1
|
Mota MN, Palma M, Sá-Correia I. Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing. AMB Express 2024; 14:93. [PMID: 39198272 PMCID: PMC11358584 DOI: 10.1186/s13568-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Methanol is a promising feedstock for biomanufacturing, but the efficiency of methanol-based bioprocesses is limited by the low rate of methanol utilization pathways and methanol toxicity. Yeast diversity is an attractive biological resource to develop efficient bioprocesses since any effort with strain improvement is more deserving if applied to innate robust strains with relevant catabolic and biosynthetic potential. The present study is in line with such rational and describes the isolation and molecular identification of seven isolates of the methylotrophic species Candida boidinii from waters derived from the traditional curation of olives, in different years, and from contaminated superficial soil near fuel stations. The yeast microbiota from those habitats was also characterized. The four C. boidinii isolates obtained from the curation of olives' water exhibited significantly higher maximum specific growth rates (range 0.15-0.19 h-1), compared with the three isolates obtained from the fuel contaminated soils (range 0.05-0.06 h-1) when grown on methanol as the sole C-source (1% (v/v), in shake flasks, at 30°C). The isolates exhibit significant robustness towards methanol toxicity that increases as the cultivation temperature decreases from 30°C to 25°C. The better methanol-based growth performance exhibited by C. boidinii isolates from olives´ soaking waters could not be essentially attributed to higher methanol tolerance. These methanol-efficient catabolizing isolates are proposed as a promising platform to develop methanol-based bioprocesses.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
2
|
Gao J, Proffitt D, Marecki J, Protacio R, Wahls W, Byrd A, Raney K. Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth. Nucleic Acids Res 2024; 52:6543-6557. [PMID: 38752483 PMCID: PMC11194084 DOI: 10.1093/nar/gkae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - David R Proffitt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Antunes M, Mota MN, Sá-Correia I. Cell envelope and stress-responsive pathways underlie an evolved oleaginous Rhodotorula toruloides strain multi-stress tolerance. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:71. [PMID: 38807231 PMCID: PMC11134681 DOI: 10.1186/s13068-024-02518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The red oleaginous yeast Rhodotorula toruloides is a promising cell factory to produce microbial oils and carotenoids from lignocellulosic hydrolysates (LCH). A multi-stress tolerant strain towards four major inhibitory compounds present in LCH and methanol, was derived in our laboratory from strain IST536 (PYCC 5615) through adaptive laboratory evolution (ALE) under methanol and high glycerol selective pressure. RESULTS Comparative genomic analysis suggested the reduction of the original strain ploidy from triploid to diploid, the occurrence of 21,489 mutations, and 242 genes displaying copy number variants in the evolved strain. Transcriptomic analysis identified 634 genes with altered transcript levels (465 up, 178 down) in the multi-stress tolerant strain. Genes associated with cell surface biogenesis, integrity, and remodelling and involved in stress-responsive pathways exhibit the most substantial alterations at the genome and transcriptome levels. Guided by the suggested stress responses, the multi-stress tolerance phenotype was extended to osmotic, salt, ethanol, oxidative, genotoxic, and medium-chain fatty acid-induced stresses. CONCLUSIONS The comprehensive analysis of this evolved strain provided the opportunity to get mechanistic insights into the acquisition of multi-stress tolerance and a list of promising genes, pathways, and regulatory networks, as targets for synthetic biology approaches applied to promising cell factories, toward more robust and superior industrial strains. This study lays the foundations for understanding the mechanisms underlying tolerance to multiple stresses in R. toruloides, underscoring the potential of ALE for enhancing the robustness of industrial yeast strains.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Marta N Mota
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
4
|
Albonico F, B. E, G PH, B. D. New Saccharomyces cerevisiae-Kluyveromyces marxianus fusant shows enhanced alcoholic fermentation performance. World J Microbiol Biotechnol 2022; 38:251. [DOI: 10.1007/s11274-022-03422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/24/2022] [Indexed: 12/01/2022]
|
5
|
Coenzyme A precursors flow from mother to zygote and from microbiome to host. Mol Cell 2022; 82:2650-2665.e12. [PMID: 35662397 DOI: 10.1016/j.molcel.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.
Collapse
|
6
|
Palma M, Vieira É, Pataco M, Sá-Correia I. Characterization of a new Blastobotrys navarrensis strain indicates that it is not a later synonym of Blastobotrys proliferans. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The species Blastobotrys navarrensis Sesma and Ramirez was delineated based on the description of the single strain CBS 139.77T. Based on its phenotypic similarities to Blastobotrys proliferans, B. navarrensis CBS 139.77T was later considered a synonym of B. proliferans. In the present study, we isolated the yeast strain IST 508 (=PYCC 8784=CBS 16671) from the soil surrounding an olive tree in Ferreira do Alentejo, Portugal. The phylogenetic analysis of D1/D2 domain and ITS sequences from strain IST 508 indicates that is closely related to B. navarrensis and B. proliferans. Although strain IST 508 differs from B. navarrensis CBS 139.77T by 14 substitutions and 20 indels (6.6 % divergence) in the ITS sequence, no divergence was detected at the level of D1/D2 domain, mitochondrial small subunit rDNA, and cytochrome oxidase II sequences. On the other hand, strains IST 508 and CBS 139.77 differ from B. proliferans NRRL Y-17577T by eight substitutions (1.4 % divergence) in the D1/D2 domain sequence, by 16 substitutions (2.7 % divergence) in the cytochrome oxidase II sequence, and by 16 substitutions (3.7 % divergence) in the mitochondrial small subunit rDNA sequence. Due to the high number of variable phenotypic tests in B. proliferans and B. navarrensis, strains from the two species are difficult to distinguish. Contrasting with what is described for other Blastobotrys species, no differences were detected at the level of micromorphology between the two species. Nevertheless, based on the molecular differences between the two strains, CBS 139.77 and IST 508, and B. proliferans NRRL Y-17577T and their phylogenetic analysis, strains CBS 139.77 and IST 508 are from B. navarrensis and this species should be considered as an independent species and not a later synonym of B. proliferans. We propose an emended description of B. navarrensis.
