1
|
Liu Z, Zhang H, Jia H, Wang H, Huang Z, Tang Y, Wang Z, Hu J, Zhao X, Li T, Sun X. The clinical safety landscape for ocular AAV gene therapies: A systematic review and meta-analysis. iScience 2025; 28:112265. [PMID: 40248125 PMCID: PMC12005934 DOI: 10.1016/j.isci.2025.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Adeno-associated virus (AAV) gene therapy is a promising approach for treating ocular monogenic or acquired diseases, though immunogenicity and safety remain critical considerations. We conducted a systematic review of 120 trials and 32 publications to assess immune responses across different delivery routes. Intravitreal administration was associated with higher rates of anterior uveitis (43.06% vs. 10.22%) and intermediate/posterior uveitis (40.36% vs. 6.18%) compared to subretinal delivery. Engineered AAV capsids, used exclusively in intravitreal studies, showed no significant difference in either type of uveitis incidence compared to natural serotypes. Prophylactic immunosuppression (PI) did not affect ocular or systemic immune responses in subretinal delivery, but significantly reduced systemic immune responses in intravitreal administration. These findings underscore the potential of PI to mitigate systemic immune responses in intravitreal AAV therapy. This review should help guide the choice of routes of administration and immunosuppression strategies, and highlights current trends in ocular AAV gene therapy.
Collapse
Affiliation(s)
- Zishi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Haoliang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zhonghe Huang
- Qingdao University School of Mathematics and Statistics, Qingdao, China
| | - Yuhao Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zilin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Jing Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| |
Collapse
|
2
|
Duncan JL, Maguire MG, McDaniel LS, Doucet NR, Audo I, Ayala AR, Cheetham JK, Cheng P, Durham TA, Huckfeldt RM, Hufnagel RB, Jayasundera KT, Khan N, Malbin B, Maldonado RS, Michaelides M, Pennesi ME, Weng CY, Zmejkoski A, Aravind S, Ishikawa H, Birch DG. Characterization of Visual Field Loss Over 4 Years in the Rate of Progression in USH2A-Related Retinal Degeneration (RUSH2A) Study. Am J Ophthalmol 2025; 276:9-21. [PMID: 40157442 DOI: 10.1016/j.ajo.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE To report visual field loss using static perimetry (SP) and kinetic perimetry (KP) over 4 years in the Rate of Progression of USH2A-related Retinal Degeneration (RUSH2A) study. DESIGN Prospective, observational cohort study. SUBJECTS, PARTICIPANTS, AND/OR CONTROLS Participants had USH2A-related rod-cone degeneration, visual acuity ≥20/80, and KP III4e ≥10° at baseline in the study eye. Preserved cohorts with baseline visual fields sufficient to detect progression were identified. METHODS Participants were examined annually through 4 years. Mixed-effects models were used to estimate the annual, standardized rate, and percentage rates of change. MAIN OUTCOME MEASURES SP measures included hill of vision (total: VTOT, central 30°: V30, and peripheral: VPERIPH) and centrally weighted mean sensitivity (MScw). Percentages with 4-year progression exceeding the coefficient of repeatability (CoR) and with change meeting Food and Drug Administration (FDA)-recommended criteria were estimated. KP seeing area (dB-steradian (sr)/degree) for I4e, III4e, and V4e isopters was calculated. RESULTS The average decline with SP (95% CI) was 1.94 (1.62, 2.25) dB-sr/y for VTOT, 0.54 (0.45, 0.62) dB-sr/y for V30, 1.37 (1.11, 1.63) dB-sr/y for VPERIPH, and 0.56 (0.48, 0.64) dB/y for MScw. Average percentage decline per year was 8.6% (7.2, 10.0) for VTOT, 6.4% (5.3, 7.5) for V30, 13.6% (10.4, 16.7) for VPERIPH, and 5.6% (4.7, 6.4) for MScw. The standardized rate of change was greatest at -1.35 for MScw. Rates were higher in the preserved cohorts. Progression exceeding the CoR was 18% (11, 28) for VTOT, 21% (13, 31) for V30, 21% (13, 31) for VPERIPH and 17% (10, 27) for MScw. Progression exceeding an FDA-recommended threshold was 5% (2%, 12%) for all SP points and 45% (35%, 55%) for functional transition points. Average KP annual percentage decline was 13.1% (7.5, 18.5) for I4e, 12.1% (8.1,15.9) for III4e, and 9.2% (6.3,12.0) for V4e. CONCLUSIONS All quantitative perimetry measures declined over 4 years. Progression was greater than the CoR in a relatively low percentage of eyes (17%-21%); 45% exceeded the FDA-recommended threshold when only functional transition points were considered. Standardized rate of change was greatest for MScw. These measures are useful characterizations of vision loss in USH2A-related retinal degeneration.
Collapse
Affiliation(s)
- Jacque L Duncan
- From the University of California (J.L.D.), San Francisco, California, USA
| | - Maureen G Maguire
- Jaeb Center for Health Research (M.G.M., L.S.M., N.R.D., A.R.A., and P.C.), Tampa, Florida, USA
| | - Lee S McDaniel
- Jaeb Center for Health Research (M.G.M., L.S.M., N.R.D., A.R.A., and P.C.), Tampa, Florida, USA
| | - Nicole R Doucet
- Jaeb Center for Health Research (M.G.M., L.S.M., N.R.D., A.R.A., and P.C.), Tampa, Florida, USA
| | - Isabelle Audo
- Institut de la Vision (I.A.), Sorbonne Université, INSERM, CNRS, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (I.A.), Paris, France
| | - Allison R Ayala
- Jaeb Center for Health Research (M.G.M., L.S.M., N.R.D., A.R.A., and P.C.), Tampa, Florida, USA.
| | - Janet K Cheetham
- Foundation Fighting Blindness (J.K.C. and T.A.D.), Columbia, Maryland, USA
| | - Peiyao Cheng
- Jaeb Center for Health Research (M.G.M., L.S.M., N.R.D., A.R.A., and P.C.), Tampa, Florida, USA
| | - Todd A Durham
- Foundation Fighting Blindness (J.K.C. and T.A.D.), Columbia, Maryland, USA
| | - Rachel M Huckfeldt
- Massachusetts Eye and Ear (R.M.H.), Harvard Medical School, Boston, Massachusetts, USA
| | - Robert B Hufnagel
- Center for Integrated Health Care Research (R.B.H.), Kaiser Permanente, Honolulu, Hawaii, USA
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences (K.T.J., N.K., B.M., and A.Z.), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Naheed Khan
- Department of Ophthalmology and Visual Sciences (K.T.J., N.K., B.M., and A.Z.), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brett Malbin
- Department of Ophthalmology and Visual Sciences (K.T.J., N.K., B.M., and A.Z.), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Michel Michaelides
- Moorfields Eye Hospital and UCL Institute of Ophthalmology (M.M.), London, UK
| | - Mark E Pennesi
- Casey Eye Institute-Oregon Health and Science University (M.E.P., S.A., and H.I.), Portland, Oregon, USA; Retina Foundation of the Southwest (M.E.P. and D.G.B.), Dallas, Texas, USA
| | | | - Alex Zmejkoski
- Department of Ophthalmology and Visual Sciences (K.T.J., N.K., B.M., and A.Z.), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shobana Aravind
- Casey Eye Institute-Oregon Health and Science University (M.E.P., S.A., and H.I.), Portland, Oregon, USA
| | - Hiroshi Ishikawa
- Casey Eye Institute-Oregon Health and Science University (M.E.P., S.A., and H.I.), Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest (M.E.P. and D.G.B.), Dallas, Texas, USA
| |
Collapse
|
3
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
4
|
Abdalla Elsayed MEA, Cehajic-Kepetanovic J, MacLaren RE. Gene therapy for choroideremia: progress, potential and pitfalls. Expert Opin Biol Ther 2025; 25:257-263. [PMID: 39893699 PMCID: PMC11912956 DOI: 10.1080/14712598.2025.2459850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Choroideremia is a rare disease with a significant disease burden. Gene-supplementation methods for choroideremia gene therapy have been the most successful form of gene therapy thus far. AREAS COVERED The aim of the current review is to provide an overview of current progress of gene therapy trials to date, with a focus on potential and pitfalls of such trials. We propose a novel end point that may be clinically meaningful for obtaining regulatory approval in subsequent clinical trials. Additionally, we offer recommendations for further optimization of surgical techniques. EXPERT OPINION Lessons learnt from this phase 3 clinical trial, encompassing optimal vector design, delivery techniques, patient selection criteria, and long-term safety profiles can be used in the development of treatments for polygenic retinal disorders, which may necessitate a more nuanced approach due to genetic complexity.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jasmina Cehajic-Kepetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Kwok E, Alam K, Lim J, Niyazmand H, Tang V, Trinh H, Chen FK, Charng J. Evaluating ocular health in retinal gene therapies. Clin Exp Optom 2025:1-12. [PMID: 39956654 DOI: 10.1080/08164622.2025.2457429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Inherited retinal disease (IRD) refers to a heterogeneous group of genetic eye disease that causes progressive vision loss and was once regarded untreatable. However, regulatory approval for Luxturna (voretigene neparvovec-rzyl) for patients with biallelic mutation in the RPE65 gene has heralded new optimism for patients with the disease. One critical question in designing clinical trial in patients with IRD is choosing appropriate outcome measures to assess the retina, taking into consideration the slow disease progression and the inherent low vision associated with the disease. In this review, the functional and structural endpoints that have been utilised in human retinal gene therapy clinical trials in patient selection as well as measures of safety and efficacy are described. For clinicians, an appreciation of these specialised measures of eye health in a patient with IRD will enhance understanding of retinal health assessments, disease prognosis as well as facilitating discussions with patients potentially eligible for retinal gene therapy clinical trial.
