401
|
Salvarani C, Hunder GG, Morris JM, Brown RD, Christianson T, Giannini C. Aβ-related angiitis: comparison with CAA without inflammation and primary CNS vasculitis. Neurology 2013; 81:1596-603. [PMID: 24078731 DOI: 10.1212/wnl.0b013e3182a9f545] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To analyze the clinical findings, response to therapy, and outcomes of patients with cerebral vascular amyloid-β (Aβ) deposition with and without inflammatory vascular infiltration. METHODS We report 78 consecutive patients with cerebral vascular Aβ deposition examined at Mayo Clinic Rochester over 25 years (1987 through 2011). Specimens reviewed by a neuropathologist showed 40 with vascular Aβ peptide without inflammation (cerebral amyloid angiopathy [CAA]), 28 with granulomatous vasculitis (Aβ-related angiitis or ABRA), and 10 with perivascular CAA-related inflammation. We also matched findings in 118 consecutive patients with primary CNS vasculitis (PCNSV) without Aβ seen over 25 years (1983 through 2007). RESULTS Compared to the 40 with CAA, the 28 with ABRA were younger at diagnosis (p = 0.05), had less altered cognition (p = 0.02), fewer neurologic deficits (p = 0.02), and fewer intracranial hemorrhages (<0.001), but increased gadolinium leptomeningeal enhancement (p = 0.01) at presentation, and less mortality and disability at last follow-up (p < 0.001). Compared with PCNSV, the 28 patients with ABRA were older at diagnosis (p < 0.001), had a higher frequency of altered cognition (p = 0.05), seizures/spells (p = 0.006), gadolinium leptomeningeal enhancement (p < 0.001), and intracerebral hemorrhage (p = 0.02), lower frequency of hemiparesis (p = 0.01), visual symptoms (p = 0.04), and MRI evidence of cerebral infarction (p = 0.003), but higher CSF protein levels (p = 0.03). Results of treatment and outcomes in ABRA and PCNSV were similar. CONCLUSIONS ABRA appears to represent a distinct subset of PCNSV.
Collapse
Affiliation(s)
- Carlo Salvarani
- From the Unità Operativa di Reumatologia (C.S.), Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy; and Anatomic Pathology, Department of Laboratory Medicine and Pathology (C.G.), Departments of Radiology (J.M.M.) and Neurology (R.D.B.), and Divisions of Biostatistics (T.C.) and Rheumatology (G.G.H.), Mayo Clinic, Rochester, MN
| | | | | | | | | | | |
Collapse
|
402
|
Matsumoto Y, Niimi N, Kohyama K. Development of a new DNA vaccine for Alzheimer disease targeting a wide range of aβ species and amyloidogenic peptides. PLoS One 2013; 8:e75203. [PMID: 24086465 PMCID: PMC3785508 DOI: 10.1371/journal.pone.0075203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/10/2013] [Indexed: 12/01/2022] Open
Abstract
It has recently been determined that not only Aβ oligomers, but also other Aβ species and amyloidogenic peptides are neurotoxic in Alzheimer disease (AD) and play a pivotal role in AD pathogenesis. In the present study, we attempted to develop new DNA vaccines targeting a wide range of Aβ species. For this purpose, we first performed in vitro assays with newly developed vaccines to evaluate Aβ production and Aβ secretion abilities and then chose an IgL-Aβx4-Fc-IL-4 vaccine (designated YM3711) for further studies. YM3711 was vaccinated to mice, rabbits and monkeys to evaluate anti-Aβ species antibody-producing ability and Aβ reduction effects. It was found that YM3711 vaccination induced significantly higher levels of antibodies not only to Aβ1-42 but also to AD-related molecules including AβpE3-42, Aβ oligomers and Aβ fibrils. Importantly, YM3711 significantly reduced these Aβ species in the brain of model mice. Binding and competition assays using translated YM3711 protein products clearly demonstrated that a large part of antibodies induced by YM3711 vaccination are directed at conformational epitopes of the Aβ complex and oligomers. Taken together, we demonstrate that YM3711 is a powerful DNA vaccine targeting a wide range of AD-related molecules and is worth examining in preclinical and clinical trials.
Collapse
Affiliation(s)
- Yoh Matsumoto
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
- Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail: .
| | - Naoko Niimi
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
- Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniko Kohyama
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
- Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
403
|
Li Y, Liu Y, Wang Z, Jiang Y. Clinical trials of amyloid-based immunotherapy for Alzheimer's disease: end of beginning or beginning of end? Expert Opin Biol Ther 2013; 13:1515-22. [PMID: 24053611 DOI: 10.1517/14712598.2013.838555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Amyloid deposit and hyperphosphorylated Tau protein contribute to pathological changes seen in Alzheimer's disease (AD) and imply that removal may reverse the cognitive decline. Immunotherapy is a potential way of reducing the load of amyloid or Tau in the brain. AREAS COVERED This review summarizes recent clinical trials that have investigated immunotherapy to treat AD and its potential mechanisms. In addition, the potential opportunities as well as challenges of immunotherapy for AD in clinical trials are also discussed. EXPERT OPINION Amyloid-based immunotherapy for AD is a novel method with potential; however, some clinical trials were terminated because of the adverse effects. Further studies need to determine the following questions: (i) which is better, passive, or active immunotherapy; (ii) which could be used for the vaccine, amyloid or Tau; (iii) which is better, short- or long-antigen vaccine; and (iv) the route of delivery for antigen or antibody.
Collapse
Affiliation(s)
- Yun Li
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province , China +86 25 8480 1861 ; +86 25 8480 5169 ;
| | | | | | | |
Collapse
|
404
|
Proctor CJ, Boche D, Gray DA, Nicoll JAR. Investigating interventions in Alzheimer's disease with computer simulation models. PLoS One 2013; 8:e73631. [PMID: 24098635 PMCID: PMC3782376 DOI: 10.1371/journal.pone.0073631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
Progress in the development of therapeutic interventions to treat or slow the progression of Alzheimer's disease has been hampered by lack of efficacy and unforeseen side effects in human clinical trials. This setback highlights the need for new approaches for pre-clinical testing of possible interventions. Systems modelling is becoming increasingly recognised as a valuable tool for investigating molecular and cellular mechanisms involved in ageing and age-related diseases. However, there is still a lack of awareness of modelling approaches in many areas of biomedical research. We previously developed a stochastic computer model to examine some of the key pathways involved in the aggregation of amyloid-beta (Aβ) and the micro-tubular binding protein tau. Here we show how we extended this model to include the main processes involved in passive and active immunisation against Aβ and then demonstrate the effects of this intervention on soluble Aβ, plaques, phosphorylated tau and tangles. The model predicts that immunisation leads to clearance of plaques but only results in small reductions in levels of soluble Aβ, phosphorylated tau and tangles. The behaviour of this model is supported by neuropathological observations in Alzheimer patients immunised against Aβ. Since, soluble Aβ, phosphorylated tau and tangles more closely correlate with cognitive decline than plaques, our model suggests that immunotherapy against Aβ may not be effective unless it is performed very early in the disease process or combined with other therapies.
Collapse
Affiliation(s)
- Carole J. Proctor
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Douglas A. Gray
- Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
405
|
Immunocytochemical characterization of Alzheimer disease hallmarks in APP/PS1 transgenic mice treated with a new anti-amyloid-β vaccine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:709145. [PMID: 24089686 PMCID: PMC3782057 DOI: 10.1155/2013/709145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
APP/PS1 double-transgenic mouse models of Alzheimer's disease (AD), which overexpress mutated forms of the gene for human amyloid precursor protein (APP) and presenilin 1 (PS1), have provided robust neuropathological hallmarks of AD-like pattern at early ages. This study characterizes immunocytochemical patterns of AD mouse brain as a model for human AD treated with the EB101 vaccine. In this novel vaccine, a new approach has been taken to circumvent past failures by judiciously selecting an adjuvant consisting of a physiological matrix embedded in liposomes, composed of naturally occurring phospholipids (phosphatidylcholine, phosphatidylglycerol, and cholesterol). Our findings showed that administration of amyloid-β1−42 (Aβ) and sphingosine-1-phosphate emulsified in liposome complex (EB101) to APP/PS1 mice before onset of Aβ deposition (7 weeks of age) and/or at an older age (35 weeks of age) is effective in halting the progression and clearing the AD-like neuropathological hallmarks. Passive immunization with EB101 did not activate inflammatory responses from the immune system and astrocytes. Consistent with a decreased inflammatory background, the basal immunological interaction between the T cells and the affected areas (hippocampus) in the brain of treated mice was notably reduced. These results demonstrate that immunization with EB101 vaccine prevents and attenuates AD neuropathology in this type of double-transgenic mice.
