1
|
Li R, Wu H, Xu Y, Xu X, Xu Y, Huang H, Lv X, Liao C, Ye J, Li H. Underlying mechanisms and treatment of acetaminophen‑induced liver injury (Review). Mol Med Rep 2025; 31:106. [PMID: 40017143 DOI: 10.3892/mmr.2025.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Acetaminophen (APAP) is safe at therapeutic doses; however, when ingested in excess, it accumulates in the liver and leads to severe hepatotoxicity, which in turn may trigger acute liver failure (ALF). This is known as APAP poisoning and is a major type of drug‑related liver injury. In the United States, APAP poisoning accounts for ≥50% of the total number of ALF cases, making it one of the most common triggers of ALF. According to the American Association for the Study of Liver Diseases, the incidence of APAP‑associated hepatotoxicity has increased over the past few decades; however, the mechanism underlying liver injury due to APAP poisoning has remained inconclusive. The present study aims to comprehensively review and summarize the latest research progress on the mechanism of APAP‑induced liver injury, and to provide scientific and effective guidance for the clinical treatment of APAP poisoning through in‑depth analysis of the metabolic pathways, toxicity‑producing mechanisms and possible protective mechanisms of APAP in the liver.
Collapse
Affiliation(s)
- Ruisi Li
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Haojia Wu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518112, P.R. China
| | - Yue Xu
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiaoying Xu
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yiheng Xu
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Haitang Huang
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiaojuan Lv
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Junqiu Ye
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Hengfei Li
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
2
|
Guo M, Fu W, Zhang X, Li T, Ma W, Wang H, Wang X, Feng S, Sun H, Zhang Z, Zuo S, Wang Z, Xu H. Total flavonoids extracted from the leaves of Murraya paniculata (L.) Jack prevents acetaminophen-induced liver injury by activating Keap1/Nrf2 and PI3K/AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119562. [PMID: 40020792 DOI: 10.1016/j.jep.2025.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In regions such as China and Southeast Asia, leaves of the traditional Chinese medicinal herb Murraya paniculata (L.) Jack are highly valued for their ability to detoxify and reduce swelling, promote blood circulation, and alleviate pain. These properties are harnessed in traditional healing practices, where the herb is aligned with the liver and stomach meridians in Chinese medicine. Consequently, extracts from the leaves of Murraya paniculata (L.) Jack are believed to ameliorate various liver-related ailments. Despite its widespread use, there is a paucity of research demonstrating the protective effect of total flavonoids extracted from the leaves of Murraya paniculata (L.) Jack (TFMP) in relieving acetaminophen-induced acute liver injury (ALI). AIM OF THE STUDY This study aimed to investigate the hepatoprotective effects and probable mechanisms of action of TFMP in acetaminophen-induced acute liver damage. MATERIALS AND METHODS Experimental animals were randomized into four groups of 10 each and then orally pretreated with 0.5% carboxymethyl cellulose or TFMP for seven consecutive days. ALI was induced using acetaminophen (APAP, 300 mg/kg). Hematoxylin and eosin (H&E) staining and serum markers were used to evaluate liver damage. Immunofluorescence, western blotting, biochemical kit testing, immunohistochemistry, and qPCR were used to evaluate acetaminophen metabolism, oxidative damage, and hepatocyte death. RESULTS TFMP considerably lowered the liver-related transaminase activity and reduced pathological liver damage. By triggering the kelch-like ECH-associated protein 1 (Keap1)/nuclear erythroid related factor 2 (Nrf2) signaling pathway in hepatic tissue, antioxidative enzymes, such as superoxide dismutase (SOD) and catalase (CAT), and glutathione (GSH) were elevated and malondialdehyde (MDA) content was diminished. Based on western blotting and immunohistochemistry examinations, TFMP could boost Nrf2 accumulation within liver tissue and modulate Nrf2 entry into the nucleus, increasing the proteins involved in heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) expression. Furthermore, TFMP promoted the expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) while reducing the expression of pro-apoptotic proteins such as Bcl2-associated X (Bax). Overall, TFMP attenuated hepatocyte apoptosis by activating the PI3K/AKT/mTOR pathway. CONCLUSION This study shows that TFMP reduces APAP-induced acute liver damage by a mechanism that affected the APAP metabolic process in vivo and activated the PI3K/AKT/mTOR and Keap1/Nrf2 signaling pathways to exert anti-apoptotic and antioxidant effects. Thus, TFMP may be a viable option for preventing APAP-induced liver damage.
Collapse
Affiliation(s)
- Meiqi Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaoze Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China; Department of Pharmacy, Jiao Zhou Central Hospital, Qingdao, China
| | - Tianlang Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenli Ma
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huifeng Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xinjie Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shuting Feng
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Han Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zihao Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shunfang Zuo
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Lee WM, Barnard C, Rule JA, Orandi BJ, James LP, Stravitz RT, Durkalski V, Fontana RJ. Association of Acetaminophen (Paracetamol) Use With Severity and Outcomes in Patients With Viral Hepatitis-Associated Acute Liver Failure. Am J Gastroenterol 2025; 120:584-592. [PMID: 38994834 PMCID: PMC11724933 DOI: 10.14309/ajg.0000000000002941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Acute viral hepatitis (AVH) comprises 11% of acute liver failure (ALF) in North America while acetaminophen (APAP) toxicity represents 46%. The use of APAP to treat prodromal hepatitis symptoms is common. It is unknown if concurrent APAP use impacts liver injury in AVH-induced ALF. METHODS In this prospective, multicenter cohort study, 356 patients meeting criteria for AVH including hepatitis A, B, Epstein-Barr virus, and herpes simplex virus, all leading to ALF (hepatic encephalopathy after acute illness, international normalized ratio ≥1.5), or acute liver injury (acute liver injury, international normalized ratio >2.0, no hepatic encephalopathy) were reviewed for evidence of APAP use: APAP ingestion history or measurement of serum APAP level or APAP-CYS adducts, a specific biomarker released into blood with APAP injury. Patients were grouped by APAP exposure level, from high (measurable APAP levels or toxic APAP-CYS), medium (therapeutic APAP-CYS), low (history of APAP ingestion only and/or barely detectable APAP-CYS), or no exposure recorded. RESULTS Two hundred five of 356 patients (57.5%) with AVH-ALF had evidence of APAP use: 87 out of 356 (24%) demonstrated high or medium exposures. The aminotransferase and bilirubin levels of high/medium group resembled a mixed APAP-viral injury. Mortality was the highest (51.6%, 21.4%, 28.8%, and 30.5%), and transplant-free survival was the lowest (22.6%, 44.6%, 41.5%, and 40.4%) in the high exposure group compared with medium, low, and no exposure groups. However, the specific comparisons of mortality and transplant-free survival between the high exposure and no exposure groups were not statistically different even after adjusting for baseline patient characteristics differences. DISCUSSION APAP use in AVH-ALF is common and may negatively impact outcomes compared with little or no APAP exposure. Prospective studies of the safest and effective dose of APAP to use in patients with AVH are needed.
Collapse
Affiliation(s)
- William M. Lee
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX
| | - Carson Barnard
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX
| | - Jody A. Rule
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX
| | - Babak J. Orandi
- Departments of Surgery and Medicine, New York University, New York, NY
| | - Laura P. James
- Arkansas Children’s Hospital, University of Arkansas for Medical Sciences, Little Rock, AR
| | - R. Todd Stravitz
- Section of Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Valerie Durkalski
- Department of Public Health, Medical University of South Carolina, Charleston, SC
| | - Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
4
|
Wang H, Chen X, Hu D, Xin X, Zhao Z, Jiang Z. Reduced glutathione attenuates pediatric sepsis-associated encephalopathy by inhibiting inflammatory cytokine release and mitigating lipid peroxidation-induced brain injury. Neuroreport 2024; 35:1143-1154. [PMID: 39445523 DOI: 10.1097/wnr.0000000000002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis. Reduced glutathione (GSH) has antioxidant properties and is used as a neuroprotective agent in some studies. However, research on the application of exogenous GSH in the treatment of SAE is limited. This study aimed to determine the effects of exogenous GSH in pediatric SAE patients and mice. We evaluated clinical parameters, inflammatory factors, and oxidative stress before and after GSH treatment. The clinical trials demonstrated that GSH treatment improved brain damage markers (S-100 beta protein, brain fatty acid-binding protein), increased neurological status scores (Glasgow coma scale), and reduced Pediatric Risk of Mortality III scores in children with SAE. GSH treatment also significantly reduced the levels of inflammatory factors (interleukin-6, tumor necrosis factor-α) and decreased lipid peroxidation (superoxide dismutase). Additionally, GSH reduced lipid peroxidation resulting from abnormal lipid metabolism, as indicated by the levels of acyl-CoA synthetase long-chain family member 4, lysophosphatidylcholine acyltransferase 3, and glutathione peroxidase 4. In-vivo experiments showed that the neuroprotective effect of GSH was dose-dependent, with better effects observed at medium and high doses. Furthermore, GSH alleviated brain damage, suppressed the release of inflammatory factors, and inhibited lipid peroxidation in SAE mice. The animal experiments also showed that GSH reduces lipid peroxidation through the 15-lipoxygenase/phosphatidylethanolamine binding protein 1/glutathione peroxidase 4 pathway. Our study suggests that exogenous GSH has neuroprotective effects in pediatric SAE. These findings provide a basis for the potential use of GSH as a therapeutic method for SAE.
Collapse
Affiliation(s)
- Haosen Wang
- Department of Critical Care Medicine, The Affiliated Xuzhou Children℉s Hospital of Xuzhou Medical University
| | - Xinrui Chen
- Department of Pediatrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Hu
- Department of Critical Care Medicine, The Affiliated Xuzhou Children℉s Hospital of Xuzhou Medical University
| | - Xin Xin
- Department of Critical Care Medicine, The Affiliated Xuzhou Children℉s Hospital of Xuzhou Medical University
| | - Zhongxiu Zhao
- Department of Critical Care Medicine, The Affiliated Xuzhou Children℉s Hospital of Xuzhou Medical University
| | - Zhen Jiang
- Department of Critical Care Medicine, The Affiliated Xuzhou Children℉s Hospital of Xuzhou Medical University
| |
Collapse
|
5
|
Ramachandran A, Akakpo JY, Curry SC, Rumack BH, Jaeschke H. Clinically relevant therapeutic approaches against acetaminophen hepatotoxicity and acute liver failure. Biochem Pharmacol 2024; 228:116056. [PMID: 38346541 PMCID: PMC11315809 DOI: 10.1016/j.bcp.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Liver injury and acute liver failure caused by an acetaminophen (APAP) overdose is a significant clinical problem in western countries. With the introduction of the mouse model of APAP hepatotoxicity in the 1970 s, fundamental mechanisms of cell death were discovered. This included the recognition that part of the APAP dose is metabolized by cytochrome P450 generating a reactive metabolite that is detoxified by glutathione. After the partial depletion of glutathione, the reactive metabolite will covalently bind to sulfhydryl groups of proteins, which is the initiating event of the toxicity. This insight led to the introduction of N-acetyl-L-cysteine, a glutathione precursor, as antidote against APAP overdose in the clinic. Despite substantial progress in our understanding of the pathomechanisms over the last decades viable new antidotes only emerged recently. This review will discuss the background, mechanisms of action, and the clinical prospects of the existing FDA-approved antidote N-acetylcysteine, of several new drug candidates under clinical development [4-methylpyrazole (fomepizole), calmangafodipir] and examples of additional therapeutic targets (Nrf2 activators) and regeneration promoting agents (thrombopoietin mimetics, adenosine A2B receptor agonists, Wharton's Jelly mesenchymal stem cells). Although there are clear limitations of certain therapeutic approaches, there is reason to be optimistic. The substantial progress in the understanding of the pathophysiology of APAP hepatotoxicity led to the consideration of several drugs for development as clinical antidotes against APAP overdose in recent years. Based on the currently available information, it is likely that this will result in additional drugs that could be used as adjunct treatment for N-acetylcysteine.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, Phoenix, AZ, USA; Department of Medicine, and Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Hu J, Nieminen AL, Zhong Z, Lemasters JJ. Role of Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity. LIVERS 2024; 4:333-351. [PMID: 39554796 PMCID: PMC11567147 DOI: 10.3390/livers4030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up Fe3+-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, causing excess iron release and the mitochondrial uptake of Fe2+ by the mitochondrial calcium uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, including H2O2, with which Fe2+ reacts to form highly reactive •OH through the Fenton reaction. •OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the MPT, and ultimately, cell death. Fe2+ also facilitates protein nitration. Targeting pathways of mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a promising strategy to intervene against APAP hepatotoxicity in a clinical setting.