Collapse
Affiliation(s)
- Eden Kwok
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Khyber Alam
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremiah Lim
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hamed Niyazmand
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vanessa Tang
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Han Trinh
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Pechnikova NA, Poimenidou M, Iliadis I, Zafeiriou-Chatziefraimidou M, Iaremenko AV, Yaremenko TV, Domvri K, Yaremenko AV. Pre-Clinical and Clinical Advances in Gene Therapy of X-Linked Retinitis Pigmentosa: Hope on the Horizon. J Clin Med 2025; 14:898. [PMID: 39941570 PMCID: PMC11818521 DOI: 10.3390/jcm14030898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
X-linked retinitis pigmentosa (XLRP) is a severe inherited retinal degenerative disease characterized by progressive loss of photoreceptors and retinal pigment epithelium, leading to blindness. Predominantly affecting males due to mutations in the RPGR gene, XLRP currently lacks effective treatments beyond supportive care. Gene therapy has emerged as a promising approach to restore photoreceptor function by delivering functional copies of the RPGR gene. Recent clinical trials using AAV vectors, such as AAV5-RPGR and AGTC-501, have demonstrated encouraging results, including improvements in retinal sensitivity and visual function. While early successes like LUXTURNA have set the precedent for gene therapy in retinal diseases, adapting these strategies to XLRP presents unique challenges due to the complexity of RPGR mutations and the need for efficient photoreceptor targeting. Advances in vector design, including the use of optimized AAV serotypes with enhanced tropism for photoreceptors and specific promoters, have significantly improved gene delivery. Despite setbacks in some studies, ongoing research and clinical trials continue to refine these therapies, offering hope for patients affected by XLRP. This review explores the etiology and pathophysiology of XLRP, evaluates current treatment challenges, highlights recent clinical advances in gene therapy, and discusses future perspectives for bringing these therapies into clinical practice.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry and Biotechnology, University of Thessaly, 38446 Volos, Greece;
- Laboratory of Chemical Engineering A’, Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Malamati Poimenidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (I.I.); (M.Z.-C.); (K.D.)
| | - Ioannis Iliadis
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (I.I.); (M.Z.-C.); (K.D.)
| | | | - Aleksandra V. Iaremenko
- Faculty of Pediatrics, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | | | - Kalliopi Domvri
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (I.I.); (M.Z.-C.); (K.D.)
| | - Alexey V. Yaremenko
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (I.I.); (M.Z.-C.); (K.D.)
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
7
|
Poli FE, MacLaren RE, Cehajic-Kapetanovic J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes (Basel) 2024; 15:1471. [PMID: 39596671 PMCID: PMC11593989 DOI: 10.3390/genes15111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Choroideremia is a monogenic inherited retinal dystrophy that manifests in males with night blindness, progressive loss of peripheral vision, and ultimately profound sight loss, commonly by middle age. It is caused by genetic defects of the CHM gene, which result in a deficiency in Rab-escort protein-1, a key element for intracellular trafficking of vesicles, including those carrying melanin. As choroideremia primarily affects the retinal pigment epithelium, fundus autofluorescence, which focuses on the fluorescent properties of pigments within the retina, is an established imaging modality used for the assessment and monitoring of affected patients. METHODS AND RESULTS In this manuscript, we demonstrate the use of both short-wavelength blue and near-infrared autofluorescence and how these imaging modalities reveal distinct disease patterns in choroideremia. In addition, we show how these structural measurements relate to retinal functional measures, namely microperimetry, and discuss the potential role of these retinal imaging modalities in clinical practice and research studies. Moreover, we discuss the mechanisms underlying retinal autofluorescence patterns by imaging with a particular focus on melanin pigment. CONCLUSIONS This could be of particular significance given the current progress in therapeutic options, including gene replacement therapy.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Zhang Y, Shi Y, Khan MM, Xiao F, Chen W, Tao W, Yao K, Kong N. Ocular RNA nanomedicine: engineered delivery nanoplatforms in treating eye diseases. Trends Biotechnol 2024; 42:1439-1452. [PMID: 38821834 DOI: 10.1016/j.tibtech.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Ocular disorders remain a major global health challenge with unmet medical needs. RNA nanomedicine has shown significant therapeutic benefits and safety profiles in patients with complex eye disorders, already benefiting numerous patients with gene-related eye disorders. The effective delivery of RNA to the unique structure of the eye is challenging owing to RNA instability, off-target effects, and ocular physiological barriers. Specifically tailored RNA medication, coupled with sophisticated engineered delivery platforms, is crucial to guide and advance developments in treatments for oculopathy. Herein we review recent advances in RNA-based nanomedicine, innovative delivery strategies, and current clinical progress and present challenges in ocular disease therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Muhammad M Khan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ke Yao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
10
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
11
|
MacLaren RE, Audo I, Fischer MD, Huckfeldt RM, Lam BL, Pennesi ME, Sisk R, Gow JA, Li J, Zhu K, Tsang SF. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum Gene Ther 2024; 35:564-575. [PMID: 38970425 DOI: 10.1089/hum.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Choroideremia, an incurable, progressive retinal degeneration primarily affecting young men, leads to sight loss. GEMINI was a multicenter, open-label, prospective, two-period, interventional Phase II study assessing the safety of bilateral sequential administration of timrepigene emparvovec, a gene therapy, in adult males with genetically confirmed choroideremia (NCT03507686, ClinicalTrials.gov). Timrepigene emparvovec is an adeno-associated virus serotype 2 vector encoding the cDNA of Rab escort protein 1, augmented by a downstream woodchuck hepatitis virus post-transcriptional regulatory element. Up to 0.1 mL of timrepigene emparvovec, containing 1 × 1011 vector genomes, was administered by subretinal injection following vitrectomy and retinal detachment. The second eye was treated after an intrasurgery window of <6, 6-12, or >12 months. Each eye was followed at up to nine visits over 12 months. Overall, 66 participants received timrepigene emparvovec, and 53 completed the study. Visual acuity (VA) was generally maintained in both eyes, independent of intrasurgery window duration, even after bilateral retinal detachment and subretinal injection. Bilateral treatment was well tolerated, with predominantly mild or moderate treatment-emergent adverse events (TEAEs) and a low rate of serious surgical complications (7.6%). Retinal inflammation TEAEs were reported in 45.5% of participants, with similar rates in both eyes; post hoc analyses found that these were not associated with clinically significant vision loss at month 12 versus baseline. Two participants (3.0%) reported serious noninfective retinitis. Prior timrepigene emparvovec exposure did not increase the risk of serious TEAEs or serious ocular TEAEs upon injection of the second eye; furthermore, no systemic immune reaction or inoculation effect was observed. Presence of antivector neutralizing antibodies at baseline was potentially associated with a higher percentage of TEAEs related to ocular inflammation or reduced VA after injection of the first eye. The GEMINI study results may inform decisions regarding bilateral sequential administration of other gene therapies for retinal diseases.