Collapse
|
406
|
Monsonego A, Nemirovsky A, Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer's disease. Immunology 2013; 139:438-46. [PMID: 23534386 DOI: 10.1111/imm.12103] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with prevalence progressively increasing with aging. Pathological hallmarks of the disease include accumulation of amyloid β-protein (Aβ) peptides and neurofibrillary tangles in the brain associated with glial activation and synaptotoxicity. In addition, AD involves peripheral and brain endogenous inflammatory processes that appear to enhance disease progression. More than a decade ago a new therapeutic paradigm emerged for AD, namely the activation of the adaptive immune system directly against the self-peptide Aβ, aimed at lowering its accumulation in the brain. This was the first time that a brain peptide was used to vaccinate human subjects in a manner similar to classic viral or bacterial vaccines. The vaccination approach has taken several forms, from initially active to passive and then back to modified active vaccines. As the first two approaches to date failed to show sufficient efficacy, the last is presently being evaluated in ongoing clinical trials. The present review summarizes the immunogenic characteristics of Aβ in humans and mice and discusses past, present and future Aβ-based immunotherapeutic approaches for AD. We emphasize potential pathogenic and beneficial roles of CD4 T cells in light of the pathogenesis and the general decline in T-cell responsiveness evident in the disease.
Collapse
Affiliation(s)
- Alon Monsonego
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|
407
|
Camboni M, Wang CM, Miranda C, Yoon JH, Xu R, Zygmunt D, Kaspar BK, Martin PT. Active and passive immunization strategies based on the SDPM1 peptide demonstrate pre-clinical efficacy in the APPswePSEN1dE9 mouse model for Alzheimer's disease. Neurobiol Dis 2013; 62:31-43. [PMID: 24021662 DOI: 10.1016/j.nbd.2013.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/18/2013] [Accepted: 09/01/2013] [Indexed: 12/31/2022] Open
Abstract
Recent clinical and pre-clinical studies suggest that both active and passive immunization strategies targeting Aβ amyloid may have clinical benefit in Alzheimer's disease. Here, we demonstrate that vaccination of APPswePSEN1dE9 mice with SDPM1, an engineered non-native Aβ amyloid-specific binding peptide, lowers brain Aβ amyloid plaque burden and brain Aβ1-40 and Aβ1-42 peptide levels, improves cognitive learning and memory in Morris water maze tests and increases the expression of synaptic brain proteins. This was the case in young mice immunized prior to development of significant brain amyloid burden, and in older mice, where brain amyloid was already present. Active immunization was optimized using ALUM as an adjuvant to stimulate production of anti-SDPM1 and anti-Aβ amyloid antibodies. Intracerebral injection of P4D6, an SDPM1 peptide-mimotope antibody, also lowered brain amyloid plaque burden in APPswePSEN1dE9 mice. Additionally, P4D6 inhibited Aβ amyloid-mediated toxicity in cultured neuronal cells. The protein sequence of the variable domain within the P4D6 heavy chain was found to mimic a multimer of the SDPM1 peptide motif. These data demonstrate the efficacy of active and passive vaccine strategies to target Aβ amyloid oligomers using an engineered peptide-mimotope strategy.
Collapse
Affiliation(s)
- Marybeth Camboni
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA
| | - Chiou-Miin Wang
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA
| | - Carlos Miranda
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA
| | - Jung Hae Yoon
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA
| | - Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA
| | - Deborah Zygmunt
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA
| | - Brian K Kaspar
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA; Department of Neuroscience, The Ohio State University, USA
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA; Department of Physiology and Cell Biology, The Ohio State University, USA.
| |
Collapse
|
408
|
Sarazin M, Dorothée G, de Souza LC, Aucouturier P. Immunotherapy in Alzheimer's disease: do we have all the pieces of the puzzle? Biol Psychiatry 2013; 74:329-32. [PMID: 23683656 DOI: 10.1016/j.biopsych.2013.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/26/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
Results of Phase III studies involving a large number of Alzheimer's disease (AD) patients treated by passive immunotherapy with humanized anti-amyloid β monoclonal antibodies have recently been released. These approaches failed to show a significant clinical benefit in patients with mild to moderate AD. The most considered explanation is that the patients have been treated too late. Whereas targeting patients at asymptomatic stages of the disease is a critical step in the goal of improving the efficacy of such antibody-based strategies, several other important factors should be considered in the development and clinical evaluation of anti-amyloid β immunotherapies, including the as yet poorly understood relationship of AD with the immune system and the importance of cerebral amyloid angiopathy. Better understanding the role of immune responses in AD and their impact on immunotherapy appears essential in the design of alternative or combinatorial immunotherapy approaches in AD, which may imply effectors other than antibodies and even additional antigenic targets.
Collapse
Affiliation(s)
- Marie Sarazin
- Université Paris Descartes, Sorbonne Paris Cité, France.
| | | | | | | |
Collapse
|
409
|
Abstract
According to Thomas Kuhn, the success of 'normal science,' the science we all practice on a daily basis, depends on the adherence to, and practice of, a paradigm accepted by the scientific community. When great scientific upheavals occur, they involve the rejection of the current paradigm in favor of a new paradigm that better integrates the facts available and better predicts the behavior of a particular scientific system. In the field of Alzheimer's disease, a recent example of such a paradigm shift has been the apparent rejection of the 'amyloid cascade hypothesis,' promulgated by Hardy and Higgins in 1992 to explain the etiology of Alzheimer's disease, in favor of what has been referred to as the 'oligomer cascade hypothesis'. This paradigm shift has been breathtaking in its rapidity, its pervasiveness in the Alzheimer's disease field, and its adoption in an increasing number of other fields, including those of Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and the prionoses. However, these facts do not mean, a priori, that the experiments extant, and any re-interpretation of them, should be accepted by rote as support for the new paradigm. In the discussion that follows, I consider the foundational studies leading to the oligomer cascade hypothesis and evaluate the current state of the paradigm. I argue here that, more often than not, insufficient rigor has been applied in studies upon which this new paradigm has been based. Confusion, rather than clarity, has resulted. If the field is to make progress forward using as its paradigmatic basis amyloid β-protein oligomerization, then an epistemological re-evaluation of the amyloid β-protein oligomer system is required.
Collapse
Affiliation(s)
- David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Dr. South, Room 445, Los Angeles, CA 90095, USA
| |
Collapse
|
410
|
Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, López-Deber MP, Reis P, Hickman DT, Adolfsson O, Chuard N, Ndao DM, Borghgraef P, Devijver H, Van Leuven F, Pfeifer A, Muhs A. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One 2013; 8:e72301. [PMID: 23977276 PMCID: PMC3747157 DOI: 10.1371/journal.pone.0072301] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer's disease. The unmet need of effective therapy for Alzheimer's disease, combined with problematic pharmacological approaches, led the field to explore immunotherapy, first against amyloid peptides and recently against protein Tau. Here we adapted the liposome-based amyloid vaccine that proved safe and efficacious, and incorporated a synthetic phosphorylated peptide to mimic the important phospho-epitope of protein Tau at residues pS396/pS404. We demonstrate that the liposome-based vaccine elicited, rapidly and robustly, specific antisera in wild-type mice and in Tau.P301L mice. Long-term vaccination proved to be safe, because it improved the clinical condition and reduced indices of tauopathy in the brain of the Tau.P301L mice, while no signs of neuro-inflammation or other adverse neurological effects were observed. The data corroborate the hypothesis that liposomes carrying phosphorylated peptides of protein Tau have considerable potential as safe and effective treatment against tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clara Theunis
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | - Natalia Crespo-Biel
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | - Peter Borghgraef
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | - Fred Van Leuven
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| | | | | |
Collapse
|
411
|
Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, Nicoll JAR, Boche D. Inflammatory components in human Alzheimer's disease and after active amyloid-β42 immunization. ACTA ACUST UNITED AC 2013; 136:2677-96. [PMID: 23943781 DOI: 10.1093/brain/awt210] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory processes are important in the pathogenesis of Alzheimer's disease and in response to amyloid-β immunotherapy. We investigated the expression of multiple inflammatory markers in the brains of 28 non-immunized patients with Alzheimer's disease and 11 patients with Alzheimer's disease immunized against amyloid-β42 (AN1792): microglial ionized calcium-binding adaptor Iba-1, lysosome marker CD68, macrophage scavenger receptor A, Fcγ receptors I (CD64) and II (CD32); and also immunoglobulin IgG, complement C1q and the T lymphocyte marker CD3 using immunohistochemistry. The data were analysed with regard to amyloid-β and phospho-tau pathology, severity of cerebral amyloid angiopathy and cortical microhaemorrhages. In non-immunized Alzheimer's disease cases, amyloid-β42 correlated inversely with CD32 and Iba-1, whereas phospho-tau correlated directly with all microglial markers, IgG, C1q and the number of T cells. In immunized Alzheimer's disease cases, amyloid-β42 load correlated directly with macrophage scavenger receptor A-positive clusters and inversely with C1q. The severity of cerebral amyloid angiopathy and microhaemorrhages did not relate to any of the analysed markers. Overall, the levels of CD68, macrophage scavenger receptor A, CD64, CD32 and the number of macrophage scavenger receptor A-positive plaque-related clusters were significantly lower in immunized than non-immunized cases, although there was no significant difference in Iba-1 load, number of Iba-1-positive cells, IgG load, C1q load or number of T cells. Our findings indicate that different microglial populations co-exist in the Alzheimer's disease brain, and that the local inflammatory status within the grey matter is importantly linked with tau pathology. After amyloid-β immunization, the microglial functional state is altered in association with reduced amyloid-β and tau pathology. The results suggest that, in the long term, amyloid-β immunotherapy results in downregulation of microglial activation and potentially reduces the inflammation-mediated component of the neurodegeneration of Alzheimer's disease.
