1
|
López-Haber C, Levin-Konigsberg R, Zhu Y, Bi-Karchin J, Balla T, Grinstein S, Marks MS, Mantegazza AR. Phosphatidylinositol-4-kinase IIα licenses phagosomes for TLR4 signaling and MHC-II presentation in dendritic cells. Proc Natl Acad Sci U S A 2020; 117:28251-28262. [PMID: 33109721 PMCID: PMC7668187 DOI: 10.1073/pnas.2001948117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIβ-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.
Collapse
Affiliation(s)
- Cynthia López-Haber
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roni Levin-Konigsberg
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Kunnath-Velayudhan S, Goldberg MF, Saini NK, Ng TW, Arora P, Johndrow CT, Saavedra-Avila NA, Johnson AJ, Xu J, Kim J, Khajoueinejad N, Petro CD, Herold BC, Lauvau G, Chan J, Jacobs WR, Porcelli SA. Generation of IL-3-Secreting CD4 + T Cells by Microbial Challenge at Skin and Mucosal Barriers. Immunohorizons 2019; 3:161-171. [PMID: 31356170 PMCID: PMC6668923 DOI: 10.4049/immunohorizons.1900028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
During Ag priming, naive CD4+ T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4+ T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3–secreting CD4+ T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood. Most IL-3–producing T cells coexpressed GM-CSF and other cytokines that define multifunctionality. Generation of IL-3–secreting T cells in vitro was dependent on IL-1 family cytokines and was inhibited by cytokines that induce canonical Th1 or Th2 cells. Our results identify IL-3–secreting CD4+ T cells as a potential functional subset that arises during priming of naive T cells in specific tissue locations.
Collapse
Affiliation(s)
- Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Tony W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Christopher T Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | | | - Alison J Johnson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Jiayong Xu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - John Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Nazanin Khajoueinejad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Christopher D Petro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461; .,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
3
|
Orihara K, Odemuyiwa SO, Stefura WP, Ilarraza R, HayGlass KT, Moqbel R. Neurotransmitter signalling via NMDA receptors leads to decreased T helper type 1-like and enhanced T helper type 2-like immune balance in humans. Immunology 2017; 153:368-379. [PMID: 28940416 DOI: 10.1111/imm.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
Given the pivotal roles that CD4+ T cell imbalance plays in human immune disorders, much interest centres on better understanding influences that regulate human helper T-cell subset dominance in vivo. Here, using primary CD4+ T cells and short-term T helper type 1 (Th1) and Th2-like lines, we investigated roles and mechanisms by which neurotransmitter receptors may influence human type 1 versus type 2 immunity. We hypothesized that N-methyl-d-aspartate receptors (NMDA-R), which play key roles in memory and learning, can also regulate human CD4+ T cell function through induction of excitotoxicity. Fresh primary CD4+ T cells from healthy donors express functional NMDA-R that are strongly up-regulated upon T cell receptor (TCR) mediated activation. Synthetic and physiological NMDA-R agonists elicited Ca2+ flux and led to marked inhibition of type 1 but not type 2 or interleukin-10 cytokine responses. Among CD4+ lines, NMDA and quinolinic acid preferentially reduced cytokine production, Ca2+ flux, proliferation and survival of Th1-like cells through increased induction of cell death whereas Th2-like cells were largely spared. Collectively, the findings demonstrate that (i) NMDA-R is rapidly up-regulated upon CD4+ T cell activation in humans and (ii) Th1 versus Th2 cell functions such as proliferation, cytokine production and cell survival are differentially affected by NMDA-R agonists. Differential cytokine production and proliferative capacity of Th1 versus Th2 cells is attributable in part to increased physiological cell death among fully committed Th1 versus Th2 cells, leading to increased Th2-like dominance. Hence, excitotoxicity, beyond its roles in neuronal plasticity, may contribute to ongoing modulation of human T cell responses.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Solomon O Odemuyiwa