Collapse
Affiliation(s)
- Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- MEE Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Sisk
- Cincinnati Eye Institute, Blue Ash, Ohio, USA
| | | | - Jiang Li
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Kan Zhu
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
12
|
Maclaren RE, Lam BL, Fischer MD, Holz FG, Pennesi ME, Birch DG, Sankila EM, Meunier IA, Stepien KE, Sallum JMF, Li J, Yoon D, Panda S, Gow JA. A Prospective, Observational, Non-interventional Clinical Study of Participants With Choroideremia: The NIGHT Study. Am J Ophthalmol 2024; 263:35-49. [PMID: 38311152 DOI: 10.1016/j.ajo.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE The NIGHT study aimed to assess the natural history of choroideremia (CHM), an X-linked inherited chorioretinal degenerative disease leading to blindness, and determine which outcomes would be the most sensitive for monitoring disease progression. DESIGN A prospective, observational, multicenter cohort study. METHODS Males aged ≥18 years with genetically confirmed CHM, visible active disease within the macular region, and best-corrected visual acuity (BCVA) ≥34 Early Treatment Diabetic Retinopathy Study (ETDRS) letters at baseline were assessed for 20 months. The primary outcome was the change in BCVA over time at Months 4, 8, 12, 16, and 20. A range of functional and anatomical secondary outcome measures were assessed up to Month 12, including retinal sensitivity, central ellipsoid zone (EZ) area, and total area of fundus autofluorescence (FAF). Additional ocular assessments for safety were performed. RESULTS A total of 220 participants completed the study. The mean BCVA was stable over 20 months. Most participants (81.4% in the worse eye and 77.8% in the better eye) had change from baseline > -5 ETDRS letters at Month 20. Interocular symmetry was low overall. Reductions from baseline to Month 12 were observed (worse eye, better eye) for retinal sensitivity (functional outcome; -0.68 dB, -0.48 dB), central EZ area (anatomical outcome; -0.276 mm2, -0.290 mm2), and total area of FAF (anatomical outcome; -0.605 mm2, -0.533 mm2). No assessment-related serious adverse events occurred. CONCLUSIONS Retinal sensitivity, central EZ area, and total area of FAF are more sensitive than BCVA in measuring the natural progression of CHM.
Collapse
Affiliation(s)
- Robert E Maclaren
- From the Oxford Eye Hospital (R.E.M.), Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Byron L Lam
- Bascom Palmer Eye Institute (B.L.L.), University of Miami, Miami, Florida, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology (M.D.F.), University Hospital Tübingen, Tübingen, Germany
| | - Frank G Holz
- Department of Ophthalmology (F.-G.H.), University of Bonn, Bonn, Germany
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute (M.E.P.), Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest (D.G.B.), Dallas, Texas, USA
| | - Eeva-Marja Sankila
- Department of Ophthalmology (E.-M.S.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Isabelle Anne Meunier
- National Reference Centre for Inherited Sensory Diseases (I.A.M.), University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Kimberly E Stepien
- Department of Ophthalmology and Visual Sciences (K.E.S.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences (J.M.F.S.), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jiang Li
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - Dan Yoon
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - Sushil Panda
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - James A Gow
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Zhang W, Hou Y, Yin S, Miao Q, Lee K, Zhou X, Wang Y. Advanced gene nanocarriers/scaffolds in nonviral-mediated delivery system for tissue regeneration and repair. J Nanobiotechnology 2024; 22:376. [PMID: 38926780 PMCID: PMC11200991 DOI: 10.1186/s12951-024-02580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.
Collapse
Affiliation(s)
- Wanheng Zhang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Hou
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
| | - Shiyi Yin
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Miao
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon, 35365, Republic of Korea
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Yongtao Wang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China.
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
14
|
Sobh M, Lagali PS, Ghiasi M, Montroy J, Dollin M, Hurley B, Leonard BC, Dimopoulos I, Lafreniere M, Fergusson DA, Lalu MM, Tsilfidis C. Safety and Efficacy of Adeno-Associated Viral Gene Therapy in Patients With Retinal Degeneration: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol 2023; 12:24. [PMID: 37982768 PMCID: PMC10668613 DOI: 10.1167/tvst.12.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance This systematic review will help to inform and guide future clinical trials.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pamela S. Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Dollin
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ioannis Dimopoulos
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Mackenzie Lafreniere
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
MacLaren RE, Fischer MD, Gow JA, Lam BL, Sankila EMK, Girach A, Panda S, Yoon D, Zhao G, Pennesi ME. Subretinal timrepigene emparvovec in adult men with choroideremia: a randomized phase 3 trial. Nat Med 2023; 29:2464-2472. [PMID: 37814062 PMCID: PMC10579095 DOI: 10.1038/s41591-023-02520-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Choroideremia is a rare, X-linked retinal degeneration resulting in progressive vision loss. A randomized, masked, phase 3 clinical trial evaluated the safety and efficacy over 12 months of follow-up in adult males with choroideremia randomized to receive a high-dose (1.0 × 1011 vector genomes (vg); n = 69) or low-dose (1.0 × 1010 vg; n = 34) subretinal injection of the AAV2-vector-based gene therapy timrepigene emparvovec versus non-treated control (n = 66). Most treatment-emergent adverse events were mild or moderate. The trial did not meet its primary endpoint of best-corrected visual acuity (BCVA) improvement. In the primary endpoint analysis, three of 65 participants (5%) in the high-dose group, one of 34 (3%) participants in the low-dose group and zero of 62 (0%) participants in the control group had ≥15-letter Early Treatment Diabetic Retinopathy Study (ETDRS) improvement from baseline BCVA at 12 months (high dose, P = 0.245 versus control; low dose, P = 0.354 versus control). As the primary endpoint was not met, key secondary endpoints were not tested for significance. In a key secondary endpoint, nine of 65 (14%), six of 35 (18%) and one of 62 (2%) participants in the high-dose, low-dose and control groups, respectively, experienced ≥10-letter ETDRS improvement from baseline BCVA at 12 months. Potential opportunities to enhance future gene therapy studies for choroideremia include optimization of entry criteria (more preserved retinal area), surgical techniques and clinical endpoints. EudraCT registration: 2015-003958-41 .
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford University Hospitals NIHR Biomedical Research Centre, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - M Dominik Fischer
- University Eye Hospital Tübingen, Center for Ophthalmology, Tübingen, Germany
| | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Aniz Girach
- Formerly of Nightstar Therapeutics, London, UK
| | | | | | | | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
Reichel FF, Seitz I, Wozar F, Dimopoulos S, Jung R, Kempf M, Kohl S, Kortüm FC, Ott S, Pohl L, Stingl K, Bartz-Schmidt KU, Stingl K, Fischer MD. Development of retinal atrophy after subretinal gene therapy with voretigene neparvovec. Br J Ophthalmol 2023; 107:1331-1335. [PMID: 35609955 DOI: 10.1136/bjophthalmol-2021-321023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS Voretigene neparvovec (VN) is the first and only subretinal gene therapy approved by the Food and Drug Administration and European Medicines Agency. Real-world application has started in 2018 in patients with vision impairment due to biallelic retinal pigment epithelium (RPE) 65 mutation-associated inherited retinal degenerations. Herein, we evaluated the development of retinal atrophy within in a single-centre patient cohort treated with VN. METHODS 13 eyes of eight patients treated with VN were retrospectively analysed for areas of retinal atrophy over a period of 6-24 months following surgery. Ultrawide field images were used to measure the area of atrophy. Fundus autofluorescence imaging is presented as an instrument for early detection of signs of retinal atrophy in these patients. RESULTS Atrophic changes beyond the retinotomy site were observed in all eyes. Areas of atrophy developed within the area of detachment (bleb) in all eight patients and outside the bleb in three patients. Changes in autofluorescence preceded the development of retinal atrophy and were already evident 2 weeks after surgery in the majority of patients. The areas of atrophy increase with time and progression continued over year 1. Functional outcomes remained stable (VA, FST, visual field). CONCLUSION Subretinal injection of VN can lead to RPE atrophy with consequent photoreceptor loss in and outside of the bleb area. Fundus autofluorescence is an important tool to monitor atrophic changes in patients after gene therapy. Interestingly, while areas of atrophy also included central areas, the functional benefits of the treatment did not appear to be affected and remained stable.