Collapse
Affiliation(s)
- Margarida Palma
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Érica Vieira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Margarida Pataco
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Sá-Correia
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Ayoub MJ, Legras JL, Abi-Nakhoul P, Nguyen HV, Saliba R, Gaillardin C. Lebanon's Native Oenological Saccharomyces cerevisiae Flora: Assessment of Different Aspects of Genetic Diversity and Evaluation of Winemaking Potential. J Fungi (Basel) 2021; 7:jof7080678. [PMID: 34436217 PMCID: PMC8398109 DOI: 10.3390/jof7080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 296 isolates of Saccharomyces cerevisiae sampled from naturally fermenting grape musts from various locations in Lebanon were typed by interdelta fingerprinting. Of these, 88 isolates were compared with oenological strains originating from various countries, using microsatellite characterization at six polymorphic loci. These approaches evidenced a large diversity of the natural oenological Lebanese flora over the territory as well as in individual spontaneous fermentations. Several cases of dominance and perenniality of isolates were observed in the same wineries, where fermentations appeared to involve lineages of sibling isolates. Our work thus evidenced a “winery effect” on strains’ relatedness. Similarly, related or identical strains were also detected in vicinal wineries, suggesting strain circulation within small geographical areas and a further “vicinity effect”. Moreover, and despite its diversity, the Lebanese flora seemed interrelated, on the basis of microsatellite loci analysis, in comparison to worldwide communities. We finally tested the ability of 21 indigenous strains to act as potential starters for winemaking. Seven of them passed our pre-selection scheme and two of them at least may be good candidates for use provided pilot-scale assays confirm their suitability.
Collapse
Affiliation(s)
- Marie-José Ayoub
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
- Correspondence:
| | - Jean-Luc Legras
- SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Pierre Abi-Nakhoul
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Huu-Vang Nguyen
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Rachad Saliba
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Claude Gaillardin
- AgroParisTech, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France;
- INRA, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France
| |
Collapse
|
8
|
Uncovering the hidden bacterial ghost communities of yeast and experimental evidences demonstrates yeast as thriving hub for bacteria. Sci Rep 2021; 11:9394. [PMID: 33931672 PMCID: PMC8087679 DOI: 10.1038/s41598-021-88658-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Abstract
Our major concern was to address “yeast endobacteria” which was based on a few reports in the recent past where bacteria may find yeast as a niche for survival. In this study, we report the microbiota of twenty-nine axenic yeast cultures recovered from different habitats based on their 16S rRNA gene-amplicon metagenomes. Yeasts were identified based on D1/D2 or ITS gene sequences. Bacterial diversity was widespread, varied and rich among all yeasts except for four strains. Taxa belonging to the phylum Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes and the genera; Streptococcus, Propionibacterium were common to all the yeasts. Candida tropicalis was used as a model organism to confirm bacteria through fluorescence in situ hybridization (FISH), isolating and re-introducing the isolated bacteria into the yeast. FISH analysis confirmed the endobacteria of C. tropicalis and we have successfully isolated four bacteria only after lysis and disruption of yeast cells. These bacteria were identified as species of Pseudomonas, Chryseobacterium, Lysinibacillus and Propionibacterium. Guestimates indicate 95% of bacterial species of C. tropicalis are yet-to-be-cultivated. We have successfully reintroduced mCherry tagged Pseudomonas into C. tropicalis. Also, auto-fluorescent Prochlorococcus and Rhodopseudomonas could be introduced into C. tropicalis while mCherry tagged E. coli or Salmonella could not be introduced. FISH analysis confirmed the presence of both native and infected bacterial cells present in C. tropicalis. Our findings unveil the insights into the ghost microbiota associated with yeast, which otherwise are considered to be axenic cultures. Their inherent occurrence, together with co-cultivation experiments under laboratory conditions suggests that yeasts are a thriving hub for bacterial communities.
Collapse
|
9
|
Martins LC, Palma M, Angelov A, Nevoigt E, Liebl W, Sá-Correia I. Complete Utilization of the Major Carbon Sources Present in Sugar Beet Pulp Hydrolysates by the Oleaginous Red Yeasts Rhodotorula toruloides and R. mucilaginosa. J Fungi (Basel) 2021; 7:jof7030215. [PMID: 33802726 PMCID: PMC8002571 DOI: 10.3390/jof7030215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Agro-industrial residues are low-cost carbon sources (C-sources) for microbial growth and production of value-added bioproducts. Among the agro-industrial residues available, those rich in pectin are generated in high amounts worldwide from the sugar industry or the industrial processing of fruits and vegetables. Sugar beet pulp (SBP) hydrolysates contain predominantly the neutral sugars d-glucose, l-arabinose and d-galactose, and the acidic sugar d-galacturonic acid. Acetic acid is also present at significant concentrations since the d-galacturonic acid residues are acetylated. In this study, we have examined and optimized the performance of a Rhodotorula mucilaginosa strain, isolated from SBP and identified at the molecular level during this work. This study was extended to another oleaginous red yeast species, R. toruloides, envisaging the full utilization of the C-sources from SBP hydrolysate (at pH 5.0). The dual role of acetic acid as a carbon and energy source and as a growth and metabolism inhibitor was examined. Acetic acid prevented the catabolism of d-galacturonic acid and l-arabinose after the complete use of the other C-sources. However, d-glucose and acetic acid were simultaneously and efficiently metabolized, followed by d-galactose. SBP hydrolysate supplementation with amino acids was crucial to allow d-galacturonic acid and l-arabinose catabolism. SBP valorization through the production of lipids and carotenoids by Rhodotorula strains, supported by complete catabolism of the major C-sources present, looks promising for industrial implementation.
