401
|
Boritz EA, Darko S, Swaszek L, Wolf G, Wells D, Wu X, Henry AR, Laboune F, Hu J, Ambrozak D, Hughes MS, Hoh R, Casazza JP, Vostal A, Bunis D, Nganou-Makamdop K, Lee JS, Migueles SA, Koup RA, Connors M, Moir S, Schacker T, Maldarelli F, Hughes SH, Deeks SG, Douek DC. Multiple Origins of Virus Persistence during Natural Control of HIV Infection. Cell 2016; 166:1004-1015. [PMID: 27453467 DOI: 10.1016/j.cell.2016.06.039] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Targeted HIV cure strategies require definition of the mechanisms that maintain the virus. Here, we tracked HIV replication and the persistence of infected CD4 T cells in individuals with natural virologic control by sequencing viruses, T cell receptor genes, HIV integration sites, and cellular transcriptomes. Our results revealed three mechanisms of HIV persistence operating within distinct anatomic and functional compartments. In lymph node, we detected viruses with genetic and transcriptional attributes of active replication in both T follicular helper (TFH) cells and non-TFH memory cells. In blood, we detected inducible proviruses of archival origin among highly differentiated, clonally expanded cells. Linking the lymph node and blood was a small population of circulating cells harboring inducible proviruses of recent origin. Thus, HIV replication in lymphoid tissue, clonal expansion of infected cells, and recirculation of recently infected cells act together to maintain the virus in HIV controllers despite effective antiviral immunity.
Collapse
Affiliation(s)
- Eli A Boritz
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Luke Swaszek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Gideon Wolf
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - David Wells
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - David Ambrozak
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marybeth S Hughes
- Thoracic and Gastrointestinal Oncology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Joseph P Casazza
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alexander Vostal
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Daniel Bunis
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - James S Lee
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Mark Connors
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Timothy Schacker
- Program in HIV Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
402
|
Trypsteen W, Kiselinova M, Vandekerckhove L, De Spiegelaere W. Diagnostic utility of droplet digital PCR for HIV reservoir quantification. J Virus Erad 2016; 2:162-9. [PMID: 27482456 PMCID: PMC4967968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is implemented in many molecular laboratories worldwide for the quantification of viral nucleic acids. However, over the last two decades, there has been renewed interest in the concept of digital PCR (dPCR) as this platform offers direct quantification without the need for standard curves, a simplified workflow and the possibility to extend the current detection limit. These benefits are of great interest in terms of the quantification of low viral levels in HIV reservoir research because changes in the dynamics of residual HIV reservoirs will be important to monitor HIV cure efforts. Here, we have implemented a systematic literature screening and text mining approach to map the use of droplet dPCR (ddPCR) in the context of HIV quantification. In addition, several technical aspects of ddPCR were compared with qPCR: accuracy, sensitivity, precision and reproducibility, to determine its diagnostic utility. We have observed that ddPCR was used in different body compartments in multiple HIV-1 and HIV-2 assays, with the majority of reported assays focusing on HIV-1 DNA-based applications (i.e. total HIV DNA). Furthermore, ddPCR showed a higher accuracy, precision and reproducibility, but similar sensitivity when compared to qPCR due to reported false positive droplets in the negative template controls with a need for standardised data analysis (i.e. threshold determination). In the context of a low level of detection and HIV reservoir diagnostics, ddPCR can offer a valid alternative to qPCR-based assays but before this platform can be clinically accredited, some remaining issues need to be resolved.
Collapse
Affiliation(s)
- Wim Trypsteen
- HIV Translational Research Unit, Department of Internal Medicine,
Ghent University,
Belgium
| | - Maja Kiselinova
- HIV Translational Research Unit, Department of Internal Medicine,
Ghent University,
Belgium
| | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine,
Ghent University,
Belgium,Corresponding author: Linos Vandekerckhove,
HIV Translational Research Unit, Department of Internal Medicine,
De Pintelaan 185, Medical Research Building 2,
Ghent University,
9000Ghent,
Belgium
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine,
Ghent University,
Belgium
| |
Collapse
|
403
|
Trypsteen W, Kiselinova M, Vandekerckhove L, De Spiegelaere W. Diagnostic utility of droplet digital PCR for HIV reservoir quantification. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30460-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
404
|
Bialek JK, Dunay GA, Voges M, Schäfer C, Spohn M, Stucka R, Hauber J, Lange UC. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems. PLoS One 2016; 11:e0158294. [PMID: 27341108 PMCID: PMC4920395 DOI: 10.1371/journal.pone.0158294] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.