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William P Stefura
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Ramses Ilarraza
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kent T HayGlass
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Redwan Moqbel
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Chang J, Eggenhuizen P, O'Sullivan KM, Alikhan MA, Holdsworth SR, Ooi JD, Kitching AR. CD8+ T Cells Effect Glomerular Injury in Experimental Anti-Myeloperoxidase GN. J Am Soc Nephrol 2016; 28:47-55. [PMID: 27288012 DOI: 10.1681/asn.2015121356] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/05/2016] [Indexed: 11/03/2022] Open
Abstract
Observations in patients with ANCA-associated vasculitis suggest that CD8+ T cells participate in disease, but there is no experimental functional evidence of pathologic involvement for these cells. Myeloperoxidase (MPO) is a well defined autoantigen in ANCA-associated vasculitis. Studies in experimental models of anti-MPO GN suggest that, after ANCA-induced neutrophil localization, deposited MPO within glomeruli is recognized by autoreactive T cells that contribute to injury. We tested the hypothesis that CD8+ T cells mediate disease in experimental ANCA-associated vasculitis. CD8+ T cell depletion in the effector phase of disease attenuated injury in murine anti-MPO GN. This protection associated with decreased levels of intrarenal IFN-γ, TNF, and inflammatory chemokines and fewer glomerular macrophages. Moreover, we identified a pathogenic CD8+ T cell MPO epitope (MPO431-439) and found that cotransfer of MPO431-439-specific CD8+ T cell clones exacerbated disease mediated by MPO-specific CD4+ cells in Rag1-/- mice. Transfer of MPO431-439-specific CD8+ cells without CD4+ cells mediated glomerular injury when MPO was planted in glomeruli. These results show a pathogenic role for MPO-specific CD8+ T cells, provide evidence that CD8+ cells are a therapeutic target in ANCA-associated vasculitis, and suggest that a molecular hotspot within the MPO molecule contains important CD8+, CD4+, and B cell epitopes.
Collapse
Affiliation(s)
- Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Peter Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Kim M O'Sullivan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and.,Departments of Nephrology and
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and.,Departments of Nephrology and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
5
|
IL-1β enhances inflammatory TH2 differentiation. J Allergy Clin Immunol 2016; 138:898-901.e4. [PMID: 27212084 DOI: 10.1016/j.jaci.2016.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 11/22/2022]
|
6
|
Tosiek MJ, Fiette L, El Daker S, Eberl G, Freitas AA. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun 2016; 7:10888. [PMID: 26964669 PMCID: PMC4792960 DOI: 10.1038/ncomms10888] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of CD4+ T cells to change their phenotype and to specialize into different functional subsets may enhance the risk of autoimmune diseases. Here we investigate how a pleiotropic cytokine interleukin (IL)-15 may modify the functional commitment of CD4+ T cells expressing the lineage-associated transcription factors: forkhead box P3 (Foxp3; Treg) and RORγt (Th17) in the context of inflammatory bowel disease (IBD). We demonstrate in mice that impaired delivery of IL-15 to CD4+ T cells in the colon downmodulates Foxp3 expression (diminishing STAT5 phosphorylation) and enhances RORγt expression (by upregulating the expression of Runx1). In consequence, CD4+ T cells deprived of IL-15 rapidly trigger IBD characterized by enhanced production of pro-inflammatory cytokines (interferon-γ, IL-6) and accumulation of Th1/Th17 cells. Overall, our findings indicate a potentially beneficial role of IL-15 in IBD by fine-tuning the balance between Treg and Th17 cells and controlling intestinal inflammation.