Collapse
Affiliation(s)
- Elina Zotova
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 806, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V. Inflammatory process in Alzheimer's Disease. Front Integr Neurosci 2013; 7:59. [PMID: 23964211 PMCID: PMC3741576 DOI: 10.3389/fnint.2013.00059] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Histopathologically is characterized by the presence of two major hallmarks, the intracellular neurofibrillary tangles (NFTs) and extracellular neuritic plaques (NPs) surrounded by activated astrocytes and microglia. NFTs consist of paired helical filaments of truncated tau protein that is abnormally hyperphosphorylated. The main component in the NP is the amyloid-β peptide (Aβ), a small fragment of 40–42 amino acids with a molecular weight of 4 kD. It has been proposed that the amyloid aggregates and microglia activation are able to favor the neurodegenerative process observed in AD patients. However, the role of inflammation in AD is controversial, because in early stages the inflammation could have a beneficial role in the pathology, since it has been thought that the microglia and astrocytes activated could be involved in Aβ clearance. Nevertheless the chronic activation of the microglia has been related with an increase of Aβ and possibly with tau phosphorylation. Studies in AD brains have shown an upregulation of complement molecules, pro-inflammatory cytokines, acute phase reactants and other inflammatory mediators that could contribute with the neurodegenerative process. Clinical trials and animal models with non-steroidal anti-inflammatory drugs (NSAIDs) indicate that these drugs may decrease the risk of developing AD and apparently reduce Aβ deposition. Finally, further studies are needed to determine whether treatment with anti-inflammatory strategies, may decrease the neurodegenerative process that affects these patients.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados Mexico City, Mexico
| | | | | | | | | |
Collapse
|
413
|
Lambracht-Washington D, Rosenberg RN. Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease. Immunotargets Ther 2013; 2013:105-114. [PMID: 24926455 PMCID: PMC4051350 DOI: 10.2147/itt.s31428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy might provide an effective treatment for Alzheimer’s disease (AD). A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42), which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
414
|
Abstract
Alzheimer's disease (AD) is a major cause of morbidity in the elderly. AD affects aver 5 million persons in the United States, but because it increases in incidence in the elderly, and the "graying" population, AD is projected to increase in prevalence by many-fold over the coming decades. AD causes progressive mental impairment, resulting in the inability of persons to care for themselves. As a consequence, AD results in enormous costs to society due to both lost productivity, and required care. Thus, improved management and treatment is essential. In this review we will briefly review current understanding of the disease, including roles of beta-amyloid and tau proteins. We will then discuss current therapies in use, including the evidence for treatments with supplements, established drugs, and investigational therapeutic strategies, recently completed and ongoing.
Collapse
|
415
|
A tetra(ethylene glycol) derivative of benzothiazole aniline enhances Ras-mediated spinogenesis. J Neurosci 2013; 33:9306-18. [PMID: 23719799 DOI: 10.1523/jneurosci.1615-12.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tetra(ethylene glycol) derivative of benzothiazole aniline, BTA-EG4, is a novel amyloid-binding small molecule that can penetrate the blood-brain barrier and protect cells from Aβ-induced toxicity. However, the effects of Aβ-targeting molecules on other cellular processes, including those that modulate synaptic plasticity, remain unknown. We report here that BTA-EG4 decreases Aβ levels, alters cell surface expression of amyloid precursor protein (APP), and improves memory in wild-type mice. Interestingly, the BTA-EG4-mediated behavioral improvement is not correlated with LTP, but with increased spinogenesis. The higher dendritic spine density reflects an increase in the number of functional synapses as determined by increased miniature EPSC (mEPSC) frequency without changes in presynaptic parameters or postsynaptic mEPSC amplitude. Additionally, BTA-EG4 requires APP to regulate dendritic spine density through a Ras signaling-dependent mechanism. Thus, BTA-EG4 may provide broad therapeutic benefits for improving neuronal and cognitive function, and may have implications in neurodegenerative disease therapy.
Collapse
|
416
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|
417
|
Rozenstein-Tsalkovich L, Grigoriadis N, Lourbopoulos A, Nousiopoulou E, Kassis I, Abramsky O, Karussis D, Rosenmann H. Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp Neurol 2013; 248:451-6. [PMID: 23876516 DOI: 10.1016/j.expneurol.2013.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
Abstract
The recent studies of others and of us showing robust efficacy of anti-tangle immunotherapy, directed against phosphorylated (phos)-tau protein, may pave the way to clinical trials of phos-tau immunotherapy in Alzheimer's-disease and other tauopathies. At this stage addressing the safety of the phos-tau-immunotherapy is highly needed, particularly since we have previously shown the neurotoxic potential of tau-immunotherapy, specifically of full-length unphosphorylated-tau vaccine under a CNS-proinflammatory milieu [induced by emulsification in complete-Freund's-adjuvant (CFA) and pertussis-toxin (PT)] in young wild-type (WT)-mice. The aim of our current study was to address safety aspects of the phos-tau-immunotherapy in both neurofibrillary-tangle (NFT)-mice as well as in WT-mice, under challenging conditions of repeated immunizations with phos-tau peptides under a CNS-proinflammatory milieu. NFT- and WT-mice were repeatedly immunized (7 injections in adult-, 4 in aged-mice) with phos-tau peptides emulsified in CFA-PT. A paralytic disease was evident in the phos-tau-immunized adult NFT-mice, developing progressively to 26.7% with the number of injections. Interestingly, the WT-mice were even more prone to develop neuroinflammation following phos-tau immunization, affecting 75% of the immunized mice. Aged mice were less prone to neuroinflammatory manifestations. Anti-phos-tau antibodies, detected in the serum of immunized mice, partially correlated with the neuroinflammation in WT-mice. This points that repeated phos-tau immunizations in the frame of a proinflammatory milieu may be encephalitogenic to tangle-mice, and more robustly to WT-mice, indicating that - under certain conditions - the safety of phos-tau immunotherapy is questionable.
Collapse
Affiliation(s)
- Lea Rozenstein-Tsalkovich
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108:21-43. [PMID: 23850509 DOI: 10.1016/j.pneurobio.2013.06.004] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
419
|
Kaufman SK, Diamond MI. Prion-like propagation of protein aggregation and related therapeutic strategies. Neurotherapeutics 2013; 10:371-82. [PMID: 23801258 PMCID: PMC3701767 DOI: 10.1007/s13311-013-0196-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by the progressive accumulation of aggregated protein. Recent evidence suggests the prion-like propagation of protein misfolding underlies the spread of pathology observed in these diseases. This review traces our understanding of the mechanisms that underlie this phenomenon and discusses related therapeutic strategies that derive from it.