Collapse
Affiliation(s)
- Julia K. Bialek
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gábor A. Dunay
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Maike Voges
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carola Schäfer
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Michael Spohn
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institute, Department of Neurology, Ludwig Maximilian University Munich, Munich, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| |
Collapse
|
405
|
Lucic B, Lusic M. Connecting HIV-1 integration and transcription: a step toward new treatments. FEBS Lett 2016; 590:1927-39. [PMID: 27224516 DOI: 10.1002/1873-3468.12226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Thanks to the current combined antiretroviral therapy (cART), HIV-1 infection has become a manageable although chronic disease. The reason for this lies in the fact that long-lived cellular reservoirs persist in patients on cART. Despite numerous efforts to understand molecular mechanisms that contribute to viral latency, the important question of how and when latency is established remains unanswered. Related to this is the connection between HIV-1 integration and the capacity of the provirus to enter the latent state. In this review, we will give an overview of these nuclear events in the viral life cycle in the light of current therapeutic approaches, which aim to either reactivate the provirus or even excise the proviral DNA from the cellular genome.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| |
Collapse
|
406
|
Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X, Danesh A, Keating S, Lanteri M, Samuels ML, Hoh R, Sacha JB, Norris PJ, Niki T, Shikuma CM, Hirashima M, Deeks SG, Ndhlovu LC, Pillai SK. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation. PLoS Pathog 2016; 12:e1005677. [PMID: 27253379 PMCID: PMC4890776 DOI: 10.1371/journal.ppat.1005677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Leonard Chavez
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ravi Tandon
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Glen M. Chew
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ali Danesh
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Marion Lanteri
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Michael L. Samuels
- RainDance Technologies, Inc., Billerica, Massachusetts, United States of America
| | - Rebecca Hoh
- University of California, San Francisco, California, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Steven G. Deeks
- University of California, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Satish K. Pillai
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
407
|
Abstract
OBJECTIVE The protein kinase C (PKC) agonist bryostatin-1 has shown significant ex-vivo potency to revert HIV-1 latency, compared with other latency reversing agents (LRA). The safety of this candidate LRA remains to be proven in treated HIV-1-infected patients. METHODS In this pilot, double-blind phase I clinical-trial (NCT 02269605), we included aviraemic HIV-1-infected patients on triple antiretroviral therapy to evaluate the effects of two different single doses of bryostatin-1 (10 or 20 μg/m) compared with placebo. RESULTS Twelve patients were included, four in each arm. Bryostatin-1 was well tolerated in all participants. Two patients in the 20 μg/m arm developed grade 1 headache and myalgia. No detectable increases of cell-associated unspliced (CA-US) HIV-1-RNA were observed in any study arm, nor differences in HIV-1 mRNA dynamics between arms (P = 0.44). The frequency of samples with low-level viraemia did not differ between arms and low-level viraemia did not correlate with CA-US HIV-1-RNA levels (P = 0.676). No changes were detected on protein kinase C (PKC) activity and in biomarkers of inflammation (sCD14 and interleukin-6) in any study arm. After the single dose of bryostatin-1, plasma concentrations were under detection limits in all the patients in the 10 μg/m arm, and below 50 pg/ml (0.05 nmol/l) in those in the 20 μg/m arm. CONCLUSION Bryostatin-1 was safe at the single doses administered. However, the drug did not show any effect on PKC activity or on the transcription of latent HIV, probably due to low plasma concentrations. This study will inform next trials aimed at assessing higher doses, multiple dosing schedules or combination studies with synergistic drugs.