Collapse
Affiliation(s)
- Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Margarida Palma
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Angel Angelov
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (A.A.); (W.L.)
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany;
| | - Wolfgang Liebl
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (A.A.); (W.L.)
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
10
|
Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity. Appl Environ Microbiol 2021; 87:AEM.02910-20. [PMID: 33452020 DOI: 10.1128/aem.02910-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2021] [Indexed: 01/19/2023] Open
Abstract
Fungal attacks on stored fruit and vegetables are responsible for losses of products. There is an active research field to develop alternative strategies for postharvest disease management, and the use of biocontrol agents represents a promising approach. Understanding the molecular bases of the biocontrol activity of these agents is crucial to potentiate their effectiveness. The yeast Papiliotrema terrestris is a biocontrol agent against postharvest pathogens. Phenotypic studies suggest that it exerts its antagonistic activity through competition for nutrients and space, which relies on its resistance to oxidative and other cellular stresses. In this study, we developed tools for genetic manipulation in P. terrestris to perform targeted gene replacement and functional complementation of the transcription factors Yap1 and Rim101. In vitro phenotypic analyses revealed a conserved role of Yap1 and Rim101 in broad resistance to oxidative stress and alkaline pH sensing, respectively. In vivo analyses revealed that P. terrestris yap1Δ and rim101Δ mutants display decreased ability to colonize wounded fruit compared to that of the parental wild-type (WT) strain; the yap1Δ mutant also displays reduced biocontrol activity against the postharvest pathogens Penicillium expansum and Monilinia fructigena, indicating an important role for resistance to oxidative stress in timely wound colonization and biocontrol activity of P. terrestris In conclusion, the availability of molecular tools developed in the present study provides a foundation to elucidate the genetic mechanisms underlying biocontrol activity of P. terrestris, with the goal of enhancing this activity for the practical use of P. terrestris in pest management programs based on biological and integrated control.IMPORTANCE The use of fungicides represents the most effective and widely used strategy for controlling postharvest diseases. However, their extensive use has raised several concerns, such as the emergence of plant pathogens' resistance as well as the health risks associated with the persistence of chemical residues in fruit, in vegetables, and in the environment. These factors have brought attention to alternative methods for controlling postharvest diseases, such as the utilization of biocontrol agents. In the present study, we developed genetic resources to investigate at the molecular level the mechanisms involved in the biocontrol activity of Papiliotrema terrestris, a basidiomycete yeast that is an effective biocontrol agent against widespread fungal pathogens, including Penicillium expansum, the etiological agent of blue mold disease of pome fruits. A deeper understanding of how postharvest biocontrol agents operate is the basic requirement to promote the utilization of biological (and integrated) control for the reduction of chemical fungicides.
Collapse
|
11
|
Ouattara HG, Niamké SL. Mapping the functional and strain diversity of the main microbiota involved in cocoa fermentation from Cote d'Ivoire. Food Microbiol 2021; 98:103767. [PMID: 33875203 DOI: 10.1016/j.fm.2021.103767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/10/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
The variable quality of cocoa produced by farmers is still a problem in the value chain, strongly depending on microbial activities. We analyzed the variability of cocoa microbiota from all twelve producing regions in Cote d'Ivoire, and described the geographical distribution of isolated microbiota, using a mapping. Microbial species were identified by ribosomal genes sequencing, strains were typed by RFLP and their techno-functional capacities were further investigated. Results showed a restricted diversity of lactic acid bacteria (LAB) and acetic acid bacteria (AAB) with respectively 10 and 5 strains. The dominant LAB and AAB strains, notably Lactobacillus plantarum 1 A, Acetobacter pasteurianus 1 A, Acetobacter okinawensis 2 A, and Acetobacter tropicalis 3 A, were found in all regions assuming that the acid microbiota was weakly variable. In contrast, the distribution of their functional performance such as acidification capability was variable, stronger in strains from Nawa and Haut-Sassandra regions and weaker in Indenie-Djuablin and San Pedro; this distribution seemed to be random. Moreover, the study also revealed a complex yeasts population showing a wide genetic diversity with 22 species and 45 strains indicating an intraspecific heterogeneity. Strains were generally different from a region to another and the resulting yeasts microbiota was globally variable in the regions. Likewise, the functional capacities such as pectinolytic was weak in P. kudriazevii strain 2 K from Gboklè and strong in P. kudriazevii strain 2 A from Loh-Djiboua. Additionally, the quality of fermented beans was also variable in the regions. The great variation of yeasts strains in the different regions may be the main microbial factors responsible for variation of the fermented cocoa quality observed.
Collapse
Affiliation(s)
- Honoré G Ouattara
- Laboratoire d'Agriculture, Biotechnologie et Valorisation des Ressources Naturelles UFR Biosciences, University Felix Houphouet-Boigny, Abidjan, Cote D'Ivoire.
| | - Sébastien L Niamké
- Laboratoire d'Agriculture, Biotechnologie et Valorisation des Ressources Naturelles UFR Biosciences, University Felix Houphouet-Boigny, Abidjan, Cote D'Ivoire
| |
Collapse
|
12
|
Huang MY, Cravener MC, Mitchell AP. Targeted Genetic Changes in Candida albicans Using Transient CRISPR-Cas9 Expression. Curr Protoc 2021; 1:e19. [PMID: 33491919 PMCID: PMC7842826 DOI: 10.1002/cpz1.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for significant disease and mortality. Absent complete mating and other convenient methods, dissection of its virulence factors relies on robust tools to delete, complement, and otherwise modify genes of interest in this diploid organism. Here we describe the design principles and use of CRISPR associated nuclease 9 (Cas9) and single-guide RNAs transiently expressed from PCR cassettes to modify genes of interest, generating homozygous mutants in a single transformation step. © 2021 Wiley Periodicals LLC. Basic Protocol 1: PCR amplification of CRISPR components Basic Protocol 2: Transformation of Candida albicans Basic Protocol 3: Selecting and genotyping transformants Alternate Protocol 1: Deletion with recyclable markers by CRISPR induced marker excision (CRIME) Alternate Protocol 2: Knock-in and combining multiple cassettes with overlapping homology.