Collapse
Affiliation(s)
- Milena J. Tosiek
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| | - Laurence Fiette
- Unité d'Histopathologie Humaine et Modèles Animaux, Department of Infection and Epidemiology, Institut Pasteur, Hôpital Ste Anne, 75015 Paris, France
- Université Paris-Descartes, Hôpital Ste Anne, 75015 Paris, France
| | - Sary El Daker
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| | - Gérard Eberl
- CNRS, URA1961, 75015 Paris, France
- Unité de Développement des Tissus Lymphoïdes, Department of Immunology, Institut Pasteur, Paris, France
| | - Antonio A. Freitas
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| |
Collapse
|
7
|
Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli-Berg FM, Mauro C. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol 2015; 13:e1002202. [PMID: 26181372 PMCID: PMC4504715 DOI: 10.1371/journal.pbio.1002202] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/16/2015] [Indexed: 12/24/2022] Open
Abstract
Lactate has long been considered a “waste” by-product of cell metabolism, and it accumulates at sites of inflammation. Recent findings have identified lactate as an active metabolite in cell signalling, although its effects on immune cells during inflammation are largely unexplored. Here we ask whether lactate is responsible for T cells remaining entrapped in inflammatory sites, where they perpetuate the chronic inflammatory process. We show that lactate accumulates in the synovia of rheumatoid arthritis patients. Extracellular sodium lactate and lactic acid inhibit the motility of CD4+ and CD8+ T cells, respectively. This selective control of T cell motility is mediated via subtype-specific transporters (Slc5a12 and Slc16a1) that we find selectively expressed by CD4+ and CD8+ subsets, respectively. We further show both in vitro and in vivo that the sodium lactate-mediated inhibition of CD4+ T cell motility is due to an interference with glycolysis activated upon engagement of the chemokine receptor CXCR3 with the chemokine CXCL10. In contrast, we find the lactic acid effect on CD8+ T cell motility to be independent of glycolysis control. In CD4+ T helper cells, sodium lactate also induces a switch towards the Th17 subset that produces large amounts of the proinflammatory cytokine IL-17, whereas in CD8+ T cells, lactic acid causes the loss of their cytolytic function. We further show that the expression of lactate transporters correlates with the clinical T cell score in the synovia of rheumatoid arthritis patients. Finally, pharmacological or antibody-mediated blockade of subtype-specific lactate transporters on T cells results in their release from the inflammatory site in an in vivo model of peritonitis. By establishing a novel role of lactate in control of proinflammatory T cell motility and effector functions, our findings provide a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders. High levels of lactate that accumulate in chronic inflammatory sites can trigger unfavorable responses in infiltrating T cells; reducing T cells' sensitivity to lactate might offer therapeutic solutions to chronic inflammatory disorders. Acidity is a feature of inflammatory sites such as arthritic synovia, atherosclerotic plaques, and tumor microenvironments and results in part from the accumulation of lactate as a product of glycolysis under hypoxic conditions. Recently it has emerged that lactate may be more than just a bystander and might act to modulate the immune-inflammatory response. Here we report just such activity: lactate inhibits T cell motility by interfering with glycolysis that is required for T cells to migrate, it causes T cells to produce higher amounts of the proinflammatory cytokine IL-17, and it triggers loss of cytolytic activity. These phenomena are hallmark features of T cells in chronic inflammatory infiltrates. The functional changes depend on the expression of specific lactate transporters by different subsets of T cells, namely the sodium lactate transporter Slc5a12 in CD4+ T cells and the lactic acid transporter Slc16a1 in CD8+ T cells. We propose that T cells entering inflammatory sites sense high concentrations of lactate via their specific transporters. Loss of motility leads to their entrapment at the site, where through their increased production of inflammatory cytokines yet decreased cytolytic capacity, they add detrimentally to chronic inflammation. Targeting lactate transporters and/or metabolic pathways on T cells could deliver novel, invaluable therapeutics for the treatment of widespread chronic inflammatory disorders.
Collapse
Affiliation(s)
- Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Vidalba Rocher-Ros
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Fulvio D’Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Elliot J. Bland
- Queen Mary Innovation Ltd, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
PTPN2 controls differentiation of CD4⁺ T cells and limits intestinal inflammation and intestinal dysbiosis. Mucosal Immunol 2015; 8:918-29. [PMID: 25492475 DOI: 10.1038/mi.2014.122] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Loss-of-function variants within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with increased risk for Crohn's disease (CD). A disturbed regulation of T helper (Th) cell responses causing loss of tolerance against self- or commensal-derived antigens and an altered intestinal microbiota plays a pivotal role in CD pathogenesis. Loss of PTPN2 in the T-cell compartment causes enhanced induction of Th1 and Th17 cells, but impaired induction of regulatory T cells (Tregs) in several mouse colitis models, namely acute and chronic dextran sodium sulfate colitis, and T-cell transfer colitis models. This results in increased susceptibility to intestinal inflammation and intestinal dysbiosis which is comparable with that observed in CD patients. We detected inflammatory infiltrates in liver, kidney, and skin and elevated autoantibody levels indicating systemic loss of tolerance in PTPN2-deficient animals. CD patients featuring a loss-of-function PTPN2 variant exhibit enhanced Th1 and Th17 cell, but reduced Treg markers when compared with PTPN2 wild-type patients in serum and intestinal tissue samples. Our data demonstrate that dysfunction of PTPN2 results in aberrant T-cell differentiation and intestinal dysbiosis similar to those observed in human CD. Our findings indicate a novel and crucial role for PTPN2 in chronic intestinal inflammation.