Collapse
Affiliation(s)
- Sarah K. Kaufman
- Department of Neurology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, MO 63110 USA
| | - Marc I. Diamond
- Department of Neurology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, MO 63110 USA
| |
Collapse
|
420
|
Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:712-21. [DOI: 10.1016/j.nano.2012.11.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/10/2012] [Accepted: 11/13/2012] [Indexed: 01/08/2023]
|
421
|
Personalized medicine in Alzheimer's disease and depression. Contemp Clin Trials 2013; 36:616-23. [PMID: 23816492 DOI: 10.1016/j.cct.2013.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
Abstract
Latest research in the mental health field brings new hope to patients and promises to revolutionize the field of psychiatry. Personalized pharmacogenetic tests that aid in diagnosis and treatment choice are now becoming available for clinical practice. Amyloid beta peptide biomarkers in the cerebrospinal fluid of patients with Alzheimer's disease are now available. For the first time, radiologists are able to visualize amyloid plaques specific to Alzheimer's disease in live patients using Positron Emission Tomography-based tests approved by the FDA. A novel blood-based assay has been developed to aid in the diagnosis of depression based on activation of the HPA axis, metabolic, inflammatory and neurochemical pathways. Serotonin reuptake inhibitors have shown increased remission rates in specific ethnic subgroups and Cytochrome P450 gene polymorphisms can predict antidepressant tolerability. The latest research will help to eradicate "trial and error" prescription, ushering in the most personalized medicine to date. Like all major medical breakthroughs, integration of new algorithms and technologies requires sound science and time. But for many mentally ill patients, diagnosis and effective therapy cannot happen fast enough. This review will describe the newest diagnostic tests, treatments and clinical studies for the diagnosis and treatment of Alzheimer's disease and unipolar, major depressive disorder.
Collapse
Key Words
- 5-HTT
- 5-HTTLPR
- 5-Hydroxytryptamine Transporter gene
- AD
- ADNI
- ADRDA
- Alzheimer's Disease Neuroimaging Initiative
- Alzheimer's Disease and Related Disorders Association
- Alzheimer's disease
- Aβ40
- Aβ42
- CREB
- CSF
- CT
- CV
- CYP2C19
- CYP2D6
- CYP450
- Coefficient of Variation
- Computed Tomography
- Cytochrome P450
- Cytochrome P450 2C19
- Cytochrome P450 2D6
- DNA
- DSM
- DSM-IV-TR
- DSM-V
- Deoxyribonucleic Acid
- Depression
- Diagnostic and Statistical Manual of Mental Disorders
- Diagnostic and Statistical Manual of Mental Disorders—Fifth Edition
- Diagnostic and Statistical Manual of Mental Disorders—Fourth Edition-Text Revision
- ELISA
- Enzyme-Linked Immunosorbent Assay
- Epigenetics
- FDA
- FK506-binding protein
- FKBP5
- Food and Drug Administration
- GRIA
- GRIK
- HPA
- IL28RA
- KCNK2
- MDDScore
- MRI
- MTC
- Magnetic Resonance Imaging
- Major Depressive Disorder Score
- Methylthioninium Chloride
- NINCDS
- National Institute of Neurological and Communicative Disorders and Stroke
- P-tau181P
- PAPLN
- PET
- Personalized medicine
- Positron Emission Tomography
- QC
- Quality Control
- RDoC
- RNA
- Research Domain Criteria
- Ribonucleic Acid
- SSRI
- STAR*D
- Selective Serotonin Reuptake Inhibitor
- Sequenced Treatment Alternatives to Relieve Depression
- Serotonin-Transporter-Gene-Linked Polymorphic Region
- T-tau
- Tau phosphorylated at threonine 181
- VNTR
- WHO
- World Health Organization
- beta-amyloid, amino acids 1–40
- beta-amyloid, amino acids 1–42
- cAMP response element-binding protein
- cerebrospinal fluid
- glutamate receptor, ionotropic, AMPA
- glutamate receptor, ionotropic, kainate
- hypothalamic–pituitary–adrenal
- interleukin 28 receptor, alpha (interferon, lambda receptor)
- papilin, proteoglycan-like sulfated glycoprotein
- potassium channel, subfamily K, member 2
- total Tau
- variable nucleotide terminal repeat
Collapse
|
422
|
Morkuniene R, Zvirbliene A, Dalgediene I, Cizas P, Jankeviciute S, Baliutyte G, Jokubka R, Jankunec M, Valincius G, Borutaite V. Antibodies bound to Aβ oligomers potentiate the neurotoxicity of Aβ by activating microglia. J Neurochem 2013; 126:604-15. [DOI: 10.1111/jnc.12332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Ramune Morkuniene
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Indre Dalgediene
- Vilnius University; Institute of Biotechnology; Vilnius Lithuania
| | - Paulius Cizas
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Silvija Jankeviciute
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Giedre Baliutyte
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Ramunas Jokubka
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Marija Jankunec
- Vilnius University; Institute of Biochemistry; Vilnius Lithuania
| | | | - Vilmante Borutaite
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
423
|
Qiu Z, Chen X, Zhou Y, Lin J, Ding D, Yang S, Chen F, Wang M, Zhu F, Yu X, Zhou Z, Liao Y. Therapeutic vaccines against human and rat renin in spontaneously hypertensive rats. PLoS One 2013; 8:e66420. [PMID: 23825541 PMCID: PMC3692469 DOI: 10.1371/journal.pone.0066420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/05/2013] [Indexed: 12/15/2022] Open
Abstract
Vaccination provides a promising approach for treatment of hypertension and improvement in compliance. As the initiation factor of renin-angiotensin system, renin plays a critical role in hypertension. In this study, we selected six peptides (rR32, rR72, rR215, hR32, hR72, and hR215) belonging to potential epitopes of rat and human renin. The main criteria were as follows: (1) include one of renin catalytic sites or the flap sequence; (2) low/no-similarity when matched with the host proteome; (3) ideal antigenicity and hydrophilicity. The peptides were coupled to keyhole limpet hemocyanin and injected into SpragueDawley (SD) rats, spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats. The antisera titers and the binding capacity with renin were detected. The effects of the anti-peptides antibodies on plasma renin activity (PRA) and blood pressure were also determined. All peptides elicited strong antibody responses. The antisera titers ranged from 1:32,000 to 1:80,000 in SD rats on day 63. All antisera could bind to renin in vitro. Compared with the control antibody, the antibodies against the rR32, hR32, rR72 and hR72 peptides inhibited PRA level by up to about 50%. Complete cross-reactivity of the anti-rR32 antibody and the anti-hR32 antibody was confirmed. The epitopes rR32 and hR32 vaccines significantly decreased systolic blood pressure (SBP) of SHRs up to 15mmHg (175±2 vesus 190±3 mmHg, P = 0.035; 180±2 vesus 195±3 mmHg, P = 0.039), while no obvious effect on SD rats. Additionally, no significant immune-mediated damage was detected in the vaccinated animals. In conclusion, the antigenic peptide hR32 vaccine mimicking the 32Asp catalytic site of human renin may constitute a novel tool for the development of a renin vaccine.
Collapse
Affiliation(s)
- Zhihua Qiu
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yanzhao Zhou
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ding
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Yang
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Fen Chen
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xian Yu
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (YL); (ZZ)
| | - Yuhua Liao
- Laboratory of Cardiovascular Immunology, Key Laboratory of Molecular Targeted Therapies of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (YL); (ZZ)
| |
Collapse
|
424
|
Guo W, Sha S, Xing X, Jiang T, Cao Y. Reduction of cerebral Aβ burden and improvement in cognitive function in Tg-APPswe/PSEN1dE9 mice following vaccination with a multivalent Aβ3-10 DNA vaccine. Neurosci Lett 2013; 549:109-15. [PMID: 23800542 DOI: 10.1016/j.neulet.2013.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/28/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
To develop a safe and efficient Aβ vaccine for Alzheimer's disease, we constructed a plasmid DNA vaccine encoding ten repeats of Aβ3-10 and three copies of C3d-p28 as a molecular adjuvant and administered it intramuscularly in 12-month-old female Tg-APPswe/PSEN1dE9 mice. Therapeutic immunization with p(Aβ3-10)10-C3d-p28.3 stimulated a Th2 immune response that elicited therapeutic levels of anti-Aβ antibodies and improved cognitive function. In addition, the vaccine reduced the cerebral Aβ burden and astrocytosis without increasing the incidence of microhemorrhage. Our results indicate that the p(Aβ3-10)10-C3d-p28.3 vaccine is a promising immunotherapeutic option for Aβ vaccination in Alzheimer's disease.