Collapse
Affiliation(s)
- Manning Y. Huang
- Department of Biochemistry and Biophysics, University of
California San Francisco School of Medicine, San Francisco, California 94518,
USA
| | - Max C. Cravener
- Department of Microbiology, University of Georgia, Athens,
Georgia 30602, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens,
Georgia 30602, USA
| |
Collapse
|
13
|
Feline sporotrichosis: a case series of itraconazole-resistant Sporothrix brasiliensis infection. Braz J Microbiol 2020; 52:163-171. [PMID: 32388779 DOI: 10.1007/s42770-020-00290-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of feline sporotrichosis is a challenge for veterinary clinicians since refractory cases may occur, due either to patient and/or to pharmacological management errors or due to the development of antifungal resistance. Thus, we aimed to describe the therapeutic history of feline cases infected by itraconazole-resistant Sporothrix brasiliensis in an endemic region of Southern Brazil. Medical records of cats attended at the Veterinary Clinic Hospital (Pelotas/RS, Brazil) between 2016 and 2017 were reviewed. Twelve cases of infection by S. brasiliensis with that showed high minimum inhibitory concentration (MIC) values (≥ 4 μg/mL) to itraconazole by M38-A2 of CLSI were selected. At the hospital consultation, disseminated (cats 1-l0, 12) and localized (cat 11) skin lesions remained in the cats, even after treatment with fluconazole, ketoconazole (02/12), and itraconazole (ITZ, 09/12) performed before this study. High doses (25-100 mg/kg/day) of ITZ for up to 4 months (03/12, cats 2, 6, 12) or over 12 months (05/12, cats 1, 5, 7, 8, 11) did not provide a clinical cure, except for the association of ITZ plus potassium iodide (01/12, cat 12) for 3 months, which proved useful in infections with itraconazole-resistant S. brasiliensis. However, the combined issues of abandonment of therapy by owners for financial reasons, difficulties surrounding therapy administration (03/12, cats 6, 11, 12), and the inappropriate choice of medication (01/12, cat 6), together reflect the reality of this endemic region, which greatly compromises clinical healing. This study highlighted the occurrence of refractory cases by itraconazole-resistant S. brasiliensis in cats from Southern Brazil, as well as the abandonment of treatment and therapeutic errors. We warn of the need for antifungal susceptibility tests to adapt therapeutic protocols in feline sporotrichosis.
Collapse
|
14
|
Hohl M, Mojumdar A, Hailemariam S, Kuryavyi V, Ghisays F, Sorenson K, Chang M, Taylor BS, Patel DJ, Burgers PM, Cobb JA, Petrini JHJ. Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. PLoS Genet 2020; 16:e1008422. [PMID: 32187176 PMCID: PMC7105138 DOI: 10.1371/journal.pgen.1008422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/30/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.
Collapse
Affiliation(s)
- Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, Canada
| | - Sarem Hailemariam
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Untied States of America
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Fiorella Ghisays
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kyle Sorenson
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, Canada
| | - Matthew Chang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Barry S. Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Untied States of America
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, Canada
| | - John H. J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
15
|
González M, Brito N, Hernández‐Bolaños E, González C. New tools for high-throughput expression of fungal secretory proteins in Saccharomyces cerevisiae and Pichia pastoris. Microb Biotechnol 2019; 12:1139-1153. [PMID: 30289201 PMCID: PMC6801181 DOI: 10.1111/1751-7915.13322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023] Open
Abstract
Heterologous protein expression in yeast, mostly in Saccharomyces cerevisiae and Pichia pastoris, is a well-established and widely used technique. It typically requires the construction of an expression vector in Escherichia coli containing the foreign gene and its subsequent transformation into yeast. Although simple, this procedure has important limitations for the expression of large numbers of proteins, that is, for the generation of protein libraries. We describe here the development of a novel system for the easy and fast expression of heterologous proteins both in S. cerevisiae and in P. pastoris, under the control of the GAL1 and AOX1 promoters respectively. Expression in S. cerevisiae requires only the transformation of yeast cells with an unpurified PCR product carrying the gene to be expressed, and the expression of the same gene in P. pastoris requires only the isolation of the plasmid generated in S. cerevisiae and its transformation into this second yeast, thus making this system suitable for high-throughput projects. The system has been tested by the extracellular expression of 30 secretory fungal proteins.
Collapse
Affiliation(s)
- Mario González
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Nélida Brito
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Eduardo Hernández‐Bolaños
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Celedonio González
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| |
Collapse
|
16
|
Superior Dispersal Ability Can Lead to Persistent Ecological Dominance throughout Succession. Appl Environ Microbiol 2019; 85:AEM.02421-18. [PMID: 30635382 PMCID: PMC6414377 DOI: 10.1128/aem.02421-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments. A large number of descriptive surveys have shown that microbial communities experience successional changes over time and that ecological dominance is common in the microbial world. However, direct evidence for the ecological processes mediating succession or causing ecological dominance remains rare. Different dispersal abilities among species may be a key mechanism. We surveyed fungal diversity within a metacommunity of pitchers of the model carnivorous plant Sarracenia purpurea and discovered that the yeast Candida pseudoglaebosa was ecologically dominant. Its frequency in the metacommunity increased during the growing season, and it was not replaced by other taxa. We next measured its competitive ability in a manipulative laboratory experiment and tracked its dispersal over time in nature. Despite its dominance, C. pseudoglaebosa is not a superior competitor. Instead, it is a superior disperser: it arrives in pitchers earlier, and disperses into more pitchers, than other fungi. Differential dispersal across the spatially structured metacommunity of individual pitchers emerges as a key driver of the continuous dominance of C. pseudoglaebosa during succession. IMPORTANCE Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments.
