1
|
Akinbiyi EO, Abramowitz LK, Bauer BL, Stoll MSK, Hoppel CL, Hsiao CP, Hanover JA, Mears JA. Blocked O-GlcNAc cycling alters mitochondrial morphology, function, and mass. Sci Rep 2021; 11:22106. [PMID: 34764359 PMCID: PMC8586252 DOI: 10.1038/s41598-021-01512-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
O-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.
Collapse
Affiliation(s)
- Elizabeth O Akinbiyi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Lara K Abramowitz
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chao-Pin Hsiao
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Zuliani I, Lanzillotta C, Tramutola A, Barone E, Perluigi M, Rinaldo S, Paone A, Cutruzzolà F, Bellanti F, Spinelli M, Natale F, Fusco S, Grassi C, Di Domenico F. High-Fat Diet Leads to Reduced Protein O-GlcNAcylation and Mitochondrial Defects Promoting the Development of Alzheimer's Disease Signatures. Int J Mol Sci 2021; 22:3746. [PMID: 33916835 PMCID: PMC8038495 DOI: 10.3390/ijms22073746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Chiara Lanzillotta
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Antonella Tramutola
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Eugenio Barone
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Marzia Perluigi
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Fabio Di Domenico
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| |
Collapse
|
3
|
Verathamjamras C, Sriwitool TE, Netsirisawan P, Chaiyawat P, Chokchaichamnankit D, Prasongsook N, Srisomsap C, Svasti J, Champattanachai V. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer. Glycoconj J 2021; 38:55-65. [PMID: 33608772 DOI: 10.1007/s10719-021-09978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
O-GlcNAcylation, a single attachment of N-acetylglucosamine (GlcNAc) on serine and threonine residues, plays important roles in normal and pathobiological states of many diseases. Aberrant expression of O-GlcNAc modification was found in many types of cancer including colorectal cancer (CRC). This modification mainly occurs in nuclear-cytoplasmic proteins; however, it can exist in some extracellular and secretory proteins. In this study, we investigated whether O-GlcNAc-modified proteins are present in serum of patients with CRC. Serum glycoproteins of CRC patients and healthy controls were enriched by wheat germ agglutinin, a glycan binding protein specifically binds to terminal GlcNAc and sialic acid. Two-dimensional gel electrophoresis, RL2 O-GlcNAc immunoblotting, affinity purification, and mass spectrometry were performed. The results showed that RL2 O-GlcNAc antibody predominantly reacted against serum immunoglobulin A1 (IgA1). The levels of RL2-reacted IgA were significantly increased while total IgA were not different in patients with CRC compared to those of healthy controls. Analyses by ion trap mass spectrometry using collision-induced dissociation and electron-transfer dissociation modes revealed one O-linked N-acetylhexosamine modification site at Ser268 located in the heavy constant region of IgA1; unfortunately, it cannot be discriminated whether it was N-acetylglucosamine or N-acetylgalactosamine because of their identical molecular mass. Although failed to demonstrate unequivocally it was O-GlcNAc, these data indicated that serum-IgA had an aberrantly increased reactivity against RL2 O-GlcNAc antibody in CRC patients. This specific glycosylated form of serum-IgA1 will expand the spectrum of aberrant glycosylation which provides valuable information to cancer glycobiology.
Collapse
Affiliation(s)
- Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Tanin-Ek Sriwitool
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | | | - Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.,Muscoloskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Naiyarat Prasongsook
- Divison of Medical Oncology, Department of Medicine, Faculty of Medicine, Phramongkutklao Hospital, Ratchathewi, Bangkok, 10400, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | - Voraratt Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand. .,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.
