1
|
Zhou D, Tang E, Wang W, Xiao Y, Huang J, Liu J, Zheng C, Zhang K, Hu R, Wang F, Xiong P, Chu X, Li W, Liu D, Zeng X, Zheng D, Wang L, Zheng Y, Zhang S. Combined therapy with DR5-targeting antibody-drug conjugate and CDK inhibitors as a strategy for advanced colorectal cancer. Cell Rep Med 2025:102158. [PMID: 40449480 DOI: 10.1016/j.xcrm.2025.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/21/2025] [Accepted: 05/06/2025] [Indexed: 06/03/2025]
Abstract
Targeted therapies for advanced microsatellite stable (MSS) subtype colorectal cancer (MSS-CRC) remain a clinical challenge. Here, we show that death receptor 5 (DR5) is elevated in both MSS and microsatellite instability-high (MSI-H) colorectal cancer (CRC) cohorts, highlighting its potential as a clinical target. Oba01, a clinical-stage DR5-targeting antibody-drug conjugate (ADC) delivering the microtubule-disrupting agent monomethyl auristatin E (MMAE), shows superior efficacy in CRC cell lines, patient-derived xenografts and their corresponding organoids, irrespective of MSS or MSI-H status. Importantly, our functional multi-omics analysis reveals that the cell cycle pathway and cyclin-dependent kinases (CDKs) are key synergistic targets of Oba01's tumor-killing activity. We further show that Oba01 synergizes with the Food and Drug Administration (FDA)-approved CDK inhibitor abemaciclib in clinically relevant in vivo models. This synergy is also observed with other CDK inhibitors, underscoring the potential of combining Oba01 with CDK inhibition as a therapeutic strategy for advanced CRC, particularly the refractory MSS subtype.
Collapse
Affiliation(s)
- Dongdong Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Er'jiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China; Institute of Gastrointestinal Surgery and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Wenjun Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youban Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jianming Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jie Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chao Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Kai Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Ruxia Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Feiqi Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Peng Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Xin Chu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Weisong Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Dongqin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Xiangfu Zeng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Dexian Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Yantai Obioadc Biomedical Technology Ltd., Yantai 264000, China
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China.
| | - Yong Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China; Yantai Obioadc Biomedical Technology Ltd., Yantai 264000, China.
| |
Collapse
|
2
|
Tahara M, Lim DWT, Keam B, Ma B, Zhang L, Wang C, Guo Y. Management approaches for recurrent or metastatic head and neck squamous cell carcinoma after anti-PD-1/PD-L1 immunotherapy. Cancer Treat Rev 2025; 136:102938. [PMID: 40252510 DOI: 10.1016/j.ctrv.2025.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer globally. For patients with recurrent or metastatic (R/M) HNSCC, immunotherapy represents an important advance in clinical practice as an effective and widely used first-line treatment. However, drug resistance following immunotherapy is an emerging problem and, despite the success of immunotherapy in R/M HNSCC, a proportion of patients will become immunotherapy resistant. The mechanisms of immunotherapy resistance are not yet fully understood and subsequent treatment options are limited. Therefore, there is an unmet need for effective and well tolerated treatments for patients who develop immunotherapy-resistant HNSCC. In this review, we address these challenges by summarizing the current definitions of immunotherapy resistance (primary and acquired resistance) as well as knowledge of the mechanisms of resistance to immunotherapy in R/M HNSCC. We then review available clinical data on treatment strategies, including rechallenge with immunotherapy, chemotherapy ± cetuximab, other targeted treatments, antibody-drug conjugates, and bispecific antibodies. We also investigate future research directions by reviewing ongoing clinical trials. Our review shows that the optimal therapeutic strategy for patients with R/M HNSCC remains unclear. While many therapies have reported promising preliminary results, prospective clinical trials are required to support their adoption in clinical practice. In particular, it appears that immunotherapy and antibody-drug conjugates have high potential in this setting. Our review also highlights the importance of further investigation of the mechanisms underlying immunotherapy-resistant R/M HNSCC, to inform selection of optimal therapeutic strategies on an individual patient basis and improve patient outcomes.
Collapse
Affiliation(s)
- Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore;Center for Clinician Scientist Development, SingHealth Duke-NUS, Singapore
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Brigette Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Cancer Center; Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Value & Implementation, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Chaojun Wang
- Value & Implementation, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Bai LY, Dokla EME, Chu PC, Feng CH, Hu JL, Wang LJ, Weng JR. A synthetic molecule targeting STAT3 against human oral squamous cell carcinoma cells. Int J Med Sci 2025; 22:1081-1091. [PMID: 40027184 PMCID: PMC11866527 DOI: 10.7150/ijms.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common cancers in Taiwan, needs new therapeutic agents and treatments. The aim of this study was to investigate the anti-proliferative activity of {N-[3-chloro-4-[5-[3-[[[4-[(cyclopropylcarbonyl)-amino]3-(trifluoromethyl)phenylamino]carbonyl]amino]phenyl]-1,2,4-oxadiazol-3-yl]phenyl]-3-pyridine-carboxamide} (COC), a synthetic molecule, in OSCC cells. COC exhibits potent tumor-suppressive efficacy with IC50 values of 195 nM and 204 nM toward SCC2095 and SCC4 OSCC cells, respectively. Our data revealed that COC caused caspase-dependent apoptosis and downregulated the MAPK signaling pathway. In addition, COC modulated the levels of E-cadherin and β-catenin and inhibited migration. COC also decreased p-STAT3 levels, and the overexpression of STAT3 partially attenuated COC-induced cytotoxicity. Therefore, our findings suggest the use of COC as a new approach to oral cancer treatment.