Collapse
|
17
|
Ogunbona OB, Baile MG, Claypool SM. Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity. Mol Biol Cell 2018; 29:1449-1464. [PMID: 29688796 PMCID: PMC6014099 DOI: 10.1091/mbc.e17-12-0700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that its activity is dependent on its association with Aac2p. Here, we have leveraged a transport-dead pathogenic AAC2 point mutant to determine the basis for the reduced COX activity in the absence of Aac2p. The steady-state levels of complex IV subunits encoded by the mitochondrial genome are significantly reduced in the absence of Aac2p function, whether its association with respiratory supercomplexes is preserved or not. This diminution in COX amounts is not caused by a reduction in the mitochondrial genome copy number or the steady-state level of its transcripts, and does not reflect a defect in complex IV assembly. Instead, the absence of Aac2p activity, genetically or pharmacologically, results in an aberrant pattern of mitochondrial translation. Interestingly, compared with the complete absence of Aac2p, the complex IV-related defects are greater in mitochondria expressing the transport-inactive Aac2p mutant. Our results highlight a critical role for Aac2p transport in mitochondrial translation whose disturbance uniquely impacts cytochrome c oxidase.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
18
|
FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia. mBio 2017; 8:mBio.01752-17. [PMID: 29066552 PMCID: PMC5654937 DOI: 10.1128/mbio.01752-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genus Malassezia includes yeasts that are commonly found on the skin or hair of animals and humans as commensals and are associated with a number of skin disorders. We have previously developed an Agrobacterium tumefaciens transformation system effective for both targeted gene deletion and insertional mutagenesis in Malassezia furfur and M. sympodialis. In the present study, these molecular resources were applied to characterize the immunophilin FKBP12 as the target of tacrolimus (FK506), ascomycin, and pimecrolimus, which are calcineurin inhibitors that are used as alternatives to corticosteroids in the treatment of inflammatory skin disorders such as those associated with Malassezia species. While M. furfur and M. sympodialis showed in vitro sensitivity to these agents, fkb1Δ mutants displayed full resistance to all three of them, confirming that FKBP12 is the target of these calcineurin inhibitors and is essential for their activity. We found that calcineurin inhibitors act additively with fluconazole through an FKBP12-dependent mechanism. Spontaneous M. sympodialis isolates resistant to calcineurin inhibitors had mutations in the gene encoding FKBP12 in regions predicted to affect the interactions between FKBP12 and FK506 based on structural modeling. Due to the presence of homopolymer nucleotide repeats in the gene encoding FKBP12, an msh2Δ hypermutator of M. sympodialis was engineered and exhibited an increase of more than 20-fold in the rate of emergence of resistance to FK506 compared to that of the wild-type strain, with the majority of the mutations found in these repeats. Malassezia species are the most abundant fungal components of the mammalian and human skin microbiome. Although they belong to the natural skin commensal flora of humans, they are also associated with a variety of clinical skin disorders. The standard treatment for Malassezia-associated inflammatory skin infections is topical corticosteroids, although their use has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia. Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2Δ mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia.
Collapse
|
19
|
Mulla WA, Seidel CW, Zhu J, Tsai HJ, Smith SE, Singh P, Bradford WD, McCroskey S, Nelliat AR, Conkright J, Peak A, Malanowski KE, Perera AG, Li R. Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast. eLife 2017; 6:27991. [PMID: 28841138 PMCID: PMC5779231 DOI: 10.7554/elife.27991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
Abstract
Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.
Collapse
Affiliation(s)
- Wahid A Mulla
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Missouri, United States
| | - Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Missouri, United States
| | - Pushpendra Singh
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, Missouri, United States
| | - Anjali R Nelliat
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Allison Peak
- Stowers Institute for Medical Research, Missouri, United States
| | | | - Anoja G Perera
- Stowers Institute for Medical Research, Missouri, United States
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
20
|
McCusker JH. Introducing MX Cassettes into Saccharomyces cerevisiae. Cold Spring Harb Protoc 2017; 2017:pdb.prot088104. [PMID: 28373487 DOI: 10.1101/pdb.prot088104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Saccharomyces cerevisiae genome can be readily and precisely modified with the use of knock out (KO) marker cassettes to delete genes. The most frequently used family of KO cassettes is the MX cassettes. This protocol describes how to use the different types of MX cassettes by selecting for prototrophy, utilization of cytosine or acetamide as a sole nitrogen source, or resistance to one of six different drugs.
Collapse
Affiliation(s)
- John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
21
|
McCusker JH. Popping Out MX Cassettes from Saccharomyces cerevisiae. Cold Spring Harb Protoc 2017; 2017:pdb.prot088120. [PMID: 28373488 DOI: 10.1101/pdb.prot088120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MX cassettes are frequently used to generate knockout (KO) mutations in Saccharomyces cerevisiae. The recycling or "popping out" of an MX cassette flanked by direct repeats allows the same cassette to be reused in a strain to generate additional KO mutations. Popping out MX cassettes also eliminates MX homology in a strain, which facilitates the subsequent generation of additional KO mutations with other MX cassettes. MX cassettes can be recycled or "popped out" of the genome by spontaneous recombination between large, cassette-borne MX3 or PR direct repeats and by Cre-mediated, site-specific recombination between small, cassette-borne loxP direct repeats. Both of these techniques leave a mutation with a cassette-encoded "scar." For the URA3MX, LYS5MX, FCA1/FCY1MX, and amdSYM cassettes, there are counterselections. Counterselections are extremely useful as they allow for positive selection for plasmid shuffling, transplacement of mutant alleles into the genome, and recycling or popping out cassettes flanked by cassette-encoded direct repeats to yield mutations with a cassette-encoded scar. Finally, after amplifying with the appropriately designed primers, integrated counterselectable MX cassettes can be popped out to generate seamless or "scar-free" deletion mutations, as well as indel and point mutations.
