4751
|
Torrisi R, Parodi S, Fontana V, Pensa F, Casella C, Barreca A, De Palo G, Costa A, Decensi A. Effect of fenretinide on plasma IGF-I and IGFBP-3 in early breast cancer patients. Int J Cancer 1998; 76:787-90. [PMID: 9626341 DOI: 10.1002/(sici)1097-0215(19980610)76:6<787::aid-ijc3>3.0.co;2-u] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growing evidence substantiates the role of the insulin-like growth factor I (IGF-1) system in breast tumorigenesis. Retinoids have been shown to affect the IGF system several experimental models. We extended our previous data on plasma IGF-1 modulation by the synthetic retinoid fenretinide (4-HPR) and investigated the effect of the retinoid on plasma IGF binding protein (BP)-3, the major protein binding IGFs. IGF-1 and IGFBP-3 were measured on plasma samples obtained at randomization and after an interval of approximately 1 year, from 39 and 33 stage 1 breast cancer patients assigned to receive 4-HPR, and from 39 and 34 untreated controls, respectively. There was a significant decrease in plasma IGF-1 after 4-HPR administration, whereas no significant change was observed in controls. The effect of 4-HPR on IGF-1 levels was modified by menopausal status, inasmuch as the decrease in IGF-1 was particularly pronounced in pre-menopausal women, whereas the reverse was observed in untreated controls. By contrast, treatment induced an increase of IGFBP-3 with respect to controls. As a result of this dual effect, the bioavailability of IGF-1 for interaction with receptors at target levels further decreased in pre-menopausal 4-HPR treated patients compared with controls, suggesting that retinoid administration may result in lower concentrations of biologically active IGF-1. Our findings may have important implications for the clinical preventive activity of this retinoid.
Collapse
Affiliation(s)
- R Torrisi
- Department of Medical Oncology II, National Institute for Cancer Research, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
4752
|
Wong J, Liang VC, Sachs LM, Shi YB. Transcription from the thyroid hormone-dependent promoter of the Xenopus laevis thyroid hormone receptor betaA gene requires a novel upstream element and the initiator, but not a TATA Box. J Biol Chem 1998; 273:14186-93. [PMID: 9603920 DOI: 10.1074/jbc.273.23.14186] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thyroid hormone receptor (TR) beta genes in Xenopus laevis are regulated by thyroid hormone in all organs of an animal during metamorphosis. This autoregulation appears to be critical for systematic transformations of different organs as a tadpole is transformed into a frog. To understand this autoregulation, we have previously identified a thyroid hormone response element in the hormone-dependent promoter of the X. laevis TRbetaA gene. We report here the detailed characterization of the promoter. We have now mapped the transcription start site and demonstrated the existence of an initiator element at the start site critical for promoter function. More important, our deletion and mutational experiments revealed a novel upstream DNA element that is located 125 base pairs upstream of the start site and that is essential for active transcription from the promoter. Promoter reconstitution experiments showed that this novel element does not function as an enhancer, but acts as a core promoter element, which, together with the initiator, directs accurate transcription from the promoter. Finally, we provide evidence for the existence of a protein(s) that specifically recognizes this element. Our studies thus demonstrate that the TRbetaA promoter has a unique organization consisting of an initiator and a novel upstream promoter element. Such an organization may be important for the ubiquitous but tissue-dependent temporal regulation of the gene by thyroid hormone during amphibian metamorphosis.
Collapse
Affiliation(s)
- J Wong
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
4753
|
Kullmann M, Schneikert J, Moll J, Heck S, Zeiner M, Gehring U, Cato AC. RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis. J Biol Chem 1998; 273:14620-5. [PMID: 9603979 DOI: 10.1074/jbc.273.23.14620] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RAP46 was first identified by its ability to bind the glucocorticoid receptor. It has since been reported to bind several cellular proteins, including the anti-apoptotic protein Bcl-2, but the biological significance of these interactions is unknown. Here we show that RAP46 binds the hinge region of the glucocorticoid receptor and inhibits DNA binding and transactivation by the receptor. We further show that overexpression of RAP46 in mouse thymoma S49.1 cells inhibits glucocorticoid-induced apoptosis. Conversely, glucocorticoid-induced apoptosis and transactivation were enhanced after treating S49.1 cells with the immunosuppressant rapamycin, which down-regulates cellular levels of BAG-1, the mouse homolog of RAP46. The effect of rapamycin can, however, be overcome by overexpression of RAP46. These results together identify RAP46 as a protein that controls glucocorticoid-induced apoptosis through its negative regulatory action on the transactivation property of the glucocorticoid receptor.
Collapse
Affiliation(s)
- M Kullmann
- Forschungszentrum Karlsruhe, Institut für Genetik, Postfach 3640, D-76021 Karlsruhe, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
4754
|
Lee HK, Lee YK, Park SH, Kim YS, Park SH, Lee JW, Kwon HB, Soh J, Moore DD, Choi HS. Structure and expression of the orphan nuclear receptor SHP gene. J Biol Chem 1998; 273:14398-402. [PMID: 9603951 DOI: 10.1074/jbc.273.23.14398] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the organization of the orphan nuclear receptor SHP gene (Seol, W., Choi, H.-S., and Moore, D.D. (1996) Science 272, 1336-1339), genomic clones were isolated from human and mouse genomic libraries. The SHP gene was composed of two exons interrupted by a single intron spanning approximately 1.8 kilobases in human and 1.2 kilobases in mouse. Genomic Southern blot analysis and fluorescence in situ hybridization of human metaphase chromosomes indicated that the SHP gene is located at the human chromosome 1p36.1 subband. The 5'-flanking regions of human and mouse SHP genes were highly conserved, showing 77% homology in the region of approximately 600 nucleotides upstream from the transcription start site. Primer extension analysis was carried out to determine the transcription start site of human SHP to 32 nucleotides downstream of a potential TATA box. The human SHP gene was specifically expressed in fetal liver, fetal adrenal gland, adult spleen, and adult small intestine. As expected from this expression pattern, the activity of the mouse SHP promoter measured by transient transfection was significantly higher in the adrenal-derived Y1 cells than HeLa cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Conserved Sequence/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic/genetics
- Transfection/genetics
Collapse
Affiliation(s)
- H K Lee
- Hormone Research Center, Chonnam National University, Kwangju, 500-757 Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4755
|
Ueno H, Kizaki M, Matsushita H, Muto A, Yamato K, Nishihara T, Hida T, Yoshimura H, Koeffler HP, Ikeda Y. A novel retinoic acid receptor (RAR)-selective antagonist inhibits differentiation and apoptosis of HL-60 cells: implications of RARalpha-mediated signals in myeloid leukemic cells. Leuk Res 1998; 22:517-25. [PMID: 9678718 DOI: 10.1016/s0145-2126(98)00026-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retinoic acid (RA) induces HL-60 cells to differentiate terminally into mature granulocytes, which subsequently die by apoptosis. The biological effects of RA are mediated by two distinct families of transcription factors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RARs and RXRs form heterodimers and regulate retinoid-mediated gene expression. We have recently developed a novel RAR-selective antagonist (ER27191) which prevents RAR activation by retinoids. Using this RAR-selective antagonist, and RXR and RAR agonist, we demonstrate the RAR-mediated signaling pathway is important for differentiation and apoptosis of myeloid leukemic cells. Simple activation of RXRs is not sufficient to induce apoptosis of the cells. Interestingly, the combination of the RAR-selective antagonist and 9-cis RA resulted in partial differentiation and apoptosis of HL-60 and NB4 cells, whereas the RAR antagonist completely blocked all-trans RA-induced differentiation and apoptosis of the cells. Additional experiments showed that levels of BCL-2 protein decreased during differentiation of myeloid leukemic cells. Furthermore, HL-60 cells transduced with a bcl-2 expression vector showed the same differentiation response to retinoids as did parental HL-60 cells even though apoptosis was inhibited in these bcl-2-transduced cells, suggesting that differentiation and apoptosis are regulated independently in myeloid leukemic cells.
Collapse
Affiliation(s)
- H Ueno
- Division of Hematology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4756
|
Sam M, Wurst W, Klüppel M, Jin O, Heng H, Bernstein A. Aquarius, a novel gene isolated by gene trapping with an RNA-dependent RNA polymerase motif. Dev Dyn 1998; 212:304-17. [PMID: 9626505 DOI: 10.1002/(sici)1097-0177(199806)212:2<304::aid-aja15>3.0.co;2-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In a retinoic acid (RA) gene trap screen of mouse embryonic stem (ES) cells, a novel gene, named Aquarius (Aqr), was identified and characterized. The promoterless lacZ marker was used to trap the genomic locus and to determine the expression pattern of the gene. Aqr transcripts are strongly induced in response to RA in vitro. During embryogenesis, Aqr is expressed in mesoderm, in the neural crest and its target tissues, and in neuroepithelium. Expression was first detected at 8.5 days postcoitum, when neural crest cells are visible at the lateral ridges of the neural plate. The gene-trapped Aqr locus was transmitted through the mouse germ line in three genetic backgrounds. In the F2 generation, the expected mendelian ratio of 1:2:1 was observed in all backgrounds, indicating that homozygous mice are viable. Homozygotes are normal in size and weight and breed normally. The gene trap insertion, however, does not seem to generate a null mutation, because Aqr transcripts are still present in the homozygous mutant animals. The Aqr open reading frame has weak homology to RNA-dependent RNA polymerases (RRPs) of the murine hepatitis viruses and contains an RRP motif. Aqr was mapped to mouse chromosome 2 between regions E5 through F2 by using fluorescence in situ hybridization analysis.