Collapse
Affiliation(s)
- Jiangting Hu
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna-Liisa Nieminen
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Adelusi OB, Etemadi Y, Akakpo JY, Ramachandran A, Jaeschke H. Effect of ferroptosis inhibitors in a murine model of acetaminophen-induced liver injury. J Biochem Mol Toxicol 2024; 38:e23791. [PMID: 39082238 PMCID: PMC11382325 DOI: 10.1002/jbt.23791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Liver injury caused by acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. The mode of APAP-induced cell death has been controversially discussed with ferroptosis emerging as a more recent hypothesis. Ferroptosis is characterized by ferrous iron-catalyzed lipid peroxidation (LPO) causing cell death, which can be prevented by the lipophilic antioxidants ferrostatin-1 and UAMC-3203. To assess the efficacy of these ferroptosis inhibitors, we used two murine models of APAP hepatotoxicity, APAP overdose alone or in combination with FeSO4 in fasted male C57BL/6J mice. APAP triggered severe liver injury in the absence of LPO measured as hepatic malondialdehyde (MDA) levels. In contrast, ferrous iron co-treatment aggravated APAP-induced liver injury and caused extensive LPO. Standard doses of ferrostatin-1 did not affect MDA levels or the injury in both models. In contrast, UAMC-3203 partially protected in both models and reduced LPO in the presence of ferrous iron. However, UAMC-3203 attenuated the translocation of phospho-JNK through downregulation of the mitochondrial anchor protein Sab resulting in reduced mitochondrial dysfunction and liver injury. Thus, APAP toxicity does not involve ferroptosis under normal conditions. The lack of effects of ferroptosis inhibitors in the pathophysiology indicates that ferroptosis signaling pathways are not relevant therapeutic targets.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yasaman Etemadi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Jaeschke H, Ramachandran A. Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress. Drug Metab Dispos 2024; 52:712-721. [PMID: 37567742 PMCID: PMC11257690 DOI: 10.1124/dmd.123.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
9
|
Layman AJ, Alsbrook SM, Koturbash IK, McGill MR. Natural Products That Protect Against Acetaminophen Hepatotoxicity: A Call for Increased Rigor in Preclinical Studies of Dietary Supplements. J Diet Suppl 2024; 22:105-122. [PMID: 38562009 PMCID: PMC11442681 DOI: 10.1080/19390211.2024.2335573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Acetaminophen (APAP) overdose is one of the most common causes of acute liver injury. The current standard-of-care treatment for APAP hepatotoxicity, N-acetyl-l-cysteine, is highly effective when administered early after overdose, but loses efficacy in later-presenting patients. As a result, there is interest in the identification of new treatments for APAP overdose patients. Natural products are a promising source of new treatments because many are purported to have hepatoprotective effects. In fact, a great deal of research has been done to identify natural products that can protect against APAP-induced liver injury. However, serious concerns have been raised about the rigor and human relevance of these studies. Here, we systematically reviewed the APAP-natural product literature from 2013 to 2023 to determine the veracity of these concerns and the scope of the potential problem. The results substantiate the concerns that have been previously raised and point to concrete steps that can be taken to improve APAP-natural product research.
Collapse
Affiliation(s)
- Alexander J. Layman
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Scott M. Alsbrook
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Igor K. Koturbash
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Mitchell R. McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Dept. of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
10
|
Lam AH, King JD. Toxin-Induced Liver Injury and Extracorporeal Treatment of Liver Failure. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:157-165. [PMID: 38649220 DOI: 10.1053/j.akdh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
Poisoning with a large variety of drugs and naturally occurring toxins may result in acute liver injury and failure. Drug-induced liver injury is a major cause of liver failure nationwide, and it is likely that nephrologists will be involved in treating patients with these conditions. A number of xenobiotics resulting in liver toxicity may cause acute kidney injury or other organ injury as well. Most agents causing drug- or toxin-induced liver failure lack specific therapies, although a few xenobiotics such as acetaminophen have effective antidotal therapies if administered prior to development of hepatotoxicity. The nephrologist should be aware that extracorporeal treatment of liver failure associated with drugs and toxins may be indicated, including therapies conventionally performed by nephrologists (hemodialysis, continuous kidney replacement therapy), therapies occasionally performed by nephrologists and other specialists (plasma exchange, albumin dialysis, hemadsorption), and therapies performed by other specialists (extracorporeal membrane oxygenation). An overview of the role of these therapies in liver failure is provided, as well as a review of their limitations and potential complications.
Collapse
Affiliation(s)
- Angela H Lam
- Maryland Poison Center, Baltimore, MD; Providence St. Joseph Health, Everett, WA; Virginia Mason Franciscan Health, Seattle, WA
| | - Joshua D King
- Maryland Poison Center, Baltimore, MD; Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; University of Maryland School of Pharmacy, Baltimore, MD.
| |
Collapse
|
11
|
Prescott LF. Paracetamol (acetaminophen) poisoning: The early years. Br J Clin Pharmacol 2024; 90:127-134. [PMID: 37683599 DOI: 10.1111/bcp.15903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023] Open
Abstract
Paracetamol (acetaminophen) was marketed in the 1950s as a nonprescription analgesic/antipyretic without any preclinical toxicity studies. It became used increasingly for self-poisoning, particularly in the UK and was belatedly found to cause acute liver damage, which could be fatal. Management of poisoned patients was difficult as maximum abnormalities of liver function were delayed for 3 days or more after an overdose. There was no treatment and the mechanism of hepatotoxicity was not known. The paracetamol half-life was prolonged with liver damage occurring when it exceeded 4 h and the Rumack-Matthew nomogram was an important advance that allowed stratification of patients into separate zones of risk. It is used to guide prognosis and treatment and its predictive value could be increased by combining it with the paracetamol half-life. The problems of a sheep farmer in Australia in the early 1970s led to the discovery of the mechanism of paracetamol hepatotoxicity, and the first effective treatment of overdosage with intravenous (IV) cysteamine. This had unpleasant side effects and administration was difficult. N-acetylcysteine soon became the treatment of choice for paracetamol overdose and given early it was very effective when administered either IV or orally. N-acetylcysteine could cause anaphylactoid reactions, particularly early during IV administration when the concentrations were highest. Simpler and shorter regimes with slower initial rates of infusion have now been introduced with a reduced incidence of these adverse effects. In addition, there has been a move to use larger doses of N-acetylcysteine given over longer periods for patients who are more severely poisoned and those with risk factors. There has been much interest recently in the search for novel biomarkers such as microRNAs, procalcitonin and cyclophilin that promise to have greater specificity and sensitivity than transaminases. Paracetamol-protein adducts predict hepatotoxicity and are specific biomarkers of toxic paracetamol metabolite exposure. Another approach would be measurement of the plasma levels of cysteine and inorganic sulfate. It is 50 years since the first effective treatment for paracetamol poisoning and, apart from liver transplantation, there is still no effective treatment for patients who present late.
Collapse
Affiliation(s)
- Laurie F Prescott
- Emeritus Professor of Clinical Pharmacology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Bateman DN, Dart RC, Dear JW, Prescott LF, Rumack BH. Fifty years of paracetamol (acetaminophen) poisoning: the development of risk assessment and treatment 1973-2023 with particular focus on contributions published from Edinburgh and Denver. Clin Toxicol (Phila) 2023; 61:1020-1031. [PMID: 38197864 DOI: 10.1080/15563650.2023.2293452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Fifty years ago, basic scientific studies and the availability of assay methods made the assessment of risk in paracetamol (acetaminophen) poisoning possible. The use of the antidote acetylcysteine linked to new methods of risk assessment transformed the treatment of this poisoning. This review will describe the way in which risk assessment and treatments have developed over the last 50 years and highlight the remaining areas of uncertainty. METHODS A search of PubMed and its subsidiary databases revealed 1,166 references published in the period 1963-2023 using the combined terms "paracetamol", "poisoning", and "acetylcysteine". Focused searches then identified 170 papers dealing with risk assessment of paracetamol poisoning, 141 with adverse reactions to acetylcysteine and 114 describing different acetylcysteine regimens. To manage the extensive literature, we focused mainly on contributions made by the authors during their time in Edinburgh and Denver. DOSE AND CONCENTRATION RESPONSE The key relationship between paracetamol dose and toxicity risk was established in 1971 and led to the development of the Rumack-Matthew nomogram from data collected in Edinburgh. MECHANISMS OF TOXICITY A series of papers on the mechanisms of toxicity were published in 1973, and these showed that paracetamol hepatotoxicity was caused by the formation of a toxic intermediate epoxide metabolite normally detoxified by glutathione but which, in excess, was bound covalently to hepatic enzymes and proteins. An understanding of the relationship between the rate of paracetamol metabolism, paracetamol concentration, and toxic hazard in humans soon followed. ANTIDOTE DEVELOPMENT AND EFFICACY IN PATIENTS These discoveries were followed by the testing of a range of sulfhydryl-donors in animals and "at risk" patients. Acetylcysteine was developed as the lead intravenous antidote in the United Kingdom. The license holder in the United States refused to make an intravenous formulation. Thus, oral acetylcysteine became the antidote trialed in the United States National Multicenter Study. Intravenous acetylcysteine regimens used initially in the United Kingdom and subsequently in the United States used loading doses of 150 mg/kg over 15 minutes or one hour, 50 mg/kg over four hours, and 100 mg/kg over 16 hours. These regimens were associated with adverse drug reactions (nausea, vomiting and anaphylactoid reactions) and hence, treatment interruption. Newer dosing regimens now give loading doses more slowly. One, the Scottish and Newcastle Anti-emetic Pretreatment protocol, using an acetylcysteine regimen of 100 mg/kg over two hours followed by 200 mg/kg over 10 hours, has been widely adopted in the United Kingdom. A cohort comparison study suggests this regimen has comparable efficacy to standard regimens and offers opportunities for selective higher acetylcysteine dosing. RISK ASSESSMENT AT PRESENTATION No dose-ranging studies with acetylcysteine were done, and no placebo-controlled studies were performed. Thus, there is uncertainty regarding the optimal dose of acetylcysteine, particularly in patients ingesting very large overdoses of paracetamol. The choice of intervention concentration on the Rumack-Matthew nomogram has important consequences for the proportion of patients treated. The United States National Multicenter Study used a "treatment" line starting at 150 mg/L (992 µmol/L) at 4 hours post overdose, extending to 24 hours with a half-life of 4 hours, now standard there, and subsequently adopted in Australia and New Zealand. In the United Kingdom, the treatment line was initially 200 mg/L (1,323 µmol/L) at 4 hours (the Rumack-Matthew "risk" line). In 2012, the United Kingdom Medicines and Healthcare products Regulatory Agency lowered the treatment line to 100 mg/L (662 µmol/L) at 4 hours for all patients, increasing the number of patients admitted and treated at a high cost. Risk assessment is a key issue for ongoing study, particularly following the development of potential new antidotes that may act in those at greatest risk. The development of biomarkers to assess risk is ongoing but has yet to reach clinical trials. CONCLUSION Even after 50 years, there are still areas of uncertainty. These include appropriate acetylcysteine doses in patients who ingest different paracetamol doses or multiple (staggered) ingestions, early identification of at-risk patients, and optimal treatment of late presenters.