Collapse
Affiliation(s)
- Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Eman M. E. Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 115, Egypt
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 404, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Jun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2025; 39:789-874. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
6
|
Mathiot L, Baldini C, Letissier O, Hollebecque A, Bahleda R, Gazzah A, Smolenschi C, Sakkal M, Danlos FX, Henon C, Beshiri K, Goldschmidt V, Parisi C, Patrikidou A, Michot JM, Marabelle A, Postel-Vinay S, Bernard-Tessier A, Loriot Y, Ponce S, Champiat S, Ouali K. Exploring the Role of Target Expression in Treatment Efficacy of Antibody-Drug Conjugates (ADCs) in Solid Cancers: A Comprehensive Review. Curr Oncol Rep 2024; 26:1236-1248. [PMID: 39066847 DOI: 10.1007/s11912-024-01576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) offer a promising path for cancer therapy, leveraging the specificity of monoclonal antibodies and the cytotoxicity of linked drugs. The success of ADCs hinges on precise targeting of cancer cells based on protein expression levels. This review explores the relationship between target protein expression and ADC efficacy in solid tumours, focusing on results of clinical trials conducted between January 2019 and May 2023. RECENT FINDINGS We hereby highlight approved ADCs, revealing their effectiveness even in low-expressing target populations. Assessing target expression poses challenges, owing to variations in scoring systems and biopsy types. Emerging methods, like digital image analysis, aim to standardize assessment. The complexity of ADC pharmacokinetics, tumour dynamics, and off-target effects emphasises the need for a balanced approach. This review underscores the importance of understanding target protein dynamics and promoting standardized evaluation methods in shaping the future of ADC-based cancer therapies.
Collapse
Affiliation(s)
- Laurent Mathiot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Octave Letissier
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Antoine Hollebecque
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Rastislav Bahleda
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anas Gazzah
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Cristina Smolenschi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Madona Sakkal
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - François-Xavier Danlos
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Clémence Henon
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Kristi Beshiri
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Vincent Goldschmidt
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Claudia Parisi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anna Patrikidou
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Jean-Marie Michot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Sophie Postel-Vinay
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | | | - Yohann Loriot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U981, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Stéphane Champiat
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Kaïssa Ouali
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France.
| |
Collapse
|
7
|
Alexander S, Aleem U, Jacobs T, Frizziero M, Foy V, Hubner RA, McNamara MG. Antibody-Drug Conjugates and Their Potential in the Treatment of Patients with Biliary Tract Cancer. Cancers (Basel) 2024; 16:3345. [PMID: 39409965 PMCID: PMC11476249 DOI: 10.3390/cancers16193345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Biliary tract cancers (BTCs) are aggressive in nature, often presenting asymptomatically until they are diagnosed at an advanced stage. Surgical resection or liver transplantation are potential curative options. However, a large proportion of patients present with incurable locally advanced or metastatic disease and most of these patients are only eligible for palliative chemotherapy or best supportive care. More recently, targeted therapies have proven beneficial in a molecularly selected subgroup of patients with cholangiocarcinoma who have progressed on previous lines of systemic treatment. However, only a minority of patients with BTCs whose tumours harbour specific molecular alterations can access these therapies. Methods: In relation to ADCs, studies regarding use of antibody-drug conjugates in cancer, particularly in BTCs, were searched in Embase (1974 to 2024) and Ovid MEDLINE(R) (1946 to 2024) to obtain relevant articles. Examples of current clinical trials utilising ADC treatment in BTCs were extracted from the ClinicalTrials.gov trial registry. Conclusions: Overall, this review has highlighted that ADCs have shown encouraging outcomes in cancer therapy, and this should lead to further research including in BTCs, where treatment options are often limited. The promising results observed with ADCs in various cancers underscore their potential as a transformative approach in oncology, warranting continued exploration and development and the need for education on the management of their specific toxicities. By addressing current challenges and optimising ADC design and application, future studies could potentially improve treatment outcomes for patients with BTCs and beyond, potentially in both early and advanced stage settings.
Collapse
Affiliation(s)
- Shaun Alexander
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Umair Aleem
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Timothy Jacobs
- The Library, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Melissa Frizziero
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Victoria Foy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Mairéad G. McNamara
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
8
|
Kawakami H. New therapeutic target molecules for gastric and gastroesophageal junction cancer. Int J Clin Oncol 2024; 29:1228-1236. [PMID: 38630383 DOI: 10.1007/s10147-024-02521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
Molecularly targeted therapy for receptor tyrosine kinases (RTKs) has faced limitations in gastric and gastroesophageal junction (G/GEJ) cancer except for HER2-targeted agents, possibly due to inappropriate assay selection that has hindered identification of sensitive patients, in addition to coexisting genetic abnormalities as well as intratumoral heterogeneity. Immunohistochemistry of RTKs has, thus, proved largely unsuccessful for patient selection, and detection of RTK gene amplification as a true oncogenic driver is problematic given the small numbers of affected individuals. FGFR2 amplification is associated with poor prognosis in G/GEJ cancer, and immunohistochemistry of the FGFR2b protein isoform has proved effective for the detection of such FGFR2-dependent tumors. Phase III and Ib/III trials of the FGFR2-targeted antibody bemarituzumab for G/GEJ cancer overexpressing FGFR2b are ongoing based on the promising result in a phase II trial, especially in cases with an FGFR2b positivity of ≥ 10%. Challenges to EGFR- and MET-targeted therapies are being tackled with antibody-drug conjugates (ADCs) and bispecific antibodies. CLDN18.2 is expressed in some G/GEJ tumors but lacks oncogenic driver potential, and the CLDN18.2-targeted antibody zolbetuximab prolonged the survival of CLDN18.2-positive G/GEJ cancer patients in phase III trials. Antibody-drug conjugates and ADCs that target CLDN18.2 are also being pursued for treatment of such patients. Similarly, targeting of nondriver molecules such as DKK1, TROP2, and CEACAM5 is under investigation in early-stage clinical trials. This shift in focus from target molecules with driver potential to markers for precise drug delivery should increase the number of possible targets in G/GEJ cancer.