Collapse
|
408
|
Tsai P, Wu G, Baker CE, Thayer WO, Spagnuolo RA, Sanchez R, Barrett S, Howell B, Margolis D, Hazuda DJ, Archin NM, Garcia JV. In vivo analysis of the effect of panobinostat on cell-associated HIV RNA and DNA levels and latent HIV infection. Retrovirology 2016; 13:36. [PMID: 27206407 PMCID: PMC4875645 DOI: 10.1186/s12977-016-0268-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The latent reservoir in resting CD4(+) T cells presents a major barrier to HIV cure. Latency-reversing agents are therefore being developed with the ultimate goal of disrupting the latent state, resulting in induction of HIV expression and clearance of infected cells. Histone deacetylase inhibitors (HDACi) have received a significant amount of attention for their potential as latency-reversing agents. RESULTS Here, we have investigated the in vitro and systemic in vivo effect of panobinostat, a clinically relevant HDACi, on HIV latency. We showed that panobinostat induces histone acetylation in human PBMCs. Further, we showed that panobinostat induced HIV RNA expression and allowed the outgrowth of replication-competent virus ex vivo from resting CD4(+) T cells of HIV-infected patients on suppressive antiretroviral therapy (ART). Next, we demonstrated that panobinostat induced systemic histone acetylation in vivo in the tissues of BLT humanized mice. Finally, in HIV-infected, ART-suppressed BLT mice, we evaluated the effect of panobinostat on systemic cell-associated HIV RNA and DNA levels and the total frequency of latently infected resting CD4(+) T cells. Our data indicate that panobinostat treatment resulted in systemic increases in cellular levels of histone acetylation, a key biomarker for in vivo activity. However, panobinostat did not affect the levels of cell-associated HIV RNA, HIV DNA, or latently infected resting CD4(+) T cells. CONCLUSION We have demonstrated robust levels of systemic histone acetylation after panobinostat treatment of BLT humanized mice; and we did not observe a detectable change in the levels of cell-associated HIV RNA, HIV DNA, or latently infected resting CD4(+) T cells in HIV-infected, ART-suppressed BLT mice. These results are consistent with the modest effects noted in vitro and suggest that combination therapies may be necessary to reverse latency and enable clearance. Animal models will contribute to the progress towards an HIV cure.
Collapse
Affiliation(s)
- Perry Tsai
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA
| | - Guoxin Wu
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Caroline E Baker
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA
| | - William O Thayer
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA
| | - Rae Ann Spagnuolo
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA
| | - Rosa Sanchez
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Stephanie Barrett
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Bonnie Howell
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA, 19486, USA
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA
| | - Daria J Hazuda
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Nancie M Archin
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA.
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, 120 Mason Farm Rd., CB 7042, Genetic Medicine Building 2043, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
409
|
Stevenson M. CROI 2016: Basic Science Review. TOPICS IN ANTIVIRAL MEDICINE 2016; 24:4-9. [PMID: 27398858 PMCID: PMC6148922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The 2016 Conference on Retroviruses and Opportunistic Infections continued to maintain balance in the representation of different areas of research related to HIV/AIDS. The basic science category encompasses research on viral reservoirs and HIV cure, on cellular factors regulating the interplay between virus and host, and on factors that influence viral pathogenicity. Basic research on factors that influence the interaction between the virus and the host cell continues to unearth surprises with the identification of a new host antiviral factor. Further, research into the mechanisms of viral persistence reveals that there is much to learn about how HIV-1 is able to persist in the face of antiviral suppression.
Collapse
|
410
|
Walker-Sperling VE, Pohlmeyer CW, Tarwater PM, Blankson JN. The Effect of Latency Reversal Agents on Primary CD8+ T Cells: Implications for Shock and Kill Strategies for Human Immunodeficiency Virus Eradication. EBioMedicine 2016; 8:217-229. [PMID: 27428432 PMCID: PMC4919475 DOI: 10.1016/j.ebiom.2016.04.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
Shock and kill strategies involving the use of small molecules to induce viral transcription in resting CD4 + T cells (shock) followed by immune mediated clearance of the reactivated cells (kill), have been proposed as a method of eliminating latently infected CD4 + T cells. The combination of the histone deacetylase (HDAC) inhibitor romidepsin and protein kinase C (PKC) agonist bryostatin-1 is very effective at reversing latency in vitro. However, we found that primary HIV-1 specific CD8 + T cells were not able to eliminate autologous resting CD4 + T cells that had been reactivated with these drugs. We tested the hypothesis that the drugs affected primary CD8 + T cell function and found that both agents had inhibitory effects on the suppressive capacity of HIV-specific CD8 + T cells from patients who control viral replication without antiretroviral therapy (elite suppressors/controllers). The inhibitory effect was additive and multi-factorial in nature. These inhibitory effects were not seen with prostratin, another PKC agonist, either alone or in combination with JQ1, a bromodomain-containing protein 4 inhibitor. Our results suggest that because of their adverse effects on primary CD8 + T cells, some LRAs may cause immune-suppression and therefore should be used with caution in shock and kill strategies. Latency reversal agents can reactivate HIV-1 expression in latently infected cells. CD8 T cells from HIV-1 infected patients did not eliminate reactivated latently infected cells. This finding can partially be explained by our data showing that latency reversal agents affect the function of CD8 + T cells.