Collapse
Affiliation(s)
- M Sam
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
4757
|
Gaboli M, Gandini D, Delva L, Wang ZG, Pandolfi PP. Acute promyelocytic leukemia as a model for cross-talk between interferon and retinoic acid pathways: from molecular biology to clinical applications. Leuk Lymphoma 1998; 30:11-22. [PMID: 9669672 DOI: 10.3109/10428199809050925] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acute promyelocytic leukemia (APL) has been regarded as the paradigm for therapeutic approaches utilizing differentiating agents, due to the fact that almost 95% of patients undergo complete remission when treated with all-trans retinoic acid (ATRA). However, complete clinical remission with ATRA alone is always transient, and relapse in APL is almost invariably associated with the acquisition of resistance to ATRA. Acquired resistance to ATRA in APL cell lines and in some APL clinical cases can be partially overcome by interferons (IFNs), cytokines which have well established tumor-growth suppressive activities. APL is associated in 99% of cases with a 15;17 translocation that fuses the PML and Retinoic Acid Receptor alpha (RARalpha) genes. RARalpha is one of the Retinoic Acid (RA) nuclear receptors which mediates, at the transcriptional level, ATRA differentiating and growth suppressive activity. PML is a tumor-growth suppressor whose expression is directly regulated by IFNs. Here we review the molecular mechanisms by which IFNs and RA can cooperate in controlling cell growth and differentiation of normal hemopoietic cells and leukemic cells, focusing on APL as a model system.
Collapse
Affiliation(s)
- M Gaboli
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | |
Collapse
|
4758
|
Combined Arsenic and Retinoic Acid Treatment Enhances Differentiation and Apoptosis in Arsenic-Resistant NB4 Cells. Blood 1998. [DOI: 10.1182/blood.v91.11.4300] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In the acute promyelocytic leukemia (APL) cell line NB4, as well as in APL patients' cells, arsenic trioxide (As2O3) leads to incomplete cell maturation, induction of apoptosis, as well as to the degradation of the oncogenic PML/RARα fusion protein. We have isolated an arsenic-resistant NB4 subline (NB4-AsR), which fails to undergo apoptosis, but maintains the partial differentiation response to this drug. When grown in the presence of As2O3, NB4-AsRcells degrade PML/RARα, slightly differentiate, and become more sensitive to serum deprivation-induced apoptosis. Similarly, in RA-resistant NB4-R1 cells, RA induced a significant PML/RARα degradation and yet failed to induce cell maturation. Thus, As2O3- or retinoic acid (RA)-induced PML/RARα degradation may be a prerequisite, but is not sufficient for the full differentiative/apoptotic response to these drugs. Strikingly, RA-triggered differentiation and apoptosis were greatly accelerated in As2O3-treated NB4-AsR cells. The synergism between these two agents in this setting could provide an experimental basis for combined or sequential RA/As2O3 therapies.
Collapse
|
4759
|
Denver RJ. The molecular basis of thyroid hormone-dependent central nervous system remodeling during amphibian metamorphosis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:219-28. [PMID: 9826995 DOI: 10.1016/s0742-8413(98)00011-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tadpole metamorphosis involves a coordinated series of changes in virtually every tissue of the body. This developmental process is induced by the single morphogen, thyroid hormone (TH). The amphibian central nervous system (CNS) is a primary target for TH, and it undergoes dramatic morphological and cytoarchitectural changes in response to the hormone. TH acts by regulating gene expression and its actions in metamorphosis are thought to result from its ability to induce tissue-specific genetic programs. Receptors for TH are ligand-dependent transcription factors whose mRNA expression is upregulated by TH during metamorphosis (receptor autoinduction). Studies on the tadpole CNS have identified four general classes of early TH response genes. These genes code for: (1) transcription factors, that are likely to be required for the expression of downstream genes (i.e. secondary response genes), (2) cellular enzymes, which carry out hormone conversions, energy transformations and may possibly mediate extranuclear effects of TH on neural cells, (3) cytoskeletal elements required for axonal development, and (4) secreted signaling molecules that control the production of TH. Recent studies suggest a critical, evolutionarily conserved role for the TH-induced transcription factor genes in controling neural cell proliferation and differentiation.
Collapse
Affiliation(s)
- R J Denver
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA.
| |
Collapse
|
4760
|
Schulman IG, Shao G, Heyman RA. Transactivation by retinoid X receptor-peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimers: intermolecular synergy requires only the PPARgamma hormone-dependent activation function. Mol Cell Biol 1998; 18:3483-94. [PMID: 9584188 PMCID: PMC108929 DOI: 10.1128/mcb.18.6.3483] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of DNA sequence-specific transcription factors to synergistically activate transcription is a common property of genes transcribed by RNA polymerase II. The present work characterizes a unique form of intermolecular transcriptional synergy between two members of the nuclear hormone receptor superfamily. Heterodimers formed between peroxisome proliferator-activated receptor gamma (PPARgamma), an adipocyte-enriched member of the superfamily required for adipogenesis, and retinoid X receptors (RXRs) can activate transcription in response to ligands specific for either subunit of the dimer. Simultaneous treatment with ligands specific for both PPARgamma and RXR has a synergistic effect on the transactivation of reporter genes and on adipocyte differentiation in cultured cells. Mutation of the PPARgamma hormone-dependent activation domain (named tauc or AF-2) inhibits the ability of RXR-PPARgamma heterodimers to respond to ligands specific for either subunit. In contrast, the ability of RXR- and PPARgamma-specific ligands to synergize does not require the hormone-dependent activation domain of RXR. The results of in vitro and in vivo experiments indicate that binding of ligands to RXR alters the conformation of the dimerization partner, PPARgamma, and modulates the activity of the heterodimer in a manner independent of the RXR hormone-dependent activation domain.
Collapse
Affiliation(s)
- I G Schulman
- Department of Retinoid Research, Ligand Pharmaceuticals, San Diego, California 92121, USA.
| | | | | |
Collapse
|
4761
|
Patrone C, Gianazza E, Santagati S, Agrati P, Maggi A. Divergent pathways regulate ligand-independent activation of ER alpha in SK-N-BE neuroblastoma and COS-1 renal carcinoma cells. Mol Endocrinol 1998; 12:835-41. [PMID: 9626659 DOI: 10.1210/mend.12.6.0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alpha-estrogen receptor (ER alpha) transcriptional activity can be regulated either by binding to the cognate ligand or by intracellular signaling pathways responsive to a variety of factors acting through cell membrane receptors. Studies carried out in HeLa and COS-1 cells demonstrated that the cross-coupling between estrogen and growth factor receptors is mediated by p21ras and requires phosphorylation of a specific serine residue (Ser 118 in the human ER alpha and Ser 122 in mouse ER alpha) located in the ER alpha N-terminal activation function 1 (AF-1). Likewise, in the SK-N-BE neuroblastoma cell line p21ras is involved in the cross-coupling between insulin and ER alpha receptors. However, in this cell line Ser 122 is not necessary for insulin-dependent activation of unliganded ER alpha. In addition, after insulin activation, the electrophoretic mobility associated to serine hyperphosphorylation of ER alpha in SK-N-BE and in COS-1 cells is different. Our study rules out the possibility of tyrosine phosphorylation in unliganded ER alpha activation by means of transactivation studies of ER alpha tyrosine mutants and analysis of Tyr phosphorylation immunoreactivity. The two cofactors for steroid receptors RIP 140 and SRC-1 do not seem to be specifically involved in the insulin-induced ER alpha transactivation. The present study demonstrates the possibility of an alternative, cell-specific pathway of cross-coupling between intracellular and membrane receptors, which might be of importance for the understanding of the physiological significance of this mode of activation in the nervous system.