Collapse
Affiliation(s)
| | - Immanuel Seitz
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Fabian Wozar
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | | | - Ronja Jung
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Kempf
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | | | - Saskia Ott
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Lisa Pohl
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Krunoslav Stingl
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | | | - Katarina Stingl
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Areblom M, Kjellström S, Andréasson S, Öhberg A, Gränse L, Kjellström U. A Description of the Yield of Genetic Reinvestigation in Patients with Inherited Retinal Dystrophies and Previous Inconclusive Genetic Testing. Genes (Basel) 2023; 14:1413. [PMID: 37510321 PMCID: PMC10379620 DOI: 10.3390/genes14071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the present era of evolving gene-based therapies for inherited retinal dystrophies (IRDs), it has become increasingly important to verify the genotype in every case, to identify all subjects eligible for treatment. Moreover, combined insight concerning phenotypes and genotypes is crucial for improved understanding of thevisual impairment, prognosis, and inheritance. The objective of this study was to investigate to what extent renewed comprehensive genetic testing of patients diagnosed with IRD but with previously inconclusive DNA test results can verify the genotype, if confirmation of the genotype has an impact on the understanding of the clinical picture, and, to describe the genetic spectrum encountered in a Swedish IRD cohort. The study included 279 patients from the retinitis pigmentosa research registry (comprising diagnosis within the whole IRD spectrum), hosted at the Department of Ophthalmology, Skåne University hospital, Sweden. The phenotypes had already been evaluated with electrophysiology and other clinical tests, e.g., visual acuity, Goldmann perimetry, and fundus imaging at the first visit, sometime between 1988-2015 and the previous-in many cases, multiple-genetic testing, performed between 1995 and 2020 had been inconclusive. All patients were aged 0-25 years at the time of their first visit. Renewed genetic testing was performed using a next generation sequencing (NGS) IRD panel including 322 genes (Blueprint Genetics). Class 5 and 4 variants, according to ACMG guidelines, were considered pathogenic. Of the 279 samples tested, a confirmed genotype was determined in 182 (65%). The cohort was genetically heterogenous, including 65 different genes. The most prevailing were ABCA4 (16.5%), RPGR (6%), CEP290 (6%), and RS1 (5.5%). Other prevalent genes were CACNA1F (3%), PROM1 (3%), CHM (3%), and NYX (3%). In 7% of the patients there was a discrepancy between the diagnosis made based on phenotypical or genotypical findings alone. To conclude, repeated DNA-analysis was beneficial also in previously tested patients and improved our ability to verify the genotype-phenotype association increasing the understanding of how visual impairment manifests, prognosis, and the inheritance pattern. Moreover, repeated testing using a widely available method could identify additional patients eligible for future gene-based therapies.
Collapse
Affiliation(s)
- Maria Areblom
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Sten Andréasson
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Lotta Gränse
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Ulrika Kjellström
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
19
|
Xu P, Jiang YY, Morgan JIW. Cone Photoreceptor Morphology in Choroideremia Assessed Using Non-Confocal Split-Detection Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37504961 PMCID: PMC10383007 DOI: 10.1167/iovs.64.10.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose Choroideremia (CHM) is an X-linked inherited retinal degeneration causing loss of the photoreceptors, retinal pigment epithelium, and choriocapillaris, although patients typically retain a central island of relatively preserved, functioning retina until late-stage disease. Here, we investigate cone photoreceptor morphology within the retained retinal island by examining cone inner segment area, density, circularity, and intercone space. Methods Using a custom-built, multimodal adaptive optics scanning light ophthalmoscope, nonconfocal split-detection images of the photoreceptor mosaic were collected at 1°, 2°, and 4° temporal to the fovea from 13 CHM and 12 control subjects. Cone centers were manually identified, and cone borders were segmented. A custom MATLAB script was used to extract area and circularity for each cone and calculate the percentage of intercone space in each region of interest. Bound cone density was also calculated. An unbalanced two-way ANOVA and Bonferroni post hoc tests were used to assess statistical differences between the CHM and control groups and along retinal eccentricity. Results Cone density was lower in the CHM group than in the control group (P < 0.001) and decreased with eccentricity from the fovea (P < 0.001). CHM cone inner segments were larger in area (P < 0.001) and more circular (P = 0.042) than those of the controls. Intercone space in CHM was also higher than in the controls (P < 0.001). Conclusions Cone morphology is altered in CHM compared to control, even within the centrally retained, functioning retinal area. Further studies are required to determine whether such morphology is a precursor to cone degeneration.
Collapse
Affiliation(s)
- Peiluo Xu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yu You Jiang
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
20
|
Yusuf IH, MacLaren RE. Choroideremia: Toward Regulatory Approval of Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041279. [PMID: 37277205 PMCID: PMC10691480 DOI: 10.1101/cshperspect.a041279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Choroideremia is an X-linked inherited retinal degeneration characterized by primary centripetal degeneration of the retinal pigment epithelium (RPE), with secondary degeneration of the choroid and retina. Affected individuals experience reduced night vision in early adulthood with blindness in late middle age. The underlying CHM gene encodes REP1, a protein involved in the prenylation of Rab GTPases essential for intracellular vesicle trafficking. Adeno-associated viral gene therapy has demonstrated some benefit in clinical trials for choroideremia. However, challenges remain in gaining regulatory approval. Choroideremia is slowly progressive, which presents difficulties in demonstrating benefit over short pivotal clinical trials that usually run for 1-2 years. Improvements in visual acuity are particularly challenging due to the initial negative effects of surgical detachment of the fovea. Despite these challenges, great progress toward a treatment has been made since choroideremia was first described in 1872.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
21
|
Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev 2023; 198:114870. [PMID: 37172783 DOI: 10.1016/j.addr.2023.114870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Effective drug therapy for vitreoretinal disease is a major challenge in the field of ophthalmology; various protective systems, including anatomical and physiological barriers, complicate drug delivery to precise targets. However, as the eye is a closed cavity, it is an ideal target for local administration. Various types of drug delivery systems have been investigated that take advantage of this aspect of the eye, enhancing ocular permeability and optimizing local drug concentrations. Many drugs, mainly anti-VEGF drugs, have been evaluated in clinical trials and have provided clinical benefit to many patients. In the near future, innovative drug delivery systems will be developed to avoid frequent intravitreal administration of drugs and maintain effective drug concentrations for a long period of time. Here, we review the published literature on various drugs and administration routes and current clinical applications. Recent advances in drug delivery systems are discussed along with future prospects.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Zhai Y, Xu M, Radziwon A, Dimopoulos IS, Crichton P, Mah R, MacLaren RE, Somani R, Tennant MT, MacDonald IM. AAV2-Mediated Gene Therapy for Choroideremia: 5-Year Results and Alternate Anti-sense Oligonucleotide Therapy. Am J Ophthalmol 2023; 248:145-156. [PMID: 36581191 DOI: 10.1016/j.ajo.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE To assess the long-term safety and efficacy of AAV2-REP1 in choroideremia (CHM) patients, and to test a potential antisense oligonucleotide therapy for CHM. DESIGN Extended, prospective phase 1/2 clinical trial and laboratory investigation. METHODS Five patients who received a single subfoveal injection of AAV2-REP1 were studied. The long-term safety was evaluated by ophthalmic examination, spectral domain optical coherence tomography, and fundus autofluorescence (FAF) for up to 5 years. Functional and structural changes were determined by different test modalities. Four antisense oligonucleotides (ASOs) were designed to treat the CHM c.1245-521A>G mutation, which was present in 2 patients within this trial. RESULTS Subject P3 experienced a localized intraretinal immune response that resulted in a significant loss of preserved retinal pigment epithelium (RPE). P4 experienced an exacerbation of peripheral retinoschisis. P2 had a constant ≥15-letter best-corrected visual acuity (BCVA) gain in the treated eye, whereas P5 had ≥15-letter BCVA improvement once in the untreated eye. The preserved FAF areas declined more rapidly in the treated eyes compared to the untreated eyes (P = .043). A customized 25-mer ASO recovered 83.2% to 95.0% of the normal RNA and 57.5% of the normal protein in fibroblasts from 2 trial patients. CONCLUSIONS Intraretinal inflammation triggered by AAV2-REP1 subretinal injection stabilized after 2 years but resulted in permanent damage to the retinal structure. Long-term progression of the disease was seen in both treated and untreated eyes, casting doubt as to the effectiveness of this approach in late-stage CHM. Alternative approaches such as ASO may have a therapeutic effect in a subgroup of CHM patients.