Collapse
Affiliation(s)
- Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, 589-8511, Japan.
| |
Collapse
|
9
|
Zhao C, Zhang R, Yang H, Gao Y, Zou Y, Zhang X. Antibody-drug conjugates for non-small cell lung cancer: Advantages and challenges in clinical translation. Biochem Pharmacol 2024; 226:116378. [PMID: 38908529 DOI: 10.1016/j.bcp.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Lung cancer is the leading cause of cancer death, with non-small cell lung cancer (NSCLC) accounting for approximately 85 % of all lung cancers and having a poor treatment and prognosis. Conventional clinical chemotherapy and immunotherapy are challenged by systemic toxicity and drug resistance, so researchers are increasingly focusing on antibody-drug conjugate (ADC), an innovative concept combining chemotherapy and targeted therapy, in which a drug selectively binds to antigens on the surface of a tumor cell via antibodies, which internalize the ADC, and then transfers the ADC to the lysosome via the endosomes to degrade the drug and kill the tumor cell. Despite the promising nature of ADCs, no ADC product for any indication including NSCLC has been approved for marketing by the FDA to date. In this review, we summarize the main advantages of ADCs and discuss in depth the design of the most desirable ADCs for NSCLC therapy. In addition to preclinical studies, we focus on the current state of clinical research on ADCs as interventions for the treatment of NSCLC by summarizing real-time clinical trial data from ClinicalTrials.gov, and reasonably speculate on the direction of the design of future generations of ADCs.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Yiwei Gao
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ying Zou
- Department of Rehabilitation Centre, Shengjing Hospital of China Medical University, Shenyang 110122, Liaoning, China.
| | - Xudong Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
10
|
Park JC, Shin D. Current Landscape of Antibody-Drug Conjugate Development in Head and Neck Cancer. JCO Precis Oncol 2024; 8:e2400179. [PMID: 39151109 DOI: 10.1200/po.24.00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are fusions of therapeutic drugs and antibodies conjugated by a linker, designed to deliver a therapeutic payload to cells expressing the target antigen. By delivering the highly cytotoxic agent directly to cancer cells, ADCs are designed to enhance safety and broaden the therapeutic window. Recently, ADCs have demonstrated promising efficacy in various solid tumors and are rapidly expanding their indications. The prognosis of patients with advanced head and neck squamous cell carcinoma (HNSCC) remains poor, with no new therapeutics since the advent of anti-PD-1 antibodies in 2016, highlighting a critical need for innovative therapies. Recent preliminary results suggest that ADCs could be promising treatment options for HNSCC as they explore a variety of target antigens, payloads, and linkers. However, for successful adaptation of ADCs in the treatment of HNSCC, addressing key challenges such as payload toxicities, antigen heterogeneity, and adaptive resistance will be essential. Current research focused on new ADC structures, including multispecific antibodies and noncytotoxic payloads, and diverse combination approaches, show promise for future advancements.
Collapse
Affiliation(s)
- Jong Chul Park
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Donghoon Shin
- MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA
| |
Collapse
|
11
|
Cheung A, Chenoweth AM, Johansson A, Laddach R, Guppy N, Trendell J, Esapa B, Mavousian A, Navarro-Llinas B, Haider S, Romero-Clavijo P, Hoffmann RM, Andriollo P, Rahman KM, Jackson P, Tsoka S, Irshad S, Roxanis I, Grigoriadis A, Thurston DE, Lord CJ, Tutt ANJ, Karagiannis SN. Anti-EGFR Antibody-Drug Conjugate Carrying an Inhibitor Targeting CDK Restricts Triple-Negative Breast Cancer Growth. Clin Cancer Res 2024; 30:3298-3315. [PMID: 38772416 PMCID: PMC11292198 DOI: 10.1158/1078-0432.ccr-23-3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE Anti-EGFR antibodies show limited response in breast cancer, partly due to activation of compensatory pathways. Furthermore, despite the clinical success of cyclin-dependent kinase (CDK) 4/6 inhibitors in hormone receptor-positive tumors, aggressive triple-negative breast cancers (TNBC) are largely resistant due to CDK2/cyclin E expression, whereas free CDK2 inhibitors display normal tissue toxicity, limiting their therapeutic application. A cetuximab-based antibody drug conjugate (ADC) carrying a CDK inhibitor selected based on oncogene dysregulation, alongside patient subgroup stratification, may provide EGFR-targeted delivery. EXPERIMENTAL DESIGN Expressions of G1/S-phase cell cycle regulators were evaluated alongside EGFR in breast cancer. We conjugated cetuximab with CDK inhibitor SNS-032, for specific delivery to EGFR-expressing cells. We assessed ADC internalization and its antitumor functions in vitro and in orthotopically grown basal-like/TNBC xenografts. RESULTS Transcriptomic (6,173 primary, 27 baseline, and matched post-chemotherapy residual tumors), single-cell RNA sequencing (150,290 cells, 27 treatment-naïve tumors), and spatial transcriptomic (43 tumor sections, 22 TNBCs) analyses confirmed expression of CDK2 and its cyclin partners in basal-like/TNBCs, associated with EGFR. Spatiotemporal live-cell imaging and super-resolution confocal microscopy demonstrated ADC colocalization with late lysosomal clusters. The ADC inhibited cell cycle progression, induced cytotoxicity against high EGFR-expressing tumor cells, and bystander killing of neighboring EGFR-low tumor cells, but minimal effects on immune cells. Despite carrying a small molar fraction (1.65%) of the SNS-032 inhibitor, the ADC restricted EGFR-expressing spheroid and cell line/patient-derived xenograft tumor growth. CONCLUSIONS Exploiting EGFR overexpression, and dysregulated cell cycle in aggressive and treatment-refractory tumors, a cetuximab-CDK inhibitor ADC may provide selective and efficacious delivery of cell cycle-targeted agents to basal-like/TNBCs, including chemotherapy-resistant residual disease.