Collapse
Affiliation(s)
- John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
22
|
Abstract
Precise modifications of the Saccharomyces cerevisiae genome use marker cassettes, most often in the form of "knockout" (KO) marker cassettes, to delete genes. Many different KO marker cassettes exist, some of which require strains with specific genotypes, such as auxotrophic mutations, and others that have no strain genotype requirements, such as selections for drug resistance and one of two selections for nitrogen source utilization. This introduction focuses on the most frequently used family of KO cassettes-the MX cassettes. In particular, we focus on and describe the different types of MX cassettes and selections; specifically, selections for prototrophy; selections for utilization of cytosine or acetamide as sole nitrogen sources; and selections for resistance to six different drugs. The use of cassettes to place genes under regulated control is briefly discussed. Also discussed are strain genotype requirements (where applicable); media requirements; how to "recycle" or "pop out" cassettes; and counterselections against specific KO cassettes.
Collapse
|
23
|
Duina AA, Turkal CE. Targeted in Situ Mutagenesis of Histone Genes in Budding Yeast. J Vis Exp 2017. [PMID: 28190067 DOI: 10.3791/55263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We describe a PCR- and homologous recombination-based system for generating targeted mutations in histone genes in budding yeast cells. The resulting mutant alleles reside at their endogenous genomic sites and no exogenous DNA sequences are left in the genome following the procedure. Since in haploid yeast cells each of the four core histone proteins is encoded by two non-allelic genes with highly homologous open reading frames (ORFs), targeting mutagenesis specifically to one of two genes encoding a particular histone protein can be problematic. The strategy we describe here bypasses this problem by utilizing sequences outside, rather than within, the ORF of the target genes for the homologous recombination step. Another feature of this system is that the regions of DNA driving the homologous recombination steps can be made to be very extensive, thus increasing the likelihood of successful integration events. These features make this strategy particularly well-suited for histone gene mutagenesis, but can also be adapted for mutagenesis of other genes in the yeast genome.
Collapse
|
24
|
Abstract
The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals.
Collapse
|
25
|
Samagaci L, Ouattara H, Niamké S, Lemaire M. Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Res Int 2016; 89:773-780. [DOI: 10.1016/j.foodres.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
26
|
Tamuli R, Deka R, Borkovich KA. Calcineurin Subunits A and B Interact to Regulate Growth and Asexual and Sexual Development in Neurospora crassa. PLoS One 2016; 11:e0151867. [PMID: 27019426 PMCID: PMC4809485 DOI: 10.1371/journal.pone.0151867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa.
Collapse
Affiliation(s)
- Ranjan Tamuli
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| | - Rekha Deka
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Katherine A. Borkovich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
27
|
Albertin W, Setati ME, Miot-Sertier C, Mostert TT, Colonna-Ceccaldi B, Coulon J, Girard P, Moine V, Pillet M, Salin F, Bely M, Divol B, Masneuf-Pomarede I. Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering. Front Microbiol 2016; 6:1569. [PMID: 26834719 PMCID: PMC4718985 DOI: 10.3389/fmicb.2015.01569] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/27/2015] [Indexed: 11/16/2022] Open
Abstract
Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation (AF) which is usually performed by Saccharomyces species. The aim of this study was to characterize the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analyzed using 11 microsatellite markers and a subset of 47 strains were analyzed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localization as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of H. uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase) were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia, and copper addition) on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites) and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed.
Collapse
Affiliation(s)
- Warren Albertin
- Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University BordeauxVillenave d'Ornon, France; ENSCBP, Bordeaux INPPessac, France
| | - Mathabatha E Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University Matieland, South Africa
| | - Cécile Miot-Sertier
- Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University BordeauxVillenave d'Ornon, France; Institut National de la Recherche Agronomique, Institut de la Science de la Vigne et du Vin, USC 1366 Institut National de la Recherche AgronomiqueVillenave d'Ornon, France
| | - Talitha T Mostert
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University Matieland, South Africa
| | | | | | | | | | - Myriam Pillet
- Institut National de la Recherche Agronomique, UMR Biodiversité Gènes et Ecosystèmes, PlateForme Génomique Cestas, France
| | - Franck Salin
- Institut National de la Recherche Agronomique, UMR Biodiversité Gènes et Ecosystèmes, PlateForme Génomique Cestas, France
| | - Marina Bely
- Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University Bordeaux Villenave d'Ornon, France
| | - Benoit Divol
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University Matieland, South Africa
| | - Isabelle Masneuf-Pomarede
- Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University BordeauxVillenave d'Ornon, France; Bordeaux Sciences AgroGradignan, France
| |
Collapse
|
28
|
Samra N, Atir-Lande A, Pnueli L, Arava Y. The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol 2015; 16:17. [PMID: 26404137 PMCID: PMC4582935 DOI: 10.1186/s12867-015-0045-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/17/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND mRNA binding proteins (RBPs) constitute 10-15% of the eukaryotic proteome and play important part in post-transcriptional regulation of gene expression. Due to the instability of RNA and the transient nature its interaction with RBPs, identification of novel RBPs is a significant challenge. Recently, a novel methodology for RBP purification and identification (termed RaPID) was presented, which allows high affinity purification of RBPs while associated with mRNA in vivo. RESULTS We performed a RaPID screen for proteins that interact with PMP1 mRNA in order to identify novel mRNA binding proteins. PMP1 mRNA was tagged in its 3' UTR with multiple MS2 loops and co-expressed with MS2-binding protein fused to streptavidin binding protein (SBP). RNA-protein complexes were cross-linked in vivo and isolated through streptavidin beads. The eluted proteins were subjected to mass spectroscopy analysis. The screen identified many proteins, about half of them were previously shown to bind RNA. We focused on eEF3 (YEF3), an essential translation elongation factor that interacts with ribosomes. Purification of TAP-tagged Yef3 with its associated RNAs confirmed that the native PMP1 transcript is associated with it. Intriguingly, high association with Yef3-TAP was observed when purification was performed in the presence of EDTA, and with PMP1 that contains stop codons immediately downstream to the initiation codon. Furthermore, high association was observed with a transcript containing only the 3' UTR of PMP1. Complementary, RaPID isolation of MS2-tagged 3' UTRs with their associated proteins revealed that Yef3 can efficiently interact with these regions. CONCLUSIONS This study identifies many novel proteins that interact with PMP1 mRNA. Importantly, the elongation factor Yef3 was found to interact with mRNA in non-coding regions and in a translation independent manner. These results suggest an additional, non-elongation function for this factor.