Collapse
Affiliation(s)
- D Nicholas Bateman
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
| | - Richard C Dart
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
- Departments of Emergency Medicine and Medical Toxicology, University of CO School of Medicine, Aurora, CO, USA
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
| | - Laurie F Prescott
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
| | - Barry H Rumack
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
- Departments of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
13
|
McGill MR, Curry SC. The Evolution of Circulating Biomarkers for Use in Acetaminophen/Paracetamol-Induced Liver Injury in Humans: A Scoping Review. LIVERS 2023; 3:569-596. [PMID: 38434489 PMCID: PMC10906739 DOI: 10.3390/livers3040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Acetaminophen (APAP) is a widely used drug, but overdose can cause severe acute liver injury. The first reports of APAP hepatotoxicity in humans were published in 1966, shortly after the development of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as the first biomarkers of liver injury as opposed to liver function. Thus, the field of liver injury biomarkers has evolved alongside the growth in APAP hepatotoxicity incidence. Numerous biomarkers have been proposed for use in the management of APAP overdose patients in the intervening years. Here, we comprehensively review the development of these markers from the 1960s to the present day and briefly discuss possible future directions.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85006, USA
- Department of Medical Toxicology, Banner-University Medical Center Phoenix, Phoenix, AZ 85006, USA
| |
Collapse
|
14
|
Etemadi Y, Akakpo JY, Ramachandran A, Jaeschke H. Nrf2 as a therapeutic target in acetaminophen hepatotoxicity: A case study with sulforaphane. J Biochem Mol Toxicol 2023; 37:e23505. [PMID: 37598316 PMCID: PMC10842847 DOI: 10.1002/jbt.23505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Acetaminophen (APAP) overdose can cause severe liver injury and acute liver failure. The only clinically approved antidote, N-acetylcysteine (NAC), is highly effective but has a narrow therapeutic window. In the last 2 decades, activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates acute phase proteins and antioxidant defense genes, has emerged as a putative new therapeutic target against APAP hepatotoxicity. However, virtually all studies that propose Nrf2 activation as mechanism of protection used prolonged pretreatment, which is not a clinically feasible approach to treat a drug overdose. Therefore, the objective of this study was to assess if therapeutic activation of Nrf2 is a viable approach to treat liver injury after APAP overdose. We used the water-soluble Nrf2 activator sulforaphane (SFN; 5 mg/kg) in a murine model of APAP hepatotoxicity (300 mg/kg). Our results indicate that short-term treatment (≤3 h) with SFN alone did not activate Nrf2 or its target genes. However, posttreatment with SFN after APAP partially protected at 6 h likely due to more rapid activation of the Nrf2-target gene heme oxygenase-1. A direct comparison of SFN with NAC given at 1 h after APAP showed a superior protection with NAC, which was maintained at 24 h unlike with SFN. Thus, Nrf2 activators have inherent problems like the need to create a cellular stress to activate Nrf2 and delayed adaptive responses which may hamper sustained protection against APAP hepatotoxicity. Thus, compared to the more direct acting antidote NAC, Nrf2 activators are less suitable for this indication.
Collapse
Affiliation(s)
- Yasaman Etemadi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
15
|
Chiew AL, Isbister GK. Advances in the understanding of acetaminophen toxicity mechanisms: a clinical toxicology perspective. Expert Opin Drug Metab Toxicol 2023; 19:601-616. [PMID: 37714812 DOI: 10.1080/17425255.2023.2259787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Acetaminophen (paracetamol) is a commonly used analgesic and antipyretic agent, which is safe in therapeutic doses. Acetaminophen poisoning due to self-harm or repeated supratherapeutic ingestion is a common cause of acute liver injury. Acetylcysteine has been a mainstay of treatment for acetaminophen poisoning for decades and is efficacious if administered early. However, treatment failures occur if administered late, in 'massive' overdoses or in high-risk patients. AREAS COVERED This review provides an overview of the mechanisms of toxicity of acetaminophen poisoning (metabolic and oxidative phase) and how this relates to the assessment and treatment of the acetaminophen poisoned patient. The review focuses on how these advances offer further insight into the utility of novel biomarkers and the role of proposed adjunct treatments. EXPERT OPINION Advances in our understanding of acetaminophen toxicity have allowed the development of novel biomarkers and a better understanding of how adjunct treatments may prevent acetaminophen toxicity. Newly proposed adjunct treatments like fomepizole are being increasingly used without robust clinical trials. Novel biomarkers (not yet clinically available) may provide better assessment of these newly proposed adjunct treatments, particularly in clinical trials. These advances in our understanding of acetaminophen toxicity and liver injury hold promise for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Angela L Chiew
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Geoffrey K Isbister
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
- Department of Clinical Toxicology, Calvary Mater Newcastle, Waratah, NSW, Australia
| |
Collapse
|
16
|
Dart RC, Mullins ME, Matoushek T, Ruha AM, Burns MM, Simone K, Beuhler MC, Heard KJ, Mazer-Amirshahi M, Stork CM, Varney SM, Funk AR, Cantrell LF, Cole JB, Banner W, Stolbach AI, Hendrickson RG, Lucyk SN, Sivilotti MLA, Su MK, Nelson LS, Rumack BH. Management of Acetaminophen Poisoning in the US and Canada: A Consensus Statement. JAMA Netw Open 2023; 6:e2327739. [PMID: 37552484 DOI: 10.1001/jamanetworkopen.2023.27739] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Importance The US and Canada currently have no formal published nationwide guidelines for specialists in poison information or emergency departments for the management of acetaminophen poisoning, resulting in significant variability in management. Objective To develop consensus guidelines for the management of acetaminophen poisoning in the US and Canada. Evidence Review Four clinical toxicology societies (America's Poison Centers, American Academy of Clinical Toxicology, American College of Medical Toxicology, and Canadian Association of Poison Control Centers) selected participants (n = 21). Led by a nonvoting chairperson using a modified Delphi method, the panel created a decision framework and determined the appropriate clinical management of a patient with acetaminophen poisoning. Unique to this effort was the collection of guidelines from most poison centers in addition to systematic collection and review of the medical literature. Comments from review by external organizations were incorporated before the guideline was finalized. The project began in March 2021 and ended in March 2023. Findings The search retrieved 84 guidelines and 278 publications. The panel developed guidelines for emergency department management of single or repeated ingestion of acetaminophen. In addition, the panel addressed extended-release formulation, high-risk ingestion, coingestion of anticholinergics or opioids, age younger than 6 years, pregnancy, weight greater than 100 kg, and intravenous acetaminophen use. Differences from current US practice include defining acute ingestion as an ingestion presentation from 4 to 24 hours after overdose was initiated. A revised form of the Rumack-Matthew nomogram was developed. The term massive ingestion was replaced with the term high-risk ingestion and denoted by a specific nomogram line. Other recommendations include specific criteria for emergency department triage, laboratory evaluation and monitoring parameters, defining the role of gastrointestinal decontamination, detailed management of acetylcysteine treatment, associated adverse effects, and stopping criteria for acetylcysteine treatment, as well as criteria for consultation with a clinical toxicologist. Finally, specific treatment considerations, including acetylcysteine dosing, fomepizole administration, and considerations for extracorporeal elimination and transplant evaluation, were addressed. Conclusions and Relevance This qualitative study provides a consensus statement on consistent evidence-based recommendations for medical, pharmacy, and nursing education and practice to optimize care of patients with acetaminophen poisoning.
Collapse
Affiliation(s)
- Richard C Dart
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, University of Colorado School of Medicine, Denver
| | - Michael E Mullins
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, Missouri
| | | | - Anne-Michelle Ruha
- Banner University Medical Center Phoenix, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix
| | - Michele M Burns
- Massachusetts/Rhode Island Poison Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karen Simone
- Northern New England Poison Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Michael C Beuhler
- Northern Carolina Poison Control, Atrium Health, Charlotte
- Department of Emergency Medicine, Wake Forest School of Medicine, Salem, North Carolina
| | - Kennon J Heard
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, University of Colorado School of Medicine, Denver
| | - Maryann Mazer-Amirshahi
- MedStar Washington Hospital Center, National Capital Poison Center, Georgetown University School of Medicine, Washington, DC
| | - Christine M Stork
- Upstate New York Poison Center, Upstate Medical University, Syracuse
| | - Shawn M Varney
- South Texas Poison Center, University of Texas Health, San Antonio
| | | | - Lee F Cantrell
- Department of Clinical Pharmacy, University of California San Francisco School of Pharmacy, San Francisco
- California Poison Control System, San Diego Division, University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego
| | - Jon B Cole
- Minnesota Poison Control System, Hennepin Healthcare, University of Minnesota Medical School, Minneapolis
| | | | | | | | - Scott N Lucyk
- Poison and Drug Information Service, University of Calgary Department of Emergency Medicine, Calgary, Alberta, Canada
| | | | - Mark K Su
- New York City Poison Control Center, New York University Grossman School of Medicine, New York
| | - Lewis S Nelson
- Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark
| | - Barry H Rumack
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora
| |
Collapse
|
17
|
Trebach J, Mahonski SG, Melchert K, Howland MA, Chiang WK. Intravenous Acetaminophen Overdose in an Infant With Toxicokinetic Data. J Pharm Pract 2023; 36:173-175. [PMID: 34080465 DOI: 10.1177/08971900211021286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CASE REPORT A 12-month-old (former 24 week gestational age), 8.7 kg male was hospitalized after an uneventful colostomy reversal. In the postoperative unit, the patient unintentionally received 1000 mg IV (114.9 mg/kg) acetaminophen instead of the intended 100 mg IV. Serial acetaminophen concentrations were drawn. The patient received IV Nacetylcysteine and ultimately had no adverse outcomes. DISCUSSION This case report adds to the existing literature regarding toxicokinetics of IV APAP in infants. Our patient had a calculated ke of 0.263 h-1, correlating with a half-life of 2.63 hours. Based on current available data, the half-life of IV APAP in infants varies (2.6 to 4.9 hours). The reason for this variation is unknown and further research is needed in this area.
Collapse
Affiliation(s)
- Joshua Trebach
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, 12297NYU Grossman School of Medicine, New York, NY, USA.,Department of Health and Mental Hygiene, 12296New York City Poison Control Center, New York, NY, USA
| | - Sarah G Mahonski
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, 12297NYU Grossman School of Medicine, New York, NY, USA.,Department of Health and Mental Hygiene, 12296New York City Poison Control Center, New York, NY, USA
| | - Kristina Melchert
- Department of Pediatrics, Maria Fareri Children's Hospital, 497001Westchester Medical Center Health Network, Valhalla, NY, USA
| | - Mary Ann Howland
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, 12297NYU Grossman School of Medicine, New York, NY, USA.,Department of Health and Mental Hygiene, 12296New York City Poison Control Center, New York, NY, USA.,College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - William K Chiang
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, 12297NYU Grossman School of Medicine, New York, NY, USA.,Department of Health and Mental Hygiene, 12296New York City Poison Control Center, New York, NY, USA
| |
Collapse
|
18
|
Azharuddin S, Ogbebor O, Shuster M, Smith B, Arshad H, Cheema T. Toxicological Emergencies. Crit Care Nurs Q 2023; 46:82-99. [PMID: 36415069 DOI: 10.1097/cnq.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poisoning, drug overdose, and adverse drug effects continue to be a common encounter, especially in the intensive care unit (ICU). Patients are often critically ill or have a potential to rapidly deteriorate and warrant ICU admission. Adults suffering from overdoses rarely give a complete and accurate description of the quantity or type of medications ingested. In most adult cases, multiple substances are involved. A tentative diagnosis in most overdose and poisoning cases can be made by physical examination and simple laboratory tests (electrolyte panel, creatinine, serum osmolarity, urinalysis, etc). Supportive care, with particular attention to airway management, oxygenation, and circulation, is the mainstay of treatment. Basic treatment principles include limiting the amount of toxin absorbed, enhancing the elimination of ingested toxin, and preventing the conversion of non-toxic compounds to toxic metabolites. Drugs or poisons, where specific antidotes or effective therapies exist (especially acetaminophen, salicylates, methanol, ethylene glycol, and digitalis), should be aggressively sought and treated after initial stabilization has been accomplished. For those drugs or poisons where specific quantitative tests are available, levels should be obtained before treatment and may be repeated as clinically indicated.