| |
Collapse
|
4
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Xu S, Sun F, Tong M, Wu R. MS-based proteomics for comprehensive investigation of protein O-GlcNAcylation. Mol Omics 2021; 17:186-196. [PMID: 33687411 DOI: 10.1039/d1mo00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein O-GlcNAcylation refers to the covalent binding of a single N-acetylglucosamine (GlcNAc) to the serine or threonine residue. This modification primarily occurs on proteins in the nucleus and the cytosol, and plays critical roles in many cellular events, including regulation of gene expression and signal transduction. Aberrant protein O-GlcNAcylation is directly related to human diseases such as cancers, diabetes and neurodegenerative diseases. In the past decades, considerable progress has been made for global and site-specific analysis of O-GlcNAcylation in complex biological samples using mass spectrometry (MS)-based proteomics. In this review, we summarized previous efforts on comprehensive investigation of protein O-GlcNAcylation by MS. Specifically, the review is focused on methods for enriching and site-specifically mapping O-GlcNAcylated peptides, and applications for quantifying protein O-GlcNAcylation in different biological systems. As O-GlcNAcylation is an important protein modification for cell survival, effective methods are essential for advancing our understanding of glycoprotein functions and cellular events.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
6
|
Mehta AY, Veeraiah RKH, Dutta S, Goth CK, Hanes MS, Gao C, Stavenhagen K, Kardish R, Matsumoto Y, Heimburg-Molinaro J, Boyce M, Pohl NLB, Cummings RD. Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries. Cell Chem Biol 2020; 27:1207-1219.e9. [PMID: 32610041 PMCID: PMC7556346 DOI: 10.1016/j.chembiol.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Glycan recognition is typically studied using free glycans, but glycopeptide presentations represent more physiological conditions for glycoproteins. To facilitate studies of glycopeptide recognition, we developed Glyco-SPOT synthesis, which enables the parallel production of diverse glycopeptide libraries at microgram scales. The method uses a closed system for prolonged reactions required for coupling Fmoc-protected glycoamino acids, including O-, N-, and S-linked glycosides, and release conditions to prevent side reactions. To optimize reaction conditions and sample reaction progress, we devised a biopsy testing method. We demonstrate the efficient utilization of such microscale glycopeptide libraries to determine the specificity of glycan-recognizing antibodies (e.g., CTD110.6) using microarrays, enzyme specificity on-array and in-solution (e.g., ST6GalNAc1, GCNT1, and T-synthase), and binding kinetics using fluorescence polarization. We demonstrated that the glycosylation on these peptides can be expanded using glycosyltransferases both in-solution and on-array. This technology will promote the discovery of biological functions of peptide modifications by glycans.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ravi Kumar H Veeraiah
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Robert Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael Boyce
- Department of Biochemistry and Program in Cell and Molecular Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Mohammed AZ, Du HX, Song HL, Gong WM, Ning B, Jia TH. Comparative proteomes change and possible role in different pathways of microRNA-21a-5p in a mouse model of spinal cord injury. Neural Regen Res 2020; 15:1102-1110. [PMID: 31823891 PMCID: PMC7034281 DOI: 10.4103/1673-5374.270418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study found that microRNA-21a-5p (miR-21a-5p) knockdown could improve the recovery of motor function after spinal cord injury in a mouse model, but the precise molecular mechanism remains poorly understood. In this study, a modified Allen's weight drop was used to establish a mouse model of spinal cord injury. A proteomics approach was used to understand the role of differential protein expression with miR-21a-5p knockdown, using a mouse model of spinal cord injury without gene knockout as a negative control group. We found that after introducing miR-21a-5p knockdown, proteins that played an essential role in the regulation of inflammatory processes, cell protection against oxidative stress, cell redox homeostasis, and cell maintenance were upregulated compared with the negative control group. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis identified enriched pathways in both groups, such as the oxidative phosphorylation pathway, which is relevant to Parkinson's disease, Huntington's disease, Alzheimer's disease, and cardiac muscle contraction. We also found that miR-21a-5p could be a potential biomarker for amyotrophic lateral sclerosis, as miR-21a-5p becomes deregulated in this pathway. These results indicate successful detection of some important proteins that play potential roles in spinal cord injury. Elucidating the relationship between these proteins and the recovery of spinal cord injury will provide a reference for future research of spinal cord injury biomarkers. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Shandong University of China on March 5, 2014.