Collapse
Affiliation(s)
- C Patrone
- Centre Molecular Pharmaceology Laboratory, University of Milan, Italy
| | | | | | | | | |
Collapse
|
4762
|
Champlin DT, Truman JW. Ecdysteroids govern two phases of eye development during metamorphosis of the moth, Manduca sexta. Development 1998; 125:2009-18. [PMID: 9570766 DOI: 10.1242/dev.125.11.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eye primordium of the moth, Manduca sexta, shows two different developmental responses to ecdysteroids depending on the concentration to which it is exposed. Tonic exposure to moderate levels of 20-hydroxyecdysone (20E) or its precursor, ecdysone, are required for progression of the morphogenetic furrow across the primordium. Proliferation, cell-type specification and organization of immature ommatidial clusters occur in conjunction with furrow progression. These events can be reversibly started or stopped in cultured primordia simply by adjusting levels of ecdysteroid to be above or below a critical threshold concentration. In contrast, high levels of 20E cause maturation of the photoreceptors and the support cells that comprise the ommatidia. Ommatidial maturation normally occurs after the furrow has crossed the primordium, but premature exposure to high levels of 20E at any time causes precocious maturation. In such cases, the furrow arrests irreversibly and cells behind the furrow produce a well-formed, but miniature, eye. Precocious and catastrophic metamorphosis occurs throughout such animals, suggesting that ecdysteroids control development of other tissues in a manner similar to the eye. The threshold concentrations of 20E required for furrow progression versus ommatidial maturation differ by about 17-fold. This capacity to regulate distinct phases of development by different concentrations of a single hormone is probably achieved by differential sensitivity of target gene promoters to induction by the hormone-bound receptor(s).
Collapse
Affiliation(s)
- D T Champlin
- Department of Zoology, University of Washington, BOX 351800, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|
4763
|
Abstract
In the acute promyelocytic leukemia (APL) cell line NB4, as well as in APL patients' cells, arsenic trioxide (As2O3) leads to incomplete cell maturation, induction of apoptosis, as well as to the degradation of the oncogenic PML/RARα fusion protein. We have isolated an arsenic-resistant NB4 subline (NB4-AsR), which fails to undergo apoptosis, but maintains the partial differentiation response to this drug. When grown in the presence of As2O3, NB4-AsRcells degrade PML/RARα, slightly differentiate, and become more sensitive to serum deprivation-induced apoptosis. Similarly, in RA-resistant NB4-R1 cells, RA induced a significant PML/RARα degradation and yet failed to induce cell maturation. Thus, As2O3- or retinoic acid (RA)-induced PML/RARα degradation may be a prerequisite, but is not sufficient for the full differentiative/apoptotic response to these drugs. Strikingly, RA-triggered differentiation and apoptosis were greatly accelerated in As2O3-treated NB4-AsR cells. The synergism between these two agents in this setting could provide an experimental basis for combined or sequential RA/As2O3 therapies.
Collapse
|
4764
|
Chiellini G, Apriletti JW, Yoshihara HA, Baxter JD, Ribeiro RC, Scanlan TS. A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. CHEMISTRY & BIOLOGY 1998; 5:299-306. [PMID: 9653548 DOI: 10.1016/s1074-5521(98)90168-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Thyroid hormones regulate many different physiological processes in different tissues in vertebrates. Most of the actions of thyroid hormones are mediated by the thyroid hormone receptor (TR), which is a member of the nuclear receptor superfamily of ligand-activated transcription regulators. There are two different genes that encode two different TRs, TR alpha and TR beta, and these two TRs are often co-expressed at different levels in different tissues. Most thyroid hormones do not discriminate between the two TRs and bind both with similar affinities. RESULTS We have designed and synthesized a thyroid hormone analog that has high affinity for the TRs and is selective in both binding and activation functions for TR beta over TR alpha. The compound, GC-1, was initially designed to solve synthetic problems that limit thyroid hormone analog preparation, and contains several structural changes with respect to the natural hormone 3,5,3'-triiodo-L-thyronine (T3). These changes include replacement of the three iodines with methyl and isopropyl groups, replacement of the biaryl ether linkage with a methylene linkage, and replacement of the amino-acid sidechain with an oxyacetic-acid sidechain. CONCLUSIONS The results of this study show that GC-1 is a member of a new class of thyromimetic compounds that are more synthetically accessible than traditional thyromimetics and have potentially useful receptor binding and activation properties. The TR beta selectivity of GC-1 is particularly interesting and suggests that GC-1 might be a useful in vivo probe for studying the physiological roles of the different thyroid hormone receptor isoforms.
Collapse
Affiliation(s)
- G Chiellini
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | | | | | |
Collapse
|
4765
|
Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93:693-704. [PMID: 9630215 DOI: 10.1016/s0092-8674(00)81432-4] [Citation(s) in RCA: 1142] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We demonstrate that mice lacking the oxysterol receptor, LXR alpha, lose their ability to respond normally to dietary cholesterol and are unable to tolerate any amount of cholesterol in excess of that which they synthesize de novo. When fed diets containing cholesterol, LXR alpha (-/-) mice fail to induce transcription of the gene encoding cholesterol 7alpha-hydroxylase (Cyp7a), the rate-limiting enzyme in bile acid synthesis. This defect is associated with a rapid accumulation of large amounts of cholesterol in the liver that eventually leads to impaired hepatic function. The regulation of several other crucial lipid metabolizing genes is also altered in LXR alpha (-/-) mice. These results demonstrate the existence of a physiologically significant feed-forward regulatory pathway for sterol metabolism and establish the role of LXR alpha as the major sensor of dietary cholesterol.
Collapse
Affiliation(s)
- D J Peet
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 75235-9050, USA
| | | | | | | | | | | | | |
Collapse
|
4766
|
Lee YF, Young WJ, Burbach JP, Chang C. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J Biol Chem 1998; 273:13437-43. [PMID: 9593676 DOI: 10.1074/jbc.273.22.13437] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amino acid sequence analysis indicates that the human TR4 orphan receptor (TR4) is a member of the estrogen/thyroid receptor subfamily of the steroid/thyroid receptor superfamily and recognizes the AGGTCA direct repeat (DR) of the hormone response element. Here we demonstrate using the electrophoretic mobility shift assay that TR4 binds specifically to DR with a spacing of 1 and 5 base pairs (DR1 and DR5), which are the response elements for retinoic acid receptor (RAR) and retinoid X receptor (RXR), respectively. A reporter gene assay using chloramphenicol acetyltransferase demonstrated that TR4 repressed RA-induced transactivation in a TR4 dose-dependent manner. Inhibition of the retinoid signal pathway also occurs through natural response elements found in CRBPII and RARbeta genes. Our data suggest that the mechanism of repression may not involve the formation of functionally inactive heterodimers between TR4 and RAR or RXR. Instead, we show that TR4 may compete for hormone response elements with RAR and RXR due to its higher binding affinity. Furthermore, treatment of F9 murine teratocarcinoma (F9) cells with 10(-6) M all-trans-retinoic acid increased TR4 mRNA levels, and this change was accompanied by an increased amount of endogenous TR4 protein that can bind to RXRE in electrophoretic mobility shift assay. Our data therefore strongly suggest that the retinoid signal pathway can be regulated by TR4 in a negative feedback control mechanism, which may restrict retinoic acid signaling to certain elements in a cell-specific fashion.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Blotting, Northern
- CHO Cells
- Chloramphenicol O-Acetyltransferase/genetics
- Cricetinae
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Embryonic and Fetal Development
- Feedback
- Humans
- Mice
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/immunology
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Retinoid X Receptors
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Y F Lee
- George Whipple Laboratory for Cancer Research and Departments of Pathology, Urology, and Biochemistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
4767
|
Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci U S A 1998; 95:5998-6003. [PMID: 9600906 PMCID: PMC27574 DOI: 10.1073/pnas.95.11.5998] [Citation(s) in RCA: 511] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/1998] [Indexed: 02/07/2023] Open
Abstract
The 2.8-A crystal structure of the complex formed by estradiol and the human estrogen receptor-alpha ligand binding domain (hERalphaLBD) is described and compared with the recently reported structure of the progesterone complex of the human progesterone receptor ligand binding domain, as well as with similar structures of steroid/nuclear receptor LBDs solved elsewhere. The hormone-bound hERalphaLBD forms a distinctly different and probably more physiologically important dimer interface than its progesterone counterpart. A comparison of the specificity determinants of hormone binding reveals a common structural theme of mutually supported van der Waals and hydrogen-bonded interactions involving highly conserved residues. The previously suggested mechanism by which the estrogen receptor distinguishes estradiol's unique 3-hydroxy group from the 3-keto function of most other steroids is now described in atomic detail. Mapping of mutagenesis results points to a coactivator-binding surface that includes the region around the "signature sequence" as well as helix 12, where the ligand-dependent conformation of the activation function 2 core is similar in all previously solved steroid/nuclear receptor LBDs. A peculiar crystal packing event displaces helix 12 in the hERalphaLBD reported here, suggesting a higher degree of dynamic variability than expected for this critical substructure.