Collapse
Affiliation(s)
- Syed Azharuddin
- Division of Pulmonary and Critical Care Medicine, (Drs Azharuddin, Ogbebor, Arshad, and Cheema and Ms Smith), Division of Infectious Disease (Dr Ogbebor), Allegheny Health Network, Pittsburgh, Pennsylvania and Department of Pharmacy, Allegheny General Hospital, Pittsburgh, Pennsylvania (Dr Shuster)
| | | | | | | | | | | |
Collapse
|
19
|
Saeedi BJ, Hunter-Chang S, Luo L, Li K, Liu KH, Robinson BS. Oxidative stress mediates end-organ damage in a novel model of acetaminophen-toxicity in Drosophila. Sci Rep 2022; 12:19309. [PMID: 36369211 PMCID: PMC9652370 DOI: 10.1038/s41598-022-21156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen is the most common cause of acute drug-induced liver injury in the United States. However, research into the mechanisms of acetaminophen toxicity and the development of novel therapeutics is hampered by the lack of robust, reproducible, and cost-effective model systems. Herein, we characterize a novel Drosophila-based model of acetaminophen toxicity. We demonstrate that acetaminophen treatment of Drosophila results in similar pathophysiologic alterations as those observed in mammalian systems, including a robust production of reactive oxygen species, depletion of glutathione, and dose-dependent mortality. Moreover, these effects are concentrated in the Drosophila fat body, an organ analogous to the mammalian liver. Utilizing this system, we interrogated the influence of environmental factors on acetaminophen toxicity which has proven difficult in vertebrate models due to cost and inter-individual variability. We find that both increasing age and microbial depletion sensitize Drosophila to acetaminophen toxicity. These environmental influences both alter oxidative stress response pathways in metazoans. Indeed, genetic and pharmacologic manipulations of the antioxidant response modify acetaminophen toxicity in our model. Taken together, these data demonstrate the feasibility of Drosophila for the study of acetaminophen toxicity, bringing with it an ease of genetic and microbiome manipulation, high-throughput screening, and availability of transgenic animals.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Sarah Hunter-Chang
- Department of Pathology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Liping Luo
- Department of Pathology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Kaiyan Li
- Department of Pathology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Licata A, Minissale MG, Stankevičiūtė S, Sanabria-Cabrera J, Lucena MI, Andrade RJ, Almasio PL. N-Acetylcysteine for Preventing Acetaminophen-Induced Liver Injury: A Comprehensive Review. Front Pharmacol 2022; 13:828565. [PMID: 36034775 PMCID: PMC9399785 DOI: 10.3389/fphar.2022.828565] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/03/2022] [Indexed: 12/28/2022] Open
Abstract
Aims: N-Acetylcysteine (NAC) is used as an antidote in acetaminophen (APAP) overdose to prevent and mitigate drug-induced liver injury (DILI). Our objective was to systematically review evidence of the use of NAC as a therapeutic option for APAP overdose and APAP-related DILI in order to define the optimal treatment schedule and timing to start treatment. Methods: Bibliographic databases (PubMed, Web of Science, Embase, and MEDLINE) were searched for retrospective and prospective cohort studies, case series, and clinical trials. The prespecified primary outcomes were DILI-related mortality, hepatotoxicity, and adverse events (AEs). Results: In total, 34 studies of NAC usage in APAP-related DILI cases with 19,580 patients were identified, of which 2,376 patients developed hepatotoxicities. The mortality rate across different studies ranged from 0 to 52%. Large variability of NAC regimens was found, i.e., intravenous (I.V.) (100-150 mg/kg) and oral (70-140 mg/kg), and length of treatment varied-12, 24, or 48 h for I.V. regimen and 72 h for oral administration. The timing of initiation of NAC treatment showed different results in terms of occurrence of hepatotoxicity and mortality; if started within 8 h and no more than 24 h from APAP overdose, either intravenously or orally, NAC administration was efficacious in terms of mortality. The most frequent AEs reported were anaphylactic reactions, followed by cutaneous AEs for the IV route and intestinal AEs for the oral one. Conclusion: NAC improves hepatotoxicity and reduces mortality. Timing of treatment, ranging from 8 to 24 h from APAP overdose, regardless of the regimen or route of administration, is important to prevent or minimize liver damage, particularly in children and in elderly and obese patients.
Collapse
Affiliation(s)
- Anna Licata
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Maria Giovanna Minissale
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Simona Stankevičiūtė
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Judith Sanabria-Cabrera
- UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Madrid, Spain
| | - Maria Isabel Lucena
- UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Madrid, Spain
- Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Piero Luigi Almasio
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
21
|
Long A, Magrath M, Mihalopoulos M, Rule JA, Agrawal D, Haley R, Kleinschmidt K, Lee WM. Changes in Epidemiology of Acetaminophen Overdoses in an Urban County Hospital After 20 Years. Am J Gastroenterol 2022; 117:1324-1328. [PMID: 35926495 PMCID: PMC10662680 DOI: 10.14309/ajg.0000000000001826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acetaminophen (APAP) toxicity is the main cause of acute liver failure in the United States. A prior series (1992-1995) identified 71 hospitalized adults with APAP toxicity through the International Statistical Classification of Disease and Related Health Problems, 9th revision (ICD-9) code at Parkland Hospital, Dallas, TX. METHODS We used a laboratory database search of serum APAP levels from 2011 to 2015 to identify patients with APAP toxicity in the same hospital. RESULTS We identified 140 patients hospitalized for APAP toxicity from 27,143 APAP levels obtained; 35 required Intensive Care Unit (ICU) admission, and there were no deaths. APAP toxicity/100,000 admissions was similar between eras. DISCUSSION APAP toxicity continues unabated after 20 years but with improved overall outcomes.
Collapse
Affiliation(s)
- Apple Long
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Jody A. Rule
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deepak Agrawal
- University of Texas, Dell School of Medicine, Austin, Texas, USA
| | - Robert Haley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kurt Kleinschmidt
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William M. Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Akakpo JY, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Comparing N-acetylcysteine and 4-methylpyrazole as antidotes for acetaminophen overdose. Arch Toxicol 2022; 96:453-465. [PMID: 34978586 PMCID: PMC8837711 DOI: 10.1007/s00204-021-03211-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose can cause hepatotoxicity and even liver failure. N-acetylcysteine (NAC) is still the only FDA-approved antidote against APAP overdose 40 years after its introduction. The standard oral or intravenous dosing regimen of NAC is highly effective for patients with moderate overdoses who present within 8 h of APAP ingestion. However, for late-presenting patients or after ingestion of very large overdoses, the efficacy of NAC is diminished. Thus, additional antidotes with an extended therapeutic window may be needed for these patients. Fomepizole (4-methylpyrazole), a clinically approved antidote against methanol and ethylene glycol poisoning, recently emerged as a promising candidate. In animal studies, fomepizole effectively prevented APAP-induced liver injury by inhibiting Cyp2E1 when treated early, and by inhibiting c-jun N-terminal kinase (JNK) and oxidant stress when treated after the metabolism phase. In addition, fomepizole treatment, unlike NAC, prevented APAP-induced kidney damage and promoted hepatic regeneration in mice. These mechanisms of protection (inhibition of Cyp2E1 and JNK) and an extended efficacy compared to NAC could be verified in primary human hepatocytes. Furthermore, the formation of oxidative metabolites was eliminated in healthy volunteers using the established treatment protocol for fomepizole in toxic alcohol and ethylene glycol poisoning. These mechanistic findings, together with the excellent safety profile after methanol and ethylene glycol poisoning and after an APAP overdose, suggest that fomepizole may be a promising antidote against APAP overdose that could be useful as adjunct treatment to NAC. Clinical trials to support this hypothesis are warranted.
Collapse
Affiliation(s)
- Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C. Curry
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H. Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
D'Souza V, Meghashree, Badanthadka M, Mamatha BS, Vijayanarayana K. Effect of nutritional status on acetaminophen pharmacokinetic profile. Toxicol Appl Pharmacol 2022; 438:115888. [PMID: 35065993 DOI: 10.1016/j.taap.2022.115888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Short-term fasting increases acetaminophen exposure in healthy subjects, whereas no effect was observed after a high-fat diet. These findings suggest the necessity of considering nutritional status when assessing the risk of acetaminophen-induced toxicity. Further role of nutrition status on pharmacokinetic profile of acetaminophen (APAP) at toxic doses are not available. Our study aims to compare the effects of nutrition status on kinetic profile of APAP in 3 different dietary conditions like - Normal diet (ND), Low protein diet (LPD) and High fat diet (HFD) groups. To investigate the pharmacokinetic profile of APAP at toxic dose, 3 groups of animals were separated after weaning and for the next 15 weeks they were fed with their respective diets (ND, LPD and HFD). Animals were dosed with APAP (300 mg/kg p.o) and blood sampling was done at different time intervals. Plasma samples were analyzed using HPLC method. Data analysis was done by Non-compartment analysis using Phoenix WinNonlin 8.3 software. LPD group show higher values of C max, T max, T 1/2, and AUC 0-4, AUC 0-x values compared to ND and HFD groups. Our study compared APAP pharmacokinetic profile at toxic dose in three different diet regimes.