Collapse
Affiliation(s)
- Wanshu Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liao Ning Province, China
| | | | | | | | | |
Collapse
|
425
|
Joseph-Mathurin N, Dorieux O, Trouche SG, Boutajangout A, Kraska A, Fontès P, Verdier JM, Sigurdsson EM, Mestre-Francés N, Dhenain M. Amyloid beta immunization worsens iron deposits in the choroid plexus and cerebral microbleeds. Neurobiol Aging 2013; 34:2613-22. [PMID: 23796662 DOI: 10.1016/j.neurobiolaging.2013.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/20/2013] [Accepted: 05/16/2013] [Indexed: 11/15/2022]
Abstract
Anti-amyloid beta (Aβ) immunotherapy provides potential benefits in Alzheimer's disease patients. Nevertheless, strategies based on Aβ1-42 peptide induced encephalomyelitis and possible microhemorrhages. These outcomes were not expected from studies performed in rodents. It is critical to determine if other animal models better predict side effects of immunotherapies. Mouse lemur primates can develop amyloidosis with aging. Here we used old lemurs to study immunotherapy based on Aβ1-42 or Aβ-derivative (K6Aβ1-30). We followed anti-Aβ40 immunoglobulin G and M responses and Aβ levels in plasma. In vivo magnetic resonance imaging and histology were used to evaluate amyloidosis, neuroinflammation, vasogenic edema, microhemorrhages, and brain iron deposits. The animals responded mainly to the Aβ1-42 immunogen. This treatment induced immune response and increased Aβ levels in plasma and also microhemorrhages and iron deposits in the choroid plexus. A complementary study of untreated lemurs showed iron accumulation in the choroid plexus with normal aging. Worsening of iron accumulation is thus a potential side effect of Aβ-immunization at prodromal stages of Alzheimer's disease, and should be monitored in clinical trials.
Collapse
Affiliation(s)
- Nelly Joseph-Mathurin
- CEA, DSV, I2BM, MIRCen, 18 route du panorama, 92265 Fontenay-aux-Roses cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Jang H, Connelly L, Arce FT, Ramachandran S, Lal R, Kagan BL, Nussinov R. Alzheimer's disease: which type of amyloid-preventing drug agents to employ? Phys Chem Chem Phys 2013; 15:8868-77. [PMID: 23450150 PMCID: PMC3663909 DOI: 10.1039/c3cp00017f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current paradigm in the amyloid hypothesis brands small β-amyloid (Aβ) oligomers as the toxic species in Alzheimer's disease (AD). These oligomers are fibril-like; contain β-sheet structure, and present exposed hydrophobic surface. Oligomers with this motif are capable of penetrating the cell membrane, gathering to form toxic ion channels. Current agents suppressing precursor Aβ cleavage have only met partial success; and to date, those targeting the peptides and their assemblies in the aqueous environment of the extracellular space largely fail in clinical trials. One possible reason is failure to reach membrane-embedded targets of disease-'infected' cells. Here we provide an overview, point to the need to account for the lipid environment when aiming to prevent the formation of toxic channels, and propose a combination therapy to target the species spectrum.
Collapse
Affiliation(s)
- Hyunbum Jang
- Center for Cancer Research, Nanobiology Program, Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
427
|
MER5101, a novel Aβ1-15:DT conjugate vaccine, generates a robust anti-Aβ antibody response and attenuates Aβ pathology and cognitive deficits in APPswe/PS1ΔE9 transgenic mice. J Neurosci 2013; 33:7027-37. [PMID: 23595760 DOI: 10.1523/jneurosci.5924-12.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Active amyloid-β (Aβ) immunotherapy is under investigation to prevent or treat early Alzheimer's disease (AD). In 2002, a Phase II clinical trial (AN1792) was halted due to meningoencephalitis in ∼6% of the AD patients, possibly caused by a T-cell-mediated immunological response. Thus, generating a vaccine that safely generates high anti-Aβ antibody levels in the elderly is required. In this study, MER5101, a novel conjugate of Aβ1-15 peptide (a B-cell epitope fragment) conjugated to an immunogenic carrier protein, diphtheria toxoid (DT), and formulated in a nanoparticular emulsion-based adjuvant, was administered to 10-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (Wt) mice. High anti-Aβ antibody levels were observed in both vaccinated APPswe/PS1ΔE9 Tg and Wt mice. Antibody isotypes were mainly IgG1 and IgG2b, suggesting a Th2-biased response. Restimulation of splenocytes with the Aβ1-15:DT conjugate resulted in a strong proliferative response, whereas proliferation was absent after restimulation with Aβ1-15 or Aβ1-40/42 peptides, indicating a cellular immune response against DT while avoiding an Aβ-specific T-cell response. Moreover, significant reductions in cerebral Aβ plaque burden, accompanied by attenuated microglial activation and increased synaptic density, were observed in MER5101-vaccinated APPswe/PS1ΔE9 Tg mice compared with Tg adjuvant controls. Last, MER5101-immunized APPswe/PS1ΔE9 Tg mice showed improvement of cognitive deficits in both contextual fear conditioning and the Morris water maze. Our novel, highly immunogenic Aβ conjugate vaccine, MER5101, shows promise for improving Aβ vaccine safety and efficacy and therefore, may be useful for preventing and/or treating early AD.
Collapse
|
428
|
Rasool S, Martinez-Coria H, Milton S, Glabe CG. Nonhuman amyloid oligomer epitope reduces Alzheimer's-like neuropathology in 3xTg-AD transgenic mice. Mol Neurobiol 2013; 48:931-40. [PMID: 23771815 DOI: 10.1007/s12035-013-8478-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
Abstract
Accumulation of beta-amyloid (Aβ) is an important pathological event in Alzheimer's disease (AD). It is now well known that vaccination against fibrillar Aβ prevents amyloid accumulation and preserves cognitive function in transgenic mouse models. To study the effect of vaccination against generic oligomer epitopes, Aβ oligomers, islet amyloid polypeptide oligomers, random peptide oligomer (3A), and Aβ fibrils were used to vaccinate 3xTg-AD, which develop a progressive accumulation of plaques and cognitive impairment. Subcutaneous administration of these antigens markedly reduced total plaque load (Aβ burden) and improved cognitive function in the 3xTg-AD mouse brains as compared to controls. We demonstrated that vaccination with this nonhuman amyloid oligomer generated high titers of specifically antibodies recognizing Aβ oligomers, which in turn inhibited accumulation of Aβ pathology in mice. In addition to amyloid plaques, another hallmark of AD is tau pathology. It was found that there was a significant decline in the level of hyper-phosphorylated tau following vaccination. We have previously shown that immunization with 3A peptide improves cognitive function and clears amyloid plaques in Tg2576 mice, which provides a novel strategy of AD therapy. Here, we have shown that vaccination with 3A peptide in 3xTg-AD mice not only clears amyloid plaques but also extensively clears abnormal tau in brain.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA,
| | | | | | | |
Collapse
|
429
|
Nisbet RM, Nigro J, Breheney K, Caine J, Hattarki MK, Nuttall SD. Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity. Protein Eng Des Sel 2013; 26:571-80. [PMID: 23766374 DOI: 10.1093/protein/gzt025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anti-amyloid-β immunotherapies are a promising therapeutic approach for the treatment and prevention of Alzheimer's disease (AD). Single chain antibody fragments (scFv) are an attractive alternative to whole antibodies due to their small size, single polypeptide format and inability to stimulate potentially undesirable Fc-mediated immune effector functions. We have generated the scFv derivative of anti-Aβ monoclonal antibody, 1E8, known to target residues 17-22 of Aβ. Here we show that the soluble 1E8 scFv binds to the central region of Aβ with an affinity of ~55 nM and significantly reduces fibril formation of Aβ(1-42). Furthermore, 1E8 scFv ameliorates Aβ(1-42)-mediated toxicity in the PC12 cell line and murine primary neuronal cultures. This ability to both target the central region of Aβ and prevent Aβ(1-42) neurotoxicity in vitro makes it a promising therapeutic antibody building block for further functionalization, toward the treatment of AD.
Collapse
Affiliation(s)
- R M Nisbet
- Division of Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
430
|
The National Institute on Aging-Alzheimer's Association research criteria for mild cognitive impairment due to Alzheimer's disease: predicting the outcome. Eur Arch Psychiatry Clin Neurosci 2013; 263:325-33. [PMID: 22932720 DOI: 10.1007/s00406-012-0349-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/10/2012] [Indexed: 11/27/2022]
Abstract
The National Institute on Aging-Alzheimer's Association (NIA-AA) clinical research criteria for mild cognitive impairment (MCI) due to Alzheimer's disease (AD) incorporate the use of biomarkers to classify patients according to the likelihood of the presence of AD pathology. The aim of the study was to compare the risk of progression to AD dementia between the four NIA-AA MCI subgroups using data from the AD Neuroimaging Initiative. Patients with MCI were categorised according to the NIA-AA criteria into subgroups with high, intermediate, and low likelihood of the presence of AD pathology (MCI-high, MCI-intermediate, and MCI-unlikely, respectively) or into a group of patients that only met the MCI-core clinical criteria (MCI-core). Data of follow-up visits conducted 6-60 months after baseline were used to compare the relative risk of future AD dementia between the four subgroups employing a Cox regression model. The MCI-high subgroup (N = 22) had a 2.3 times higher risk of developing AD dementia compared with the MCI-core subgroup (N = 327; P = 0.002), while there was a trend for a higher risk in the MCI-high subgroup in contrast to the MCI-intermediate subgroup (N = 31, P = 0.08). No patients in the MCI-unlikely subgroup (N = 17) progressed to AD dementia. Patients with MCI-high have a higher risk for developing AD dementia. The new NIA-AA MCI criteria represent a valuable research instrument that could be incorporated into the diagnostic process of the MCI syndrome after optimisation and refinement.