Collapse
Affiliation(s)
- Anthony Cheung
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Alicia M. Chenoweth
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Annelie Johansson
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- Cancer Bioinformatics, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London, United Kingdom
| | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jennifer Trendell
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Antranik Mavousian
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Blanca Navarro-Llinas
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Pablo Romero-Clavijo
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Ricarda M. Hoffmann
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Paolo Andriollo
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Paul Jackson
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London, United Kingdom
| | - Sheeba Irshad
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- Cancer Bioinformatics, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - David E. Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Christopher J. Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Andrew N. J. Tutt
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophia N. Karagiannis
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
12
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
13
|
Mani L, Naveed A, McAdoo A, Rosenthal E, Hom M. Efficacy of depatuxizumab mafodotin (ABT-414) in preclinical models of head and neck cancer. Carcinogenesis 2024; 45:520-526. [PMID: 38375733 DOI: 10.1093/carcin/bgae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) is highly expressed in 80-90% of head and neck squamous cell carcinomas (HNSCCs), making it an ideal target for antibody-drug conjugates. Depatuxizumab mafodotin (ABT-414), is an EGFR-targeting ADC comprised of the monoclonal antibody ABT-806 conjugated to monomethyl auristatin F, a tubulin polymerization inhibitor. This study assessed the in vivo efficacy of ABT-414 in HNSCC. The effects of ABT-414 on HNSCCs were determined using in vitro cytotoxicity assays and in vivo flank xenograft mouse models. The distribution of ABT-414 was assessed ex vivo via optical imaging methods using a conjugate of ABT-414 to the near-infrared agent IRDye800. In vitro treatment of high EGFR-expressing human HNSCC cell lines (UMSCC47 and FaDu) with ABT-414 (0-3.38 nM) resulted in dose-dependent cell death (IC50 values of 0.213 nM and 0.167 nM, respectively). ABT-414 treatment of the FaDu mouse xenografts displayed antitumor activity (P = 0.023) without a change in body mass (P = 0.1335), whereas treatment of UMSCC47 did not generate a significant response (P = 0.1761). Fluorescence imaging revealed ABT-414-IRDye800 accumulation in the tumors of both FaDu and UMSCC47 cell lines, with a signal-to-background ratio of >10. ABT-414 treatment yielded antitumor activity in FaDu tumors, but not in UMSCC47, highlighting the potential for ABT-414 efficacy in high EGFR-expressing tumors. Although ABT-414-IRDye800 localized tumors in both cell lines, the differing antitumor responses highlight the need for further investigation into the role of the tumor microenvironment in drug delivery.
Collapse
Affiliation(s)
- Lucas Mani
- Department of Otolaryngology, Vanderbilt University, Nashville, USA
| | - Abdullah Naveed
- Department of Otolaryngology, Vanderbilt University, Nashville, USA
| | - Ashtyn McAdoo
- Department of Otolaryngology, Vanderbilt University, Nashville, USA
| | - Eben Rosenthal
- Department of Otolaryngology, Vanderbilt University, Nashville, USA
| | - Marisa Hom
- Department of Otolaryngology, Vanderbilt University, Nashville, USA
| |
Collapse
|
14
|
High P, Guernsey C, Subramanian S, Jacob J, Carmon KS. The Evolving Paradigm of Antibody-Drug Conjugates Targeting the ErbB/HER Family of Receptor Tyrosine Kinases. Pharmaceutics 2024; 16:890. [PMID: 39065587 PMCID: PMC11279420 DOI: 10.3390/pharmaceutics16070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Current therapies targeting the human epidermal growth factor receptor (HER) family, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs), are limited by drug resistance and systemic toxicities. Antibody-drug conjugates (ADCs) are one of the most rapidly expanding classes of anti-cancer therapeutics with 13 presently approved by the FDA. Importantly, ADCs represent a promising therapeutic option with the potential to overcome traditional HER-targeted therapy resistance by delivering highly potent cytotoxins specifically to HER-overexpressing cancer cells and exerting both mAb- and payload-mediated antitumor efficacy. The clinical utility of HER-targeted ADCs is exemplified by the immense success of HER2-targeted ADCs including trastuzumab emtansine and trastuzumab deruxtecan. Still, strategies to improve upon existing HER2-targeted ADCs as well as the development of ADCs against other HER family members, particularly EGFR and HER3, are of great interest. To date, no HER4-targeting ADCs have been reported. In this review, we extensively detail clinical-stage EGFR-, HER2-, and HER3-targeting monospecific ADCs as well as novel clinical and pre-clinical bispecific ADCs (bsADCs) directed against this receptor family. We close by discussing nascent trends in the development of HER-targeting ADCs, including novel ADC payloads and HER ligand-targeted ADCs.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Cara Guernsey
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Shraddha Subramanian
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Joan Jacob
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
| | - Kendra S. Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
| |
Collapse
|
15
|