Latently infected CD4 + T cells are a major barrier to the cure of HIV-1 infection. One strategy of eliminating these cells involves inducing viral transcription with small molecules (latency reversal agents or LRAs) which would result in the recognition of these cells by the immune system. We show here that CD8 + T cells were not able to eliminate CD4 + T cells from HIV-1-infected patients following stimulation with LRAs. Our data suggests that this may be partially because some LRAs affect the function of CD8 + T cells. Thus it will be critical to select LRAs that do not cause immune suppression.
Collapse
Affiliation(s)
| | - Christopher W Pohlmeyer
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Patrick M Tarwater
- Division of Biostatistics and Epidemiology, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Joel N Blankson
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
411
|
A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol 2016; 90:4441-4453. [PMID: 26889036 DOI: 10.1128/jvi.00222-16] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. IMPORTANCE We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family are due to its novel "dumbbell-shape" structure made of covalently closed, natural DNA. In our study, we found that incubation of peripheral blood mononuclear cells with MGN1703 results in natural killer cell activation and increased natural killer cell function, which significantly inhibited the spread of HIV in a culture of autologous CD4(+)T cells. Furthermore, we discovered that MGN1703-mediated activation can enhance HIV-1 transcription in CD4(+)T cells, suggesting that this molecule may serve a dual purpose in HIV-1 eradication therapy: enhanced immune function and latency reversal. These findings provide a strong preclinical basis for the inclusion of MGN1703 in an HIV eradication clinical trial.
Collapse
|
412
|
The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6:24100. [PMID: 27067814 PMCID: PMC4828723 DOI: 10.1038/srep24100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Collapse
|
413
|
Fidler S, Ananworanich J, Vandekerckhove L, Kiselinova M, Schuetz A, Vera JH, Dwyer E, Alagaratnam J. Highlights from the Conference on Retroviruses and Opportunistic Infections 2016: 22-25 February 2016, Boston, Massachusetts, USA. J Virus Erad 2016; 2:124-30. [PMID: 27482450 PMCID: PMC4965246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Jintanat Ananworanich
- US Military HIV Research Program , Walter Reed Army Institute of Research ; Henry M Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | | | - Maja Kiselinova
- Department of Internal Medicine , Ghent University Hospital , Belgium
| | - Alexandra Schuetz
- Department of Retrovirology , US Army Medical Component , Armed Forces Institute of Medical Research , Henry M Jackson Foundation , Bangkok , Thailand
| | - Jaime H Vera
- Lawson Unit , Brighton and Sussex University NHS Trust and Brighton and Sussex Medical School , UK
| | - Ellen Dwyer
- St George's University Hospitals NHS Foundation Trust , London , UK
| | | |
Collapse
|
414
|
Fidler S, Ananworanich J, Vandekerckhove L, Kiselinova M, Schuetz A, Vera JH, Dwyer E, Alagaratnam J. Highlights from the Conference on Retroviruses and Opportunistic Infections 2016. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
415
|
Cummins NW, Sainski AM, Dai H, Natesampillai S, Pang YP, Bren GD, de Araujo Correia MCM, Sampath R, Rizza SA, O'Brien D, Yao JD, Kaufmann SH, Badley AD. Prime, Shock, and Kill: Priming CD4 T Cells from HIV Patients with a BCL-2 Antagonist before HIV Reactivation Reduces HIV Reservoir Size. J Virol 2016; 90:4032-4048. [PMID: 26842479 PMCID: PMC4810548 DOI: 10.1128/jvi.03179-15] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis. Further, we show that central memory CD4 T cells (TCM) from HIV-infected individuals have heightened expression of BCL-2 relative to procaspase 8, possibly explaining the persistence of HIV-infected TCMdespite generation of Casp8p41. Consistent with this hypothesis, the selective BCL-2 antagonist venetoclax induced minimal killing of uninfected CD4 T cells but markedly increased the death of CD4 T cells and diminished cell-associated HIV DNA when CD4 T cells from antiretroviral therapy (ART)-suppressed HIV patients were induced with αCD3/αCD28 to reactivate HIVex vivo Thus, priming CD4 T cells from ART suppressed HIV patients with a BCL-2 antagonist, followed by HIV reactivation, achieves reductions in cell-associated HIV DNA, whereas HIV reactivation alone does not. IMPORTANCE HIV infection is incurable due to a long-lived reservoir of HIV(+)memory CD4 T cells, and no clinically relevant interventions have been identified that reduce the number of these HIV DNA-containing cells. Since postintegration HIV replication can result in HIV protease generation of Casp8p41, which activates BAK, causing infected CD4 T cell death, we sought to determine whether this occurs in memory CD4 T cells. Here, we demonstrate that memory CD4 T cells can generate Casp8p41 and yet are intrinsically resistant to death induced by diverse stimuli, including Casp8p41. Furthermore, BCL-2 expression is relatively increased in these cells and directly binds and inhibits Casp8p41's proapoptotic effects. Antagonizing BCL-2 with venetoclax derepresses this antagonism, resulting in death, preferentially in HIV DNA containing cells, since only these cells generate Casp8p41. Thus, BCL-2 antagonism is a clinically relevant intervention with the potential to reduce HIV reservoir size in patients.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Amy M Sainski