Collapse
Affiliation(s)
- Yi Zhai
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Manlong Xu
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Alina Radziwon
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada; Department of Medical Genetics (A.R., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Ioannis S Dimopoulos
- Department of Ophthalmology (I.S.D., P.C., R.M.), University of Ottawa, Ottawa, Ontario, Canada
| | - Paul Crichton
- Department of Ophthalmology (I.S.D., P.C., R.M.), University of Ottawa, Ottawa, Ontario, Canada
| | - Rachel Mah
- Department of Ophthalmology (I.S.D., P.C., R.M.), University of Ottawa, Ottawa, Ontario, Canada
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology (R.E.M.), Department of Clinical Neurosciences, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxfordshire, UK
| | - Rizwan Somani
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Matthew T Tennant
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Ian M MacDonald
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada; Department of Medical Genetics (A.R., I.M.M.), University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
He N, Zhang X, Xie P, He J, Lv Z. Inhibition of posterior capsule opacification by adenovirus-mediated delivery of short hairpin RNAs targeting TERT in a rabbit model. Curr Eye Res 2023:1-9. [PMID: 36946600 DOI: 10.1080/02713683.2023.2194587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE Posterior capsule opacification (PCO) is the most common postoperative complication after cataract surgery and cannot yet be eliminated. Here, we investigated the inhibitory effects of telomerase reverse transcriptase (TERT) gene silencing on PCO in a rabbit model. METHODS After rabbit lens epithelial cells (LECs) were treated with adenovirus containing short hairpin RNAs (shRNA) targeting TERT (shTERT group), adenovirus containing scramble nonsense control shRNA (shNC group) or PBS (control group), quantitative real-time polymerase chain reaction and Western blotting were used to measure the expression levels of TERT, and a scratch assay was performed to assess the LEC migration. New Zealand white rabbits underwent sham cataract surgery followed by an injection of adenovirus carrying shTERT into their capsule bag. The intraocular pressure and anterior segment inflammation were evaluated on certain days, and EMT markers (α-SMA and E-cadherin) were evaluated by Western blotting and immunofluorescence. The telomerase activity of the capsule bag was detected by ELISA. At 28 days postoperatively, haematoxylin and eosin staining of the cornea and iris and electron microscopy of the posterior capsule were performed. RESULTS Application of shTERT to LECs downregulated the expression levels of TERT mRNA and protein. The scratch assay results showed a decrease in the migration of LECs in the shTERT group. In vivo, shTERT decreased PCO formation after cataract surgery in rabbits and downregulated the expression of EMT markers, as determined by Western blotting and immunofluorescence. In addition, telomerase activity was suppressed in the capsule bag. Despite slight inflammation in the iris, histologic results revealed no toxic effects in the cornea and iris. CONCLUSION TERT silencing effectively reduces the migration and proliferation of LECs and the formation of PCO. Our findings suggest that TERT silencing may be a potential preventive strategy for PCO.
Collapse
Affiliation(s)
- Na He
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xiangxiang Zhang
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Peiling Xie
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jialing He
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Zhigang Lv
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| |
Collapse
|
24
|
Extra-viral DNA in adeno-associated viral vector preparations induces TLR9-dependent innate immune responses in human plasmacytoid dendritic cells. Sci Rep 2023; 13:1890. [PMID: 36732401 PMCID: PMC9894911 DOI: 10.1038/s41598-023-28830-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated viral (AAV) vector suspensions produced in either human derived HEK cells or in Spodoptera frugiperda (Sf9) insect cells differ in terms of residual host cell components as well as species-specific post-translational modifications displayed on the AAV capsid proteins. Here we analysed the impact of these differences on the immunogenic properties of the vector. We stimulated human plasmacytoid dendritic cells with various lots of HEK cell-produced and Sf9 cell-produced AAV-CMV-eGFP vectors derived from different manufacturers. We found that AAV8-CMV-eGFP as well as AAV2-CMV-eGFP vectors induced lot-specific but not production platform-specific or manufacturer-specific inflammatory cytokine responses. These could be reduced or abolished by blocking toll-like receptor 9 signalling or by enzymatically reducing DNA in the vector lots using DNase. Successful HEK cell transduction by DNase-treated AAV lots and DNA analyses demonstrated that DNase did not affect the integrity of the vector but degraded extra-viral DNA. We conclude that both HEK- and Sf9-cell derived AAV preparations can contain immunogenic extra-viral DNA components which can trigger lot-specific inflammatory immune responses. This suggests that improved strategies to remove extra-viral DNA impurities may be instrumental in reducing the immunogenic properties of AAV vector preparations.
Collapse
|
25
|
Li JD, Raynor W, Dhalla AH, Viehland C, Trout R, Toth CA, Vajzovic LM, Izatt JA. Quantitative measurements of intraocular structures and microinjection bleb volumes using intraoperative optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:352-366. [PMID: 36698674 PMCID: PMC9842013 DOI: 10.1364/boe.483278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Intraoperative optical coherence tomography (OCT) systems provide high-resolution, real-time visualization and/or guidance of microsurgical procedures. While the use of intraoperative OCT in ophthalmology has significantly improved qualitative visualization of surgical procedures inside the eye, new surgical techniques to deliver therapeutics have highlighted the lack of quantitative information available with current-generation intraoperative systems. Indirect viewing systems used for retinal surgeries introduce distortions into the resulting OCT images, making it particularly challenging to make calibrated quantitative measurements. Using an intraoperative OCT system based in part on the Leica Enfocus surgical microscope interface, we have devised novel measurement procedures, which allowed us to build optical and mathematical models to perform validation of quantitative measurements of intraocular structures for intraoperative OCT. These procedures optimize a complete optical model of the sample arm including the OCT scanner, viewing attachments, and the patient's eye, thus obtaining the voxel pitch throughout an OCT volume and performing quantitative measurements of the dimensions of imaged objects within the operative field. We performed initial validation by measuring objects of known size in a controlled eye phantom as well as ex vivo porcine eyes. The technique was then extended to measure other objects and structures in ex vivo porcine eyes and in vivo human eyes.
Collapse
Affiliation(s)
- Jianwei D. Li
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - William Raynor
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Robert Trout
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Cynthia A. Toth
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Lejla M. Vajzovic
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| |
Collapse
|
26
|
Scruggs BA, Bhattarai S, Helms M, Cherascu I, Salesevic A, Stalter E, Laird J, Baker SA, Drack AV. AAV2/4-RS1 gene therapy in the retinoschisin knockout mouse model of X-linked retinoschisis. PLoS One 2022; 17:e0276298. [PMID: 36477475 PMCID: PMC9728878 DOI: 10.1371/journal.pone.0276298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. METHODS AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1μL) or subretinal (N = 21; 2μL) injections at postnatal day 60-90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50-60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. RESULTS The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (p<0.0001), subretinal without Azopt® (p = 0.0002), and intravitreal (p = 0.01) treated eyes compared to untreated eyes. There was a highly significant subretinal treatment effect on ERG amplitudes collectively at 7-9 months post-injection (p = 0.0003). Cones showed more effect than rods. The subretinal group showed improved time to platform in the dark VGSA compared to untreated mice (p<0.0001). RS1 protein expression was detected in the outer retina in subretinal treated mice and in the inner retina in intravitreal treated mice. CONCLUSIONS AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients.
