injured tissues into gory battle fields. In peace times, neutrophils tend to patrol tissues without provoking inflammatory reactions. We discuss in this review actual and forgotten knowledge about the meaning of cell death during homeostatic processes and drive the attention to the importance of the action of neutrophils during patrolling and for the maintenance or recovery of the homeostatic state once the organism gets attacked or injured, respectively. In this fashion, we disclose several disease conditions that arise as collateral damage of physiological responses to death.
Collapse
Affiliation(s)
- Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Department of Internal Medicine 1 - Gastroenterology, Pulmonology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias A Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
442
|
Ulusoy E, Duman M, Çağlar A, Küme T, Er A, Akgül F, Çitlenbik H, Yılmaz D, Ören H. Acute Traumatic Coagulopathy: The Value of Histone in Pediatric Trauma Patients. Turk J Haematol 2018; 35:122-128. [PMID: 29589832 PMCID: PMC5972334 DOI: 10.4274/tjh.2017.0444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Acute traumatic coagulopathy occurs after trauma with impairment of hemostasis and activation of fibrinolysis. Some endogenous substances may play roles in this failure of the coagulation system. Extracellular histone is one such molecule that has recently attracted attention. This study investigated the association between plasma histone-complexed DNA (hcDNA) fragments and coagulation abnormalities in pediatric trauma patients. MATERIALS AND METHODS This prospective case-control study was conducted in pediatric patients with trauma. Fifty trauma patients and 30 healthy controls were enrolled. Demographic data, anatomic injury characteristics, coagulation parameters, computerized tomography findings, trauma, and International Society on Thrombosis and Haemostasis disseminated intravascular coagulation (ISTH DIC) scores were recorded. Blood samples for hcDNA were collected and assessed by enzyme-linked immunosorbent assay. RESULTS Thirty-two patients had multiple trauma, while 18 patients had isolated brain injury. hcDNA levels were significantly higher in trauma patients than healthy controls (0.474 AU and 0.145 AU, respectively). There was an association between plasma hcDNA levels and trauma severity. Thirteen patients had acute coagulopathy of trauma shock (ACoTS). ACoTS patients had higher plasma histone levels than those without ACoTS (0.703 AU and 0.398 AU, respectively). Plasma hcDNA levels were positively correlated with the ISTH DIC score and length of stay in the intensive care unit and were negatively correlated with fibrinogen level. CONCLUSION This study indicated that hcDNA levels were increased in pediatric trauma patients and associated with the early phase of coagulopathy. Further studies are needed to clarify the role of hcDNA levels in mortality and disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Emel Ulusoy
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Murat Duman
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Aykut Çağlar
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Tuncay Küme
- Dokuz Eylül University Faculty of Medicine, Department of Biochemistry, İzmir, Turkey
| | - Anıl Er
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Fatma Akgül
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Hale Çitlenbik
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Durgül Yılmaz
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Emergency Care, İzmir, Turkey
| | - Hale Ören
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Hematology, İzmir, Turkey
| |
Collapse
|
443
|
Sperling C, Fischer M, Maitz MF, Werner C. Neutrophil extracellular trap formation upon exposure of hydrophobic materials to human whole blood causes thrombogenic reactions. Biomater Sci 2018; 5:1998-2008. [PMID: 28745733 DOI: 10.1039/c7bm00458c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neutrophil extracellular trap (NET) formation, a reaction of the innate immune system to fight pathogens, was shown to be involved in thrombus formation. In the present study blood-contacting biomaterials with graded surface characteristics were investigated as a potential cause of NET formation on medical devices. Surface properties are known to govern protein adsorption, cell adhesion and ultimately the activation of several other host defense pathways - potentially also the formation of NETs. Model materials of defined hydrophilic or hydrophobic properties (glass, and thin films of poly(ethylene-alt-maleic anhydride), self-assembled monolayers of methyl terminated alkanethiols, and Teflon AF™) were incubated either with isolated human granulocytes after pre-adsorption with plasma proteins or with human whole blood. NET formation - detected as extracellular DNA, citrullinated histones, elastase and reactive oxygen species (ROS) - was observed on hydrophobic surfaces. Furthermore, NET formation on the hydrophobic surface Teflon AF™ resulted in elevated thrombin generation in hirudin-anticoagulated whole blood, but not in heparinized whole blood. Disintegration of surface-bound NETs by DNase treatment resulted in significantly lower pro-coagulant effects. Thus, NET formation can contribute to the thrombogenicity of clinically applied hydrophobic materials, suggesting NETosis as well as NET surface anchorage as new targets of anticoagulation strategies.
Collapse
Affiliation(s)
- Claudia Sperling
- Institute of Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany.
| | | | | | | |
Collapse
|
444
|
Musumeci L, Jacques N, Hego A, Nchimi A, Lancellotti P, Oury C. Prosthetic Aortic Valves: Challenges and Solutions. Front Cardiovasc Med 2018; 5:46. [PMID: 29868612 PMCID: PMC5961329 DOI: 10.3389/fcvm.2018.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them.