Jiménez-Labaig P, Rullan A, Hernando-Calvo A, Llop S, Bhide S, O'Leary B, Braña I, Harrington KJ. A systematic review of antibody-drug conjugates and bispecific antibodies in head and neck squamous cell carcinoma and nasopharyngeal carcinoma: Charting the course of future therapies. Cancer Treat Rev 2024; 128:102772. [PMID: 38820656 DOI: 10.1016/j.ctrv.2024.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION There is a need to improve the outcomes of patients with head and neck squamous cell carcinoma (HNSCC) and nasopharyngeal carcinoma (NPC), especially in recurrent unresectable and metastatic (R/M) setting. Antibody-drug conjugates (ADC) and bispecific antibodies (BsAb) may deliver promising results. METHODS We conducted a systematic literature review to identify ADC and BsAb clinical trials, involving patients with HNSCC and NPC, from database creation to December 2023. We reported trial characteristics, overall response rate (ORR), overall survival (OS), and grade ≥ 3 treatment-related adverse events (trAEs). RESULTS 23 trials (65 % phase I) were found, involving 540 R/M patients (355 [20trials] HNSCC and 185 [5trials] NPC). There were 13 ADC (n = 343) and 10 BsAb (n = 197) trials. 96 % patients were refractory to standard of care treatments. ORR ranged from 0 to 100 %, with the highest ORR for GEN1042 plus chemoimmunotherapy. ORRs for monotherapies were 47 % for ADC, and 0-37 % for BsAb. MRG003 reached in HNSCC 43 % and NPC 47 %. BL-B01D1 54 % in NPC. Longest median OS was seen with MRG003 and KN046. Grade ≥ 3 trAEs were 28-60 % in ADC trials, and 3-33 % BsAb. Grade ≥ 3 myelosuppressive trAEs were typically seen in 8 ADC trials, while 4 BsAb showed infusion-related reactions (IRR). Four treatment-related deaths were reported (1 pneumonitis), all ADC trials. CONCLUSION ADC and BsAb antibodies show promise in R/M HNSCC and NPC. Results are premature by small sample sizes and lack of control arm. ADC mainly caused myelosuppression and a pneumonitis case, and BsAb IRR. Further research is warranted in this setting.
Collapse
Affiliation(s)
- Pablo Jiménez-Labaig
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, Division of Radiotherapy and Imaging, London, United Kingdom
| | - Antonio Rullan
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, Division of Radiotherapy and Imaging, London, United Kingdom
| | - Alberto Hernando-Calvo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Early Phase Clinical Trials Unit (UITM), Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sandra Llop
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Shreerang Bhide
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, Division of Radiotherapy and Imaging, London, United Kingdom
| | - Ben O'Leary
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, Division of Radiotherapy and Imaging, London, United Kingdom
| | - Irene Braña
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Early Phase Clinical Trials Unit (UITM), Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Lung and Head & Neck Tumors Unit, Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Kevin J Harrington
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, Division of Radiotherapy and Imaging, London, United Kingdom
| |
Collapse
|
16
|
Ma Y, Huang Y, Zhao Y, Zhao S, Xue J, Yang Y, Fang W, Guo Y, Han Y, Yang K, Li Y, Yang J, Fu Z, Chen G, Chen L, Zhou N, Zhou T, Zhang Y, Zhou H, Liu Q, Zhu Y, Zhu H, Xiao S, Zhang L, Zhao H. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol 2024; 25:901-911. [PMID: 38823410 DOI: 10.1016/s1470-2045(24)00159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Antibody-drug conjugates have promising clinical activity in the treatment of solid tumours. BL-B01D1 is a first-in-class EGFR-HER3 bispecific antibody-drug conjugate. We aimed to assess the safety and preliminary antitumour activity of BL-B01D1 in patients with locally advanced or metastatic solid tumours. METHODS This first-in-human, open-label, multicentre, dose-escalation and dose-expansion phase 1 trial was conducted in seven hospitals in China, enrolling patients aged 18-75 years (dose escalation; phase 1a) or older than 18 years (dose expansion; phase 1b), with a life expectancy of at least 3 months, an Eastern Cooperative Oncology Group performance status of 0-1, and histologically or cytologically confirmed locally advanced or metastatic solid tumours that had progressed on current standard treatment. In the phase 1a i3+3 design, patients received intravenous BL-B01D1 at three different schedules: 0·27 mg/kg, 1·5 mg/kg, and 3·0 mg/kg weekly; 2·5 mg/kg, 3·0 mg/kg, and 3·5 mg/kg on days 1 and 8 of each cycle every 3 weeks; or 5·0 mg/kg and 6·0 mg/kg on day 1 of each cycle every 3 weeks. The primary objectives of phase 1a were to identify the safety, maximum tolerated dose, and dose-limiting toxicity. In phase 1b, patients were treated in two schedules: 2·5 and 3·0 mg/kg on days 1 and 8 every 3 weeks, or 4·5, 5·0, and 6·0 mg/kg on day 1 every 3 weeks. The primary objectives of phase 1b were to assess the safety and recommended phase 2 dose of BL-B01D1, and objective response rate was a key secondary endpoint. Safety was analysed in all patients with safety records who received at least one dose of BL-B01D1. Antitumour activity was assessed in the activity analysis set which included all patients who received at least one dose of BL-B01D1 every 3 weeks. This trial is registered with China Drug Trials, CTR20212923, and ClinicalTrials.gov, NCT05194982, and recruitment is ongoing. FINDINGS Between Dec 8, 2021, and March 13, 2023, 195 patients (133 [65%] men and 62 [32%] women; 25 in phase 1a and 170 in phase 1b) were consecutively enrolled, including 113 with non-small-cell lung cancer, 42 with nasopharyngeal carcinomas, 13 with small-cell lung cancer, 25 with head and neck squamous cell carcinoma, one with thymic squamous cell carcinoma, and one with submandibular lymphoepithelioma-like carcinoma. In phase 1a, four dose-limiting toxicities were observed (two at 3·0 mg/kg weekly and two at 3·5 mg/kg on days 1 and 8 every 3 weeks; all were febrile neutropenia), thus the maximum tolerated dose was reached at 3·0 mg/kg on days 1 and 8 every 3 weeks and 6·0 mg/kg on day 1 every 3 weeks. Grade 3 or worse treatment-related adverse events occurred in 139 (71%) of 195 patients; the most common of which were neutropenia (91 [47%]), anaemia (76 [39%]), leukopenia (76 [39%]), and thrombocytopenia (63 [32%]). 