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haiming Dai
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yuan-Ping Pang
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rahul Sampath
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Stacey A Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel O'Brien
- Department of Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph D Yao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott H Kaufmann
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
416
|
Abstract
Recent anecdotal reports of HIV-infected children who received early antiretroviral therapy (ART) and showed sustained control of viral replication even after ART discontinuation have raised the question of whether there is greater intrinsic potential for HIV remission, or even eradication ('cure'), in paediatric infection than in adult infection. This Review describes the influence of early initiation of ART, of immune ontogeny and of maternal factors on the potential for HIV cure in children and discusses the unique immunotherapeutic opportunities and obstacles that paediatric infection may present.
Collapse
Affiliation(s)
- Philip J Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, Australia
| | - Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
417
|
Gunst JD, Tolstrup M, Rasmussen TA, Søgaard OS. The potential role for romidepsin as a component in early HIV-1 curative efforts. Expert Rev Anti Infect Ther 2016; 14:447-50. [PMID: 26953620 DOI: 10.1586/14787210.2016.1164031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jesper Damsgaard Gunst
- a Department of Infectious Diseases , Aarhus University Hospital , Aarhus N , Denmark.,b Institute of Clinical Medicine , Aarhus University , Aarhus N , Denmark
| | - Martin Tolstrup
- a Department of Infectious Diseases , Aarhus University Hospital , Aarhus N , Denmark
| | | | - Ole Schmeltz Søgaard
- a Department of Infectious Diseases , Aarhus University Hospital , Aarhus N , Denmark.,b Institute of Clinical Medicine , Aarhus University , Aarhus N , Denmark
| |
Collapse
|
418
|
Cillo AR, Mellors JW. Which therapeutic strategy will achieve a cure for HIV-1? Curr Opin Virol 2016; 18:14-9. [PMID: 26985878 DOI: 10.1016/j.coviro.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022]
Abstract
Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use.
Collapse
Affiliation(s)
- Anthony R Cillo
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Mellors
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
419
|
HIV-1 transcriptional activity during frequent longitudinal sampling in aviremic patients on antiretroviral therapy. AIDS 2016; 30:713-21. [PMID: 26595541 DOI: 10.1097/qad.0000000000000974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND HIV-1 transcription during suppressive antiretroviral therapy (ART) is not well understood. This is problematic as latency-reactivating agent-based HIV-1 eradication trials utilize changes in viral transcription as an efficacy biomarker. METHODS We conducted an observational cohort study enrolling aviremic, HIV-1-infected adults on long-term ART. Cell-associated unspliced (CA-US) HIV-1 RNA and total HIV-1 DNA were quantified in unfractionated CD4 T cells monthly for a total of six consecutive visits. Random-effects models were used to determine the following: (i) proportion of variation attributable to intra-individual versus inter-individual changes; (ii) range estimate for random samples from any participant or cohort-matched individual (95% prediction interval); and (iii) range estimate for random samples from the same person (95% variation intervals expressed as fold change). RESULTS Among our cohort of 26 HIV-1 patients, 10.4% of variation in CA-US HIV-1 RNA was attributable to intra-individual fluctuations. Similarly, intra-individual changes also accounted for minor proportions of the variation in total HIV-1 DNA (5.1%) and RNA/DNA (28.3%). The 95% prediction interval (per 10 CD4 T cells) for CA-US HIV-1 RNA and HIV-1 DNA were each approximately 2 log10. Finally, model-derived 95% variation intervals indicate that spontaneous changes above 2.11-fold in CA-US HIV-1 RNA would occur in less than 5% of repeated measurements in an individual on long-term ART. CONCLUSION The individual CA-US HIV-1 RNA levels are remarkably stable during ART. Importantly, the observed variations were less than the reported changes for latency-reactivating agent trials. These data will serve as a foundation for planning and interpreting future eradication trials.