Collapse
|
431
|
Abstract
Dementia is a progressive, irreversible decline in cognition that, by definition, impacts on a patient's pre-existing level of functioning. The clinical syndrome of dementia has several aetiologies of which Alzheimer's disease (AD) is the most common. Drug development in AD is based on evolving pathophysiological theory. Disease modifying approaches include the targeting of amyloid processing, aggregation of tau, insulin signalling, neuroinflammation and neurotransmitter dysfunction, with efforts thus far yielding abandoned hopes and ongoing promise. Reflecting its dominance on the pathophysiological stage the amyloid cascade is central to many of the emerging drug therapies. The long preclinical phase of the disease requires robust biomarker means of identifying those at risk if timely intervention is to be possible.
Collapse
|
432
|
Anti-Aβ antibodies induced by Aβ-HBc virus-like particles prevent Aβ aggregation and protect PC12 cells against toxicity of Aβ1-40. J Neurosci Methods 2013; 218:48-54. [PMID: 23701997 DOI: 10.1016/j.jneumeth.2013.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/22/2022]
Abstract
β-Amyloid peptide (Aβ) immunization is regarded as the most promising therapy to Alzheimer' s disease. The full length Aβ as antigen might induce meningoencepholontis adverse effect since the middle and C-terminal fragments of Aβ contain T cell epitopes. While N-terminal fragment of Aβ, containing B cell epitope, has weak or no immunogenicity. To improve the immunogenicity, we used HBV core antigen as carrier to make fusion protein containing 2 Aβ1-15. The fusion protein was expressed in Escherichia coli harboring the recombinant plasmid pET/c-2Aβ15-c. Transmission electron microscope (TEM) showed that fusion protein could form virus-like particles (VLPs). After 7-weeks immunization with Aβ-HBc VLPs through subcutaneous injection, the titer of anti-Aβ antibody in sera of BALB/c mice reached up to 10(5), higher than Aβ peptide immunization. Aβ-HBc VLPs immunization did not elicit Aβ-specific T cell proliferation. The main isotypes of antibody in mice immunized with Aβ-HBc VLPs were IgG1 and IgG2b, while isotype in mice immunized with Aβ1-42 was IgG2a. When the antisera from mice immunized with Aβ-HBc VLPs were co-incubated for 1 week at 37°C with Aβ, fibers of aggregated Aβ was reduced or diminished. The antibodies also prevented PC12 cells from injury by toxicity of Aβ. In conclusion, recombinant c-2Aβ15-c gene can be expressed in E. coli. The expressed protein could form VLPs and has strong immunogenicity. The antisera prevented Aβ fiber formation and protected the PC12 cells against toxicity of Aβ. This study lays the foundation for the experimental study of AD gene engineering vaccine.
Collapse
|
433
|
Abstract
The immune system plays a significant role in Alzheimer disease (AD). β-Amyloid deposition in the cortex is thought to be an initiating event in AD and the widely believed amyloid hypothesis proposes removal of amyloid may delay disease progression. Human trials of active or passive immune agents have failed to show benefit and increased adverse events of vasogenic edema and microhemorrhages. Evidence suggests the illness may be too advanced by the time patients are symptomatic with dementia. Future directions include better understanding of how and where immunotherapies should be targeted and treating patients at earlier stages of the illness.
Collapse
|
434
|
Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer's disease: What are the most promising targets? IMMUNITY & AGEING 2013; 10:18. [PMID: 23663286 PMCID: PMC3681567 DOI: 10.1186/1742-4933-10-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/01/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer’s disease (AD) is the most common dementia in the industrialized world, with prevalence rates well over 30% in the over 80-years-old population. The dementia causes enormous costs to the social healthcare systems, as well as personal tragedies for the patients, families and caregivers. AD is strongly associated with Amyloid-beta (Aβ) protein aggregation, which results in extracellular plaques in the brain, and according to the amyloid cascade hypothesis appeared to be a promising target for the development of AD therapeutics. Within the past decade convincing data has arisen positioning the soluble prefibrillar Aβ-aggregates as the prime toxic agents in AD. However, different Aβ aggregate species are described but their remarkable metastability hampers the identification of a target species for immunization. Passive immunotherapy with monoclonal antibodies (mAbs) against Aβ is in late clinical development but recently the two most advanced mAbs, Bapineuzumab and Solanezumab, targeting an N-terminal or central epitope, respectively, failed to meet their target of improving or stabilizing cognition and function. Preliminary data from off-label treatment of a small cohort for 3 years with intravenous polyclonal immunoglobulins (IVIG) that appear to target different conformational epitopes indicate a cognitive stabilization. Thus, it might be the more promising strategy reducing the whole spectrum of Aβ-aggregates than to focus on a single aggregate species for immunization.
Collapse
Affiliation(s)
- Jens Moreth
- Institute of Applied Biotechnology, Faculty for Biotechnology, Biberach University of Applied Science, Karlstrasse 11, Biberach/Riss, D-88400, Germany.
| | | | | |
Collapse
|
435
|
Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer's disease: prelude to a clinical trial. J Neurosci 2013; 33:4923-34. [PMID: 23486963 DOI: 10.1523/jneurosci.4672-12.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Alzheimer's disease (AD) process is understood to involve the accumulation of amyloid plaques and tau tangles in the brain. However, attempts at targeting the main culprits, neurotoxic Aβ peptides, have thus far proven unsuccessful for improving cognitive function. Recent clinical trials with passively administrated anti-Aβ antibodies failed to slow cognitive decline in mild to moderate AD patients, but suggest that an immunotherapeutic approach could be effective in patients with mild AD. Using an AD mouse model (Tg2576), we tested the immunogenicity (cellular and humoral immune responses) and efficacy (AD-like pathology) of clinical grade Lu AF20513 vaccine. We found that Lu AF20513 induces robust "non-self" T-cell responses and the production of anti-Aβ antibodies that reduce AD-like pathology in the brains of Tg2576 mice without inducing microglial activation and enhancing astrocytosis or cerebral amyloid angiopathy. A single immunization with Lu AF20513 induced strong humoral immunity in mice with preexisting memory T-helper cells. In addition, Lu AF20513 induced strong humoral responses in guinea pigs and monkeys. These data support the translation of Lu AF20513 to the clinical setting with the aims of: (1) inducing therapeutically potent anti-Aβ antibody responses in patients with mild AD, particularly if they have memory T-helper cells generated after immunizations with conventional tetanus toxoid vaccine, and (2) preventing pathological autoreactive T-cell responses.
Collapse
|
436
|
|
437
|
Tayeb HO, Murray ED, Price BH, Tarazi FI. Bapineuzumab and solanezumab for Alzheimer's disease: is the 'amyloid cascade hypothesis' still alive? Expert Opin Biol Ther 2013; 13:1075-84. [PMID: 23574434 DOI: 10.1517/14712598.2013.789856] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The 'amyloid cascade hypothesis' remains the leading hypothesis to explain the pathophysiology of Alzheimer's disease (AD). Immunotherapeutic agents have been developed to remove the neurotoxic amyloid β42 protein and prevent the hypothesized amyloid β42-induced neurotoxicity and neurodegeneration. The most notable of these immunotherapies are bapineuzumab and solanezumab. AREAS COVERED This article briefly reviews the experimental agents in development for treatment of AD and then discusses the results of bapineuzumab and solanezumab in AD patients, as reported in preclinical studies, clinical trials and press releases. EXPERT OPINION Phase III trials showed that bapineuzumab failed to improve cognitive and functional performances in AD patients, and was associated with a high incidence of amyloid-related imaging abnormalities (ARIA). Solanezumab's two Phase III trials in AD patients failed to meet endpoints when analyzed independently. However, analysis of pooled data from both trials showed a significant reduction in cognitive decline in mild AD patients. The improvement was associated with an increase in plasma amyloid-β (Aβ) levels and a low incidence of ARIA in solanezumab-treated patients. The marginal benefits of solanezumab are encouraging to support continued evaluation in future studies, and offer small support in favor of the ongoing viability of the 'amyloid cascade hypothesis' of AD.