Collapse
Affiliation(s)
- Lucia Musumeci
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA Cardiovascular Sciences, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Nicolas Jacques
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA Cardiovascular Sciences, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Alexandre Hego
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA Cardiovascular Sciences, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Alain Nchimi
- Department of Cardiology, GIGA Cardiovascular Sciences, University of Liège Hospital, Heart Valve Clinic, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA Cardiovascular Sciences, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium.,Department of Cardiology, GIGA Cardiovascular Sciences, University of Liège Hospital, Heart Valve Clinic, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Cécile Oury
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA Cardiovascular Sciences, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| |
Collapse
|
445
|
Radic M, Pattanaik D. Cellular and Molecular Mechanisms of Anti-Phospholipid Syndrome. Front Immunol 2018; 9:969. [PMID: 29867951 PMCID: PMC5949565 DOI: 10.3389/fimmu.2018.00969] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
The primary anti-phospholipid syndrome (APS) is characterized by the production of antibodies that bind the phospholipid-binding protein β2 glycoprotein I (β2GPI) or that directly recognize negatively charged membrane phospholipids in a manner that may contribute to arterial or venous thrombosis. Clinically, the binding of antibodies to β2GPI could contribute to pathogenesis by formation of immune complexes or modification of coagulation steps that operate along cell surfaces. However, additional events are likely to play a role in pathogenesis, including platelet and endothelial cell activation. Recent studies focus on neutrophil release of chromatin in the form of neutrophil extracellular traps as an important disease contributor. Jointly, the participation of both the innate and adaptive arms of the immune system in aspects of the APS make the complete understanding of crucial steps in pathogenesis extremely difficult. Only coordinated and comprehensive analyses, carried out in different clinical and research settings, are likely to advance the understanding of this complex disease condition.
Collapse
Affiliation(s)
- Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Debendra Pattanaik
- Division of Rheumatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
446
|
Grimnes G, Isaksen T, Tichelaar YIGV, Brox J, Brækkan SK, Hansen JB. C-reactive protein and risk of venous thromboembolism: results from a population-based case-crossover study. Haematologica 2018; 103:1245-1250. [PMID: 29674505 PMCID: PMC6029539 DOI: 10.3324/haematol.2017.186957] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 11/09/2022] Open
Abstract
Long-term, low-grade inflammation does not seem to be a risk factor for venous thromboembolism. The impact of acute inflammation, regardless of cause, on risk of venous thromboembolism is scarcely studied. We aimed to investigate the impact of acute inflammation, assessed by C-reactive protein, on short-term risk of venous thromboembolism. We conducted a case-crossover study of patients with venous thromboembolism (n=707) recruited from a general population. Information on triggers and C-reactive protein levels were retrieved from hospital records during the 90 days before the event (hazard period) and in four preceding 90-day control periods. Conditional logistic regression was used to obtain β coefficients for change in natural log (ln) transformed C-reactive protein from control to hazard periods and to determine corresponding odds ratios for venous thromboembolism. Median C-reactive protein was 107 mg/L in the hazard period, and ranged from 7 mg/L to 16 mg/L in the control periods. The level of C-reactive protein was 58% (95% CI 39-77%) higher in the hazard period than in the control periods. A one-unit increase in ln-C-reactive protein was associated with increased risk of venous thromboembolism (OR 1.79, 95% CI 1.48-2.16). The risk estimates were only slightly attenuated after adjustment for immobilization and infection. In stratified analyses, ln-C-reactive protein was associated with increased risk of venous thromboembolism in cases with (OR 1.55, 95% CI 1.01-2.38) and without infection (OR 1.77, 95% CI 1.22-2.57). In conclusion, we found that acute inflammation, assessed by C-reactive protein, was a trigger for venous thromboembolism.