Collapse
|
420
|
Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D, Weber J, Kučerová D, Vencálek O, Hirsch I, Hejnar J. Development of 5' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 2016; 8:19. [PMID: 26900410 PMCID: PMC4759744 DOI: 10.1186/s13148-016-0185-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) latency represents the major barrier to virus eradication in infected individuals because cells harboring latent HIV-1 provirus are not affected by current antiretroviral therapy (ART). We previously demonstrated that DNA methylation of HIV-1 long terminal repeat (5' LTR) restricts HIV-1 reactivation and, together with chromatin conformation, represents an important mechanism of HIV-1 latency maintenance. Here, we explored the new issue of temporal development of DNA methylation in latent HIV-1 5' LTR. RESULTS In the Jurkat CD4(+) T cell model of latency, we showed that the stimulation of host cells contributed to de novo DNA methylation of the latent HIV-1 5' LTR sequences. Consecutive stimulations of model CD4(+) T cell line with TNF-α and PMA or with SAHA contributed to the progressive accumulation of 5' LTR DNA methylation. Further, we showed that once established, the high DNA methylation level of the latent 5' LTR in the cell line model was a stable epigenetic mark. Finally, we explored the development of 5' LTR DNA methylation in the latent reservoir of HIV-1-infected individuals who were treated with ART. We detected low levels of 5' LTR DNA methylation in the resting CD4(+) T cells of the group of patients who were treated for up to 3 years. However, after long-term ART, we observed an accumulation of 5' LTR DNA methylation in the latent reservoir. Importantly, within the latent reservoir of some long-term-treated individuals, we uncovered populations of proviral molecules with a high density of 5' LTR CpG methylation. CONCLUSIONS Our data showed the presence of 5' LTR DNA methylation in the long-term reservoir of HIV-1-infected individuals and implied that the transient stimulation of cells harboring latent proviruses may contribute, at least in part, to the methylation of the HIV-1 promoter.
Collapse
Affiliation(s)
- Kateřina Trejbalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Denisa Kovářová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Jana Blažková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ladislav Machala
- Department of Infectious Diseases, Third Faculty of Medicine, Charles University and Hospital Na Bulovce in Prague, Budínova 67/2, CZ-18081 Prague 8, Czech Republic
| | - David Jilich
- Department of Infectious, Tropical and Parasitic Diseases, First Faculty of Medicine, Charles University in Prague and Hospital Na Bulovce, Budínova 67/ 2, CZ-18081 Prague 8, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science of the Palacky University in Olomouc, Olomouc, CZ-77146 Czech Republic
| | - Ivan Hirsch
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic ; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic ; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, CZ-12844 Prague 2, Czech Republic ; Inserm, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13273 Marseille, France ; Institut Paoli-Calmettes, F-13009 Marseille, France ; Aix-Marseille Univ., F-13284 Marseille, France ; CNRS, UMR7258, CRCM, F-13009 Marseille, France
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| |
Collapse
|
421
|
HIV-1 Reservoirs During Suppressive Therapy. Trends Microbiol 2016; 24:345-355. [PMID: 26875617 DOI: 10.1016/j.tim.2016.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
Abstract
The introduction of antiretroviral therapy (ART) 20 years ago has dramatically reduced morbidity and mortality associated with HIV-1. Initially there was hope that ART would be curative, but it quickly became clear that even though ART was able to restore CD4(+) T cell counts and suppress viral loads below levels of detection, discontinuation of treatment resulted in a rapid rebound of infection. This is due to persistence of a small reservoir of latently infected cells with a long half-life, which necessitates life-long ART. Over the past few years, significant progress has been made in defining and characterizing the latent reservoir of HIV-1, and here we review how understanding the latent reservoir during suppressive therapy will lead to significant advances in curative approaches for HIV-1.