Collapse
Affiliation(s)
- D M Tanenbaum
- Department of Molecular Biophysics and Biochemistry and the Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue, JWG 423, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
4768
|
Joel PB, Traish AM, Lannigan DA. Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 1998; 273:13317-23. [PMID: 9582378 DOI: 10.1074/jbc.273.21.13317] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Ser118 of human estrogen receptor alpha (ER) enhances ER-mediated transcription and is induced by hormone binding and by activation of the mitogen-activated protein kinase (MAPK) pathway. We discovered that phosphorylation of Ser118 reduces the electrophoretic mobility of the ER. Using this mobility shift as an assay, we determined the in vivo stoichiometry and kinetics of Ser118 phosphorylation in response to estradiol, ICI 182,780, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA). In human breast cancer MCF-7 cells, estradiol induced a steady state phosphorylation of Ser118 within 20 min with a stoichiometry of 0.67 mol of phosphate/mol of ER. Estradiol did not activate p42/p44 MAPK, and basal p42/p44 MAPK activity was not sufficient to account for phosphorylation of Ser118 in response to estradiol. In contrast, both EGF and PMA induced a rapid, transient phosphorylation of Ser118 with a stoichiometry of approximately 0. 25, and the onset of Ser118 phosphorylation correlated with the onset of p42/p44 MAPK activation by these agents. Either the EGF- or PMA-induced Ser118 phosphorylation could be inhibited without influencing estradiol-induced Ser118 phosphorylation. The data suggest that a kinase other than p42/p44 MAPK is involved in the estradiol-induced Ser118 phosphorylation. We propose that the hormone-induced change in ER conformation exposes Ser118 for phosphorylation by a constitutively active kinase.
Collapse
Affiliation(s)
- P B Joel
- Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
4769
|
Nakshatri H, Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res 1998; 26:2491-9. [PMID: 9580705 PMCID: PMC147560 DOI: 10.1093/nar/26.10.2491] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of nuclear receptors, including retinoic acid receptors (RARs), retinoid-X receptors (RXRs), hepatocyte nuclear factor 4 (HNF-4), chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), apolipoprotein regulatory protein 1 (ARP-1) and peroxisome proliferator-activated receptor (PPAR), bind to response elements comprised of two core motifs, 5'-RG(G/T)TCA, or a closely related sequence separated by 1 nt (DR1 elements). The potential role of the precise sequence of the core motif as well as the spacer nucleotide in determining specificity and promiscuity of receptor-response element interactions was investigated. We show here that nucleotides at base positions 1, 2 and 4 of the core motif as well as the spacer nucleotide determine the binding preference of HNF-4 and ARP-1 homodimers and RAR:RXR and PPAR:RXR heterodimers. In transfection experiments transcriptional activation by HNF-4 and PPAR:RXR and repression by ARP-1 correlated with the relative in vitro binding affinity provided the element was located within the proper promoter context. Furthermore, promoter context also determined whether an element that binds to HNF-4 and PPAR:RXR with equal affinity functions as an HNF-4 response element or PPAR response element. Thus, apart from the element-specific differences in affinity for the receptors, additional promoter-specific transcription factors that interact with HNF-4 and PPAR:RXR determine the specificity of transcriptional response through DR1-type elements.
Collapse
Affiliation(s)
- H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
4770
|
Fisk GJ, Thummel CS. The DHR78 nuclear receptor is required for ecdysteroid signaling during the onset of Drosophila metamorphosis. Cell 1998; 93:543-55. [PMID: 9604930 DOI: 10.1016/s0092-8674(00)81184-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulses of ecdysteroids direct Drosophila through its life cycle by activating stage- and tissue-specific genetic regulatory hierarchies. Here we show that an orphan nuclear receptor, DHR78, functions at the top of the ecdysteroid regulatory hierarchies. Null mutations in DHR78 lead to lethality during the third larval instar with defects in ecdysteroid-triggered developmental responses. Consistent with these phenotypes, DHR78 mutants fail to activate the mid-third instar regulatory hierarchy that prepares the animal for metamorphosis. DHR78 protein is bound to many ecdysteroid-regulated puff loci, suggesting that DHR78 directly regulates puff gene expression. In addition, ectopic expression of DHR78 has no effects on development, indicating that its activity is regulated post-translationally. We propose that DHR78 is a ligand-activated receptor that plays a central role in directing the onset of Drosophila metamorphosis.
Collapse
Affiliation(s)
- G J Fisk
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City 84112-5331, USA
| | | |
Collapse
|
4771
|
Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 1998; 93:605-15. [PMID: 9604935 DOI: 10.1016/s0092-8674(00)81189-7] [Citation(s) in RCA: 527] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The MAP kinase ERK2 is widely involved in eukaryotic signal transduction. Upon activation it translocates to the nucleus of the stimulated cell, where it phosphorylates nuclear targets. We find that nuclear accumulation of microinjected ERK2 depends on its phosphorylation state rather than on its activity or on upstream components of its signaling pathway. Phosphorylated ERK2 forms dimers with phosphorylated and unphosphorylated ERK2 partners. Disruption of dimerization by mutagenesis of ERK2 reduces its ability to accumulate in the nucleus, suggesting that dimerization is essential for its normal ligand-dependent relocalization. The crystal structure of phosphorylated ERK2 reveals the basis for dimerization. Other MAP kinase family members also form dimers. The generality of this behavior suggests that dimerization is part of the mechanism of action of the MAP kinase family.
Collapse
Affiliation(s)
- A V Khokhlatchev
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas 75235-9041, USA
| | | | | | | | | | | | | |
Collapse
|
4772
|
Courtois SJ, Segaert S, Degreef H, Bouillon R, Garmyn M. Ultraviolet B suppresses vitamin D receptor gene expression in keratinocytes. Biochem Biophys Res Commun 1998; 246:64-9. [PMID: 9600069 DOI: 10.1006/bbrc.1998.8573] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Keratinocytes not only produce vitamin D3 in response to ultraviolet B light (UVB) and convert 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D) but also possess the vitamin D receptor (VDR) and respond to 1,25(OH)2D. We characterized the regulation of the expression of the VDR gene in primary human keratinocytes following UVB irradiation. We report a marked dose-dependent down-regulation of the VDR mRNA and protein within a few hours after irradiation. This occurs independently of de novo protein synthesis and is not due to a change in the half-life of the VDR mRNA. Interestingly, treatment of the cells with sodium salicylate, caffeic acid phenethyl ester and tosylphenylchloromethylketone inhibited this down-regulation. Our results strongly suggest the existence of a feedback mechanism in that UVB initiates vitamin D synthesis in keratinocytes and at the same time limits VDR abundance. They also provide a rational explanation for the reported lack of any additive effect between 1,25(OH)2D and UVB phototherapy in the treatment of psoriasis.
Collapse
Affiliation(s)
- S J Courtois
- Department of Dermatology, Katholieke Universiteit Leuven, Louvain, Belgium
| | | | | | | | | |
Collapse
|
4773
|
Maruyama K, Endoh H, Sasaki-Iwaoka H, Kanou H, Shimaya E, Hashimoto S, Kato S, Kawashima H. A novel isoform of rat estrogen receptor beta with 18 amino acid insertion in the ligand binding domain as a putative dominant negative regular of estrogen action. Biochem Biophys Res Commun 1998; 246:142-7. [PMID: 9600083 DOI: 10.1006/bbrc.1998.8590] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel isoform of rat estrogen receptor (ER) beta, ER beta 2, which is a putative alternative splicing product of the reported ER beta (ER beta 1) has been identified. Rat ER beta 2 cDNA contains an additional, in-frame 54 base pair insertion in the ligand binding domain of ER beta 1, which generates an 18 amino acid residue insertion. Northern blot and RT-PCR analyses revealed that ER beta 2 coexists with ER alpha and ER beta 1 in all tissues examined including brain, lung, liver, kidney, fat, bone, uterus, prostate, and ovary. The insertion caused loss of ligand binding activity of ER beta 2, whereas the ability to bind the palindromic estrogen response element (ERE) was retained. In an ERE-containing luciferase reporter gene assay using COS-1 cells, ER beta 2 failed to activate estrogen-dependent transcription. Furthermore, ER beta 2 dose dependently suppressed the ER alpha- and ER beta 1-mediated transcriptional activation. These results suggest that rat ER beta 2 functions as a negative regulator of estrogen action.