Collapse
Affiliation(s)
- Nitzan Samra
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Avigail Atir-Lande
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Lilach Pnueli
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Yoav Arava
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
29
|
Morselli M, Pastor WA, Montanini B, Nee K, Ferrari R, Fu K, Bonora G, Rubbi L, Clark AT, Ottonello S, Jacobsen SE, Pellegrini M. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife 2015; 4:e06205. [PMID: 25848745 PMCID: PMC4412109 DOI: 10.7554/elife.06205] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/02/2015] [Indexed: 12/17/2022] Open
Abstract
Methylation of cytosines (5(me)C) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here, we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. Our data demonstrate that DNMT3B and H3K4 methylation are mutually exclusive and that DNMT3B is co-localized with H3K36 methylated regions. In support of this observation, DNA methylation analysis in yeast strains without Set1 and Set2 shows an increase of relative 5(me)C levels at the transcription start site and a decrease in the gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3 is strongly anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These results show the importance of H3K36 methylation for gene-body DNA methylation in vivo.
Collapse
Affiliation(s)
- Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - William A Pastor
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Barbara Montanini
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, Laboratory of Functional Genomics and Protein Engineering, Parma, Italy
| | - Kevin Nee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Roberto Ferrari
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kai Fu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Giancarlo Bonora
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Simone Ottonello
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, Laboratory of Functional Genomics and Protein Engineering, Parma, Italy
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
30
|
Watson LJ, Rossi G, Brennwald P. Quantitative analysis of membrane trafficking in regulation of Cdc42 polarity. Traffic 2014; 15:1330-43. [PMID: 25158298 DOI: 10.1111/tra.12211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022]
Abstract
Vesicle delivery of Cdc42 has been proposed as an important mechanism for generating and maintaining Cdc42 polarity at the plasma membrane. This mechanism requires the density of Cdc42 on secretory vesicles to be equal to or higher than the plasma membrane polarity cap. Using a novel method to estimate Cdc42 levels on post-Golgi secretory vesicles in intact yeast cells, we: (1) determined that endocytosis plays an important role in Cdc42's association with secretory vesicles (2) found that a GFP-tag placed on the N-terminus of Cdc42 negatively impacts this vesicle association and (3) quantified the surface densities of Cdc42 on post-Golgi vesicles which revealed that the vesicle density of Cdc42 is three times more dilute than that at the polarity cap. This work suggests that the immediate consequence of secretory vesicle fusion with the plasma membrane polarity cap is to dilute the local Cdc42 surface density. This provides strong support for the model in which vesicle trafficking acts to negatively regulate Cdc42 polarity on the cell surface while also providing a means to recycle Cdc42 between the cell surface and internal membrane locations.
Collapse
Affiliation(s)
- Leah J Watson
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | |
Collapse
|
31
|
Schroeder EA, Raimundo N, Shadel GS. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab 2013; 17:954-964. [PMID: 23747251 PMCID: PMC3694503 DOI: 10.1016/j.cmet.2013.04.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/27/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) play complex roles in aging, having both damaging effects and signaling functions. Transiently elevating mitochondrial stress, including mitochondrial ROS (mtROS), elicits beneficial responses that extend lifespan. However, these adaptive, longevity-signaling pathways remain poorly understood. We show here that Tel1p and Rad53p, homologs of the mammalian DNA damage response kinases ATM and Chk2, mediate a hormetic mtROS longevity signal that extends yeast chronological lifespan. This pathway senses mtROS in a manner distinct from the nuclear DNA damage response and ultimately imparts longevity by inactivating the histone demethylase Rph1p specifically at subtelomeric heterochromatin, enhancing binding of the silencing protein Sir3p, and repressing subtelomeric transcription. These results demonstrate the existence of conserved mitochondria-to-nucleus stress-signaling pathways that regulate aging through epigenetic modulation of nuclear gene expression.
Collapse
Affiliation(s)
- Elizabeth A Schroeder
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nuno Raimundo
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
32
|
Abstract
The ability to isolate genomic DNA rapidly and effectively for analysis by PCR, Southern blotting, or other methods is an essential skill. This protocol provides a fast and efficient method for obtaining genomic DNA from S. cerevisiae.