Collapse
|
422
|
Siliciano JD, Siliciano RF. Recent developments in the effort to cure HIV infection: going beyond N = 1. J Clin Invest 2016; 126:409-14. [PMID: 26829622 DOI: 10.1172/jci86047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Combination antiretroviral therapy (ART) can suppress plasma HIV to undetectable levels, allowing HIV-infected individuals who are treated early a nearly normal life span. Despite the clear ability of ART to prevent morbidity and mortality, it is not curative. Even in individuals who have full suppression of viral replication on ART, there are resting memory CD4+ T cells that harbor stably integrated HIV genomes, which are capable of producing infectious virus upon T cell activation. This latent viral reservoir is considered the primary obstacle to the development of an HIV cure, and recent efforts in multiple areas of HIV research have been brought to bear on the development of strategies to eradicate or develop a functional cure for HIV. Reviews in this series detail progress in our understanding of the molecular and cellular mechanisms of viral latency, efforts to accurately assess the size and composition of the latent reservoir, the characterization and development of HIV-targeted broadly neutralizing antibodies and cytolytic T lymphocytes, and animal models for the study HIV latency and therapeutic strategies.
Collapse
|
423
|
Novel Assays for Measurement of Total Cell-Associated HIV-1 DNA and RNA. J Clin Microbiol 2016; 54:902-11. [PMID: 26763968 DOI: 10.1128/jcm.02904-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/05/2016] [Indexed: 01/26/2023] Open
Abstract
Although a number of PCR-based quantitative assays for measuring HIV-1 persistence during suppressive antiretroviral therapy (ART) have been reported, a simple, sensitive, reproducible method is needed for application to large clinical trials. We developed novel quantitative PCR assays for cell-associated (CA) HIV-1 DNA and RNA, targeting a highly conserved region in HIV-1pol, with sensitivities of 3 to 5 copies/1 million cells. We evaluated the performance characteristics of the assays using peripheral blood mononuclear cells (PBMCs) from 5 viremic patients and 20 patients receiving effective ART. Total and resting CD4(+)T cells were isolated from a subset of patients and tested for comparison with PBMCs. The estimated standard deviations including interassay variability and intra-assay variability of the assays were modest, i.e., 0.15 and 0.10 log10copies/10(6)PBMCs, respectively, for CA HIV-1 DNA and 0.40 and 0.19 log10copies/10(6)PBMCs for CA HIV-1 RNA. Testing of longitudinally obtained PBMC samples showed little variation for either viremic patients (median fold differences of 0.80 and 0.88 for CA HIV-1 DNA and RNA, respectively) or virologically suppressed patients (median fold differences of 1.14 and 0.97, respectively). CA HIV-1 DNA and RNA levels were strongly correlated (r= 0.77 to 1;P= 0.0001 to 0.037) for assays performed using PBMCs from different sources (phlebotomy versus leukapheresis) or using total or resting CD4(+)T cells purified by either bead selection or flow cytometric sorting. Their sensitivity, reproducibility, and broad applicability to small numbers of mononuclear cells make these assays useful for observational and interventional studies that examine longitudinal changes in the numbers of HIV-1-infected cells and their levels of transcription.
Collapse
|
424
|
Del Prete GQ, Oswald K, Lara A, Shoemaker R, Smedley J, Macallister R, Coalter V, Wiles A, Wiles R, Li Y, Fast R, Kiser R, Lu B, Zheng J, Alvord WG, Trubey CM, Piatak M, Deleage C, Keele BF, Estes JD, Hesselgesser J, Geleziunas R, Lifson JD. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy. Antimicrob Agents Chemother 2015; 60:1560-72. [PMID: 26711758 PMCID: PMC4776002 DOI: 10.1128/aac.02625-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodney Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bing Lu
- Gilead Sciences, Foster City, California, USA
| | - Jim Zheng
- Gilead Sciences, Foster City, California, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
425
|
Spivak AM, Planelles V. HIV-1 Eradication: Early Trials (and Tribulations). Trends Mol Med 2015; 22:10-27. [PMID: 26691297 DOI: 10.1016/j.molmed.2015.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
426
|
Rasmussen TA, Tolstrup M, Søgaard OS. Reversal of Latency as Part of a Cure for HIV-1. Trends Microbiol 2015; 24:90-97. [PMID: 26690612 DOI: 10.1016/j.tim.2015.11.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
Abstract
Here, the use of pharmacological agents to reverse HIV-1 latency will be explored as a therapeutic strategy towards a cure. However, while clinical trials of latency-reversing agents LRAs) have demonstrated their ability to increase production of latent HIV-1, such interventions have not had an effect on the size of the latent HIV-1 reservoir. Plausible explanations for this include insufficient host immune responses against virus-expressing cells, the presence of escape mutations in archived virus, or an insufficient scale of latency reversal. Importantly, these early studies of LRAs were primarily designed to investigate their ability to perturb the state of HIV-1 latency; using the absence of an impact on the size of the HIV-1 reservoir to discard their potential inclusion in curative strategies would be erroneous and premature.