Collapse
Affiliation(s)
- Vinitha D'Souza
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangalore 575 018, India
| | - Meghashree
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangalore 575 018, India
| | - Murali Badanthadka
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangalore 575 018, India.
| | - B S Mamatha
- NUCSER, Nittte (Deemed to be University), Paneer Campus, Deralakatte, Mangalore 575 018, India
| | - K Vijayanarayana
- Dept. of Pharmacy Practice, Manipal college of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal, 576104, Karnataka, India
| |
Collapse
|
24
|
Link SL, Rampon G, Osmon S, Scalzo AJ, Rumack BH. Reply to Comments on Fomepizole as an adjunct in acetylcysteine treated acetaminophen overdose patients: a case series. Clin Toxicol (Phila) 2021; 60:668-669. [PMID: 34937467 DOI: 10.1080/15563650.2021.2016799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Stephanie L Link
- Saint Louis University Pulmonary and Critical Care Medicine, St. Louis, MO, USA
| | - Garrett Rampon
- University of Kansas Pulmonary and Critical Care Medicine, Kansas City, MO, USA
| | - Stephen Osmon
- Former Saint Louis University Pulmonary and Critical Care Medicine, St. Louis, MO, USA
| | - Anthony J Scalzo
- Saint Louis University Division of Toxicology, St. Louis, MO, USA
| | - Barry H Rumack
- Departments of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
25
|
Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-Guerrero G, Umbaugh DS, Ding WX, Ramachandran A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 2021; 11:3740-3755. [PMID: 35024303 PMCID: PMC8727921 DOI: 10.1016/j.apsb.2021.09.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
Collapse
Key Words
- AIF, apoptosis-inducing factor
- AMPK, AMP-activated protein kinase
- APAP, acetaminophen
- ARE, antioxidant response element
- ATG, autophagy-related genes
- Acetaminophen hepatotoxicity
- Apoptosis
- Autophagy
- BSO, buthionine sulfoximine
- CAD, caspase-activated DNase
- CYP, cytochrome P450 enzymes
- DAMPs, damage-associated molecular patterns
- DMSO, dimethylsulfoxide
- Drug metabolism
- EndoG, endonuclease G
- FSP1, ferroptosis suppressing protein 1
- Ferroptosis
- GPX4, glutathione peroxidase 4
- GSH, glutathione
- GSSG, glutathione disulfide
- Gclc, glutamate–cysteine ligase catalytic subunit
- Gclm, glutamate–cysteine ligase modifier subunit
- HMGB1, high mobility group box protein 1
- HNE, 4-hydroxynonenal
- Innate immunity
- JNK, c-jun N-terminal kinase
- KEAP1, Kelch-like ECH-associated protein 1
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LOOH, lipid hydroperoxides
- LPO, lipid peroxidation
- MAP kinase, mitogen activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- MDA, malondialdehyde
- MPT, mitochondrial permeability transition
- Mitochondria
- MnSOD, manganese superoxide dismutase
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NF-κB, nuclear factor κB
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2
- NRF2, nuclear factor erythroid 2-related factor 2
- PUFAs, polyunsaturated fatty acids
- ROS, reactive oxygen species
- SMAC/DIABLO, second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI
- TLR, toll like receptor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- UGT, UDP-glucuronosyltransferases
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Olamide B. Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nga T. Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Lewis JC, Lim M, Lai L, Mendoza E, Albertson TE, Chenoweth JA. Evaluation of N-acetylcysteine dose for the treatment of massive acetaminophen ingestion. Clin Toxicol (Phila) 2021; 60:507-513. [PMID: 34581655 DOI: 10.1080/15563650.2021.1984503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
METHODS The use of N-acetylcysteine (NAC) remains the standard of care for treatment of acetaminophen (APAP) toxicity and overdose. Currently, there is growing evidence to suggest that massive acetaminophen overdose is associated with increased hepatotoxicity despite timely administration of NAC. This raises the question as to whether an increased dose of intravenous (IV) NAC should be used in the setting of massive APAP ingestion. This study aimed to evaluate the rate of hepatotoxicity after massive APAP overdose treated with 3 different NAC treatment regimens. METHODS This was a retrospective cohort study conducted by electronic medical record review of cases reported to a statewide poison control system between 2007 and 2020. Inclusion criteria were single APAP or APAP combination-medication ingestion; acute massive acetaminophen (APAP) ingestion (defined as APAP concentration ≥ 2 times above the Rumack-Matthew 150 nomogram); received one of the three NAC regimens: standard dose IV NAC, oral (PO) NAC, or high dose IV NAC. The risk of hepatotoxicity was evaluated using a multivariate logistic regression model with standard dose IV NAC as the base variable for comparison. RESULTS A total of 373 patients met inclusion for the study. Of those, 135 cases were treated with standard dose IV NAC, 121 cases treated with PO NAC, and 117 cases treated with high dose IV NAC. The risk of developing hepatotoxicity was not statistically significant between the high dose IV NAC (OR 1.05, 95% CI 0.52 - 2.09) or oral NAC (OR 0.69, 95% CI 0.33 - 1.46) when compared to standard dose IV NAC. When adjusted for APAP combination medications, initial APAP ratio, initial elevated AST/ALT, and treatment within 8 h, there remained no difference between treatment regimens. CONCLUSION This study was unable to detect a large absolute reduction in the rate of hepatotoxicity after massive APAP ingestion in patients treated with high dose IV NAC or PO NAC when compared to standard dose IV NAC; even when treatment was initiated within 8 h of ingestion.
Collapse
Affiliation(s)
- J C Lewis
- Sacramento Division, California Poison Control System, Sacramento, CA, USA.,University of California San Francisco School of Pharmacy, San Francisco, CA, USA.,Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
| | - M Lim
- Department of Pharmacy Services, University of California Davis Health, Sacramento, CA, USA
| | - L Lai
- Sacramento Division, California Poison Control System, Sacramento, CA, USA
| | - E Mendoza
- University of California San Francisco School of Pharmacy, San Francisco, CA, USA
| | - T E Albertson
- Sacramento Division, California Poison Control System, Sacramento, CA, USA.,University of California San Francisco School of Pharmacy, San Francisco, CA, USA.,Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
| | - J A Chenoweth
- Sacramento Division, California Poison Control System, Sacramento, CA, USA.,Department of Emergency Medicine, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
27
|
Ramachandran A, Jaeschke H. Oxidant Stress and Acetaminophen Hepatotoxicity: Mechanism-Based Drug Development. Antioxid Redox Signal 2021; 35:718-733. [PMID: 34232786 PMCID: PMC8558076 DOI: 10.1089/ars.2021.0102] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acetaminophen (APAP) is one of the quantitively most consumed drugs worldwide. Although safe at therapeutic doses, intentional or unintentional overdosing occurs frequently causing severe liver injury and even liver failure. In the United States, 50% of all acute liver failure cases are caused by APAP overdose. However, only one antidote with a limited therapeutic window, N-acetylcysteine, is clinically approved. Thus, more effective therapeutic interventions are urgently needed. Recent Advances: Although APAP hepatotoxicity has been extensively studied for almost 50 years, particular progress has been made recently in two areas. First, there is now a detailed understanding of involvement of oxidative and nitrosative stress in the pathophysiology, with identification of the reactive species involved, their initial generation in mitochondria, amplification through the c-Jun N-terminal kinase pathway, and the mechanisms of cell death. Second, it was demonstrated in human hepatocytes and through biomarkers in vivo that the mechanisms of liver injury in animals accurately reflect the human pathophysiology, which allows the translation of therapeutic targets identified in animals to patients. Critical Issues: For progress, solid understanding of the pathophysiology of APAP hepatotoxicity and of a drug's targets is needed to identify promising new therapeutic intervention strategies and drugs, which may be applied to humans. Future Directions: In addition to further refine the mechanistic understanding of APAP hepatotoxicity and identify additional drugs with complementary mechanisms of action to prevent cell death, more insight into the mechanisms of regeneration and developing of drugs, which promote recovery, remains a future challenge. Antioxid. Redox Signal. 35, 718-733.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
28
|
Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch Toxicol 2021; 95:3377-3391. [PMID: 34420083 PMCID: PMC8448936 DOI: 10.1007/s00204-021-03142-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
N-acetylcysteine (NAC) is the only clinically approved antidote against acetaminophen (APAP) hepatotoxicity. Despite its efficacy in patients treated early after APAP overdose, NAC has been implicated in impairing liver recovery in mice. More recently, 4-methylpyrazole (4MP, Fomepizole) emerged as a potential antidote in the mouse APAP hepatotoxicity model. The objective of this manuscript was to verify the detrimental effect of NAC and its potential mechanism and assess whether 4MP has the same liability. C57BL/6J mice were treated with 300 mg/kg APAP; 9h after APAP and every 12h after that, the animals received either 100 mg/kg NAC or 184.5 mg/kg 4MP. At 24 or 48h after APAP, parameters of liver injury, mitochondrial biogenesis and cell proliferation were evaluated. Delayed NAC treatment had no effect on APAP-induced liver injury at 24h but reduced the decline of plasma ALT activities and prevented the shrinkage of the areas of necrosis at 48h. This effect correlated with down-regulation of key activators of mitochondrial biogenesis (AMPK, PGC-1α, Nrf1/2, TFAM) and reduced expression of Tom 20 (mitochondrial mass) and PCNA (cell proliferation). In contrast, 4MP attenuated liver injury at 24h and promoted recovery at 48h, which correlated with enhanced mitochondrial biogenesis and hepatocyte proliferation. In human hepatocytes, 4MP demonstrated higher efficacy in preventing cell death compared to NAC when treated at 18h after APAP. Thus, due to the wider treatment window and lack of detrimental effects on recovery, it appears that at least in preclinical models, 4MP is superior to NAC as an antidote against APAP overdose.
Collapse
Affiliation(s)
- Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Matthew W Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
29
|
Burnham K, Yang T, Smith H, Knight S. A review of alternative intravenous acetylcysteine regimens for acetaminophen overdose. Expert Rev Clin Pharmacol 2021; 14:1267-1278. [PMID: 34187297 DOI: 10.1080/17512433.2021.1946392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Acetylcysteine is the standard treatment for preventing hepatotoxicity caused by acetaminophen overdose. Several novel approaches to the management of acetaminophen overdose have been suggested to improve patient safety by reducing adverse drug reactions and dosing errors. This article reviews these alternative treatment regimens and intends to offer a detailed assessment of the available options to assist providers in managing cases of acetaminophen overdose. AREAS COVERED This review article covers observational and experimental studies that assessed the efficacy and safety of alternative intravenous acetylcysteine regimens for acetaminophen overdose. A literature search was conducted using PubMed, ProQuest, and Scopus to identify the studies, which included results through April 2021. The assessment of alternative regimens consists of a discussion on the limitations and benefits, barriers to implementation, and important considerations for each regimen. EXPERT OPINION Several alternative regimens have been studied and implemented in various institutions. Many of these dosing regimens have supporting safety data but most lack robust data. A reduction in infusion-related side effects is an important outcome, but established efficacy, local poison center familiarity with the regimen, institutional resources, and patient-specific factors should be equally considered when deciding on implementing and using an alternative dosing strategy.
Collapse
Affiliation(s)
- Kevin Burnham
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Tianrui Yang
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Haleigh Smith
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Steven Knight
- Methodist Mansfield Medical Center, Mansfield, TX, USA
| |
Collapse
|
30
|
Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A. Novel Therapeutic Approaches Against Acetaminophen-induced Liver Injury and Acute Liver Failure. Toxicol Sci 2021; 174:159-167. [PMID: 31926003 DOI: 10.1093/toxsci/kfaa002] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver injury and acute liver failure caused by acetaminophen (APAP, N-acetyl-p-aminophenol, paracetamol) overdose is a significant clinical problem in most western countries. The only clinically approved antidote is N-acetylcysteine (NAC), which promotes the recovery of hepatic GSH. If administered during the metabolism phase, GSH scavenges the reactive metabolite N-acetyl-p-benzoquinone imine. More recently, it was shown that NAC can also reconstitute mitochondrial GSH levels and scavenge reactive oxygen/peroxynitrite and can support mitochondrial bioenergetics. However, NAC has side effects and may not be efficacious after high overdoses. Repurposing of additional drugs based on their alternate mechanisms of action could be a promising approach. 4-Methylpyrazole (4MP) was shown to be highly effective against APAP toxicity by inhibiting cytochrome P450 enzymes in mice and humans. In addition, 4MP is a potent c-Jun N-terminal kinase inhibitor expanding its therapeutic window. Calmangafodipir (CMFP) is a SOD mimetic, which is well tolerated in patients and has the potential to be effective after severe overdoses. Other drugs approved for humans such as metformin and methylene blue were shown to be protective in mice at high doses or at human therapeutic doses, respectively. Additional protective strategies such as enhancing antioxidant activities, Nrf2-dependent gene induction and autophagy activation by herbal medicine components are being evaluated. However, at this point, their mechanistic insight is limited, and the doses used are high. More rigorous mechanistic studies are needed to advance these herbal compounds. Nevertheless, based on recent studies, 4-methylpyrazole and calmangafodipir have realistic prospects to become complimentary or even alternative antidotes to NAC for APAP overdose.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
31
|
Farkas A, Lipanot K, Sherman K. Routine Laboratory Screening for Acetaminophen and Salicylate Ingestion in Preadmission Psychiatric Patients Is Unnecessary. Ann Emerg Med 2021; 77:604-612. [PMID: 33840509 DOI: 10.1016/j.annemergmed.2021.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 10/21/2022]
Abstract
STUDY OBJECTIVE Screening preadmission psychiatric patients for acetaminophen or salicylate overdose is unnecessary in the absence of specific clinical concern for medication ingestion. METHODS This was a multicenter retrospective cohort study of 3 Veteran's Administration emergency departments that medically evaluate patients prior to psychiatric admission. During the 10-year study period, these departments followed screening protocols that required the measurement of acetaminophen and salicylate levels on every patient prior to psychiatric admission. We examined all the acetaminophen and salicylate assays performed to see if any that were sent for screening led to a diagnosis of overdose and/or the administration of antidotal therapy. RESULTS A total of 33,439 combined acetaminophen and salicylate assays were sent on 10,482 unique patients over approximately 17,000 patient encounters. An estimated 29,000 assays were sent for screening purposes only-87% (95% confidence interval [CI] 85% to 89%) of salicylate assays and 85% (95% CI 83% to 87%) of acetaminophen assays. We identified 43 patients with elevated acetaminophen levels and 11 with elevated salicylate levels. Among these patients, only 6 in total had their levels drawn for screening purposes only, with no history of suspected ingestion; in all but 1 patient, the levels were only slightly above the reference range. None of the patients with elevated levels identified by screening had clinical toxicity or received antidotal therapy. CONCLUSION Over a 10-year period, 3 Veteran's Administration emergency departments performed psychiatric preadmission screening protocols with acetaminophen and salicylate assays approximately 17,000 times without diagnosing a single case of toxicity. Our results suggest that this practice is unnecessary and wasteful.