Collapse
Affiliation(s)
- Haythum O Tayeb
- McLean Hospital, Harvard Medical School, Department of Psychiatry, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | |
Collapse
|
438
|
Inhibition of neointima formation through DNA vaccination for apolipoprotein(a): a new therapeutic strategy for lipoprotein(a). Sci Rep 2013; 3:1600. [PMID: 23549288 PMCID: PMC3615337 DOI: 10.1038/srep01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is an unique lipoprotein consisting of the glycoprotein apolipoprotein(a) [apo(a)] in low-density lipoprotein. Although Lp(a) is a well-known independent risk factor for cardiovascular disease; however, there is no drugs to decrease plasma Lp(a) level. Thus, to inhibit the biological activity of Lp(a), we developed DNA vaccine for apo(a) by the targeting to the selected 12 hydrophilic amino acids in the kringle-4 type 2 domain of apo(a). Hepatitis B virus core protein was used as an epitope carrier to enhance the immunogenicity. Intramuscular immunization with apo(a) vaccine resulted in the significant inhibition of neointima formation in carotid artery ligation model using Lp(a) transgenic mice, associated with anti-apo(a) antibody and decrease in vascular Lp(a) deposition. Overall, this study provided the first evidence that the pro-atherosclerotic actions of Lp(a) could be prevented by DNA vaccine directed against apo(a), suggesting a novel therapeutic strategy to treat cardiovascular diseases related to high Lp(a).
Collapse
|
439
|
Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J. Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators Inflamm 2013; 2013:260925. [PMID: 23690659 PMCID: PMC3649701 DOI: 10.1155/2013/260925] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Neuroinflammation, a specialized immune response that takes place in the central nervous system, has been linked to neurodegenerative diseases, and specially, it has been considered as a hallmark of Alzheimer disease, the most common cause of dementia in the elderly nowadays. Furthermore, neuroinflammation has been demonstrated to affect important processes in the brain, such as the formation of new neurons, commonly known as adult neurogenesis. For this, many therapeutic approaches have been developed in order to avoid or mitigate the deleterious effects caused by the chronic activation of the immune response. Considering this, in this paper we revise the relationships between neuroinflammation, Alzheimer disease, and adult neurogenesis, as well as the current therapeutic approaches that have been developed in the field.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - Félix Hernández
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - Jesús Avila
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| |
Collapse
|
440
|
Garcia-Alloza M, Borrelli LA, Thyssen DH, Hickman SE, El Khoury J, Bacskai BJ. Four-dimensional microglia response to anti-Aβ treatment in APP/PS1xCX3CR1/GFP mice. INTRAVITAL 2013; 2. [PMID: 28944103 DOI: 10.4161/intv.25693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Senile plaques, mainly composed of amyloid-β (Aβ), are a major hallmark of Alzheimer disease (AD), and immunotherapy is a leading therapeutic approach for Aβ clearance. Although the ultimate mechanisms for Aβ clearance are not well known, characteristic microglia clusters are observed in the surround of senile plaques, and are implicated both in the elimination of Aβ as well as the deleterious inflammatory effects observed in AD patients after active immunization. Therefore, analyzing the direct effect of immunotherapy on microglia, using longitudinal in vivo multiphoton microscopy can provide important information regarding the role of microglia in immunotherapy. While microglia were observed to surround senile plaques, topical anti-Aβ antibody administration, which led to a reduction in plaque size, directed microglia toward senile plaques, and the overall size of microglia and number of processes were increased. In some cases, we observed clusters of microglia in areas of the brain that did not have detectable amyloid aggregates, but this did not predict the deposition of new plaques in the area within a week of imaging, indicating that microglia react to but do not precipitate amyloid aggregation. The long-term presence of large microglial clusters in the surrounding area of senile plaques suggests that microglia cannot effectively remove Aβ unless anti-Aβ antibody is administered. All together, these data suggest that although there is a role for microglia in Aβ clearance, it requires an intervention like immunotherapy to be effective.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA.,Division of Physiology, School of Medicine, University of Cadiz, Cádiz, Spain
| | - Laura A Borrelli
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Diana H Thyssen
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Suzanne E Hickman
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Joseph El Khoury
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| |
Collapse
|
441
|
De Vries R, Ryan KA, Stanczyk A, Appelbaum PS, Damschroder L, Knopman DS, Kim SYH. Public's approach to surrogate consent for dementia research: cautious pragmatism. Am J Geriatr Psychiatry 2013; 21:364-72. [PMID: 23498383 PMCID: PMC3357450 DOI: 10.1016/j.jagp.2012.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 10/20/2011] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To describe how members of the older general public deliberate with one another in finding solutions to the dilemma of involving persons with decisional incapacity in dementia research. DESIGN, SETTING, AND PARTICIPANTS One hundred sixty persons age 50 years and older who participated in an all-day deliberative democracy session on the ethics of surrogate consent for dementia research. The deliberative democracy day consisted of both extensive, interactive education with experts in clinical research and ethics, as well as small group deliberations. MEASUREMENTS Audiotaped small group deliberations were transcribed and analyzed and the main thematic elements were coded. RESULTS During deliberation, participants acknowledged the limitations of advanced research directives and discussed ways to improve their use. Although there was consensus about the necessity of surrogate consent, the participants recognized potential pitfalls and looked for ways to safeguard the process. Participants supporting surrogate consent for research emphasized societal and individual benefits, the importance of assent, and trust in surrogates and the oversight system. Other participants felt that the high risk of some research scenarios was not sufficiently offset by benefits to patients or society. CONCLUSIONS Members of the older general public are able to make use of in-depth education and peer deliberation to provide reasoned and informed opinions on the ethical use of surrogate consent for dementia research. The public's approach to surrogate consent is one of cautious pragmatism: an overall trust in science and future surrogates with awareness of the potential pitfalls, suggesting that their trust cannot be taken for granted.
Collapse
Affiliation(s)
- Raymond De Vries
- Center for Bioethics and Social Sciences in Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kerry A. Ryan
- Center for Bioethics and Social Sciences in Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aimee Stanczyk
- Center for Bioethics and Social Sciences in Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul S. Appelbaum
- Division of Law, Ethics, and Psychiatry, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Laura Damschroder
- Health Services Research and Development, Ann Arbor VA Medical Center, Ann Arbor, Michigan, USA
| | | | - Scott Y. H. Kim
- Center for Bioethics and Social Sciences in Medicine and Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
442
|
Shimada M, Abe S, Takahashi T, Shiozaki K, Okuda M, Mizukami H, Klinman DM, Ozawa K, Okuda K. Prophylaxis and treatment of Alzheimer's disease by delivery of an adeno-associated virus encoding a monoclonal antibody targeting the amyloid Beta protein. PLoS One 2013; 8:e57606. [PMID: 23555563 PMCID: PMC3610755 DOI: 10.1371/journal.pone.0057606] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/23/2013] [Indexed: 02/03/2023] Open
Abstract
We previously reported on a monoclonal antibody (mAb) that targeted amyloid beta (Aß) protein. Repeated injection of that mAb reduced the accumulation of Aß protein in the brain of human Aß transgenic mice (Tg2576). In the present study, cDNA encoding the heavy and light chains of this mAb were subcloned into an adeno-associated virus type 1 (AAV) vector with a 2A/furin adapter. A single intramuscular injection of 3.0×1010 viral genome of these AAV vectors into C57BL/6 mice generated serum anti-Aß Ab levels up to 0.3 mg/ml. Anti-Aß Ab levels in excess of 0.1 mg/ml were maintained for up to 64 weeks. The effect of AAV administration on Aß levels in vivo was examined. A significant decrease in Aß levels in the brain of Tg2576 mice treated at 5 months (prophylactic) or 10 months (therapeutic) of age was observed. These results support the use of AAV vector encoding anti-Aß Ab for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Masaru Shimada
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shinya Abe
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toru Takahashi
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kazumasa Shiozaki
- Department of Psychiatry, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi-ken, Japan
| | - Dennis M. Klinman
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi-ken, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
443
|
Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice. PLoS One 2013; 8:e60493. [PMID: 23544146 PMCID: PMC3609829 DOI: 10.1371/journal.pone.0060493] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/27/2013] [Indexed: 12/04/2022] Open
Abstract
Vaccines have been recently developed to treat various diseases such as cancer, rheumatoid arthritis and Alzheimer’s disease in addition to infectious diseases. However, before use in the clinical setting, vaccines targeting self-antigens must be demonstrated to be effective and safe, evoking an adequate humoral immune response from B cells while avoiding T cell activation in response to self. Although the vaccine targeting angiotensin II (Ang II) is efficient in rodents and humans, little is known regarding the immunological activation and safety of the vaccine. In this study, we evaluated the efficiency and safety of an Ang II peptide vaccine in mice. Immunization with Ang II conjugated to keyhole limpet hemocyanin (KLH) successfully induced the production of anti-Ang II antibody, which blocked Ang II signaling in human aortic smooth muscle cells. However, Ang II itself did not activate T cells, as assessed by the proliferation and lymphokine production of T cells in immunized mice, whereas KLH activated T cells. In an Ang II-infused model, the non-immunized mice showed high blood pressure (BP), whereas the immunized mice (Ang II-KLH) showed a significant decrease in systolic BP, accompanied by significant reductions in cardiac hypertrophy and fibrosis. Importantly, anti-Ang II antibody titer was not elevated even after the administration of large amounts of Ang II, indicating that Ang II itself boosted antibody production, most likely due to less activation of T cells. In addition, no accumulation of inflammatory cells was observed in immunized mice, because endogenous Ang II would not activate T cells after immunization with Ang II-KLH. Taken together, these data indicate that vaccines targeting Ang II might be effective to decrease high BP and prevent cardiovascular complications without severe side effects.