Collapse
Affiliation(s)
- Thomas Aagaard Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark.
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| |
Collapse
|
427
|
In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors. J Virol 2015; 90:1858-71. [PMID: 26656693 PMCID: PMC4733986 DOI: 10.1128/jvi.02359-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an experimental strategy that would allow the evaluation of latency-reversing agent (LRA) efficiency in vitro using primary CD4 T cells. In the present study, we demonstrate that HDACis are potent inducers of replication-competent and infectious HIV-1 in resting memory CD4 T cells of long-term ART-treated patients and identify givinostat as the most efficient LRA tested.
Collapse
|
428
|
Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol 2015; 90:2021-30. [PMID: 26656700 DOI: 10.1128/jvi.02717-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4(+) T cells from HIV-1(+) subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1(+) serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed "shock and kill," aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1(+) individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches.
Collapse
|
429
|
Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients. Mediators Inflamm 2015; 2015:120605. [PMID: 26696749 PMCID: PMC4678094 DOI: 10.1155/2015/120605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 01/13/2023] Open
Abstract
Intestinal CD4+ T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression. Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69+ intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients.
Collapse
|
430
|
Liu C, Ma X, Liu B, Chen C, Zhang H. HIV-1 functional cure: will the dream come true? BMC Med 2015; 13:284. [PMID: 26588898 PMCID: PMC4654816 DOI: 10.1186/s12916-015-0517-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
431
|
Minor Contribution of Chimeric Host-HIV Readthrough Transcripts to the Level of HIV Cell-Associated gag RNA. J Virol 2015; 90:1148-51. [PMID: 26559833 DOI: 10.1128/jvi.02597-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022] Open
Abstract
Cell-associated HIV unspliced RNA is an important marker of the viral reservoir. HIV gag RNA-specific assays are frequently used to monitor reservoir activation. Because HIV preferentially integrates into actively transcribed genes, some of the transcripts detected by these assays may not represent genuine HIV RNA but rather chimeric host-HIV readthrough transcripts. Here, we demonstrate that in HIV-infected patients on suppressive combination antiretroviral therapy, such host-derived transcripts do not significantly contribute to the HIV gag RNA level.
Collapse
|
432
|
Lai W, Huang L, Zhu L, Ferrari G, Chan C, Li W, Lee KH, Chen CH. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β. J Med Chem 2015; 58:8638-46. [PMID: 26509731 DOI: 10.1021/acs.jmedchem.5b01233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-1-latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells. GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , Taichung, Taiwan
| | | |
Collapse
|
433
|
Modeling the Effects of Vorinostat In Vivo Reveals both Transient and Delayed HIV Transcriptional Activation and Minimal Killing of Latently Infected Cells. PLoS Pathog 2015; 11:e1005237. [PMID: 26496627 PMCID: PMC4619772 DOI: 10.1371/journal.ppat.1005237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Furthermore, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo. Combination antiretroviral therapy (cART) for HIV infection must be taken for life due to the existence of long lived latently infected cells. Recent efforts have focused on developing latency reversing agents to eliminate latently infected cells by activating HIV production. In this work, we assess the impact of a latency reversing agent, vorinostat, by fitting dynamic models to data from a clinical trial. Results show that vorinostat treatment induces HIV transcription transiently and that the sustained induction of HIV transcription may depend on the temporal impact of vorinostat on host gene expression. Our results also suggest that vorinostat treatment is not sufficient to induce killing of latently infected cells in a majority of HIV-infected individuals on cART.
Collapse
|
434
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|