Collapse
Affiliation(s)
- K Maruyama
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4774
|
Kostrouchova M, Krause M, Kostrouch Z, Rall JE. CHR3: a Caenorhabditis elegans orphan nuclear hormone receptor required for proper epidermal development and molting. Development 1998; 125:1617-26. [PMID: 9521900 DOI: 10.1242/dev.125.9.1617] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CHR3 is a Caenorhabditis elegans orphan nuclear hormone receptor highly homologous to Drosophila DHR3, an ecdysone-inducible gene product involved in metamorphosis. Related vertebrate factors include RORalpha/RZRalpha, RZRbeta and RevErb. Gel-shift studies show that CHR3 can bind the DR5-type hormone response sequence. CHR3 is a nuclear protein present in all blastomeres during early embryogenesis. During morphogenesis, both CHR3 protein and zygotically active reporter genes are detectable in epidermal cells and their precursors. Inhibition of the gene encoding CHR3 results in several larval defects associated with abnormal epidermal cell function, including molting and body size regulation, suggesting that CHR3 is an essential epidermal factor required for proper postembryonic development.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Helminth/genetics
- DNA, Helminth/metabolism
- Epidermis/chemistry
- Epidermis/embryology
- Gene Expression Regulation, Developmental/physiology
- Genes, Helminth/physiology
- Heat-Shock Proteins/genetics
- Larva
- Molting
- Promoter Regions, Genetic/genetics
- RNA, Antisense
- RNA, Helminth/analysis
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins
Collapse
|
4775
|
Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA. Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 1998; 93:445-54. [PMID: 9590178 DOI: 10.1016/s0092-8674(00)81172-1] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Products of steroidogenic factor 1 (SF-1) and Wilms' tumor 1 (WT1) genes are essential for mammalian gonadogenesis prior to sexual differentiation. In males, SF-1 participates in sexual development by regulating expression of the polypeptide hormone Müllerian inhibiting substance (MIS). Here, we show that WT1 -KTS isoforms associate and synergize with SF-1 to promote MIS expression. In contrast, WT1 missense mutations, associated with male pseudohermaphroditism in Denys-Drash syndrome, fail to synergize with SF-1. Additionally, the X-linked, candidate dosage-sensitive sex-reversal gene, Dax-1, antagonizes synergy between SF-1 and WT1, most likely through a direct interaction with SF-1. We propose that WT1 and Dax-1 functionally oppose each other in testis development by modulating SF-1-mediated transactivation.
Collapse
Affiliation(s)
- M W Nachtigal
- Department of Physiology, University of California at San Francisco, 94143-0444, USA
| | | | | | | | | | | |
Collapse
|
4776
|
Kurtz DM, Tolwani RJ, Wood PA. Structural characterization of the mouse long-chain acyl-CoA dehydrogenase gene and 5' regulatory region. Mamm Genome 1998; 9:361-5. [PMID: 9545492 DOI: 10.1007/s003359900770] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-chain acyl-CoA dehydrogenase (LCAD) is one of four enzymes involved in the initial step of mitochondrial beta-oxidation of straight-chain fatty acids. It is a member of the acyl-CoA dehydrogenase (Acad or ACAD) gene family of enzymes, which also includes very-long-chain (VLCAD), medium-chain (MCAD), and short-chain (SCAD) acyl-CoA dehydrogenases. These enzymes all have similar activity but differ only in the chain length specificity for their substrate. Mitochondrial beta-oxidation provides an important source of energy especially during times of fasting. In order to understand the role of LCAD in this pathway, we have cloned and characterized the entire mouse (Mus musculus) gene encoding LCAD (Acadl). Acadl is a single-copy, nuclear encoded gene approximately 35 kb in size. We have sequenced the entire coding region, all intron/exon boundaries, 1.7 kb of its 5' regulatory region, and mapped the transcription start site. The gene contains 11 coding exons ranging in size from 67 bp to 275 bp, interrupted by 10 introns ranging in size from 1.0 kb to 6.6 kb in size. The Acadl 5' regulatory region, like other members of the Acad family, lacks a TATA or CAAT box and is GC rich. This region does contain multiple, putative cis-acting DNA elements recognized by either SP1 or members of the steroid-thyroid family of nuclear receptors, which has been shown with other members of the ACAD gene family to be important in regulated expression. The characterization of the mouse Acadl gene will allow further study of LCAD in an in vivo model, and how its expression may be coordinated with other members of the Acad gene family.
Collapse
Affiliation(s)
- D M Kurtz
- Department of Comparative Medicine, Volker Hall, Room 401, Schools of Medicine and Dentistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | |
Collapse
|
4777
|
vom Baur E, Harbers M, Um SJ, Benecke A, Chambon P, Losson R. The yeast Ada complex mediates the ligand-dependent activation function AF-2 of retinoid X and estrogen receptors. Genes Dev 1998; 12:1278-89. [PMID: 9573045 PMCID: PMC316789 DOI: 10.1101/gad.12.9.1278] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors can function as ligand-inducible transregulators in both mammalian and yeast cells, indicating that important features of control of transcription have been conserved throughout evolution. Here, we report the isolation and characterization of a yeast protein that exhibits properties expected for a coactivator/mediator of the ligand-dependent activation function AF-2 present in the ligand-binding domain (LBD, region E) of the retinoid X (RXRalpha) and estrogen (ERalpha) receptors. This protein is identical to Ada3, a component of the yeast Ada coactivator complex. We demonstrate that: (1) the region encompassing residues 347-702 of Ada3 interacts with the LBD of RXRalpha and ERalpha in a ligand-dependent manner in yeast; (2) this interaction corresponds to a direct binding and requires the integrity of the core of the AF-2 activating domain (AF-2 AD) of both RXRalpha and ERalpha; (3) Ada3 as well as Ada2 and Gcn5, two other components of the Ada complex, are required for maximal AF-2 activity in yeast; and (4) Ada3 is able to enhance the AF-2 activity of RXRalpha and ERalpha when overexpressed in yeast and mammalian cells. Taken together, these data indicate that ligand-dependent transactivation by RXRalpha and ERalpha in yeast is mediated at least in part by the Ada complex, in which the Ada3 subunit directly binds to the holoreceptor LBD.
Collapse
Affiliation(s)
- E vom Baur
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université Louis Pasteur (CNRS-INSERM-ULP), Collège de France,
| | | | | | | | | | | |
Collapse
|
4778
|
SALBERT GILLES, LAZENNEC GWENDAL, KERN LAURENCE, FLOURIOT GILLES, PAKDEL FARZAD, VALOTAIRE YVES. A Complex Regulatory Unit Mediates Estrogen Receptor Gene Autoregulation in Fish. Ann N Y Acad Sci 1998. [DOI: 10.1111/j.1749-6632.1998.tb10744.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4779
|
Crawford PA, Dorn C, Sadovsky Y, Milbrandt J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol 1998; 18:2949-56. [PMID: 9566914 PMCID: PMC110674 DOI: 10.1128/mcb.18.5.2949] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1) is a critical developmental regulator in the urogenital ridge, because mice targeted for disruption of the SF-1 gene lack adrenal glands and gonads. SF-1 was recently shown to interact with DAX-1, another orphan receptor whose tissue distribution overlaps that of SF-1. Naturally occurring loss-of-function mutations of the DAX-1 gene cause the human disorder X-linked adrenal hypoplasia congenita (AHC), which resembles the phenotype of SF-1-deficient mice. Paradoxically, however, DAX-1 represses the transcriptional activity of SF-1, and AHC mutants of DAX-1 lose repression function. To further investigate these findings, we characterized the interaction between SF-1 and DAX-1 and found that their interaction indeed occurs through a repressive domain within the carboxy terminus of SF-1. Furthermore, we demonstrate that DAX-1 recruits the nuclear receptor corepressor N-CoR to SF-1, whereas naturally occurring AHC mutations of DAX-1 permit the SF-1-DAX-1 interaction, but markedly diminish corepressor recruitment. Finally, the interaction between DAX-1 and N-CoR shares similarities with that of the nuclear receptor RevErb and N-CoR, because the related corepressor SMRT was not efficiently recruited by DAX-1. Therefore, DAX-1 can serve as an adapter molecule that recruits nuclear receptor corepressors to DNA-bound nuclear receptors like SF-1, thereby extending the range of corepressor action.
Collapse
Affiliation(s)
- P A Crawford
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
4780
|
Abstract
We have analyzed the expression pattern of c-erb A alpha and c-erb A beta which encode the thyroid hormone receptors (T3R alpha and T3R beta) during early chicken embryogenesis. Only c-erb A alpha expression was detected by RT-PCR and whole-mount in situ hybridization. c-erb A alpha transcripts were found to be already present at low level in embryos before egg incubation. During neurulation a marked increase was observed in neurectoderm. A reporter cell line was then constructed and used to demonstrate the release of significant amount of thyroid hormone (T3) from egg yolk by area opaca cells before gastrulation. During gastrulation T3 was found to be enriched in the primitive streak and Hensen's node. Introduction of excess T3 frequently resulted in abnormal development of anterior structures, mainly neural tube defects and anencephalia. These observations suggest that T3R alpha, like the closely related retinoic acid receptors, fulfills functions which are important for embryonic development well before the onset of thyroid gland function.