Collapse
Affiliation(s)
- Almaghalsa-Ziad Mohammed
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Hong-Xia Du
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Hong-Liang Song
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Wei-Ming Gong
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Bin Ning
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Tang-Hong Jia
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
8
|
Anwar MN, Li ZF, Gong Y, Singh RP, Li YZ. Omics Studies Revealed the Factors Involved in the Formation of Colony Boundary in Myxococcus xanthus. Cells 2019; 8:E530. [PMID: 31163575 PMCID: PMC6627406 DOI: 10.3390/cells8060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Two unrecognizable strains of the same bacterial species form a distinct colony boundary. During growth as colonies, Myxococcus xanthus uses multiple factors to establish cooperation between recognized strains and prevent interactions with unrecognized strains of the same species. Here, ΔMXAN_0049 is a mutant strain deficient in immunity for the paired nuclease gene, MXAN_0050, that has a function in the colony-merger incompatibility of Myxococcus xanthus DK1622. With the aim to investigate the factors involved in boundary formation, a proteome and metabolome study was employed. Visualization of the boundary between DK1622 and ΔMXAN_0049 was done scanning electron microscope (SEM), which displayed the presence of many damaged cells in the boundary. Proteome analysis of the DK1622- boundary disclosed many possible proteins, such as cold shock proteins, cell shape-determining protein MreC, along with a few pathways, such as RNA degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and Type VI secretion system (T6SS), which may play major roles in the boundary formation. Metabolomics studies revealed various secondary metabolites that were significantly produced during boundary formation. Overall, the results concluded that multiple factors participated in the boundary formation in M. xanthus, leading to cellular damage that is helpful in solving the mystery of the boundary formation mechanism.
Collapse
Affiliation(s)
- Mian Nabeel Anwar
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhi Feng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
- Department of Research and Development, Uttaranchal University, Dehradun 248007, India.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Methods Enzymol 2019; 622:293-307. [PMID: 31155058 DOI: 10.1016/bs.mie.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
O-GlcNAcylation is a widespread posttranslational modification of intracellular proteins. Phenotypic and genetic experiments have established key roles for O-GlcNAc in development, mammalian cell survival, and several human diseases. However, the underlying mechanisms by which this modification alters biological pathways are still being discovered. An important part of this discovery process is the discovery of O-GlcNAcylated proteins, where chemical approaches have been particularly powerful. Here we describe how to combine one of these approaches, metabolic chemical reporters (MCRs), with bioorthogonal chemistry and Western blotting to identify potentially O-GlcNAcylated proteins.
Collapse
|
10
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
11
|
Fujioka K, Kubota Y, Takekawa M. Wheat Germ Agglutinin (WGA)-SDS-PAGE: A Novel Method for the Detection of O-GlcNAc-modified Proteins by Lectin Affinity Gel Electrophoresis. Bio Protoc 2018; 8:e3098. [PMID: 34532545 DOI: 10.21769/bioprotoc.3098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/02/2022] Open
Abstract
Diverse cytoplasmic and nuclear proteins dynamically change their molecular functions by O-linked β-N-acetylglucosamine (O-GlcNAc) modification on serine and/or threonine residues. Evaluation of the O-GlcNAcylation level of a specific protein, however, needs multiple and time-consuming steps if using conventional methods (e.g., immune-purification, mass spectrometric analysis). To overcome this drawback, we developed the following easy and rapid method for detection of O-GlcNAcylated proteins of interest. An O-GlcNAc affinity gel layer containing wheat germ agglutinin (WGA), a GlcNAc-specific lectin, selectively induces retardation of the mobility of O-GlcNAcylated proteins during electrophoresis. This WGA-layer thereby separates O-GlcNAcylated and non-modified forms of proteins, allowing the detection and quantification of the O-GlcNAcylation level of these proteins. This new method therefore provides qualitative and quantitative analysis of O-GlcNAcylated proteins in a relatively shorter time compared to conventional methods.
Collapse
Affiliation(s)
- Ko Fujioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne) 2018; 9:415. [PMID: 30105004 PMCID: PMC6077185 DOI: 10.3389/fendo.2018.00415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
The addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) to and from the Ser and Thr residues of proteins is an emerging post-translational modification. Unlike phosphorylation, which requires a legion of kinases and phosphatases, O-GlcNAc is catalyzed by the sole enzyme in mammals, O-GlcNAc transferase (OGT), and reversed by the sole enzyme, O-GlcNAcase (OGA). With the advent of new technologies, identification of O-GlcNAcylated proteins, followed by pinpointing the modified residues and understanding the underlying molecular function of the modification has become the very heart of the O-GlcNAc biology. O-GlcNAc plays a multifaceted role during the unperturbed cell cycle, including regulating DNA replication, mitosis, and cytokinesis. When the cell cycle is challenged by DNA damage stresses, O-GlcNAc also protects genome integrity via modifying an array of histones, kinases as well as scaffold proteins. Here we will focus on both cell cycle progression and the DNA damage response, summarize what we have learned about the role of O-GlcNAc in these processes and envision a sweeter research future.