Collapse
|
9
|
Dennis KL, Saadalla A, Blatner NR, Wang S, Venkateswaran V, Gounari F, Cheroutre H, Weaver CT, Roers A, Egilmez NK, Khazaie K. T-cell Expression of IL10 Is Essential for Tumor Immune Surveillance in the Small Intestine. Cancer Immunol Res 2015; 3:806-14. [PMID: 25855122 DOI: 10.1158/2326-6066.cir-14-0169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 03/23/2015] [Indexed: 01/01/2023]
Abstract
IL10 is attributed with immune-suppressive and anti-inflammatory properties, which could promote or suppress cancer in the gastrointestinal tract. Loss of IL10 exacerbates colonic inflammation, leading to colitis and cancer. Consistent with this, transfer of IL10-competent regulatory T cells (Treg) into mice with colitis or hereditary polyposis protects against disease, while IL10-deficient mice are predisposed to polyposis with increased colon polyp load. Little is known about the protective or pathogenic function of IL10 in cancers of the small intestine. We found CD4(+) T cells and CD4(+) Foxp3(+) Tregs to be the major sources of IL10 in the small intestine and responsible for the increase in IL10 during polyposis in the APC(Δ468) mouse model of hereditary polyposis. Targeted ablation of IL10 in T cells caused severe IL10 deficiency and delayed polyp growth. However, these polyps progressively lost cytotoxic activity and eventually progressed to cancer. Several observations suggested that the effect was due to the loss of IFNγ-dependent immune surveillance. IL10-incompetent CD4(+) T cells failed to secrete IFNγ when stimulated with polyp antigens and were inefficient in T-helper-1 (TH1) commitment. By contrast, the TH17 commitment was unaffected. These findings were validated using mice whose T cells overexpress IL10. In these mice, we observed high intra-polyp cytotoxic activity and attenuation of polyposis. Thus, expression of IL10 by T cells is protective and required for immune surveillance in the small intestine.
Collapse
Affiliation(s)
- Kristen L Dennis
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Abdulrahman Saadalla
- Departments of Immunology and Surgery, Mayo College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nichole R Blatner
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shuya Wang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vysak Venkateswaran
- Committee on Immunology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Fotini Gounari
- Committee on Immunology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Axel Roers
- Institute for Immunology, Technical University Dresden, Dresden, Germany
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Khashayarsha Khazaie
- Departments of Immunology and Surgery, Mayo College of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Nguyen LP, Pan J, Dinh TT, Hadeiba H, O'Hara E, Ebtikar A, Hertweck A, Gökmen MR, Lord GM, Jenner RG, Butcher EC, Habtezion A. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol 2015; 16:207-213. [PMID: 25531831 PMCID: PMC4338558 DOI: 10.1038/ni.3079] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 02/08/2023]
Abstract
Lymphocyte recruitment maintains intestinal immune homeostasis but also contributes to inflammation. The orphan chemoattractant receptor GPR15 mediates regulatory T cell homing and immunosuppression in the mouse colon. We show that GPR15 is also expressed by mouse TH17 and TH1 effector cells and is required for colitis in a model that depends on the trafficking of these cells to the colon. In humans GPR15 is expressed by effector cells, including pathogenic TH2 cells in ulcerative colitis, but is expressed poorly or not at all by colon regulatory T (Treg) cells. The TH2 transcriptional activator GATA-3 and the Treg-associated transcriptional repressor FOXP3 robustly bind human, but not mouse, GPR15 enhancer sequences, correlating with receptor expression. Our results highlight species differences in GPR15 regulation and suggest it as a potential therapeutic target for colitis.