52 (27%) patients had a dose reduction and five (3%) patients discontinued treatment due to treatment-related adverse events. One patient was reported as having interstitial lung disease. Treatment-related deaths occurred in three (2%) patients (one due to pneumonia, one due to septic shock, and one due to myelosuppression). In 174 patients evaluated for activity, median follow-up was 6·9 months (IQR 4·5-8·9) and 60 (34%; 95% CI 27-42) patients had an objective response. INTERPRETATION Our results suggest that BL-B01D1 has preliminary antitumour activity in extensively and heavily treated advanced solid tumours with an acceptable safety profile. Based on the safety and antitumour activity data from both phase 1a and 1b, 2·5 mg/kg on days 1 and 8 every 3 weeks was selected as the recommended phase 2 dose in Chinese patients. FUNDING Sichuan Baili Pharmaceutical. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shen Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaqian Han
- Department of Head and Neck Radiotherapy, Hunan Cancer Hospital, Changsha, China
| | - Kunyu Yang
- Clinical Oncology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenming Fu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ningning Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huaqiang Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Zhu
- Sichuan Baili Pharmaceutical, Chengdu, China
| | - Hai Zhu
- Sichuan Baili Pharmaceutical, Chengdu, China
| | - Sa Xiao
- Sichuan Baili Pharmaceutical, Chengdu, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
17
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
19
|
Proulx-Rocray F, Soulières D. Emerging monoclonal antibody therapy for head and neck squamous cell carcinoma. Expert Opin Emerg Drugs 2024; 29:165-176. [PMID: 38616696 DOI: 10.1080/14728214.2024.2339906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing, particularly among younger populations. It is projected that the number of new cases will increase by almost 50% by 2040, with market revenues expected to triple in the same period. Despite the recent introduction of immune checkpoint inhibitors (ICIs) into the therapeutic armamentarium, the vast majority of patients with recurrent and/or metastatic (R/M) HNSCC fail to derive durable benefits from systemic therapy. AREAS COVERED This article aims to review the multiple monoclonal antibodies (mAbs) regimens currently under development, targeting various growth factors, immune checkpoints, immune costimulatory receptors, and more. EXPERT OPINION So far, the combination of anti-EGFR and ICI appears to be the most promising, especially in HPV-negative patients. It will be interesting to confirm whether the arrival of antibody-drug conjugates and bispecific mAb can surpass the efficacy of anti-EGFR, as they are also being tested in combination with ICI. Furthermore, we believe that immune costimulatory agonists and various ICIs combination are worth monitoring, despite some initial setbacks.
Collapse
Affiliation(s)
- Francis Proulx-Rocray
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Denis Soulières
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
20
|
Filippini DM, Le Tourneau C. The potential roles of antibody-drug conjugates in head and neck squamous cell carcinoma. Curr Opin Oncol 2024; 36:147-154. [PMID: 38573203 DOI: 10.1097/cco.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW To summarize the actual antibody-drug conjugates (ADCs) tested for patients with advanced head and neck squamous cell carcinoma (HNSCC), outlining the results of safety and efficacy through published clinical trials. RECENT FINDINGS ADCs combine the specificity of mAbs with the cytotoxic drug (known as payload) via a chemical linker and it is designed to selectively deliver the ultratoxic payload directly to the target cancer cells. To date, various ADCs have been investigated in multiple solid malignancies and others are in clinical development. In this study, we provide an overview of the structure and biology of ADC and we review recent clinical experience with the ADC in patients with advanced HNSCC, followed by a brief discussion of the evolvement of ADC conception, drug resistance and future perspectives. SUMMARY ADC strategy is emerging as a potential active treatment in previously treated patients with advanced HNSCC. However, the recent improvement in the bioengineering of ADC and a better comprehension of sequencing and association strategies could provide more benefit to HNSCC patients in need of innovative therapy.
Collapse
Affiliation(s)
- Daria Maria Filippini
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Saint-Cloud
- Paris-Saclay University, Paris, France
| |
Collapse
|
21
|
Jabbour SK, Kumar R, Anderson B, Chino JP, Jethwa KR, McDowell L, Lo AC, Owen D, Pollom EL, Tree AC, Tsang DS, Yom SS. Combinatorial Approaches for Chemotherapies and Targeted Therapies With Radiation: United Efforts to Innovate in Patient Care. Int J Radiat Oncol Biol Phys 2024; 118:1240-1261. [PMID: 38216094 DOI: 10.1016/j.ijrobp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Combinatorial therapies consisting of radiation therapy (RT) with systemic therapies, particularly chemotherapy and targeted therapies, have moved the needle to augment disease control across nearly all disease sites for locally advanced disease. Evaluating these important combinations to incorporate more potent therapies with RT will aid our understanding of toxicity and efficacy for patients. This article discusses multiple disease sites and includes a compilation of contributions from expert Red Journal editors from each disease site. Leveraging improved systemic control with novel agents, we must continue efforts to study novel treatment combinations with RT.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey.