Collapse
Affiliation(s)
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
13
|
Genotypic and Phenotypic Characterization of the O-Linked Protein Glycosylation System Reveals High Glycan Diversity in Paired Meningococcal Carriage Isolates. J Bacteriol 2018; 200:JB.00794-17. [PMID: 29555702 DOI: 10.1128/jb.00794-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Species within the genus Neisseria display significant glycan diversity associated with the O-linked protein glycosylation (pgl) systems due to phase variation and polymorphic genes and gene content. The aim of this study was to examine in detail the pgl genotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about 2 months apart, were analyzed with whole-genome sequencing. The O-linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the https://pubmlst.org/ database. Immunoblotting with glycan-specific antibodies (Abs) was used to investigate the protein glycosylation phenotype. All major pgl locus polymorphisms identified in Neisseria meningitidis to date were present in our isolate collection, with the variable presence of pglG and pglH, both in combination with either pglB or pglB2 We identified significant changes and diversity in the pgl genotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase-variable expression of the involved glycosyltransferases and the O-acetyltransferase. To our knowledge, this is the first characterization of the pgl genotype and glycosylation phenotype in a larger strain collection. This report thus provides important insight into glycan diversity in N. meningitidis and into the phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage.IMPORTANCE Bacterial meningitis is a serious global health problem, and one of the major causative organisms is Neisseria meningitidis, which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface-exposed antigenic structures that are involved in the interaction between bacteria and host are frequently subjected to homologous recombination and phase variation. These mechanisms are well described in Neisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, and yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease.
Collapse
|
14
|
O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2. Proc Natl Acad Sci U S A 2018; 115:7302-7307. [PMID: 29941599 DOI: 10.1073/pnas.1801850115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein O-glycosylation by attachment of β-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-based method of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.
Collapse
|
15
|
New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT. J Bioenerg Biomembr 2018; 50:231-240. [PMID: 29671171 DOI: 10.1007/s10863-018-9754-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
O-GlcNAcylation is a dynamic and functionally diverse post-translational modification shown to affect thousands of proteins, including the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Mutations of Nod2 (R702W, G908R and 1007 fs) are associated with Crohn's disease and have lower stabilities compared to wild type. Cycloheximide (CHX)-chase half-life assays have been used to show that O-GlcNAcylation increases the stability and response of both wild type and Crohn's variant Nod2, R702W. A more rapid method to assess stability afforded by post-translational modifications is necessary to fully comprehend the correlation between NLR stability and O-GlcNAcylation. Here, a recently developed cellular thermal shift assay (CETSA) that is typically used to demonstrate protein-ligand binding was adapted to detect shifts in protein stabilization upon increasing O-GlcNAcylation levels in Nod2. This assay was used as a method to predict if other Crohn's associated Nod2 variants were O-GlcNAcylated, and also identified the modification on another NLR, Nod1. Classical immunoprecipitations and NF-κB transcriptional assays were used to confirm the presence and effect of this modification on these proteins. The results presented here demonstrate that CETSA is a convenient method that can be used to detect the stability effect of O-GlcNAcylation on O-GlcNAc-transferase (OGT) client proteins and will be a powerful tool in studying post-translational modification.
Collapse
|
16
|
Kupferschmid M, Aquino-Gil MO, Shams-Eldin H, Schmidt J, Yamakawa N, Krzewinski F, Schwarz RT, Lefebvre T. Identification of O-GlcNAcylated proteins in Plasmodium falciparum. Malar J 2017; 16:485. [PMID: 29187233 PMCID: PMC5707832 DOI: 10.1186/s12936-017-2131-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. METHODS The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). RESULTS While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. CONCLUSIONS This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.