Collapse
Affiliation(s)
- Linh P Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Junliang Pan
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Theresa Thanh Dinh
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Husein Hadeiba
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Edward O'Hara
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Ahmad Ebtikar
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Arnulf Hertweck
- UCL Cancer Institute, University College London, London, W1T 4JF, United Kingdom
| | - M Refik Gökmen
- Department of Experimental Immunobiology and NIHR Comprehensive Biomedical Research Centre, Guy's and St. Thomas' Hospital and King's College London, London, SE1 9RT, United Kingdom
| | - Graham M Lord
- Department of Experimental Immunobiology and NIHR Comprehensive Biomedical Research Centre, Guy's and St. Thomas' Hospital and King's College London, London, SE1 9RT, United Kingdom
| | - Richard G Jenner
- UCL Cancer Institute, University College London, London, W1T 4JF, United Kingdom
| | - Eugene C Butcher
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Attenuated adipose tissue and skeletal muscle inflammation in obese mice with combined CD4+ and CD8+ T cell deficiency. Atherosclerosis 2014; 233:419-428. [PMID: 24530773 DOI: 10.1016/j.atherosclerosis.2014.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/31/2013] [Accepted: 01/09/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES High-fat diet (HFD) feeding in mice is characterized by accumulation of αβ T cells in adipose tissue. However, the contribution of αβ T cells to obesity-induced inflammation of skeletal muscle, a major organ of glucose uptake, is unknown. This study was undertaken to evaluate the effect of αβ T cells on insulin sensitivity and inflammatory state of skeletal muscle and adipose tissue in obesity. Furthermore, we investigated whether CD4+IFNγ+ (TH1) cells are involved in skeletal muscle and adipose tissue metabolic dysfunction that accompanies obesity. METHODS Mice lacking αβ T cells (T cell receptor beta chain-deficient [TCRb-/-] mice) were fed HFD for 12 weeks. Obesity-induced skeletal muscle and adipose tissue inflammation was assessed by flow cytometry and quantitative RT-PCR. To investigate the effect of TH1 cells on skeletal muscle and adipose tissue inflammation and metabolic functions, we injected 5×10(5) TH1 cells or PBS weekly over 12 weeks into HFD-fed TCRb-/- mice. We also cultured C2C12 myofibers and 3T3-L1 adipocytes with TH1-conditioned medium. RESULTS We showed that similar to adipose tissue, skeletal muscle of obese mice have higher αβ T cell content, including TH1 cells. TCRb-/- mice were protected against obesity-induced hyperglycemia and insulin resistance. We also demonstrated suppressed macrophage infiltration and reduced inflammatory cytokine expression in skeletal muscle and adipose tissue of TCRb-/- mice on HFD compared to wild-type obese controls. Adoptive transfer of TH1 cells into HFD-fed TCRb-/- mice resulted in increased skeletal muscle and adipose tissue inflammation and impaired glucose metabolism. TH1 cells directly impaired functions of C2C12 myotubes and 3T3-L1 adipocytes in vitro. CONCLUSIONS We conclude that reduced adipose tissue and skeletal muscle inflammation in obese TCRb-/- mice is partially attributable to the absence of TH1 cells. Our results suggest an important role of TH1 cells in regulating inflammation and insulin resistance in obesity.
Collapse
|
12
|
Zheng Y, Zha Y, Spaapen RM, Mathew R, Barr K, Bendelac A, Gajewski TF. Egr2-dependent gene expression profiling and ChIP-Seq reveal novel biologic targets in T cell anergy. Mol Immunol 2013; 55:283-91. [PMID: 23548837 DOI: 10.1016/j.molimm.2013.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
Abstract
T cell anergy is one of the mechanisms contributing to peripheral tolerance, particularly in the context of progressively growing tumors and in tolerogenic treatments promoting allograft acceptance. We recently reported that early growth response gene 2 (Egr2) is a critical transcription factor for the induction of anergy in vitro and in vivo, which was identified based on its ability to regulate the expression of inhibitory signaling molecules diacylglycerol kinase (DGK)-α and -ζ. We reasoned that other transcriptional targets of Egr2 might encode additional factors important for T cell anergy and immune regulation. Thus, we conducted two sets of genome-wide screens: gene expression profiling of wild type versus Egr2-deleted T cells treated under anergizing conditions, and a ChIP-Seq analysis to identify genes that bind Egr2 in anergic cells. Merging of these data sets revealed 49 targets that are directly regulated by Egr2. Among these are inhibitory signaling molecules previously reported to contribute to T cell anergy, but unexpectedly, also cell surface molecules and secreted factors, including lymphocyte-activation gene 3 (Lag3), Class-I-MHC-restricted T cell associated molecule (Crtam), Semaphorin 7A (Sema7A), and chemokine CCL1. These observations suggest that anergic T cells might not simply be functionally inert, and may have additional functional properties oriented towards other cellular components of the immune system.