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey
| | - Bethany Anderson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Junzo P Chino
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lachlan McDowell
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrea C Lo
- Department of Radiation Oncology, BC Cancer Vancouver Centre, Vancouver, British Columbia, Canada
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Alison C Tree
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, California
| |
Collapse
|
22
|
Ruan D, Wu H, Meng Q, Xu R. Development of antibody-drug conjugates in cancer: Overview and prospects. Cancer Commun (Lond) 2024; 44:3-22. [PMID: 38159059 PMCID: PMC10794012 DOI: 10.1002/cac2.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
In recent years, remarkable breakthroughs have been reported on antibody-drug conjugates (ADCs), with 15 ADCs successfully entering the market over the past decade. This substantial development has positioned ADCs as one of the fastest-growing domains in the realm of anticancer drugs, demonstrating their efficacy in treating a wide array of malignancies. Nonetheless, there is still an unmet clinical need for wider application, better efficacy, and fewer side effects of ADCs. An ADC generally comprises an antibody, a linker and a payload, and the combination has profound effects on drug structure, pharmacokinetic profile and efficacy. Hence, optimization of the key components provides an opportunity to develop ADCs with higher potency and fewer side effects. In this review, we comprehensively reviewed the current development and the prospects of ADC, provided an analysis of marketed ADCs and the ongoing pipelines globally as well as in China, highlighted several ADC platforms and technologies specific to different pharmaceutical enterprises and biotech companies, and also discussed the new related technologies, possibility of next-generation ADCs and the directions of clinical research.
Collapse
Affiliation(s)
- Dan‐Yun Ruan
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Hao‐Xiang Wu
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Qi Meng
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Rui‐Hua Xu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
23
|
Liu X, Deng J, Zhang R, Xing J, Wu Y, Chen W, Liang B, Xing D, Xu J, Zhang M. The clinical development of antibody-drug conjugates for non-small cell lung cancer therapy. Front Immunol 2023; 14:1335252. [PMID: 38162667 PMCID: PMC10755013 DOI: 10.3389/fimmu.2023.1335252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Despite the emergence of molecular targeted therapy and immune checkpoint inhibitors as standard first-line treatments for non-small cell lung cancer (NSCLC), their efficacy in some patients is limited by intrinsic and acquired resistance. Antibody-drug conjugates (ADCs), a revolutionary class of antitumor drugs, have displayed promising clinical outcomes in cancer treatment. In 2022, trastuzumab deruxtecan (Enhertu) was approved for treating HER2-mutated NSCLC, thereby underscoring the clinical value of ADCs in NSCLC treatment strategies. An increasing number of ADCs, focusing on NSCLC, are undergoing clinical trials, potentially positioning them as future treatment options. In this review, we encapsulate recent advancements in the clinical research of novel ADCs for treating NSCLC. Subsequently, we discuss the mechanisms of action, clinical efficacy, and associated limitations of these ADCs.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
24
|
Hsu R, Benjamin DJ. A narrative review of antibody-drug conjugates in EGFR-mutated non-small cell lung cancer. Front Oncol 2023; 13:1252652. [PMID: 38107063 PMCID: PMC10722249 DOI: 10.3389/fonc.2023.1252652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
In the past 15 years, non-small cell lung cancer (NSCLC) treatment has changed with the discovery of mutations and the development of new targeted therapies and immune checkpoint inhibitors. Epidermal growth factor receptor (EGFR) was the first mutation in NSCLC to have a drug that was FDA-approved in 2013. Osimertinib, a third-generation tyrosine kinase inhibitor, is approved as first-line therapy for advanced NSCLC and in the adjuvant setting for Stage IB-IIIA resected NSCLC. However, resistance to osimertinib is inevitably an issue, and thus patterns of resistance to EGFR-mutated NSCLC have been studied, including MET amplification, EGFR C797X-acquired mutation, human epidermal growth factor 2 (HER2) amplification, and transformation to small cell and squamous cell lung cancer. Current management for EGFR-mutated NSCLC upon progression of EGFR TKI is limited at this time to chemotherapy and radiation therapy, sometimes in combination with the continuation of osimertinib. Antibody-drug conjugates (ADCs) are made up of a monoclonal antibody linked to a cytotoxic drug and are an increasingly popular class of drug being studied in NSCLC. Trastuzumab deruxtecan has received accelerated FDA approval in HER2-mutated NSCLC. ADCs offer a possible solution to finding a new treatment that could bypass the intracellular resistance mechanism. In this review article, we summarize the mechanism of ADCs and investigational ADCs for EGFR-mutated NSCLC, which include targets to MET amplification, HER3, Trop2, and EGFR, along with other ADC targets being investigated in NSCLC, and discuss future directions that may arise with ADCs in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Robert Hsu
- Department of Internal Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center and Hospital, University of Southern California, Los Angeles, CA, United States
| | | |
Collapse
|
25
|
Li S, Sun Y. Phytochemicals targeting epidermal growth factor receptor (EGFR) for the prevention and treatment of HNSCC: A review. Medicine (Baltimore) 2023; 102:e34439. [PMID: 37800790 PMCID: PMC10553117 DOI: 10.1097/md.0000000000034439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is the most common malignancy of the head and neck, the incidence of which continues to rise. The epidermal growth factor receptor is thought to play a key role in the pathogenesis of HNSCC. Inhibition of epidermal growth factor receptor has been identified as an effective target for the treatment of HNSCC. Many phytochemicals have emerged as potential new drugs for the treatment of HNSCC. A systematic search was conducted for research articles published in PubMed, and Medline on relevant aspects. This review provides an overview of the available literature and reports highlighting the in vitro effects of phytochemicals on epidermal growth factor in various HNSCC cell models and in vivo in animal models and emphasizes the importance of epidermal growth factor as a current therapeutic target for HNSCC. Based on our review, we conclude that phytochemicals targeting the epidermal growth factor receptor are potentially effective candidates for the development of new drugs for the treatment of HNSCC. It provides an idea for further development and application of herbal medicines for cancer treatment.