Collapse
Affiliation(s)
- Mattis Kupferschmid
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Moyira Osny Aquino-Gil
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,Instituto Tecnológico de Oaxaca, Tecnológico Nacional de México, Oaxaca, Mexico.,Centro de Investigación UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Hosam Shams-Eldin
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Jörg Schmidt
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Nao Yamakawa
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Frédéric Krzewinski
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Ralph T Schwarz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany.,Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
| |
Collapse
|
17
|
Kubota Y, Fujioka K, Takekawa M. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins. PLoS One 2017; 12:e0180714. [PMID: 28686627 PMCID: PMC5501588 DOI: 10.1371/journal.pone.0180714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/20/2017] [Indexed: 11/29/2022] Open
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs selectively on serine and/or threonine residues of cytoplasmic and nuclear proteins, and dynamically regulates their molecular functions. Since conventional strategies to evaluate the O-GlcNAcylation level of a specific protein require time-consuming steps, the development of a rapid and easy method for the detection and quantification of an O-GlcNAcylated protein has been a challenging issue. Here, we describe a novel method in which O-GlcNAcylated and non-O-GlcNAcylated forms of proteins are separated by lectin affinity gel electrophoresis using wheat germ agglutinin (WGA), which primarily binds to N-acetylglucosamine residues. Electrophoresis of cell lysates through a gel containing copolymerized WGA selectively induced retardation of the mobility of O-GlcNAcylated proteins, thereby allowing the simultaneous visualization of both the O-GlcNAcylated and the unmodified forms of proteins. This method is therefore useful for the quantitative detection of O-GlcNAcylated proteins.
Collapse
Affiliation(s)
- Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ko Fujioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Machon O, Baldini SF, Ribeiro JP, Steenackers A, Varrot A, Lefebvre T, Imberty A. Recombinant fungal lectin as a new tool to investigateO-GlcNAcylation processes. Glycobiology 2016; 27:123-128. [DOI: 10.1093/glycob/cww105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
|
19
|
Chaiyawat P, Weeraphan C, Netsirisawan P, Chokchaichamnankit D, Srisomsap C, Svasti J, Champattanachai V. Elevated O-GlcNAcylation of Extracellular Vesicle Proteins Derived from Metastatic Colorectal Cancer Cells. Cancer Genomics Proteomics 2016; 13:387-398. [PMID: 27566657 PMCID: PMC5070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND O-GlcNAcylation is a single sugar attachment of serine and/or threonine residues on intracellular proteins. Recent reports reveal that it can modify several secretory proteins; however, the underlying mechanisms are largely unexplored. MATERIALS AND METHODS To investigate whether extracellular vesicles (EVs) carry secretory O-GlcNAc-modified proteins that were isolated from colorectal cancer (CRC) cells, two-dimensional gel electrophoresis followed with O-GlcNAc immunoblotting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied. RESULTS It was revealed that the O-GlcNAc modification of many EV proteins was increased in metastatic cells. Among these, transitional endoplasmic reticulum ATPase (TER ATPase) and RuVB-like1 were successfully confirmed for the O-GlcNAc modification in which the levels were significantly higher in EVs of metastatic CRC cell line. CONCLUSION These data, demonstrate that proteins carried by EVs are O-GlcNAc-modified. Importantly, elevated aberrant O-GlcNAcylation of EV proteins might serve as a potential biomarker of metastatic CRC.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Chantragan Srisomsap
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Voraratt Champattanachai
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
20
|
|
21
|
Intracellular and extracellular O-linked N-acetylglucosamine in the nervous system. Exp Neurol 2015; 274:166-74. [DOI: 10.1016/j.expneurol.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
|
22
|
Hou CW, Mohanan V, Zachara NE, Grimes CL. Identification and biological consequences of the O-GlcNAc modification of the human innate immune receptor, Nod2. Glycobiology 2015; 26:13-8. [PMID: 26369908 DOI: 10.1093/glycob/cwv076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/04/2015] [Indexed: 12/18/2022] Open
Abstract
Nucleotide-binding oligomerization domain 2 (Nod2) is an intracellular receptor that can sense the bacterial peptidoglycan component, muramyl dipeptide. Upon activation, Nod2 induces the production of various inflammatory molecules such as cytokines and chemokines. Genetic linkage analysis identified and revealed three major mutations in Nod2 that are associated with the development of Crohn's disease. The objective of this study is to further characterize this protein by determining whether Nod2 is posttranslationally modified by O-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one type of posttranslational modification in which the O-GlcNAc transferase transfers GlcNAc from UDP-GlcNAc to selected serine and threonine residues of intracellular proteins. We found that wild-type Nod2 and a Nod2 Crohn's-associated variant are O-GlcNAcylated and this modification affects Nod2's ability to signal via the nuclear factor kappa B pathway.