Collapse
Affiliation(s)
- Andrew Farkas
- Zablocki Veterans Administration Medical Center, Milwaukee, WI; Medical College of Wisconsin Department of Emergency Medicine, Milwaukee, WI.
| | - Kristin Lipanot
- Medical College of Wisconsin Department of Emergency Medicine, Milwaukee, WI
| | | |
Collapse
|
32
|
Burman A, Garcia-Milian R, Wood M, DeWitt NA, Vasiliou V, Guller S, Abrahams VM, Whirledge S. Acetaminophen Attenuates invasion and alters the expression of extracellular matrix enzymes and vascular factors in human first trimester trophoblast cells. Placenta 2021; 104:146-160. [PMID: 33348283 DOI: 10.1016/j.placenta.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Acetaminophen is one of the most common medications taken during pregnancy, considered safe for maternal health and fetal development. However, recent epidemiological studies have associated prenatal acetaminophen use with several developmental disorders in offspring. As acetaminophen can freely cross into and through the placenta, epidemiological associations with prenatal acetaminophen use may reflect direct actions on the fetus and/or the impact of altered placental functions. In the absence of rigorous mechanistic studies, our understanding of how prenatal acetaminophen exposure can cause long-term effects in offspring is limited. The objective of this study was to determine whether acetaminophen can alter key functions of a major placental cell type by utilizing immortalized human first trimester trophoblast cells. This study employed a comparative analysis with the nonsteroidal, anti-inflammatory drug aspirin, which has established effects in first trimester trophoblast cells. We report that immortalized trophoblast cells express the target proteins of acetaminophen and aspirin: cyclooxygenase (COX) -1 and -2. Unlike aspirin, acetaminophen significantly repressed the expression of angiogenesis and vascular remodeling genes in HTR-8/SVneo cells. Moreover, acetaminophen impaired trophoblast invasion by over 80%, while aspirin had no effect on invasion. Acetaminophen exposure reduced the expression of matrix metalloproteinase (MMP)-2 and -9 and increased the expression of tissue inhibitors of matrix metalloproteinases 2, leading to an imbalance in the ratio of proteolytic enzymes. Finally, a bioinformatic approach identified novel acetaminophen-responsive gene networks associated with key trophoblast functions and disease. Together these results suggest that prenatal acetaminophen use may interfere with critical trophoblast functions early in gestation, which may subsequently impact fetal development.
Collapse
Affiliation(s)
- Andreanna Burman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Madeleine Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Natalie A DeWitt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06510, USA.
| |
Collapse
|
33
|
Ghosh A, Berger I, Remien CH, Mubayi A. The role of alcohol consumption on acetaminophen induced liver injury: Implications from a mathematical model. J Theor Biol 2020; 519:110559. [PMID: 33333080 DOI: 10.1016/j.jtbi.2020.110559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP) overdose is one of the predominant causes of drug induced acute liver injury in the U.S and U.K. Clinical studies show that ingestion of alcohol may increase the risk of APAP induced liver injury. Chronic alcoholism may potentiate APAP hepatotoxicity and this increased risk of APAP toxicity is observed when APAP is ingested even shortly after alcohol is cleared from the body. However, clinical reports also suggest that acute alcohol consumption may have a protective effect against hepatotoxicity by inhibiting microsomal acetaminophen oxidation and thereby reducing N-acetyl-p-benzoquinone imine (NAPQI) production. The aim of this study is to model this dual role of alcohol to determine how the timing of alcohol ingestion affects APAP metabolism and resulting liver injury and identify mechanisms of APAP induced liver injury. The mathematical model is developed to capture condition of a patient of single time APAP overdose who may be an acute or chronic alcohol user. The analysis suggests that the risk of APAP-induced hepatotoxicity is increased if APAP is ingested shortly after alcohol is cleared from the body in chronic alcohol users. A protective effect of acute consumption of alcohol is also observed in patients with APAP overdose. For example, simultaneous ingestion of alcohol and APAP overdose or alcohol intake after or before few hours of APAP overdose may result in less APAP-induced hepatotoxicity when compared to a single time APAP overdose. The rate of hepatocyte damage in APAP overdose patients depends on trade-off between induction and inhibition of CYP enzyme.
Collapse
Affiliation(s)
- Aditi Ghosh
- Mathematics Department, University of Wisconsin - Whitewater, Whitewater, WI 53190, USA.
| | - Isaac Berger
- Mathematics Department, Arizona State University, Tempe, AZ 53190, USA
| | | | - Anuj Mubayi
- PRECESIONheor, Los Angeles, CA, USA, Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL, College of Health Solutions, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
34
|
Mégarbane B, Oberlin M, Alvarez JC, Balen F, Beaune S, Bédry R, Chauvin A, Claudet I, Danel V, Debaty G, Delahaye A, Deye N, Gaulier JM, Grossenbacher F, Hantson P, Jacobs F, Jaffal K, Labadie M, Labat L, Langrand J, Lapostolle F, Le Conte P, Maignan M, Nisse P, Sauder P, Tournoud C, Vodovar D, Voicu S, Claret PG, Cerf C. Management of pharmaceutical and recreational drug poisoning. Ann Intensive Care 2020; 10:157. [PMID: 33226502 PMCID: PMC7683636 DOI: 10.1186/s13613-020-00762-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Poisoning is one of the leading causes of admission to the emergency department and intensive care unit. A large number of epidemiological changes have occurred over the last years such as the exponential growth of new synthetic psychoactive substances. Major progress has also been made in analytical screening and assays, enabling the clinicians to rapidly obtain a definite diagnosis. METHODS A committee composed of 30 experts from five scientific societies, the Société de Réanimation de Langue Française (SRLF), the Société Française de Médecine d'Urgence (SFMU), the Société de Toxicologie Clinique (STC), the Société Française de Toxicologie Analytique (SFTA) and the Groupe Francophone de Réanimation et d'Urgences Pédiatriques (GFRUP) evaluated eight fields: (1) severity assessment and initial triage; (2) diagnostic approach and role of toxicological analyses; (3) supportive care; (4) decontamination; (5) elimination enhancement; (6) place of antidotes; (7) specificities related to recreational drug poisoning; and (8) characteristics of cardiotoxicant poisoning. Population, Intervention, Comparison, and Outcome (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Analysis of the literature and formulation of recommendations were then conducted according to the GRADE® methodology. RESULTS The SRLF-SFMU guideline panel provided 41 statements concerning the management of pharmaceutical and recreational drug poisoning. Ethanol and chemical poisoning were excluded from the scope of these recommendations. After two rounds of discussion and various amendments, a strong consensus was reached for all recommendations. Six of these recommendations had a high level of evidence (GRADE 1±) and six had a low level of evidence (GRADE 2±). Twenty-nine recommendations were in the form of expert opinion recommendations due to the low evidences in the literature. CONCLUSIONS The experts reached a substantial consensus for several strong recommendations for optimal management of pharmaceutical and recreational drug poisoning, mainly regarding the conditions and effectiveness of naloxone and N-acetylcystein as antidotes to treat opioid and acetaminophen poisoning, respectively.