Collapse
|
444
|
Iwata A, Iwatsubo T. Disease-modifying therapy for Alzheimer's disease: Challenges and hopes. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/ncn3.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Takeshi Iwatsubo
- Department of Neuropathology; The University of Tokyo; Tokyo; Japan
| |
Collapse
|
445
|
Roher AE, Cribbs DH, Kim RC, Maarouf CL, Whiteside CM, Kokjohn TA, Daugs ID, Head E, Liebsack C, Serrano G, Belden C, Sabbagh MN, Beach TG. Bapineuzumab alters aβ composition: implications for the amyloid cascade hypothesis and anti-amyloid immunotherapy. PLoS One 2013; 8:e59735. [PMID: 23555764 PMCID: PMC3605408 DOI: 10.1371/journal.pone.0059735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/17/2013] [Indexed: 11/23/2022] Open
Abstract
The characteristic neuropathological changes associated with Alzheimer’s disease (AD) and other lines of evidence support the amyloid cascade hypothesis. Viewing amyloid deposits as the prime instigator of dementia has now led to clinical trials of multiple strategies to remove or prevent their formation. We performed neuropathological and biochemical assessments of 3 subjects treated with bapineuzumab infusions. Histological analyses were conducted to quantify amyloid plaque densities, Braak stages and the extent of cerebral amyloid angiopathy (CAA). Amyloid-β (Aβ) species in frontal and temporal lobe samples were quantified by ELISA. Western blots of amyloid-β precursor protein (AβPP) and its C-terminal (CT) fragments as well as tau species were performed. Bapineuzumab-treated (Bapi-AD) subjects were compared to non-immunized age-matched subjects with AD (NI-AD) and non-demented control (NDC) cases. Our study revealed that Bapi-AD subjects exhibited overall amyloid plaque densities similar to those of NI-AD cases. In addition, CAA was moderate to severe in NI-AD and Bapi-AD patients. Although histologically-demonstrable leptomeningeal, cerebrovascular and neuroparenchymal-amyloid densities all appeared unaffected by treatment, Aβ peptide profiles were significantly altered in Bapi-AD subjects. There was a trend for reduction in total Aβ42 levels as well as an increase in Aβ40 which led to a corresponding significant decrease in Aβ42:Aβ40 ratio in comparison to NI-AD subjects. There were no differences in the levels of AβPP, CT99 and CT83 or tau species between Bapi-AD and NI-AD subjects. The remarkable alteration in Aβ profiles reveals a dynamic amyloid production in which removal and depositional processes were apparently perturbed by bapineuzumab therapy. Despite the alteration in biochemical composition, all 3 immunized subjects exhibited continued cognitive decline.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Abstract
Serum antibodies against amyloid-β peptide (Aβ) in humans with or without diagnosis of Alzheimer's disease (AD) indicate the possibility of immune responses against brain antigens. In an unbiased screening for antibodies directed against brain proteins, we found in AD patients high serum levels of antibodies against the neuronal cytoskeletal protein ankyrin G (ankG); these correlated with slower rates of cognitive decline. Neuronal expression of ankG was higher in AD brains than in nondemented age-matched healthy control subjects. AnkG was present in exosomal vesicles, and it accumulated in β-amyloid plaques. Active immunization with ankG of arcAβ transgenic mice reduced brain β-amyloid pathology and increased brain levels of soluble Aβ(42). AnkG immunization induced a reduction in β-amyloid pathology, also in Swedish transgenic mice(.) Anti-ankG monoclonal antibodies reduced Aβ-induced loss of dendritic spines in hippocampal ArcAβ organotypic cultures. Together, these data established a role for ankG in the human adaptive immune response against resident brain proteins, and they show that ankG immunization reduces brain β-amyloid and its related neuropathology.
Collapse
|
447
|
Ghochikyan A, Davtyan H, Petrushina I, Hovakimyan A, Movsesyan N, Davtyan A, Kiyatkin A, Cribbs DH, Agadjanyan MG. Refinement of a DNA based Alzheimer's disease epitope vaccine in rabbits. Hum Vaccin Immunother 2013; 9:1002-10. [PMID: 23399748 DOI: 10.4161/hv.23875] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that our second-generation DNA-based Alzheimer disease (AD) epitope vaccine comprising three copies of a short amyloid-β (Aβ) B cell epitope, Aβ 11 fused with the foreign promiscuous Th epitope, PADRE (p3Aβ 11-PADRE) was immunogenic in mice. However, since DNA vaccines exhibit poor immunogenicity in large animals and humans, in this study, we sought to improve the immunogenicity of p3Aβ 11-PADRE by modifying this vaccine to express protein 3Aβ 11-PADRE with a free N-terminal aspartic acid fused with eight additional promiscuous Th epitopes. Generated pN-3Aβ 11-PADRE-Thep vaccine has been designated as AV-1955. We also delivered this vaccine using the TriGrid electroporation system to improve the efficiency of DNA transfection. This third-generation DNA epitope vaccine was evaluated for immunogenicity in rabbits in comparison to the parent construct p3Aβ 11-PADRE. AV-1955 vaccination induced significantly stronger humoral immune responses in rabbits compared with p3Aβ 11-PADRE vaccine. Anti-Aβ 11 antibodies recognized all forms of human β-amyloid peptide (monomers, oligomers and fibrils), bound to amyloid plaques in brain sections from an AD case and reduced oligomer- and fibril-mediated cytotoxicity ex vivo. These findings suggest that AV-1955 could represent an effective DNA epitope vaccine for AD therapy, pending safety and efficacy studies that are currently being conducted in Rhesus monkeys.
Collapse
Affiliation(s)
- Anahit Ghochikyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, Wang JZ. Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer's animal model. Neurobiol Aging 2013; 34:1555-63. [PMID: 23402899 DOI: 10.1016/j.neurobiolaging.2012.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/17/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The current therapies for Alzheimer's disease (AD) are merely palliative that cannot arrest the pathologic progression of the disease. Therefore, it is critical to develop treatments that can target the disease-modifying molecule(s). In the present study, we found that treatment of tg2576 mice with melatonin from 4-8 months of age did not improve the pathology or behavioral performance of the mice. However, remarkable attenuation of tau and β-amyloid pathologies with memory improvement were observed when melatonin was supplied from the age of 8-12 months or 4-12 months of the mice; more importantly, the improvements were still significant when the mice survived to old age. We also found that the disease stage-specific alteration of glycogen synthase kinase-3β (GSK-3β) but not protein phosphatase-2A, was correlated with the alterations of the pathology and behavior, and the timely targeting of GSK-3β was critical for the efficacy of melatonin. Our finding suggests that melatonin treatment only at proper timing could arrest AD by targeting the activated GSK-3β, which provides primary evidence for the importance and strategy in developing disease-modifying interventions of AD.
Collapse
Affiliation(s)
- Cai-Xia Peng
- Pathophysiology Department, Key Laboratory of Education Ministry for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | |
Collapse
|
449
|
Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 2013; 138:311-22. [PMID: 23384597 DOI: 10.1016/j.pharmthera.2013.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer's disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson's disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in the blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
450
|
Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol Sci 2013; 34:1559-70. [DOI: 10.1007/s10072-012-1284-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
|