Collapse
Affiliation(s)
| | - Vishnu Mohanan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
23
|
Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy. PLoS One 2014; 9:e116165. [PMID: 25541949 PMCID: PMC4277463 DOI: 10.1371/journal.pone.0116165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
SIRT1 is central to the lifespan and vascular health, but undergoes degradation that contributes to several medical conditions, including diabetes. How SIRT1 turnover is regulated remains unclear. However, emerging evidence suggests that endothelial nitric oxide synthase (eNOS) positively regulates SIRT1 protein expression. We recently identified NO as an endogenous inhibitor of 26S proteasome functionality with a cellular reporter system. Here we extended this finding to a novel pathway that regulates SIRT1 protein breakdown. In cycloheximide (CHX)-treated endothelial cells, NONOate, an NO donor, and A23187, an eNOS activator, significantly stabilized SIRT1 protein. Similarly, NO enhanced SIRT1 protein, but not mRNA expression, in CHX-free cells. NO also stabilized an autophagy-related protein unc-51 like kinase (ULK1), but did not restore SIRT1 protein levels in ULK1-siRNA-treated cells or in mouse embryonic fibroblasts (MEF) from Ulk1-/- mice. This suggests that ULK1 mediated the NO regulation of SIRT1. Furthermore, adenoviral overexpression of ULK1 increased SIRT1 protein expression, while ULK1 siRNA treatment decreased it. Rapamycin-induced autophagy did not mimic these effects, suggesting that the effects of ULK1 were autophagy-independent. Treatment with MG132, a proteasome inhibitor, or siRNA of β-TrCP1, an E3 ligase, prevented SIRT1 reduction induced by ULK1-siRNA. Mechanistically, ULK1 negatively regulated 26S proteasome functionality, which was at least partly mediated by O-linked-GlcNAc transferase (OGT), probably by increased O-GlcNAc modification of proteasomal subunit Rpt2. The NO-ULK1-SIRT1 axis was likely operative in the whole animal: both ULK1 and SIRT1 protein levels were significantly reduced in tissue homogenates in eNOS-knockout mice (lung) and in db/db mice where eNOS is downregulated (lung and heart). Taken together, the results show that NO stabilizes SIRT1 by regulating 26S proteasome functionality through ULK1 and OGT, but not autophagy, in endothelial cells.
Collapse
|
24
|
Levels of human erythrocyte membrane-bound and cytosolic glycohydrolases are associated with oxidative stress in erectile dysfunction patients. DISEASE MARKERS 2014; 2014:485917. [PMID: 25165407 PMCID: PMC4137692 DOI: 10.1155/2014/485917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) and production of NO, by endothelium nitric oxide synthetase (eNOS), are involved in the pathophysiology of erectile dysfunction (ED). Moreover, OS induces modifications of the physicochemical properties of erythrocyte (RBC) plasma membranes and of the enzyme content of the same membranes. Due to their role in signalling early membrane alterations in OS-related pathologies, several plasma membrane and cytosolic glycohydrolases of human RBC have been proposed as new markers of cellular OS. In RBC, NOS can be activated and deactivated by phosphorylation/glycosylation. In this regulatory mechanism O-β-N-AcetylGlucosaminidase is a key enzyme. Cellular levels of O-GlcNAcylated proteins are related to OS; consequently dysfunctional eNOS O-GlcNAcylation seems to have a crucial role in ED. To elucidate the possible association between RBC glycohydrolases and OS, plasma hydroperoxides and antioxidant total defenses (Lag-time), cytosolic O-β-N-AcetylGlucosaminidase, cytosolic and membrane Hexosaminidase, membrane β-D-Glucuronidase, and α-D-Glucosidase have been studied in 39 ED patients and 30 controls. In ED subjects hydroperoxides and plasma membrane glycohydrolases activities are significantly increased whereas Lag-time values and cytosolic glycohydrolases activities are significantly decreased. These data confirm the strong OS status in ED patients, the role of the studied glycohydrolases as early OS biomarker and suggest their possible use as specific marker of ED patients, particularly in those undergoing nutritional/pharmacological antioxidant therapy.