Collapse
Affiliation(s)
- Brittni A. Scruggs
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Sajag Bhattarai
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Megan Helms
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Ioana Cherascu
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Adisa Salesevic
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Elliot Stalter
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Laird
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Arlene V. Drack
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
27
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
28
|
Nanegrungsunk O, Au A, Sarraf D, Sadda SR. New frontiers of retinal therapeutic intervention: a critical analysis of novel approaches. Ann Med 2022; 54:1067-1080. [PMID: 35467460 PMCID: PMC9045775 DOI: 10.1080/07853890.2022.2066169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A recent wave of pharmacologic and technologic innovations has revolutionized our management of retinal diseases. Many of these advancements have demonstrated efficacy and can increase the quality of life while potentially reducing complications and decreasing the burden of care for patients. Some advances, such as longer-acting anti-vascular endothelial growth factor agents, port delivery systems, gene therapy, and retinal prosthetics have been approved by the US Food and Drug Administration, and are available for clinical use. Countless other therapeutics are in various stages of development, promising a bright future for further improvements in the management of the retinal disease. Herein, we have highlighted several important novel therapies and therapeutic approaches and examine the opportunities and limitations offered by these innovations at the new frontier. KEY MESSAGESNumerous pharmacologic and technologic advancements have been emerging, providing a higher treatment efficacy while decreasing the burden and associated side effects.Anti-vascular endothelial growth factor (anti-VEGF) and its longer-acting agents have dramatically improved visual outcomes and have become a mainstay treatment in various retinal diseases.Gene therapy and retinal prosthesis implantation in the treatment of congenital retinal dystrophy can accomplish the partial restoration of vision and improved daily function in patients with blindness, an unprecedented success in the field of retina.
Collapse
Affiliation(s)
- Onnisa Nanegrungsunk
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Retina Division, Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adrian Au
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
29
|
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma. Colloids Surf B Biointerfaces 2022; 220:112899. [DOI: 10.1016/j.colsurfb.2022.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
30
|
Scruggs BA, Vasconcelos HM, Matioli da Palma M, Kogachi K, Pennesi ME, Yang P, Bailey ST, Lauer AK. Injection pressure levels for creating blebs during subretinal gene therapy. Gene Ther 2022; 29:601-607. [PMID: 34580433 PMCID: PMC8958181 DOI: 10.1038/s41434-021-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Retinal damage has been associated with increased injection pressure during subretinal gene therapy delivery in various animal models, yet there are no human clinical data regarding the pressures required to initiate and propagate subretinal blebs. This study characterized the intraoperative pressure levels for subretinal gene therapy delivery across eight retinal conditions. A total of 116 patients with retinal degenerative diseases have been treated with subretinal gene therapy at OHSU-Casey Eye Institute as of June 2020; seventy patients (60.3%) were treated using a pneumatic-assisted subretinal delivery system. All retinal blebs were performed using a 41-gauge injection cannula, and use of a balanced salt solution (BSS) "pre-bleb" prior to gene therapy delivery was performed at the discretion of the surgeon. Patient age and intraoperative data for BSS and vector injections were analyzed in a masked fashion for all patients who received pneumatic-assisted subretinal gene therapy. The median age of the patients was 35 years (range 4-70). No significant differences in injection pressures were found across the eight retinal conditions. In this study, patient age was shown to affect maximum injection pressures required for bleb propagation, and the relationship between age and pressure varied based on retinal condition. These data have important implications in optimizing surgical protocols for subretinal injections.
Collapse
Affiliation(s)
- Brittni A Scruggs
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Huber Martins Vasconcelos
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana Matioli da Palma
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Katie Kogachi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Mark E Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Steven T Bailey
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Andreas K Lauer
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
31
|
Widespread subclinical cellular changes revealed across a neural-epithelial-vascular complex in choroideremia using adaptive optics. Commun Biol 2022; 5:893. [PMID: 36100689 PMCID: PMC9470576 DOI: 10.1038/s42003-022-03842-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractChoroideremia is an X-linked, blinding retinal degeneration with progressive loss of photoreceptors, retinal pigment epithelial (RPE) cells, and choriocapillaris. To study the extent to which these layers are disrupted in affected males and female carriers, we performed multimodal adaptive optics imaging to better visualize the in vivo pathogenesis of choroideremia in the living human eye. We demonstrate the presence of subclinical, widespread enlarged RPE cells present in all subjects imaged. In the fovea, the last area to be affected in choroideremia, we found greater disruption to the RPE than to either the photoreceptor or choriocapillaris layers. The unexpected finding of patches of photoreceptors that were fluorescently-labeled, but structurally and functionally normal, suggests that the RPE blood barrier function may be altered in choroideremia. Finally, we introduce a strategy for detecting enlarged cells using conventional ophthalmic imaging instrumentation. These findings establish that there is subclinical polymegathism of RPE cells in choroideremia.
Collapse
|
32
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
33
|
Burgess FR, Hall HN, Megaw R. Emerging Gene Manipulation Strategies for the Treatment of Monogenic Eye Disease. Asia Pac J Ophthalmol (Phila) 2022; 11:380-391. [PMID: 36041151 DOI: 10.1097/apo.0000000000000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic eye diseases, representing a wide spectrum of simple and complex conditions, are one of the leading causes of visual loss in children and working adults, and progress in the field has led to changes in disease investigation, diagnosis, and management. The past 15 years have seen the emergence of novel therapies for these previously untreatable conditions to the extent that we now have a licensed therapy for one form of genetic eye disease and many more in clinical trial. This is a systematic review of published and ongoing clinical trials of gene therapies for monogenic eye diseases. Databases of clinical trials and the published literature were searched for interventional studies of gene therapies for eye diseases. Standard methodological procedures were used to assess the relevance of search results. A total of 59 registered clinical trials are referenced, showing the significant level of interest in the potential for translation of these therapies from bench to bedside. The breadth of therapy design is encouraging, providing multiple possible therapeutic mechanisms. Some fundamental questions regarding gene therapy for genetic eye diseases remain, such as optimal dosing, the relative benefits of adeno-associated virus (AAV)-packaging and the potential for a significant inflammatory response to the therapy itself. As a result, despite the promise of the eye as a target, it has proven difficult to deliver clinically effective gene therapies to the eye. Despite setbacks, the licensing of Luxturna (voretigene neparvovec, Novartis) for the treatment of RPE65-mediated Leber congenital amaurosis (LCA) is a major advance in efforts to treat these rare, but devastating, causes of visual loss.
Collapse
Affiliation(s)
- Frederick R Burgess
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- Ophthalmology Department, School of Medicine, University of St Andrews, UK
| | - Hildegard Nikki Hall
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
34
|
AAV2-hCHM Subretinal Delivery to the Macula in Choroideremia: Two Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022; 129:1177-1191. [PMID: 35714735 DOI: 10.1016/j.ophtha.2022.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA in choroideremia (CHM). DESIGN Prospective, open-label, non-randomized, dose-escalation, phase 1/2 clinical trial. SUBJECTS, PARTICIPANTS, AND/OR CONTROLS Fifteen CHM patients (ages 20-57 years at dosing). METHODS, INTERVENTION, OR TESTING Patients received uniocular subfoveal injections of low dose (up to 5x1010 vector genome (vg) per eye, n=5) or high dose (up to 1x1011 vg per eye, n=10) AAV2-hCHM. Patients were evaluated pre- and post-operatively for two years with ophthalmic examinations, multimodal retinal imaging and psychophysical testing. MAIN OUTCOME Measures: visual acuity (VA), perimetry (10-2 protocol), spectral-domain optical coherence tomography (SD-OCT) and short-wavelength fundus autofluorescence (SW-FAF). RESULTS We detected no vector-related or systemic toxicities. VA returned to within 15 letters of baseline in all but two patients (one developed acute foveal thinning, another patient, a macular hole); the rest showed no gross changes in foveal structure at two years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry, or in the lateral extent of retinal pigment epithelium (RPE) relative preservation by SD-OCT and SW-FAF. Microperimetry showed non-significant (<3SD of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS VA was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13/15 (87%) of the patients. Acute foveal thinning with unchanged perifoveal function in one patient and macular hole in a second suggests foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.