Collapse
Affiliation(s)
- F Flamant
- Laboratoire de Biologie Moléculaire et Cellulaire, l'Ecole Normale Supérieure de Lyon CNRS UMR49-INRA LA913, Allée d'Italie, Lyon Cedex 07, France.
| | | |
Collapse
|
4781
|
Olson L, Cheng H, Zetterström RH, Solomin L, Jansson L, Giménez-Llort L, Hoffer BJ, Perlmann T. On CNS repair and protection strategies: novel approaches with implications for spinal cord injury and Parkinson's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:302-5. [PMID: 9651546 DOI: 10.1016/s0165-0173(97)00051-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the adult mammalian central nervous system lost nerve cells are not replaced and there is no regeneration of injured axons in white matter. Together, these two facts mean that there are no spontaneous reparative mechanisms in operation. Instead, the adult central nervous system copes with the risks of injuries and diseases by protective encapsulation in bone, by a multitude of neuroprotective mechanisms, and finally by the fact that many important functions are represented by a much larger number of neurons than minimally needed. The long life expectancy of a human being nevertheless means that the risk that the central nervous system is affected by disease, injury or other forms of insults for which it cannot fully compensate is relatively high. Experimentally, two strategies are being pursued in order to develop ways of minimizing various forms of CNS damage, namely neuroprotective and reparative strategies. Here we present a possible reparative intervention applicable to spinal cord injury based on multiple white-to-gray matter peripheral nerve bridge grafts and work based on the specific role of Nurr1 for dopamine neuron development, suggesting that development of ligands to transcription factor might be a new inroad to neuroprotective treatments in Parkinson's disease.
Collapse
Affiliation(s)
- L Olson
- Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
4782
|
Gao T, McPhaul MJ. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol 1998; 12:654-63. [PMID: 9605928 DOI: 10.1210/mend.12.5.0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) is present in many cells in two forms. The B form migrates with an apparent mass of 110 kDa and constitutes more than 80% of the immunoreactive receptor in most cell types. The A form of the AR migrates with an apparent mass of 87 kDa, appears to derive from internal translation initiation at methionine-188 in the AR open-reading frame, and usually constitutes 20% or less of the immunoreactive AR present. Previous experiments designed to examine the functional capacity of the A and B forms of the AR have been hampered by marked differences in the expression levels of the two isoforms, as the nucleotide sequence surrounding the codon encoding methionine-188 causes it to be used inefficiently as a translation initiation site. To circumvent this, we altered the nucleotide sequence surrounding methionine-188 to render it more similar to that surrounding the codon encoding methionine-1. Transfection of a cDNA containing these changes resulted in similar levels of expression of A and B forms of the AR as assessed by immunoblot assays using antibodies directed at an epitope preserved in both. Functional activities of these cDNAs were assessed using cotransfection assays that employed two model androgen-responsive genes (MMTV-luciferase and PRE2-tk-luciferase) in response to mibolerone, a potent androgen agonist, in three different cell lines. These studies demonstrated subtle differences in the activities of the A and B isoforms, which depended on the promoter and cell context. Additional studies failed to reveal any major differences in the responses of the AR-A and AR-B isoforms to a variety of androgen agonists and antagonists, suggesting that the previously reported functional defect of the AR-A is due principally to its level of expression. When assays of AR function are performed under conditions in which levels of expression of the two isoforms are equivalent, the AR-A and AR-B possess similar functional activities.
Collapse
Affiliation(s)
- T Gao
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
4783
|
Zhao Q, Khorasanizadeh S, Miyoshi Y, Lazar MA, Rastinejad F. Structural elements of an orphan nuclear receptor-DNA complex. Mol Cell 1998; 1:849-61. [PMID: 9660968 DOI: 10.1016/s1097-2765(00)80084-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The nuclear hormone receptors form the largest known family of transcription factors. The current notion of receptor DNA discrimination, based solely on one major type of hexameric half-site and a highly conserved 66-residue core DNA-binding domain (DBD), does not adequately describe how more than 150 nonsteroid receptors differentiate among response elements. Here, we describe the 2.3 A crystal structure of the DNA-binding region of the orphan receptor RevErb arranged as a tandem homodimer on its optimal response element. The structure reveals the presence of a second major protein-DNA interface adjacent to the classical one involving the half-sites. A sequence comparison of orphan receptors suggests that unique minor-groove interactions involving the receptor hinge regions impart the necessary DNA and dimerization specificity.
Collapse
Affiliation(s)
- Q Zhao
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
4784
|
Zhang YL, Akmal KM, Tsuruta JK, Shang Q, Hirose T, Jetten AM, Kim KH, O'Brien DA. Expression of germ cell nuclear factor (GCNF/RTR) during spermatogenesis. Mol Reprod Dev 1998; 50:93-102. [PMID: 9547515 DOI: 10.1002/(sici)1098-2795(199805)50:1<93::aid-mrd12>3.0.co;2-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Germ cell nuclear factor (GCNF/RTR), a novel orphan receptor in the nuclear receptor superfamily of ligand-activated transcription factors, is expressed predominantly in developing germ cells. In several mammalian species two GCNF/RTR mRNAs are present in the testis, with the smaller 2.3-kb transcript generally expressed at higher levels than the larger 7.4- or 8.0-kb transcript. In both the mouse and rat, the 2.3- and 7.4-kb GCNF/RTR transcripts were detected in isolated spermatogenic cells, but not in Sertoli cells. Expression of these transcripts is differentially regulated, with the larger 7.4-kb mRNA appearing earlier during testicular development. The major 2.3-kb transcript is expressed predominantly in round spermatids in the mouse and rat. In situ hybridization studies in the rat demonstrated that GCNF/RTR transcripts reach maximal steady-state levels in round spermatids at stages VII and VIII of the spermatogenic cycle, and then decline abruptly as spermatids begin to elongate. RNase protection assays were used to predict the 3' termination site of the 2.3-kb transcript. An alternative polyadenylation signal (AGUAAA) was identified just upstream of this termination site. These studies suggest that GCNF/RTR may regulate transcription during spermatogenesis, particularly in round spermatids just prior to the initiation of nuclear elongation and condensation.
Collapse
Affiliation(s)
- Y L Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | |
Collapse
|
4785
|
Abstract
Estrogen is of vital importance for the development and control of reproductive functions. Until recently, estrogen was believed to regulate complex programs of gene expression by binding to an unique nuclear receptor belonging to the superfamily of ligand-dependent transcription factors. However, the identification of a second estrogen receptor, referred to as ER beta, is leading to a re-evaluation of estrogen signaling and physiology.
Collapse
Affiliation(s)
- V Giguère
- Molecular Oncology Group, Royal Victoria Hospital, Montréal, Québec, Canada.
| | | | | |
Collapse
|
4786
|
Nagao Y, French BA, Cai Y, French SW, Wan YJ. Inhibition of PPAR alpha/RXR alpha-mediated direct hyperplasia pathways during griseofulvin-induced hepatocarcinogenesis. J Cell Biochem 1998; 69:189-200. [PMID: 9548566 DOI: 10.1002/(sici)1097-4644(19980501)69:2<189::aid-jcb9>3.0.co;2-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic griseofulvin (GF) feeding induces preneoplastic foci followed by hepatocellular carcinoma in the mouse liver. Our previous study suggested that GF-induced hepatocellular proliferation had a different mechanism from that of peroxisome proliferator (PP)-induced direct hyperplasia. The GF-induced hepatocellular proliferation was mediated through activation of immediate early genes such as Fos, Jun, Myc, and NFKB. In contrast, PP-induced direct hyperplasia does not involve activation of any of these immediate early genes. It has been shown that nuclear hormone receptors including peroxisome proliferator activated receptors (PPARs) and retinoid x receptors (RXRs) play important roles in mediating the pleiotropic effects of PPs. To examine the possible roles of PPARs and RXRs during non-PP-induced hepatocellular proliferation and the interaction between PP and non-PP-induced proliferation, we have studied the expression of the PPAR and RXR genes in the GF model using northern blot hybridizations and gel retardation assays. The data showed that the expression of PPARalpha and RXRalpha genes was down-regulated in the livers containing preneoplastic nodules and in the liver tumors induced by GF. The mRNA down-regulation was accompanied by a decrease in the amount of nuclear protein-bound to peroxisome proliferator and retinoic acid responsive elements. Down-regulation was also associated with the suppressed expression of the PPARalpha/RXRalpha target genes (i.e., acyl-Co oxidase and cytochrome P450 4A1) and the catalase gene. The RXR-gamma gene was also down-regulated, but the RARalpha, beta, and gamma and PPARbeta and gamma genes were up-regulated. These results indicated that the hepatocarcinogenesis induced by GF is accompanied by suppression of the PPARalpha/RXRalpha-mediated direct hyperplasia pathway. The differential expression of these nuclear hormone receptors reveals a new aspect for understanding the individual roles and intercommunication of PPAR, RXR, and RAR isoforms in the liver.