Collapse
|
25
|
Liu H, Yu S, Zhang H, Xu J. Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells. PLoS One 2014; 9:e98486. [PMID: 24853093 PMCID: PMC4031199 DOI: 10.1371/journal.pone.0098486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shujie Yu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hua Zhang
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jian Xu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
26
|
Semba RD, Huang H, Lutty GA, Van Eyk JE, Hart GW. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy. Proteomics Clin Appl 2014; 8:218-31. [PMID: 24550151 DOI: 10.1002/prca.201300076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy is a leading cause of blindness worldwide. Despite laser and surgical treatments, antiangiogenic and other therapies, and strict metabolic control, many patients progress to visual impairment and blindness. New insights are needed into the pathophysiology of diabetic retinopathy in order to develop new methods to improve the detection and treatment of disease and the prevention of blindness. Hyperglycemia and diabetes result in increased flux through the hexosamine biosynthetic pathway, which, in turn, results in increased PTM of Ser/Thr residues of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is involved in regulation of many nuclear and cytoplasmic proteins in a manner similar to protein phosphorylation. Altered O-GlcNAc signaling has been implicated in the pathogenesis of diabetes and may play an important role in the pathogenesis of diabetic retinopathy. The goal of this review is to summarize the biology of the hexosamine biosynthesis pathway and O-GlcNAc signaling, to present the current evidence for the role of O-GlcNAc signaling in diabetes and diabetic retinopathy, and to discuss future directions for research on O-GlcNAc in the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
27
|
Li Y, Liu H, Xu QS, Du YG, Xu J. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response. Carbohydr Polym 2013; 99:568-78. [PMID: 24274545 DOI: 10.1016/j.carbpol.2013.08.082] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 02/06/2023]
Abstract
It is known that chitosan oligosaccharides (COS) suppress LPS-induced vascular endothelial inflammatory response by mechanism involving NF-κB blockade. It remains unknown how COS inhibit NF-κB. We provided evidence both in cultured endothelial cells and mouse model supporting a new mechanism. Regardless of the endothelial cell types, the LPS-induced NF-κB-dependent inflammatory gene expression was suppressed by COS, which was associated with reduced NF-κB nucleus translocation. LPS enhanced O-GlcNAc modification of NF-κB/p65 and activated NF-κB pathway, which could be prevented either by siRNA knockdown of O-GlcNAc transferase (OGT) or pretreatment with COS. Inhibition of either mitogen-activated protein kinase or superoxide generation abolishes LPS-induced NF-κB O-GlcNAcylation. Consistently, aortic tissues from LPS-treated mice presented enhanced NF-κB/p65 O-GlcNAcylation in association with upregulated gene expression of inflammatory cytokines in vascular tissues; however, pre-administration of COS prevented these responses. In conclusion, COS decreased OGT-dependent O-GlcNAcylation of NF-κB and thereby attenuated LPS-induced vascular endothelial inflammatory response.
Collapse
Affiliation(s)
- Yu Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
28
|
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 2013; 18:535-58. [PMID: 23620203 PMCID: PMC3745259 DOI: 10.1007/s12192-013-0426-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jennifer A. Groves
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Albert Lee
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Gokben Yildirir
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| |
Collapse
|
29
|
O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter? Clin Sci (Lond) 2012; 123:473-86. [PMID: 22757958 PMCID: PMC3389386 DOI: 10.1042/cs20110638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
O-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury.