Collapse
Affiliation(s)
- Gro Grimnes
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway .,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Trond Isaksen
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Ynse Ieuwe Gerardus Vladimir Tichelaar
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Jan Brox
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Sigrid Kufaas Brækkan
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - John-Bjarne Hansen
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
447
|
Smith SA, Gajsiewicz JM, Morrissey JH. Ability of Polyphosphate and Nucleic Acids to Trigger Blood Clotting: Some Observations and Caveats. Front Med (Lausanne) 2018; 5:107. [PMID: 29719836 PMCID: PMC5913279 DOI: 10.3389/fmed.2018.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
Polyphosphate plays several roles in coagulation and inflammation, while extracellular DNA and RNA are implicated in thrombosis and as disease biomarkers. We sought to compare the procoagulant activities of polyphosphate versus DNA or RNA isolated from mammalian cells. In a recent study, we found that much of the procoagulant activity of DNA isolated from mammalian cells using Qiagen kits resisted digestion with nuclease or polyphosphatase, and even resisted boiling in acid. These kits employ spin columns packed with silica, which is highly procoagulant. Indeed, much of the apparent procoagulant activity of cellular DNA isolated with such kits was attributable to silica particles shed by the spin columns. Therefore, silica-based methods for isolating nucleic acids or polyphosphate from mammalian cells are not suitable for studying their procoagulant activities. We now report that polyphosphate readily co-purified with DNA and RNA using several popular isolation methods, including phenol/chloroform extraction. Thus, cell-derived nucleic acids are also subject to contamination with traces of cellular polyphosphate, which can be eliminated by alkaline phosphatase digestion. We further report that long-chain polyphosphate was orders of magnitude more potent than cell-derived DNA (purified via phenol/chloroform extraction) or RNA at triggering clotting. Additional experiments using RNA homopolymers found that polyG and polyI have procoagulant activity similar to polyphosphate, while polyA and polyC are not procoagulant. Thus, the procoagulant activity of RNA is rather highly dependent on base composition.
Collapse
Affiliation(s)
- Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
448
|
Choi DH, Kobayashi Y, Nishi T, Kim HK, Ki YJ, Kim SS, Park KH, Song H, Fearon WF. Combination of Mean Platelet Volume and Neutrophil to Lymphocyte Ratio Predicts Long-Term Major Adverse Cardiovascular Events After Percutaneous Coronary Intervention. Angiology 2018; 70:345-351. [DOI: 10.1177/0003319718768658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We hypothesized that the combination of a high neutrophil to lymphocyte ratio (NLR) and mean platelet volume (MPV) would be a stronger predictor of future cardiovascular events after percutaneous coronary intervention (PCI). Both NLR and MPV were measured in 364 consecutive patients undergoing PCI. The primary end point was the incidence of major adverse cardiovascular events (MACEs), including cardiac death, nonfatal myocardial infarction, and stent thrombosis. The median values of NLR and MPV were 2.8 and 8.2 fL, respectively. There were 26 MACEs during a median follow-up duration of 29.3 months. Kaplan-Meier analysis revealed that the higher NLR group had a significantly higher MACE rate than the lower NLR group and that the higher MPV group had a significantly higher MACE rate than the lower MPV group (log-rank: P = .0064 and P = .0004, respectively). The cumulative MACE-free survival can be further stratified by the combination of NLR and MPV. This value was especially useful in patients with acute coronary syndrome (ACS). By multivariate Cox proportional hazards model, the combination of high NLR and high MPV was independently associated with MACE ( P = .026). The combination of a high NLR and high MPV is an independent predictor of MACE after PCI, especially in patients with ACS.
Collapse
Affiliation(s)
- Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Yuhei Kobayashi
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Takeshi Nishi
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hyun Kuk Kim
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sung Soo Kim
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Keun-Ho Park
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - William F. Fearon
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
449
|
Arroyo AB, de Los Reyes-García AM, Teruel-Montoya R, Vicente V, González-Conejero R, Martínez C. microRNAs in the haemostatic system: More than witnesses of thromboembolic diseases? Thromb Res 2018; 166:1-9. [PMID: 29649766 DOI: 10.1016/j.thromres.2018.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that post-transcriptionally regulate gene expression. In the last few years, these molecules have been implicated in the regulation of haemostasis, and an increasing number of studies have investigated their relationship with the development of thrombosis. In this review, we discuss the latest developments regarding the role of miRNAs in the regulation of platelet function and secondary haemostasis. We also discuss the genetic and environmental factors that regulate miRNAs. Finally, we address the potential use of miRNAs as prognostic and diagnostic tools in thrombosis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raúl Teruel-Montoya
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
450
|
Healy LD, Rigg RA, Griffin JH, McCarty OJ. Regulation of immune cell signaling by activated protein C. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-338R. [PMID: 29601101 PMCID: PMC6165708 DOI: 10.1002/jlb.3mir0817-338r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells are an essential part of the host defense response, promoting inflammation through release of proinflammatory cytokines or formation of neutrophil extracellular traps. While these processes are important for defense against infectious agents or injury, aberrant activation potentiates pathologic inflammatory disease. Thus, understanding regulatory mechanisms that limit neutrophil extracellular traps formation and cytokine release is of therapeutic interest for targeting pathologic diseases. Activated protein C is an endogenous serine protease with anticoagulant activity as well as anti-inflammatory and cytoprotective functions, the latter of which are mediated through binding cell surface receptors and inducing intracellular signaling. In this review, we discuss certain leukocyte functions, namely neutrophil extracellular traps formation and cytokine release, and the inhibition of these processes by activated protein C.
Collapse
Affiliation(s)
- Laura D. Healy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rachel A. Rigg
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Owen J.T. McCarty
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|