Collapse
|
35
|
Sarkar H, Moosajee M. Choroideremia: molecular mechanisms and therapies. Trends Mol Med 2022; 28:378-387. [PMID: 35341685 DOI: 10.1016/j.molmed.2022.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Choroideremia (CHM) is a monogenic X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE), and choroid; it is caused by mutations involving the CHM gene. CHM is characterized by night blindness in early childhood, progressing to peripheral visual field loss and eventually to complete blindness from middle age. CHM encodes the ubiquitously expressed Rab escort protein 1 (REP1), which is responsible for prenylation of Rab proteins and is essential for intracellular trafficking of vesicles. In this review we explore the role of REP1 in the retina and its newly discovered systemic manifestations, and discuss the therapeutic strategies for tackling this disease, including the outcomes from recent clinical trials.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing, and Disease, University College London (UCL) Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- Development, Ageing, and Disease, University College London (UCL) Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital National Health Service (NHS) Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
36
|
Morgan JIW, Jiang YY, Vergilio GK, Serrano LW, Pearson DJ, Bennett J, Maguire AM, Aleman TS. Short-term Assessment of Subfoveal Injection of Adeno-Associated Virus-Mediated hCHM Gene Augmentation in Choroideremia Using Adaptive Optics Ophthalmoscopy. JAMA Ophthalmol 2022; 140:411-420. [PMID: 35266957 PMCID: PMC8914909 DOI: 10.1001/jamaophthalmol.2022.0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022]
Abstract
Importance Subretinal injection for gene augmentation in retinal degenerations forcefully detaches the neural retina from the retinal pigment epithelium, potentially damaging photoreceptors and/or retinal pigment epithelium cells. Objective To use adaptive optics scanning light ophthalmoscopy (AOSLO) to assess the short-term integrity of the cone mosaic following subretinal injections of adeno-associated virus vector designed to deliver a functional version of the CHM gene (AAV2-hCHM) in patients with choroideremia. Design, Setting, and Participants This longitudinal case series study enrolled adult patients with choroideremia from February 2015 to January 2016 in the US. To be included in the study, study participants must have received uniocular subfoveal injections of low-dose (5 × 1010 vector genome per eye) or high-dose (1 × 1011 vector genome per eye) AAV2-hCHM. Analysis began February 2015. Main Outcomes and Measures The macular regions of both eyes were imaged before and 1 month after injection using a custom-built multimodal AOSLO. Postinjection cone inner segment mosaics were compared with preinjection mosaics at multiple regions of interest. Colocalized spectral-domain optical coherence tomography and dark-adapted cone sensitivity was also acquired at each time point. Results Nine study participants ranged in age from 26 to 50 years at the time of enrollment, and all were White men. Postinjection AOSLO images showed preservation of the cone mosaic in all 9 AAV2-hCHM-injected eyes. Mosaics appeared intact and contiguous 1 month postinjection, with the exception of foveal disruption in 1 patient. Optical coherence tomography showed foveal cone outer segment shortening postinjection. Cone-mediated sensitivities were unchanged in 8 of 9 injected and 9 of 9 uninjected eyes. One participant showed acute loss of foveal optical coherence tomography cone outer segment-related signals along with cone sensitivity loss that colocalized with disruption of the mosaic on AOSLO. Conclusions and Relevance Integrity of the cone mosaic is maintained following subretinal delivery of AAV2-hCHM, providing strong evidence in support of the safety of the injections. Minor foveal thinning observed following surgery corresponds with short-term cone outer segment shortening rather than cone cell loss. Foveal cone loss in 1 participant raises the possibility of individual vulnerability to the subretinal injection.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Grace K. Vergilio
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Leona W. Serrano
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Denise J. Pearson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Jean Bennett
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Albert M. Maguire
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Tomas S. Aleman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| |
Collapse
|
37
|
Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10040746. [PMID: 35453499 PMCID: PMC9025350 DOI: 10.3390/biomedicines10040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| | - Alberto J. Rico
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elvira Roda
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Adriana Honrubia
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Sandra Arrieta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Goiaz Ariznabarreta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Julia Chocarro
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elena Lorenzo-Ramos
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alvaro Pejenaute
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alfonso Vázquez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| |
Collapse
|
38
|
Ladha R, Caspers LE, Willermain F, de Smet MD. Subretinal Therapy: Technological Solutions to Surgical and Immunological Challenges. Front Med (Lausanne) 2022; 9:846782. [PMID: 35402424 PMCID: PMC8985755 DOI: 10.3389/fmed.2022.846782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in ocular gene and cellular therapy rely on precisely controlled subretinal delivery. Due to its inherent limitations, manual delivery can lead to iatrogenic damage to the retina, the retinal pigment epithelium, favor reflux into the vitreous cavity. In addition, it suffers from lack of standardization, variability in delivery and the need to maintain proficiency. With or without surgical damage, an eye challenged with an exogenous viral vector or transplanted cells will illicit an immune response. Understanding how such a response manifests itself and to what extent immune privilege protects the eye from a reaction can help in anticipating short- and long-term consequences. Avoidance of spillover from areas of immune privilege to areas which either lack or have less protection should be part of any mitigation strategy. In that regard, robotic technology can provide reproducible, standardized delivery which is not dependent on speed of injection. The advantages of microprecision medical robotic technology for precise targeted deliveries are discussed.
Collapse
Affiliation(s)
- Reza Ladha
- Departments of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre and Brugmann, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Laure E. Caspers
- Departments of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre and Brugmann, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - François Willermain
- Departments of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre and Brugmann, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Marc D. de Smet
- Department of Ophthalmology, Leiden University, Leiden, Netherlands
- Preceyes B.V., Eindhoven, Netherlands
- MIOS SA, Lausanne, Switzerland
| |
Collapse
|
39
|
Tornabene P, Trapani I, Centrulo M, Marrocco E, Minopoli R, Lupo M, Iodice C, Gesualdo C, Simonelli F, Surace EM, Auricchio A. Inclusion of a degron reduces levelsof undesired inteins after AAV-mediated protein trans-splicing in the retina. Mol Ther Methods Clin Dev 2021; 23:448-459. [PMID: 34786437 PMCID: PMC8571531 DOI: 10.1016/j.omtm.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022]
Abstract
Split intein-mediated protein trans-splicing expands AAV transfer capacity, thus overcoming the limited AAV cargo. However, non-mammalian inteins persist as trans-splicing by-products, and this could raise safety concerns for AAV intein clinical applications. In this study, we tested the ability of several degrons to selectively decrease levels of inteins after protein trans-splicing and found that a version of E. coli dihydrofolate reductase, which we have shortened to better fit into the AAV vector, is the most effective. We show that subretinal administration of AAV intein armed with this short degron is both safe and effective in a mouse model of Stargardt disease (STGD1), which is the most common form of inherited macular degeneration in humans. This supports the use of optimized AAV intein for gene therapy of both STGD1 and other conditions that require transfer of large genes.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | - Miriam Centrulo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Mariangela Lupo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, Naples 80131, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, Naples 80131, Italy
| | - Enrico M. Surace
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
- Medical Genetics, Department of Advanced Biomedicine, Federico II University, Naples 80131, Italy
- Correspondence: Alberto Auricchio, MD, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy.