Collapse
|
30
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Magnelli PE, Bielik AM, Guthrie EP. Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. J Vis Exp 2011:e3749. [PMID: 22230788 PMCID: PMC3369641 DOI: 10.3791/3749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Glycosylation, the addition of covalently linked sugars, is a major post-translational modification of proteins that can significantly affect processes such as cell adhesion, molecular trafficking, clearance, and signal transduction. In eukaryotes, the most common glycosylation modifications in the secretory pathway are additions at consensus asparagine residues (N-linked); or at serine or threonine residues (O-linked) (Figure 1). Initiation of N-glycan synthesis is highly conserved in eukaryotes, while the end products can vary greatly among different species, tissues, or proteins. Some glycans remain unmodified ("high mannose N-glycans") or are further processed in the Golgi ("complex N-glycans"). Greater diversity is found for O-glycans, which start with a common N-Acetylgalactosamine (GalNAc) residue in animal cells but differ in lower organisms. The detailed analysis of the glycosylation of proteins is a field unto itself and requires extensive resources and expertise to execute properly. However a variety of available enzymes that remove sugars (glycosidases) makes possible to have a general idea of the glycosylation status of a protein in a standard laboratory setting. Here we illustrate the use of glycosidases for the analysis of a model glycoprotein: recombinant human chorionic gonadotropin beta (hCGβ), which carries two N-glycans and four O-glycans. The technique requires only simple instrumentation and typical consumables, and it can be readily adapted to the analysis of multiple glycoprotein samples. Several enzymes can be used in parallel to study a glycoprotein. PNGase F is able to remove almost all types of N-linked glycans. For O-glycans, there is no available enzyme that can cleave an intact oligosaccharide from the protein backbone. Instead, O-glycans are trimmed by exoglycosidases to a short core, which is then easily removed by O-Glycosidase. The Protein Deglycosylation Mix contains PNGase F, O-Glycosidase, Neuraminidase (sialidase), β1-4 Galactosidase, and β-N-Acetylglucosaminidase. It is used to simultaneously remove N-glycans and some O-glycans. Finally, the Deglycosylation Mix was supplemented with a mixture of other exoglycosidases (α-N-Acetylgalactosaminidase, α1-2 Fucosidase, α1-3,6 Galactosidase, and β1-3 Galactosidase), which help remove otherwise resistant monosaccharides that could be present in certain O-glycans. SDS-PAGE/Coomasie blue is used to visualize differences in protein migration before and after glycosidase treatment. In addition, a sugar-specific staining method, ProQ Emerald-300, shows diminished signal as glycans are successively removed. This protocol is designed for the analysis of small amounts of glycoprotein (0.5 to 2 μg), although enzymatic deglycosylation can be scaled up to accommodate larger quantities of protein as needed.
Collapse
|
32
|
Lunde IG, Aronsen JM, Kvaløy H, Qvigstad E, Sjaastad I, Tønnessen T, Christensen G, Grønning-Wang LM, Carlson CR. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 2011; 44:162-72. [PMID: 22128088 DOI: 10.1152/physiolgenomics.00016.2011] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reversible protein O-GlcNAc modification has emerged as an essential intracellular signaling system in several tissues, including cardiovascular pathophysiology related to diabetes and acute ischemic stress. We tested the hypothesis that cardiac O-GlcNAc signaling is altered in chronic cardiac hypertrophy and failure of different etiologies. Global protein O-GlcNAcylation and the main enzymes regulating O-GlcNAc, O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine-fructose-6-phosphate amidotransferase (GFAT) were measured by immunoblot and/or real-time RT-PCR analyses of left ventricular tissue from aortic stenosis (AS) patients and rat models of hypertension, myocardial infarction (MI), and aortic banding (AB), with and without failure. We show here that global O-GlcNAcylation was increased by 65% in AS patients, by 47% in hypertensive rats, by 81 and 58% post-AB, and 37 and 60% post-MI in hypertrophic and failing hearts, respectively (P < 0.05). Noticeably, protein O-GlcNAcylation patterns varied in hypertrophic vs. failing hearts, and the most extensive O-GlcNAcylation was observed on proteins of 20-100 kDa in size. OGT, OGA, and GFAT2 protein and/or mRNA levels were increased by pressure overload, while neither was regulated by myocardial infarction. Pharmacological inhibition of OGA decreased cardiac contractility in post-MI failing hearts, demonstrating a possible role of O-GlcNAcylation in development of chronic cardiac dysfunction. Our data support the novel concept that O-GlcNAc signaling is altered in various etiologies of cardiac hypertrophy and failure, including human aortic stenosis. This not only provides an exciting basis for discovery of new mechanisms underlying pathological cardiac remodeling but also implies protein O-GlcNAcylation as a possible new therapeutic target in heart failure.
Collapse
Affiliation(s)
- Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital Ullevaal, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|