Collapse
Affiliation(s)
- Shaling Li
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Longmatan District, Luzhou City, Sichuan Province, China
| | | |
Collapse
|
26
|
Atwell B, Chalasani P, Schroeder J. Nuclear epidermal growth factor receptor as a therapeutic target. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:616-629. [PMID: 37720348 PMCID: PMC10501894 DOI: 10.37349/etat.2023.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most well-studied oncogenes with roles in proliferation, growth, metastasis, and therapeutic resistance. This intense study has led to the development of a range of targeted therapeutics including small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and nanobodies. These drugs are excellent at blocking the activation and kinase function of wild-type EGFR (wtEGFR) and several common EGFR mutants. These drugs have significantly improved outcomes for patients with cancers including head and neck, glioblastoma, colorectal, and non-small cell lung cancer (NSCLC). However, therapeutic resistance is often seen, resulting from acquired mutations or activation of compensatory signaling pathways. Additionally, these therapies are ineffective in tumors where EGFR is found predominantly in the nucleus, as can be found in triple negative breast cancer (TNBC). In TNBC, EGFR is subjected to alternative trafficking which drives the nuclear localization of the receptor. In the nucleus, EGFR interacts with several proteins to activate transcription, DNA repair, migration, and chemoresistance. Nuclear EGFR (nEGFR) correlates with metastatic disease and worse patient prognosis yet targeting its nuclear localization has proved difficult. This review provides an overview of current EGFR-targeted therapies and novel peptide-based therapies that block nEGFR, as well as their clinical applications and potential for use in oncology.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Pavani Chalasani
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
27
|
Zhu Y, Zhou M, Kong W, Li C. Antibody-drug conjugates: the clinical development in gastric cancer. Front Oncol 2023; 13:1211947. [PMID: 37305567 PMCID: PMC10250015 DOI: 10.3389/fonc.2023.1211947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor of the digestive system worldwide, ranking among the top five in terms of incidence and mortality. However, the clinical efficacy of conventional treatments for gastric cancer remains limited, with a median overall survival of approximately eight months for advanced cases. In recent years, researchers have increasingly focused on antibody-drug conjugates (ADCs) as a promising approach. ADCs are potent chemical drugs that selectively target cancer cells by binding to specific cell surface receptors with antibodies. Notably, ADCs have demonstrated promising results in clinical studies and have made significant strides in the treatment of gastric cancer. Currently, several ADCs are under investigation in clinical trials for gastric cancer patients, targeting various receptors such as EGFR, HER-2, HER-3, CLDN18.2, Mucin 1, among others. This review offers a comprehensive exploration of ADC drug characteristics and provides an overview of the research progress in ADC-based therapies for gastric cancer.
Collapse
Affiliation(s)
- Yingze Zhu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Miao Zhou
- Tangshan Central Hospital, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
28
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
29
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Fei Z, Xu T, Hong H, Xu Y, Chen J, Qiu X, Ding J, Huang C, Li L, Liu J, Chen C. PET/CT standardized uptake value and EGFR expression predicts treatment failure in nasopharyngeal carcinoma. Radiat Oncol 2023; 18:33. [PMID: 36814303 PMCID: PMC9945369 DOI: 10.1186/s13014-023-02231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE This study inventively combines epidermal growth factor receptor (EGFR) expression of the primary lesion and standardized uptake value (SUV) of positron emission tomography and computed tomography (PET/CT) to predict the prognosis of nasopharyngeal carcinoma (NPC). This study aimed to evaluate the predictive efficacy of maximum standard uptake value (SUVmax) and EGFR for treatment failure in patients with NPC. METHODS This retrospective study reviewed the results of EGFR expression and pretreatment 18F-FDG PET/CT of 313 patients with NPC. Time-dependent receiver operator characteristics was used for analyzing results and selecting the optimal cutoff values. Cox regression was used to screen out multiple risk factors. Cumulative survival rate was calculated by Kaplan-Meier. RESULTS The selected cutoff value of SUVmax-T was 8.5. The patients were categorized into four groups according to EGFR expression and SUVmax-T. There were significant differences in the 3-year local recurrence-free survival (LRFS) (p = 0.0083), locoregional relapse-free survival (LRRFS) (p = 0.0077), distant metastasis-free survival (DMFS) (p = 0.013), and progression-free survival (PFS) (p = 0.0018) among the four groups. Patients in the EGFR-positive and SUVmax-T > 8.5 group had the worst survival, while patients in the EGFR-negative and SUVmax-T ≤ 8.5 group had the best prognosis. Subsequently, patients with only positive EGFR expression or high SUVmax-T were classified as the middle-risk group. There were also a significant difference in 3-year overall survival among the three risk groups (p = 0.034). SUVmax-T was associated with regional recurrence-free survival and LRRFS in multivariate analysis, whereas EGFR was an independent prognostic factor for LRRFS, DMFS, and PFS. CONCLUSION The combination of SUVmax-T and EGFR expression can refine prognosis and indicate clinical therapy.
Collapse
Affiliation(s)
- Zhaodong Fei
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Ting Xu
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Huiling Hong
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Yiying Xu
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jiawei Chen
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Xiufang Qiu
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jianming Ding
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chaoxiong Huang
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Li Li
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jing Liu
- grid.256112.30000 0004 1797 9307Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chuanben Chen
- Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China.
| |
Collapse
|
31
|
Dias e Silva D, Andriatte GM, Pestana RC. Antibody-Drug Conjugates and Tissue-Agnostic Drug Development. Cancer J 2022; 28:462-468. [DOI: 10.1097/ppo.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|