Collapse
Affiliation(s)
- Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, AP-HP, INSERM MURS-1144, University of Paris, 2 Rue Ambroise Paré, Paris, 75010 France
| | - Mathieu Oberlin
- Emergency Department, HuManiS Laboratory (EA7308), University Hospital, Strasbourg, France
| | - Jean-Claude Alvarez
- Department of Pharmacology and Toxicology, Inserm U-1173, FHU Sepsis, Raymond Poincaré Hospital, AP-HP, Paris-Saclay University, Garches, France
| | - Frederic Balen
- Emergency Department, Toulouse University Hospital, Toulouse, France
| | - Sébastien Beaune
- Department of Emergency Medicine, Ambroise Paré Hospital, AP-HP, INSERM UMRS-1144, Paris-Saclay University, Boulogne-Billancourt, France
| | - Régis Bédry
- Hospital Secure Unit, Pellegrin University Hospital, Bordeaux, France
| | - Anthony Chauvin
- Emergency Department, Hôpital Lariboisière, AP-HP, Paris, France
| | - Isabelle Claudet
- Pediatric Emergency Department Children’s Hospital CHU Toulouse, Toulouse, France
| | - Vincent Danel
- Department of Emergency Medicine, University Hospital of Grenoble, Grenoble, France
| | - Guillaume Debaty
- 5525, University Grenoble Alps/CNRS/CHU de Grenoble Alpes/TIMC-IMAG UMR, Grenoble, France
| | | | - Nicolas Deye
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, AP-HP, INSERM U942, University of Paris, Paris, France
| | - Jean-Michel Gaulier
- Laboratory of Toxicology, EA 4483 - IMPECS - IMPact de L’Environnement Chimique Sur La Santé Humaine, University of Lille, Lille, France
| | | | - Philippe Hantson
- Intensive Care Department, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Frédéric Jacobs
- Polyvalent Intensive Care Unit, Antoine Béclère Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Sud University, Clamart, France
| | - Karim Jaffal
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, AP-HP, INSERM MURS-1144, University of Paris, 2 Rue Ambroise Paré, Paris, 75010 France
| | - Magali Labadie
- Poison Control Centre of Bordeaux, University Hospital of Bordeaux, Bordeaux, France
| | - Laurence Labat
- Laboratory of Toxicology, Federation of Toxicology APHP, Lariboisière Hospital, INSERM UMRS-1144, University of Paris, Paris, France
| | - Jérôme Langrand
- Poison Control Center of Paris, Federation of Toxicology, Fernand-Widal-Lariboisière Hospital, AP-HP, INSERM UMRS-1144, University of Paris, Paris, France
| | - Frédéric Lapostolle
- SAMU 93-UF Recherche-Enseignement-Qualité, Inserm, U942, Avicenne Hospital, AP-HP, Paris-13 University, Bobigny, France
| | - Philippe Le Conte
- Department of Emergency Medicine, University Hospital of Nantes, Nantes, France
| | - Maxime Maignan
- Emergency Department, Grenoble University Hospital, INSERM U1042, Grenoble Alpes University, Grenoble, France
| | - Patrick Nisse
- Poison Control Centre, University Hospital of Lille, Lille, France
| | - Philippe Sauder
- Intensive Care Unit, University Hospital of Strasbourg, Strasbourg, France
| | | | - Dominique Vodovar
- Poison Control Center of Paris, Federation of Toxicology, Fernand-Widal-Lariboisière Hospital, AP-HP, INSERM UMRS-1144, University of Paris, Paris, France
| | - Sebastian Voicu
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, AP-HP, INSERM MURS-1144, University of Paris, 2 Rue Ambroise Paré, Paris, 75010 France
| | - Pierre-Géraud Claret
- Department of Anesthesia Resuscitation Pain Emergency Medicine, Nîmes University Hospital, Nîmes, France
| | - Charles Cerf
- Intensive Care Unit, Foch Hospital, Suresnes, France
| |
Collapse
|
35
|
Dihydro-stilbene gigantol relieves CCl 4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta Pharmacol Sin 2020; 41:1433-1445. [PMID: 32404983 DOI: 10.1038/s41401-020-0406-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
In general, anti-inflammatory treatment is considered for multiple liver diseases despite the etiology. But current drugs for alleviating liver inflammation have defects, making it necessary to develop more potent and safer drugs for liver injury. In this study, we screened a series of (dihydro-)stilbene or (dihydro-)phenanthrene derivatives extracted from Pholidota chinensis for their potential biological activities. Among 31 compounds, the dihydro-stilbene gigantol exerted most potent protective effects on human hepatocytes against lithocholic acid toxicity, and exhibited solid antioxidative and anti-inflammatory effect in vitro. In mice with CCl4-induced acute liver injury, pre-administration of gigantol (10, 20, 40 mg· kg-1· d-1, po, for 7 days) dose-dependently decreased serum transaminase levels and improved pathological changes in liver tissues. The elevated lipid peroxidation and inflammatory responses in the livers were also significantly alleviated by gigantol. The pharmacokinetic studies showed that gigantol was highly concentrated in the mouse livers, which consisted with its efficacy in preventing liver injury. Using a label-free quantitative proteomic analysis we revealed that gigantol mainly regulated the immune system process in liver tissues of CCl4-treated mice, and the complement and coagulation cascades was the predominant pathway; gigantol markedly inhibited the expression of complement component C9, which was a key component for the formation of terminal complement complex (TCC) C5b-9. These results were validated by immunohistochemistry (IHC) or real time-PCR. Confocal microscopy analysis showed that gigantol significantly inhibited the vascular deposition of TCC in the liver. In conclusion, we demonstrate for the first time that oral administration of gigantol potently relieves liver oxidative stress and inflammation, possibly via a novel mechanism of inhibiting the C5b-9 formation in the liver.
Collapse
|
36
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
37
|
Koyuncuoğlu T, Yıldırım A, Dertsiz EK, Yüksel M, Ercan F, Yeğen BÇ. Estrogen receptor agonists protect against acetaminophen-induced hepatorenal toxicity in rats. Life Sci 2020; 263:118561. [PMID: 33045213 DOI: 10.1016/j.lfs.2020.118561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Acetaminophen-induced hepatorenal toxicity varies among sexes with controversial results among species. The aim was to compare the impact of sex and ovarian hormones on hepatorenal toxicity and to elucidate protective effects of estrogen and estrogen receptor (ER) agonists. MAIN METHODS Under anesthesia, female rats underwent ovariectomy (OVX) or sham-OVX. Starting at postsurgical 40th day, OVX-rats received subcutaneously (each, 1 mg/kg/day) 17β-estradiol (E2), ERβ-agonist (DPN) or ERα-agonist (PPT) for 10 days, while male and sham-OVX rats received vehicle for 10 days. Then, rats received either acetaminophen (3 g/kg) or saline by orogastric gavage and were decapitated at 24th h. Blood samples were obtained to measure serum ALT, AST, BUN, creatinine levels. Liver and kidney samples were obtained for histopathologic examination and for analyzing levels of luminol- and lucigenin-chemiluminescence, glutathione and myeloperoxidase activity. KEY FINDINGS Compared to their control groups, levels of AST, ALT, BUN, creatinine, hepatic and renal myeloperoxidase activity and chemiluminescence levels were increased, and hepatic glutathione level was decreased in acetaminophen-administered male groups, while ALT and hepatic chemiluminescence levels were not elevated in sham-OVX-rats. Both ER-agonists and E2 reduced BUN, creatinine and reversed all oxidative parameters in renal tissues of OVX-rats. Additionally, ERα-agonist reversed all hepatic injury parameters, while ERβ-agonist elevated hepatic glutathione level. SIGNIFICANCE Acetaminophen toxicity in female rats presented with a more preserved hepatic function, while renal toxicity was not influenced by sex or by the lack of ovarian hormones. Pretreatment with estrogen or ER agonists, via their antioxidant actions, provided protective effects on acetaminophen-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Alper Yıldırım
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ekin K Dertsiz
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
38
|
The Late-Stage Protective Effect of Mito-TEMPO against Acetaminophen-Induced Hepatotoxicity in Mouse and Three-Dimensional Cell Culture Models. Antioxidants (Basel) 2020; 9:antiox9100965. [PMID: 33050213 PMCID: PMC7601533 DOI: 10.3390/antiox9100965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
An overdose of acetaminophen (APAP), the most common cause of acute liver injury, induces oxidative stress that subsequently causes mitochondrial impairment and hepatic necroptosis. N-acetyl-L-cysteine (NAC), the only recognized drug against APAP hepatotoxicity, is less effective the later it is administered. This study evaluated the protective effect of mitochondria-specific Mito-TEMPO (Mito-T) on APAP-induced acute liver injury in C57BL/6J male mice, and a three dimensional (3D)-cell culture model containing the human hepatoblastoma cell line HepG2. The administration of Mito-T (20 mg/kg, i.p.) 1 h after APAP (400 mg/kg, i.p.) injection markedly attenuated the APAP-induced elevated serum transaminase activity and hepatic necrosis. However, Mito-T treatment did not affect key factors in the development of APAP liver injury including the activation of c-jun N-terminal kinases (JNK), and expression of the transcription factor C/EBP homologous protein (CHOP) in the liver. However, Mito-T significantly reduced the APAP-induced increase in the hepatic oxidative stress marker, nitrotyrosine, and DNA fragmentation. Mito-T markedly attenuated cytotoxicity induced by APAP in the HepG2 3D-cell culture model. Moreover, liver regeneration after APAP hepatotoxicity was not affected by Mito-T, demonstrated by no changes in proliferating cell nuclear antigen formation. Therefore, Mito-T was hepatoprotective at the late-stage of APAP overdose in mice.
Collapse
|
39
|
Lee WM. Acetaminophen Toxicity: A History of Serendipity and Unintended Consequences. Clin Liver Dis (Hoboken) 2020; 16:34-44. [PMID: 33042525 PMCID: PMC7538926 DOI: 10.1002/cld.984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 02/04/2023] Open
Abstract
Watch an interview with the author.
Collapse
Affiliation(s)
- William M. Lee
- Division of Digestive and Liver DiseasesUT Southwestern Medical Center at DallasDallasTX
| |
Collapse
|
40
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
41
|
Rotundo L, Pyrsopoulos N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J Hepatol 2020; 12:125-136. [PMID: 32685105 PMCID: PMC7336293 DOI: 10.4254/wjh.v12.i4.125] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Drug induced liver injury (DILI) is a common cause of acute liver injury. Paracetamol, also known as acetaminophen, is a widely used anti-pyretic that has long been established to cause liver toxicity once above therapeutic levels. Hepatotoxicity from paracetamol overdose, whether intentional or non-intentional, is the most common cause of DILI in the United States and remains a global issue. Given the increased prevalence of combination medications in the form of pain relievers and antihistamines, paracetamol can be difficult to identify and remains a significant cause of acute hepatotoxicity, as evidenced by its contribution to over half of all acute liver failure cases in the United States. This is especially concerning given that, when co-ingested with other medications, the rise in serum paracetamol levels may be delayed past the 4-hour post-ingestion mark that is currently used to determine patients that require medical therapy. This review serves to describe the clinical and pathophysiologic features of hepatotoxicity secondary to paracetamol and provide an update on current available knowledge and treatment options.
Collapse
Affiliation(s)
- Laura Rotundo
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
42
|
Yagihashi G, Tarui T, Miyagi H, Ohnishi H, Watanabe T, Yamaguchi Y. Diagnostic accuracy for drug detection using liquid chromatography/mass spectroscopy in overdose patients. Acute Med Surg 2020; 7:e487. [PMID: 32015884 PMCID: PMC6992432 DOI: 10.1002/ams2.487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 11/11/2022] Open
Abstract
Aim Information about the causative drugs is essential for appropriate treatment for drug overdose, but patients sometimes cannot provide information about overdosed drugs owing to disturbed consciousness or an unwillingness to cooperate with treatment. The purpose of this study was to decide whether liquid chromatography/mass spectroscopy (LC/MS) is useful as a detection method for overdosed drugs. Methods Overdose patients (n = 279) treated in our facility were retrospectively studied. Specimens from gastric lavage, blood serum, and urine were tested using LC/MS. The matching rates between drugs overdosed and those detected by LC/MS were evaluated; LC/MS and Triage DOAR were also compared. Data are shown as means. Results Patients overdosed on 3.2 kinds of drugs and were transferred to our hospital 4.6 h after. Overall 3.5 kinds of drugs were detected by LC/MS, and 2.4, 1.9, and 2.2 kinds were from the stomach, blood, and urine, respectively. Matching rate among the ingested drugs (kinds of drugs matched/ones ingested) was the highest in the gastric samples (0.56), and the lowest in the urine samples (0.46) (P < 0.01). In addition, the matching rates among the detected drugs (kinds of drugs matched/ones detected) were as high as 0.74 and 0.78 in the gastric and blood samples, respectively. Comparing the sensitivity and specificity of detection of benzodiazepines and tricyclic antidepressants between LC/MS and Triage DOAR, we found that these two methods were comparable. Conclusion Liquid chromatography/mass spectroscopy was proven to be an effective method to detect overdosed drugs, especially when there was not enough information about the drugs ingested.
Collapse
Affiliation(s)
- Gen Yagihashi
- Department of Trauma and Critical Care Medicine Kyorin University School of Medicine Tokyo Japan
| | - Takehiko Tarui
- Department of Trauma and Critical Care Medicine Kyorin University School of Medicine Tokyo Japan
| | - Hiroyuki Miyagi
- Department of Laboratory Medicine Kyorin University School of Medicine Tokyo Japan
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine Kyorin University School of Medicine Tokyo Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine Kyorin University School of Medicine Tokyo Japan
| | - Yoshihiro Yamaguchi
- Department of Trauma and Critical Care Medicine Kyorin University School of Medicine Tokyo Japan
| |
Collapse
|
43
|
Jayaraman T, Lee YY, Chan WK, Mahadeva S. Epidemiological differences of common liver conditions between Asia and the West. JGH OPEN 2019; 4:332-339. [PMID: 32514433 PMCID: PMC7273710 DOI: 10.1002/jgh3.12275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
Liver diseases form a heterogenous group of acute and chronic disorders of varying etiologies. Not only do they result in significant morbidity and mortality, but they also lead to a marked reduction in quality of life, together with a high socioeconomic burden globally. A better understanding of their global distribution is necessary to curb the massive health-care and socioeconomic burden that they entail. Notable differences and similarities have been described between common liver disease conditions occurring in Asia and the West (Europe and North America), giving rise to the need for an updated collective appraisal of this subject. In this review, the epidemiological differences of common liver conditions, specifically acute liver failure, drug-induced liver injury, acute-on-chronic liver failure, hepatocellular carcinoma, and non-alcoholic fatty liver disease, between Asia and the West are discussed.