Collapse
MESH Headings
- Acyl-CoA Oxidase
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Catalase/biosynthesis
- Catalase/genetics
- Cell Nucleus/genetics
- Cytochrome P-450 CYP4A
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, fos/drug effects
- Griseofulvin/pharmacology
- Hyperplasia
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C3H
- Mixed Function Oxygenases/biosynthesis
- Mixed Function Oxygenases/genetics
- NF-kappa B/metabolism
- Oxidoreductases/biosynthesis
- Oxidoreductases/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Transcription Factor AP-1/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Transcription Factors/physiology
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Y Nagao
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | | | | | | | |
Collapse
|
4787
|
Na SY, Lee SK, Han SJ, Choi HS, Im SY, Lee JW. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J Biol Chem 1998; 273:10831-4. [PMID: 9556555 DOI: 10.1074/jbc.273.18.10831] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptor coactivator-1 (SRC-1) specifically bound to the transcription factor NFkappaB subunit p50 but not to p65 as demonstrated by the yeast two hybrid tests and glutathione S-transferase pull down assays. The p50-binding site was localized to a subregion of SRC-1 (amino acids 759-1141) that encompasses the previously described CBP-p300-binding domain. In mammalian cells, SRC-1 potentiated the NFkappaB-mediated transactivations in a dose-dependent manner. Coexpression of p300 further enhanced this SRC-1-potentiated level of transactivations, consistent with the recent findings in which CBP and p300 were shown to be transcription coactivators of the p65 subunit (Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H., and Nabel, G. J. (1997) Science 275, 523-527; Gerritsen, M. E., Williams, A. J., Neish, A. S. , Moore, S., Shi, Y., and Collins, T. (1997) Proc. Acad. Natl. Sci. U. S. A. 94, 2927-2932). These results suggest that at least two distinct coactivator molecules may cooperate to regulate the NFkappaB-dependent transactivations in vivo and SRC-1, originally identified as a coactivator for the nuclear receptors, may constitute a more widely used coactivation complex.
Collapse
Affiliation(s)
- S Y Na
- Department of Biology, Chonnam National University, Kwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
4788
|
Tzagarakis-Foster C, Privalsky ML. Phosphorylation of thyroid hormone receptors by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding. J Biol Chem 1998; 273:10926-32. [PMID: 9556570 DOI: 10.1074/jbc.273.18.10926] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormone receptor (T3R) alpha-1 and its oncogenic derivative, the v-ERB A protein, are phosphorylated by cAMP-dependent protein kinase A. Although this phosphorylation appears to be necessary for the oncogenic properties of v-ERB A, the mechanism by which phosphorylation influences the functions of v-ERB A and of the normal T3R has not been established. The protein kinase A phosphorylation site in T3Ralpha-1 is within a domain that is known to contribute to the DNA recognition properties of these receptors. We therefore analyzed the effects of protein kinase A phosphorylation on DNA recognition by the normal T3Ralpha and by the v-ERB A oncoprotein. We report here that phosphorylation of these receptor derivatives does not significantly alter the overall affinity of receptor dimers for DNA. However, phosphorylation does notably alter DNA recognition by preventing, or greatly inhibiting, the ability of these receptors to bind to DNA as protein monomers. These studies suggest that the phosphorylation of T3Ralpha-1 and v-ERB A by protein kinase A may provide a means of altering promoter recognition through a post-translational modification.
Collapse
Affiliation(s)
- C Tzagarakis-Foster
- Section of Microbiology and Section of Molecular and Cellular Biology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
4789
|
Watanabe M, Yanagi Y, Masuhiro Y, Yano T, Yoshikawa H, Yanagisawa J, Kato S. A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochem Biophys Res Commun 1998; 245:900-5. [PMID: 9588212 DOI: 10.1006/bbrc.1998.8547] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TSG101 is thought as a putative tumor suppressor gene, and mutations of this gene were recently found in 7 of 15 breast cancer patients, though the physiological function remains to be elucidated. In this report, we showed that TSG101 protein acts as a transcriptional suppressor for estrogen receptor (ER) as well as other members of the nuclear hormone receptor super-family, VP16, and on its own. The basal promoter activity was also inhibited by TSG101. The suppression of transcription by TSG101 protein required its coiled-coil domain, which is also shown to be required for the tumor suppressive function. Expressed TSG101 protein did not have any histone acetylase nor deacetylase activity, which certain transcriptional co-factors have. The requirement of the same domain in the TSG101 protein for transcriptional suppression and in the tumor suppression indicates a possibility that transcriptional suppression of TSG101 is related to its tumor suppression.
Collapse
Affiliation(s)
- M Watanabe
- Institute of Molecular and Cellular Biosciences, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
4790
|
Ohkura N, Ito M, Tsukada T, Sasaki K, Yamaguchi K, Miki K. Alternative splicing generates isoforms of human neuron-derived orphan receptor-1 (NOR-1) mRNA. Gene 1998; 211:79-85. [PMID: 9573341 DOI: 10.1016/s0378-1119(98)00095-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuron-derived orphan receptor-1 (NOR-1) is a novel member of the Nur77/NGFI-B subfamily within the nuclear receptor superfamily. Recently, several proteins closely related to NOR-1 have been described. To elucidate the relationships between NOR-1 and these closely related proteins, we analyzed the human NOR-1 gene and its transcripts by molecular cloning. We identified two variant NOR-1 transcripts in human skeletal muscles. One variant has a different 5'-untranslated region, and the other lacks C-terminal amino acid sequences corresponding to the putative ligand binding domain. These variant sequences share the common exon-intron boundary with NOR-1 mRNA, suggesting that they were generated from a single gene by alternative splicing, with the divergent points conserved between the rat and human. We also examined the promoter activities of the 5'-flanking regions of the two NOR-1 transcripts (NOR-1alpha and NOR-1beta mRNAs) by luciferase gene transfection. We demonstrated that the 5'-flanking region of the previously described NOR-1 gene, which has characteristics of a promoter found in housekeeping genes, showed potent promoter activity although the promoter for NOR-1beta mRNAs could not be determined.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- DNA-Binding Proteins/chemistry
- Genes, Reporter/genetics
- Humans
- Mice
- Molecular Sequence Data
- Muscle, Skeletal/chemistry
- Nerve Tissue Proteins/chemistry
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Steroid
- Receptors, Thyroid Hormone
- Sequence Analysis, DNA
- Sequence Deletion/genetics
- Transfection/genetics
Collapse
Affiliation(s)
- N Ohkura
- Institute of Biomedical Science, TERUMO R&D Center, Kanagawa 258-0000, Japan.
| | | | | | | | | | | |
Collapse
|
4791
|
Quélo I, Machuca I, Jurdic P. Identification of a vitamin D response element in the proximal promoter of the chicken carbonic anhydrase II gene. J Biol Chem 1998; 273:10638-46. [PMID: 9553126 DOI: 10.1074/jbc.273.17.10638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carbonic anhydrase II gene, whose transcription is enhanced by 1, 25-dihydroxyvitamin D3 (1,25-(OH)2D3), encodes an important enzyme in bone-resorbing cells derived from the fusion of monocytic progenitors. We analyzed the 1,25-(OH)2D3-mediated activation of the avian gene by transient transfection assays with promoter/reporter constructs into HD11 chicken macrophages and by DNA mobility shift assays. Deletion and mobility shift analyses indicated that the -62/-29 region confers 1,25-(OH)2D3 responsiveness and forms DNA-protein complexes. The addition of an anti-vitamin D receptor (VDR) antibody inhibited binding to this sequence, whereas anti-retinoid X receptor (RXR) antibody generated a lower mobility complex. Therefore, we concluded that this element binds a VDR.RXR heterodimer, but the addition of extra 1,25-(OH)2D3 had no effect on the formation of this complex. Moreover, the use of nuclear extracts from 1,25-(OH)2D3-treated macrophages led to the formation of an additional high mobility complex also composed of VDR.RXR heterodimer. Mutations provided evidence that the 1, 25-(OH)2D3-mediated activation of the carbonic anhydrase II gene is mediated by VDR.RXR heterodimers bound to a DR3-type vitamin D response element with sequence AGGGCAtggAGTTCG. This vitamin D response element is also functional in the ROS 17/2.8 osteoblasts.
Collapse
Affiliation(s)
- I Quélo
- Laboratoire de Biologie Moléculaire et Cellulaire de l'Ecole Normale Supérieure de Lyon, Unité Mixte de Recherche 49 CNRS, Ecole Normale Supérieure, Institut National de la Recherche agronomique 913, 46, Allée d'Italie, 69364 Lyon cédex 07, France
| | | | | |
Collapse
|
4792
|
Reduced Retinoic Acid-Sensitivities of Nuclear Receptor Corepressor Binding to PML- and PLZF-RARα Underlie Molecular Pathogenesis and Treatment of Acute Promyelocytic Leukemia. Blood 1998. [DOI: 10.1182/blood.v91.8.2634.2634_2634_2642] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typical acute promyelocytic leukemia (APL) is associated with expression of the PML-RARα fusion protein and responsiveness to treatment with all-trans retinoic acid (ATRA). A rare, but recurrent, APL has been described that does not respond to ATRA treatment and is associated with a variant chromosomal translocation and expression of the PLZF-RARα fusion protein. Both PML- and PLZF-RARα possess identical RAR sequences and inhibit ATRA-induced gene transcription as well as cell differentiation. We now show that the above-mentioned oncogenic fusion proteins interact with the nuclear receptor corepressor N-CoR and, in comparison with the wild-type RARα protein, their interactions display reduced sensitivities to ATRA. Although pharmacologic concentration of ATRA could still induce dissociation of N-CoR from PML-RARα, it had a very little effect on its association with the PLZF-RARα fusion protein. This ATRA-insensitive interaction between N-CoR and PLZF-RARα was mediated by the N-terminal PLZF moiety of the chimera. It appears that N-CoR/histone deacetylase corepressor complex interacts directly in an ATRA-insensitive manner with the BTB/POZ-domain of the wild-type PLZF protein and is required, at least in part, for its function as a transcriptional repressor. As the above-noted results predict, histone deacetylase inhibitors antagonize oncogenic activities of the PML-RARα fusion protein and partially relieve transcriptional repression by PLZF as well as inhibitory effect of PLZF-RARα on ATRA response. Taken together, our results demonstrate involvement of nuclear receptor corepressor/histone deacetylase complex in the molecular pathogenesis of APL and provide an explanation for differential sensitivities of PML- and PLZF-RARα–associated leukemias to ATRA.