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Zheng Y, Zha Y, Driessens G, Locke F, Gajewski TF. Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. ACTA ACUST UNITED AC 2012; 209:2157-63. [PMID: 23129747 PMCID: PMC3501351 DOI: 10.1084/jem.20120342] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deletion of early growth response gene Egr2 prevents anergy induction through diacylglycerol kinase α and restores Ras/MAPK signaling in T cells. T cell receptor engagement in the absence of costimulation results in a hyporesponsive state termed anergy. Understanding the transcriptional regulation of other T cell differentiation states has provided critical information regarding the biology of T cell regulation in vivo. However, the transcriptional regulation of T cell anergy has been poorly understood. Using the key anergy target gene diacylglycerol kinase (DGK) α as a focal point, we identified early growth response gene 2 (Egr2) as a central transcription factor that regulates the anergic state. Conditional Egr2 deletion in peripheral T cells abolishes induced expression of DGK-α and other anergy genes and restores Ras/MAPK signaling, IL-2 production, and proliferation upon attempted anergy induction. Using superantigen- and tumor-induced anergy models, we found that Egr2 is necessary for anergy induction in vivo. Collectively, our results implicate Egr2 as an essential transcriptional regulator of the T cell anergy program.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pathology and 2 Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
14
|
Paul S, Kashyap AK, Jia W, He YW, Schaefer BC. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity 2012; 36:947-58. [PMID: 22658522 DOI: 10.1016/j.immuni.2012.04.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/01/2012] [Accepted: 04/30/2012] [Indexed: 02/09/2023]
Abstract
The adaptor protein Bcl10 is a critically important mediator of T cell receptor (TCR)-to-NF-κB signaling. Bcl10 degradation is a poorly understood biological phenomenon suggested to reduce TCR activation of NF-κB. Here we have shown that TCR engagement triggers the degradation of Bcl10 in primary effector T cells but not in naive T cells. TCR engagement promoted K63 polyubiquitination of Bcl10, causing Bcl10 association with the autophagy adaptor p62. Paradoxically, p62 binding was required for both Bcl10 signaling to NF-κB and gradual degradation of Bcl10 by autophagy. Bcl10 autophagy was highly selective, as shown by the fact that it spared Malt1, a direct Bcl10 binding partner. Blockade of Bcl10 autophagy enhanced TCR activation of NF-κB. Together, these data demonstrate that selective autophagy of Bcl10 is a pathway-intrinsic homeostatic mechanism that modulates TCR signaling to NF-κB in effector T cells. This homeostatic process may protect T cells from adverse consequences of unrestrained NF-κB activation, such as cellular senescence.
Collapse
Affiliation(s)
- Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
15
|
Mantegazza AR, Guttentag SH, El-Benna J, Sasai M, Iwasaki A, Shen H, Laufer TM, Marks MS. Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4(+) T cells. Immunity 2012; 36:782-94. [PMID: 22560444 DOI: 10.1016/j.immuni.2012.02.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/08/2011] [Accepted: 02/09/2012] [Indexed: 01/17/2023]
Abstract
Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic Toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4(+) T cell activation and Th1 effector cell function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sibilano R, Gri G, Frossi B, Tripodo C, Suzuki R, Rivera J, MacDonald AS, Pucillo CE. Technical advance: soluble OX40 molecule mimics regulatory T cell modulatory activity on FcεRI-dependent mast cell degranulation. J Leukoc Biol 2011; 90:831-8. [PMID: 21653238 DOI: 10.1189/jlb.1210651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tregs play a central role in modulating FcεRI-dependent MC effector functions in the course of the allergic response. Cellular interaction depends on the constitutive expression of OX40 on Tregs and the OX40L counterpart on MCs. Study of OX40L signaling on MCs is hampered by the need of a highly purified molecule, which triggers OX40L specifically. We now report that sOX40 mimics the physiological activity of Treg interaction by binding to activated MCs. When treated with sOX40, activated MCs showed decreased degranulation and Ca(++) influx, whereas PLC-γ2 phosphorylation remained unaffected. Once injected into experimental animals, sOX40 not only located within the endothelium but also in parenchyma, where it could be found in close proximity and apparently bound to MCs. This soluble molecule triggers MC-OX40L without the requirement of Tregs, thus allowing study of OX40L signaling pathways in MCs and in other OX40L-expressing cell populations. Importantly, as sOX40 inhibits MC degranulation, it may provide an in vivo therapeutic tool in allergic disease.