Collapse
Affiliation(s)
- Jessica S Dymond
- The High Throughput Biology Center and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
The Caenorhabditis elegans gene mfap-1 encodes a nuclear protein that affects alternative splicing. PLoS Genet 2012; 8:e1002827. [PMID: 22829783 PMCID: PMC3400559 DOI: 10.1371/journal.pgen.1002827] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/25/2012] [Indexed: 12/02/2022] Open
Abstract
RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre–mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500) animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214) suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene) and sfa-1 (the C. elegans SF1/BBP gene). We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214) animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing. RNA splicing removes intervening intronic sequences from pre–mRNA transcripts and joins adjacent exonic sequences to generate functional messenger RNAs. The in vivo functions of numerous factors that regulate splicing remain to be understood. From a genetic screen for suppressors of the rubberband Unc phenotype caused by the Caenorhabditis elegans unc-93(e1500) mutation, we isolated a mutation that affects a highly conserved essential gene, mfap-1. MFAP-1 is a nuclear protein that is broadly expressed. MFAP-1 can affect the alternative splicing of tos-1, an endogenous reporter gene for splicing, and is required for the altered splicing at a cryptic 3′ splice site of tos-1. mfap-1 enhances the effects of the gene uaf-1 (splicing factor U2AF large subunit) in suppressing the rubberband Unc phenotype of unc-93(e1500) animals. Our studies provide in vivo evidence that MFAP-1 functions as a splicing factor.
Collapse
|
34
|
Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 2011; 477:471-6. [PMID: 21918511 DOI: 10.1038/nature10403] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/28/2011] [Indexed: 11/09/2022]
Abstract
Recent advances in DNA synthesis technology have enabled the construction of novel genetic pathways and genomic elements, furthering our understanding of system-level phenomena. The ability to synthesize large segments of DNA allows the engineering of pathways and genomes according to arbitrary sets of design principles. Here we describe a synthetic yeast genome project, Sc2.0, and the first partially synthetic eukaryotic chromosomes, Saccharomyces cerevisiae chromosome synIXR, and semi-synVIL. We defined three design principles for a synthetic genome as follows: first, it should result in a (near) wild-type phenotype and fitness; second, it should lack destabilizing elements such as tRNA genes or transposons; and third, it should have genetic flexibility to facilitate future studies. The synthetic genome features several systemic modifications complying with the design principles, including an inducible evolution system, SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution). We show the utility of SCRaMbLE as a novel method of combinatorial mutagenesis, capable of generating complex genotypes and a broad variety of phenotypes. When complete, the fully synthetic genome will allow massive restructuring of the yeast genome, and may open the door to a new type of combinatorial genetics based entirely on variations in gene content and copy number.
Collapse
Affiliation(s)
- Jessica S Dymond
- High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Codina J, Li J, DuBose TD. CD63 interacts with the carboxy terminus of the colonic H+-K+-ATPase to decrease [corrected] plasma membrane localization and 86Rb+ uptake. Am J Physiol Cell Physiol 2005; 288:C1279-86. [PMID: 15647390 PMCID: PMC1868892 DOI: 10.1152/ajpcell.00463.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carboxy terminus (CT) of the colonic H(+)-K(+)-ATPase is required for stable assembly with the beta-subunit, translocation to the plasma membrane, and efficient function of the transporter. To identify protein-protein interactions involved in the localization and function of HKalpha(2), we selected 84 amino acids in the CT of the alpha-subunit of mouse colonic H(+)-K(+)-ATPase (CT-HKalpha(2)) as the bait in a yeast two-hybrid screen of a mouse kidney cDNA library. The longest identified clone was CD63. To characterize the interaction of CT-HKalpha(2) with CD63, recombinant CT-HKalpha(2) and CD63 were synthesized in vitro and incubated, and complexes were immunoprecipitated. CT-HKalpha(2) protein (but not CT-HKalpha(1)) coprecipitated with CD63, confirming stable assembly of HKalpha(2) with CD63. In HEK-293 transfected with HKalpha(2) plus beta(1)-Na(+)-K(+)-ATPase, suppression of CD63 by RNA interference increased cell surface expression of HKalpha(2)/NKbeta(1) and (86)Rb(+) uptake. These studies demonstrate that CD63 participates in the regulation of the abundance of the HKalpha(2)-NKbeta(1) complex in the cell membrane.
Collapse
Affiliation(s)
| | | | - Thomas D. DuBose
- Corresponding author: Thomas D. DuBose, Jr., M.D., Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, Tel. (336)-716-2715, Fax. (336)-716-2273, e-mail:
| |
Collapse
|
36
|
Keating JD, Robinson J, Cotta MA, Saddler JN, Mansfield SD. An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars. J Ind Microbiol Biotechnol 2004; 31:235-44. [PMID: 15252719 DOI: 10.1007/s10295-004-0145-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 03/26/2004] [Indexed: 11/24/2022]
Abstract
Three lignocellulosic substrate mixtures [liquid fraction of acid-catalyzed steam-exploded softwood, softwood spent sulfite liquor (SSL) and hardwood SSL] were separately fermented by the industrially employed SSL-adapted strain Tembec T1 and a natural galactose-assimilating isolate (Y-1528) of Saccharomyces cerevisiae to compare fermentative efficacy. Both strains were confirmed as S. cerevisiae via molecular genotyping. The performance of strain Y-1528 exceeded that of Tembec T1 on all three substrate mixtures, with complete hexose sugar consumption ranging from 10 to 18 h for Y-1528, vs 24 to 28 h for T1. Furthermore, Y-1528 consumed galactose prior to glucose and mannose, in contrast to Tembec T1, which exhibited catabolite repression of galactose metabolism. Ethanol yields were comparable regardless of the substrate utilized. Strains T1 and Y-1528 were also combined in mixed culture to determine the effects of integrating their distinct metabolic capabilities during defined hexose sugar and SSL fermentations. Sugar consumption in the defined mixture was accelerated, with complete exhaustion of hexose sugars occurring in just over 6 h. Galactose was consumed first, followed by glucose and mannose. Ethanol yields were slightly reduced relative to pure cultures of Y-1528, but normal growth kinetics was not impeded. Sugar consumption in the SSLs was also accelerated, with complete utilization of softwood- and hardwood-derived hexose sugars occurring in 6 and 8 h, respectively. Catabolite repression was absent in both SSL fermentations.
Collapse
Affiliation(s)
- J D Keating
- Forest Products Biotechnology, Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | | | | | | | | |
Collapse
|