| |
Collapse
|
40
|
Britten-Jones AC, Jin R, Gocuk SA, Cichello E, O'Hare F, Hickey DG, Edwards TL, Ayton LN. The safety and efficacy of gene therapy treatment for monogenic retinal and optic nerve diseases: A systematic review. Genet Med 2021; 24:521-534. [PMID: 34906485 DOI: 10.1016/j.gim.2021.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE This study aimed to systematically review and summarize gene therapy treatment for monogenic retinal and optic nerve diseases. METHODS This review was prospectively registered (CRD42021229812). A comprehensive literature search was performed in Ovid MEDLINE, Ovid Embase, Cochrane Central, and clinical trial registries (February 2021). Clinical studies describing DNA-based gene therapy treatments for monogenic posterior ocular diseases were eligible for inclusion. Risk of bias evaluation was performed. Data synthesis was undertaken applying Synthesis Without Meta-analysis guidelines. RESULTS This study identified 47 full-text publications, 50 conference abstracts, and 54 clinical trial registry entries describing DNA-based ocular gene therapy treatments for 16 different genetic variants. Study summaries and visual representations of safety and efficacy outcomes are presented for 20 unique full-text publications in RPE65-mediated retinal dystrophies, choroideremia, Leber hereditary optic neuropathy, rod-cone dystrophy, achromatopsia, and X-linked retinoschisis. The most common adverse events were related to lid/ocular surface/cornea abnormalities in subretinal gene therapy trials and anterior uveitis in intravitreal gene therapy trials. CONCLUSION There is a high degree of variability in ocular monogenic gene therapy trials with respect to study design, statistical methodology, and reporting of safety and efficacy outcomes. This review improves the accessibility and transparency in interpreting gene therapy trials to date.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.
| | - Rui Jin
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Sena A Gocuk
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Elise Cichello
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Fleur O'Hare
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Varin J, Morival C, Maillard N, Adjali O, Cronin T. Risk Mitigation of Immunogenicity: A Key to Personalized Retinal Gene Therapy. Int J Mol Sci 2021; 22:12818. [PMID: 34884622 PMCID: PMC8658027 DOI: 10.3390/ijms222312818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of 'bedside-back-to-bench' studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.
Collapse
Affiliation(s)
| | | | | | - Oumeya Adjali
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| | - Therese Cronin
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| |
Collapse
|
42
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
43
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
44
|
|
45
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Nuzbrokh Y, Ragi SD, Tsang SH. Gene therapy for inherited retinal diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1278. [PMID: 34532415 PMCID: PMC8421966 DOI: 10.21037/atm-20-4726] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
Inherited retinal diseases (IRDs) are a genetically variable collection of devastating disorders that lead to significant visual impairment. Advances in genetic characterization over the past two decades have allowed identification of over 260 causative mutations associated with inherited retinal disorders. Thought to be incurable, gene supplementation therapy offers great promise in treating various forms of these blinding conditions. In gene replacement therapy, a disease-causing gene is replaced with a functional copy of the gene. These therapies are designed to slow disease progression and hopefully restore visual function. Gene therapies are typically delivered to target retinal cells by subretinal (SR) or intravitreal (IVT) injection. The historic Food and Drug Administration (FDA) approval of voretigene neparvovec for RPE65-associated Leber's congenital amaurosis (LCA) spurred tremendous optimism surrounding retinal gene therapy for various other monogenic IRDs. Novel disease-causing mutations continue to be discovered annually, and targeted genetic therapy is now under development in clinical and preclinical models for many IRDs. Numerous clinical trials for other IRDs are ongoing or have recently completed. Disorders being targeted for genetic therapy include retinitis pigmentosa (RP), choroideremia (CHM), achromatopsia (ACHM), Leber's hereditary optic neuropathy, usher syndrome (USH), X-linked retinoschisis, and Stargardt disease. Here, we provide an update of completed, ongoing, and planned clinical trials using gene supplementation strategies for retinal degenerative disorders.
Collapse
Affiliation(s)
- Yan Nuzbrokh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, NY, USA
| | - Sara D Ragi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
47
|
Xu D, Khan MA, Klufas MA, Ho AC. Administration of Ocular Gene Therapy. Int Ophthalmol Clin 2021; 61:131-149. [PMID: 34196321 DOI: 10.1097/iio.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Mehta N, Robbins DA, Yiu G. Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. Int Ophthalmol Clin 2021; 61:151-177. [PMID: 34196322 PMCID: PMC8259781 DOI: 10.1097/iio.0000000000000366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neesurg Mehta
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Deborah Ahn Robbins
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
49
|
Chan YK, Dick AD, Hall SM, Langmann T, Scribner CL, Mansfield BC. Inflammation in Viral Vector-Mediated Ocular Gene Therapy: A Review and Report From a Workshop Hosted by the Foundation Fighting Blindness, 9/2020. Transl Vis Sci Technol 2021; 10:3. [PMID: 34003982 PMCID: PMC8024774 DOI: 10.1167/tvst.10.4.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
On September 14–15, 2020, the Foundation Fighting Blindness convened a virtual workshop to discuss intraocular inflammation during viral vector-mediated gene therapy for inherited retinal diseases. The workshop's goals were to understand immune activation's nature and significance during ocular gene therapy, consider whether ocular inflammation limits gene therapy's potential, and identify knowledge gaps for future research. The event brought together a small group of experienced researchers in the field to present and discuss current data. Collectively, participants agreed that clinical, as well as subclinical, inflammation during ocular gene therapy is common. The severity of inflammation in both animal and clinical studies varied widely but is generally related to vector dose. Severe inflammation was associated with reduced gene therapy efficacy. However, the relationship between outcomes and subclinical inflammation, pre-existing antivector antibodies, or induced adaptive immune responses is still unclear. Uncertainties about the contribution of vector manufacturing issues to inflammation were also noted. Importantly, various immunosuppressive treatment protocols are being used, and this heterogeneity confounds conclusions about optimal strategies. Proposed near-term next steps include establishing an immunological consultant directory, establishing a data repository for pertinent animal and clinical data, and developing a larger meeting. Priority areas for future research include deeper understanding of immune activation during retinal diseases and during ocular gene therapy; better, harmonized application of animal models; and identifying best practices for managing gene therapy vector-related ocular inflammation.
Collapse
Affiliation(s)
| | - Andrew D Dick
- UCL Institute of Ophthalmology, London, UK.,University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
50
|
Zhai Y, Oke S, MacDonald IM. Validating Ellipsoid Zone Area Measurement With Multimodal Imaging in Choroideremia. Transl Vis Sci Technol 2021; 10:17. [PMID: 34111265 PMCID: PMC8132016 DOI: 10.1167/tvst.10.6.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess en face ellipsoid zone (EZ) maps of remaining retinal structure as outcome measures for the future clinical research in patients with choroideremia. Methods Twenty eyes from 12 patients with a confirmed genetic diagnosis of choroideremia were included retrospectively from a single site. From spectral domain-optical coherence tomography volume scans, slabs including the EZ were manually segmented to create the en face EZ maps. The preserved EZ area was measured by two graders. Lengths of the EZ were recorded at 0°, 45°, 90°, and 135°. The intraclass correlation coefficients and Bland–Altman plots were used to show intergrader agreement. The Pearson correlation coefficient evaluated the correlation between length and area. A Bland–Altman plot compared en face EZ and the preserved fundus autofluorescence area. Results Measurements of EZ area by two graders showed excellent agreement with an intraclass correlation coefficient of 0.992 (95% confidence interval, 0.980–0.997). A Pearson correlation analysis showed that the existing marker for preserved photoreceptor (horizontal EZ length) was correlated with the area (r = 0.722). The average EZ length in four meridians showed a much better correlation with the EZ area (r = 0.929). The fundus autofluorescence area was found to be a mean of 0.45 ± 0.99 mm2 greater than the EZ area. Conclusions EZ area measurement provides excellent intergrader reliability, although the process is time consuming. We propose a less time-consuming alternative to estimate the EZ by using the average EZ band length in meridians. Our data also suggest that the loss of photoreceptor inner segments is an early change in choroideremia and may happen before the loss of the retinal pigment epithelium. Translational Relevance En face EZ mapping is a potential tool for future clinical trials to quantify preserved photoreceptor structure in choroideremia.
Collapse
Affiliation(s)
- Yi Zhai
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Oke
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|