Collapse
|
4793
|
Retinoic Acid Selectively Inhibits Lipopolysaccharide Induction of Tissue Factor Gene Expression in Human Monocytes. Blood 1998. [DOI: 10.1182/blood.v91.8.2857.2857_2857_2865] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of tissue factor (TF) by activated monocytes in several diseases leads to disseminated intravascular coagulation. Lipopolysaccharide (LPS)-induced monocyte TF expression is downregulated by the nuclear hormone all-trans retinoic acid (ATRA). In this study, we examined the mechanism by which ATRA inhibits monocyte TF expression. We show that ATRA selectively inhibited LPS induction of TF expression in human monocytes and monocytic THP-1 cells without affecting LPS induction of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8). Inhibition of TF expression occurred at the level of transcription as determined by nuclear run-on. ATRA did not significantly alter the binding or functional activity of the transcription factors c-Fos/c-Jun and c-Rel/p65, which are required for LPS induction of the TF promoter in monocytic cells. In contrast to the ATRA inhibition of the endogenous TF gene, LPS induction of the cloned TF promoter was not inhibited by ATRA in transiently transfected THP-1 cells. Our results demonstrate that ATRA selectively inhibited LPS-induced TF gene transcription in human monocytic cells by a mechanism that does not involve repression of AP-1– or NF-κB–mediated transcription.
Collapse
|
4794
|
Yi J, Beckerle MC. The human TRIP6 gene encodes a LIM domain protein and maps to chromosome 7q22, a region associated with tumorigenesis. Genomics 1998; 49:314-6. [PMID: 9598321 DOI: 10.1006/geno.1998.5248] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thyroid receptor interacting protein-6 (TRIP6) was first identified as a ligand-dependent binding partner for the thyroid hormone receptor in a yeast two-hybrid screen. A partial TRIP6 cDNA clone that was isolated in the initial screen encodes two copies of the LIM domain. The LIM domain is a double zinc-finger structure that mediates protein-protein interactions. Here we report the complete amino acid sequence of human TRIP6. The TRIP6 protein displays a proline-rich N-terminal region linked to three tandemly arrayed C-terminal LIM domains. The global molecular architecture and sequence of TRIP6 place it in the same family as the adhesion plaque protein, zyxin, and the lipoma preferred partner (LPP). Zyxin and LPP are implicated in cellular signaling and tumorigenesis, respectively. By radiation hybrid mapping, the human TRIP6 gene was assigned to a segment of chromosome 7q22 that is commonly deleted in malignant myeloid diseases and uterine leiomyoma.
Collapse
Affiliation(s)
- J Yi
- Department of Biology, University of Utah, Salt Lake City 84112-0840, USA
| | | |
Collapse
|
4795
|
Kuil CW, Brouwer A, van der Saag PT, van der Burg B. Interference between progesterone and dioxin signal transduction pathways. Different mechanisms are involved in repression by the progesterone receptor A and B isoforms. J Biol Chem 1998; 273:8829-34. [PMID: 9535862 DOI: 10.1074/jbc.273.15.8829] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interactions between transcription factors are an important means of regulating gene transcription, leading to modifications in the pattern of gene expression and cell fate. In this study, we report that the progesterone receptor (PR) can strongly interfere with transactivation mediated by the arylhydrocarbon receptor (AhR) in T47D breast cancer cells. This interference was not only demonstrated by induction of a transfected dioxin-responsive reporter plasmid but also on the AhR-mediated up-regulation of the endogenous cytochrome P450-1A1 activity. The interference was not mutual, as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent activator of the AhR, did not inhibit progestin-induced promoter activity. When the isoforms of the human PR, hPR-A and hPR-B, were expressed separately in HepG-2 hepatocarcinoma cells, both negatively interfered with the AhR signaling, indicating that the effect is not restricted to T47D cells. In addition, results obtained from studies with both antiprogestins and mutant receptors indicate differences in the underlying molecular mechanisms of repression for both PR isoforms. The suppression by hPR-A does not require additional gene expression or a full transcriptional competent conformation of the receptor. For the repressive effects of hPR-B, however, additional gene expression seems to be involved, as only the agonist-bound, wild-type hPR-B could clearly repress the TCDD-induced response. In conclusion, these studies highlight different mechanisms of repression for the progesterone receptor isoforms on the AhR-mediated trans-activation and underscore the importance of interactions between transcription factors of different families in the regulation of gene transcription.
Collapse
Affiliation(s)
- C W Kuil
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
4796
|
Sørensen HN, Treuter E, Gustafsson JA. Regulation of peroxisome proliferator-activated receptors. VITAMINS AND HORMONES 1998; 54:121-66. [PMID: 9529976 DOI: 10.1016/s0083-6729(08)60924-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H N Sørensen
- Institute of Medical Biochemistry, University of Oslo, Blindern, Norway
| | | | | |
Collapse
|
4797
|
Affiliation(s)
- U Gehring
- Institut für Biologische Chemie, Universität Heidelberg, Germany
| |
Collapse
|
4798
|
Le Jossic C, Michel D. Striking evolutionary conservation of a cis-element related to nuclear receptor target sites and present in TR2 orphan receptor genes. Biochem Biophys Res Commun 1998; 245:64-9. [PMID: 9535784 DOI: 10.1006/bbrc.1998.8376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A systematic scanning of nucleic acid databases for DNA elements made of combinations of RGGTCA nuclear receptor half sites, has revealed that identical 19 nucleotide-long motifs composed of two inverted RGGTCA sites with a spacing of 7 nucleotides (IR7), are present upstream of the regions coding for the human TR2 and of the sea urchin SpSHR2 orphan receptors. We have developed an experimental strategy based on PCR, to check if this IR7 could correspond to an unusually long cis-element, conserved along evolution and regulating the TR2 genes. We found that indeed IR7 is present in the 5' untranslated region of TR2 genes from all species tested, including Xenopus, rainbow trout, zebrafish and mouse. The exact conservation throughout the animal kingdom of such a long, non repetitive and non coding genomic region, highly suggests that it should ensure important biological functions. In addition, this work has allowed the identification of a new, non coding, upstream exon in the mouse TR2 gene present in testicular TR2 mRNAs.
Collapse
Affiliation(s)
- C Le Jossic
- Laboratoire d'Endocrinologie Moléculaire de la Reproduction, UPRESA 6026 CNRS-Université de Rennes 1, Campus de Beaulieu, Rennes, 35042, France
| | | |
Collapse
|
4799
|
Abstract
The addition of a 7-hydroxyl group is an early and often rate-limiting step in the synthesis of bile acids. This reaction is catalysed by two cytochrome P450 enzymes known as cholesterol 7 alpha-hydroxylase and oxysterol 7 alpha-hydroxylase. cDNAs encoding these proteins have been isolated and used to define two evolutionarily conserved pathways that produce 7 alpha-hydroxylated bile acids.
Collapse
Affiliation(s)
- M Schwarz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235-9046, USA
| | | | | |
Collapse
|
4800
|
DeFranco DB, Ramakrishnan C, Tang Y. Molecular chaperones and subcellular trafficking of steroid receptors. J Steroid Biochem Mol Biol 1998; 65:51-8. [PMID: 9699857 DOI: 10.1016/s0960-0760(97)00177-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unliganded steroid receptors exist as heteromeric complexes comprised of heat shock and immunophilin proteins that associate either directly or indirectly with receptor carboxyl-terminal ligand-binding domains. Molecular chaperons, and other proteins associated with steroid receptors, play an important role in the maturation of receptors to a hormone-binding competent state. Steroid receptor-associated 90 and 70 kDa heat shock proteins, hsp90 and hsp70, respectively, have well established roles in protein folding in addition to participating in numerous subcellular trafficking pathways. In this review, we discuss the possible roles that molecular chaperons, such as hsp90, hsp70 and DnaJ proteins, have in steroid receptor trafficking within two distinct subcellular compartments, i.e. the cytoplasm and nucleus.
Collapse
Affiliation(s)
- D B DeFranco
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|