Collapse
Affiliation(s)
- Thevaraajan Jayaraman
- Gastroenterology Unit, Faculty of Medicine Universiti Teknologi MARA Shah Alam Malaysia
| | - Yeong-Yeh Lee
- Department of Medicine, School of Medical Sciences Universiti Sains Malaysia George Town Malaysia
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | - Sanjiv Mahadeva
- Gastroenterology and Hepatology Unit, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
44
|
Roth K, Strickland J, Joshi N, Deng M, Kennedy RC, Rockwell CE, Luyendyk JP, Billiar TR, Copple BL. Dichotomous Role of Plasmin in Regulation of Macrophage Function after Acetaminophen Overdose. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1986-2001. [PMID: 31381887 DOI: 10.1016/j.ajpath.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
Kupffer cells and monocyte-derived macrophages are critical for liver repair after acetaminophen (APAP) overdose. These cells produce promitogenic cytokines and growth factors, and they phagocytose dead cell debris, a process that is critical for resolution of inflammation. The factors that regulate these dynamic functions of macrophages after APAP overdose, however, are not fully understood. We tested the hypothesis that the fibrinolytic enzyme, plasmin, is a key regulator of macrophage function after APAP-induced liver injury. In these studies, inhibition of plasmin in mice with tranexamic acid delayed up-regulation of proinflammatory cytokines after APAP overdose. In culture, plasmin directly, and in synergy with high-mobility group B1, stimulated Kupffer cells and bone marrow-derived macrophages to produce cytokines by a mechanism that required NF-κB. Inhibition of plasmin in vivo also prevented trafficking of monocyte-derived macrophages into necrotic lesions after APAP overdose. This prevented phagocytic removal of dead cells, prevented maturation of monocyte-derived macrophages into F4/80-expressing macrophages, and prevented termination of proinflammatory cytokine production. Our studies reveal further that phagocytosis is an important stimulus for cessation of proinflammatory cytokine production as treatment of proinflammatory, monocyte-derived macrophages, isolated from APAP-treated mice, with necrotic hepatocytes decreased expression of proinflammatory cytokines. Collectively, these studies demonstrate that plasmin is an important regulator of macrophage function after APAP overdose.
Collapse
Affiliation(s)
- Katherine Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Jenna Strickland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Nikita Joshi
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebekah C Kennedy
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bryan L Copple
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
45
|
Gloor Y, Schvartz D, F Samer C. Old problem, new solutions: biomarker discovery for acetaminophen liver toxicity. Expert Opin Drug Metab Toxicol 2019; 15:659-669. [PMID: 31293190 DOI: 10.1080/17425255.2019.1642323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Although the hepatotoxicity of acetaminophen is a well-known problem, the search for reliable biomarker of toxicity is still a current issue as clinical tools are missing to assess patients intoxicated following chronic use, sequential ingestion, use of modified release formulations or in case of delayed arrival to hospital. The need for new specific and robust biomarkers for acetaminophen toxicity has prompted many studies exploring the use of blood levels of acetaminophen derivatives, mitochondrial damage markers, liver cell apoptosis and/or necrosis markers and circulating microRNAs. Areas covered: In this review, we present a concise overview of the most promising biomarkers currently under evaluation including descriptions of their properties with respect to exposure type, APAP specificity, and potential clinical application. In addition, we illustrate the power of new technologies for biomarker research and describe their current application to the field of acetaminophen-induced hepatotoxicity. Expert opinion: Recently the use of extracellular vesicles isolation in combination with omics techniques has opened a new perspective to the field of biomarker research. However, the potential of those new technologies for the prediction and monitoring of hepatic diseases and acetaminophen toxicity has not yet been fully taken into consideration.
Collapse
Affiliation(s)
- Yvonne Gloor
- a Division of clinical pharmacology and toxicology, Geneva University Hospital , Geneva , Switzerland.,b Laboratory of clinical pharmacology, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Domitille Schvartz
- c Department of internal medicine specialties, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Caroline F Samer
- a Division of clinical pharmacology and toxicology, Geneva University Hospital , Geneva , Switzerland.,b Laboratory of clinical pharmacology, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| |
Collapse
|
46
|
Usui K, Kobayashi H, Fujita Y, Kubota E, Hanazawa T, Yoshizawa T, Kamijo Y, Funayama M. An ultra-rapid drug screening method for acetaminophen in blood serum based on probe electrospray ionization-tandem mass spectrometry. J Food Drug Anal 2019; 27:786-792. [PMID: 31324294 PMCID: PMC9307038 DOI: 10.1016/j.jfda.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Poisoning incidents caused by drugs, accidental ingestion of poisons, attempted suicide, homicide, and exposure to toxic compounds occur frequently every year across the globe. This raises the need to rapidly identify toxic agents in poisoned patients in a clinical emergency setting. In addition, determining drug/poison concentration is undoubtedly necessary to arrive at a toxicological treatment plan. The purpose of this study was to develop an ultra-rapid drug screening method for the clinical treatment of poisoning. Probe electrospray ionization (PESI), one of the ambient ionization techniques, is able to detect compounds from various biological materials almost directly. We applied the PESI technique to the rapid detection of acetaminophen (APAP). Blood serum samples were diluted 100-fold with 10 mM ammonium formate/ethanol (1:1 v/v) solution including deuterium-labeled internal standards (IS; APAP-d4). Only 10 μL of the diluted sample was used for measurement. The tandem mass spectrometer (MS/MS) equipped with a PESI was used in selected reaction monitoring mode for the quantitation of APAP; the measurement time was only 18 s. Transitions were set at 152 > 110 for quantitation, 152 > 65 for qualifier, and 156 > 114 for IS (APAP-d4). All measurements were conducted in positive mode. The calibration curve (1/x2) was linear over the range of 1.56-200 μg/mL (r2 = 0.998), and the limit of detection and quantitation were 0.37 μg/mL and 1.56 μg/mL, respectively. The accuracy (bias) and precision (RSD%) of the method were within an acceptable range (-0.15-2.8% and 2.3-6.1%, respectively) and matrix effect at 3 concentrations (95.1-104%) indicated that PESI-MS/MS is only slightly affected by matrices. In real forensic cases, quantitative values of APAP determined by the PESI-MS/MS were almost identical to those determined by the liquid chromatography-MS/MS method. Since PESI-MS/MS is a simple, reliable, and rapid determination method for toxic agents with virtually no need for blood serum pre-treatment, it would be highly suitable for poisoning cases in clinical emergency settings. In the future, a method for simultaneous rapid determination of multiple toxic agents will be developed.
Collapse
Affiliation(s)
- Kiyotaka Usui
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575,
Japan
| | - Haruka Kobayashi
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575,
Japan
| | - Yuji Fujita
- Division of Emergency Medicine, Iwate Medical University, Morioka, 020-8505,
Japan
| | - Eito Kubota
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575,
Japan
| | - Tomoki Hanazawa
- Emergency Medical Center and Poison Center, Saitama Medical University Hospital, Saitama, 350-0495,
Japan
| | - Tomohiro Yoshizawa
- Emergency Medical Center and Poison Center, Saitama Medical University Hospital, Saitama, 350-0495,
Japan
| | - Yoshito Kamijo
- Emergency Medical Center and Poison Center, Saitama Medical University Hospital, Saitama, 350-0495,
Japan
| | - Masato Funayama
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575,
Japan
| |
Collapse
|
47
|
Clemens MM, McGill MR, Apte U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:241-262. [PMID: 31307589 DOI: 10.1016/bs.apha.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver, the major metabolic organ in the body, is known for its remarkable capacity to regenerate. Whereas partial hepatectomy (PHx) is a popular model for the study of liver regeneration, the liver also regenerates after acute injury, but less is known about the mechanisms that drive it. Recent studies have shown that liver regeneration is critical for survival in acute liver failure (ALF), which is usually due to drug-induced liver injury (DILI). It is sometimes assumed that the signaling pathways involved are similar to those that regulate regeneration after PHx, but there are likely to be critical differences. A better understanding of regeneration mechanisms after DILI and hepatotoxicity in general could lead to development of new therapies for ALF patients and new biomarkers to predict patient outcome. Here, we summarize what is known about the mechanisms of liver regeneration and repair after hepatotoxicity. We also review the literature in the emerging field of liver regeneration biomarkers.
Collapse
Affiliation(s)
- Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
48
|
Abstract
Drug-induced liver injury (DILI) is a major clinical and regulatory challenge. As a result, interest in DILI biomarkers is growing. So far, considerable progress has been made in identification of biomarkers for diagnosis (acetaminophen-cysteine protein adducts), prediction (genetic biomarkers), and prognosis (microRNA-122, high mobility group box 1 protein, keratin-18, glutamate dehydrogenase, mitochondrial DNA). Many of those biomarkers also provide mechanistic insight. The purpose of this chapter is to review major advances in DILI biomarker research over the last decade, and to highlight some of the challenges involved in implementation. Although much work has been done, more liver-specific biomarkers, more DILI-specific biomarkers, and better prognostic biomarkers for survival are all still needed. Furthermore, more work is needed to define reference intervals and medical decision limits.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
49
|
Clemens MM, Kennon-McGill S, Apte U, James LP, Finck BN, McGill MR. The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food Chem Toxicol 2019; 125:279-288. [PMID: 30654094 PMCID: PMC6443093 DOI: 10.1016/j.fct.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/23/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Repair mechanisms after acetaminophen (APAP) hepatotoxicity are poorly understood. We recently discovered that phosphatidic acid (PA) increases in mice and humans after APAP overdose, and is critical for liver regeneration. Here, we hypothesized that PA inhibits glycogen synthase kinase-3β (GSK3β), a component of canonical Wnt/β-catenin signaling, after APAP overdose. To test that, we treated mice with 300 mg/kg APAP at 0 h followed by vehicle or 20 mg/kg of the glycerol 3-phosphate acyltransferase inhibitor FSG67 at 3, 24 and 48 h. Some mice also received the GSK3 inhibitor L803-mts. Blood and liver were collected at multiple time points. Consistent with our earlier results, FSG67 did not affect toxicity (ALT, histology), APAP bioactivation (total glutathione), or oxidative stress (oxidized glutathione), but did reduce expression of proliferating cell nuclear antigen (PCNA) at 52 h. We then measured GSK3β phosphorylation and found it was dramatically decreased by FSG67 at 24 h, before PCNA dropped. Expression of cyclin D1, downstream of Wnt/β-catenin, was also reduced. To determine if the effect of FSG67 on GSK3β is important, we treated mice with FSG67 and L803-mts after APAP. Importantly, L803-mts rescued hepatocyte proliferation and survival. Our data indicate PA and lysoPA may support recovery after APAP overdose by inhibiting GSK3β.
Collapse
Affiliation(s)
- Melissa M Clemens
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Interdisciplinary Biomedical Sciences Graduate Program, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefanie Kennon-McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Udayan Apte
- Dept. of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura P James
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian N Finck
- Div. of Geriatrics and Nutritional Sciences, Dept. of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Dietary Supplement Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
50
|
Hendrickson RG. What is the most appropriate dose of N-acetylcysteine after massive acetaminophen overdose? Clin Toxicol (Phila) 2019; 57:686-691. [DOI: 10.1080/15563650.2019.1579914] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Robert G. Hendrickson
- Department of Emergency Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|