Collapse
Affiliation(s)
- Riccardo Sibilano
- Department of Biomedical Science and Technology, University of Udine, Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chapoval SP, Dasgupta P, Smith EP, DeTolla LJ, Lipsky MM, Kelly-Welch AE, Keegan AD. STAT6 expression in multiple cell types mediates the cooperative development of allergic airway disease. THE JOURNAL OF IMMUNOLOGY 2011; 186:2571-83. [PMID: 21242523 DOI: 10.4049/jimmunol.1002567] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Th2 cells induce asthma through the secretion of cytokines. Two such cytokines, IL-4 and IL-13, are critical mediators of many features of this disease. They both share a common receptor subunit, IL-4Rα, and signal through the STAT6 pathway. STAT6(-/-) mice have impaired Th2 differentiation and reduced airway response to allergen. Transferred Th2 cells were not able to elicit eosinophilia in response to OVA in STAT6(-/-) mice. To clarify the role of STAT6 in allergic airway inflammation, we generated mouse bone marrow (BM) chimeras. We observed little to no eosinophilia in OVA-treated STAT6(-/-) mice even when STAT6(+/+) BM or Th2 cells were provided. However, when Th2 cells were transferred to STAT6×Rag2(-/-) mice, we observed an eosinophilic response to OVA. Nevertheless, the expression of STAT6 on either BM-derived cells or lung resident cells enhanced the severity of OVA-induced eosinophilia. Moreover, when both the BM donor and recipient lacked lymphocytes, transferred Th2 cells were sufficient to induce the level of eosinophilia comparable with that of wild-type (WT) mice. The expression of STAT6 in BM-derived cells was more critical for the enhanced eosinophilic response. Furthermore, we found a significantly higher number of CD4(+)CD25(+)Foxp3(+) T cells (regulatory T cells [Tregs]) in PBS- and OVA-treated STAT6(-/-) mouse lungs compared with that in WT animals suggesting that STAT6 limits both naturally occurring and Ag-induced Tregs. Tregs obtained from either WT or STAT6(-/-) mice were equally efficient in suppressing CD4(+) T cell proliferation in vitro. Taken together, our studies demonstrate multiple STAT6-dependent and -independent features of allergic inflammation, which may impact treatments targeting STAT6.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Dziurla R, Gaber T, Fangradt M, Hahne M, Tripmacher R, Kolar P, Spies CM, Burmester GR, Buttgereit F. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunol Lett 2010; 131:97-105. [PMID: 20206208 DOI: 10.1016/j.imlet.2010.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 02/05/2023]
Abstract
Oxidative phosphorylation and/or glycolysis provide energy, mainly in the form of ATP, which ensures proper functioning of immune cells such as CD4(+) T lymphocytes. However, the main substrates, namely oxygen and glucose, are known to remain for a relatively short time in the inflamed tissue and in other clinical situations where immune cells need to function properly. Therefore, we examined the effect of hypoxia and/or lack of glucose on cellular energy metabolism and on cytokine secretion in stimulated human CD4(+) T lymphocytes. Human CD4(+) T cells were MACS-isolated using peripheral blood obtained from healthy donors. Stimulated cells were incubated in medium with or without glucose for 6h in a sealed chamber which led to cumulative hypoxia. During this incubation period, (i) oxygen saturation was measured continuously using a Clark-type electrode, and (ii) samples were taken at different time points in order to quantify for each the viability of cells, intracellular reactive oxygen species (iROS), ATP levels, glycolytic enzyme activity, mRNA expression of hexokinase-1 and superoxide dismutase-1, and concentrations of several different cytokines. Stimulated CD4(+) T cells which were incubated under normoxic conditions served as controls. Under hypoxic conditions, lack of glucose exerted a biphasic effect on cellular oxygen consumption: initially higher but later lower respiration rates were measured when compared to conditions where glucose was available. Lack of glucose strongly increased the number of dead cells and the formation of iROS under normoxia but not under hypoxia. Under both normoxic and hypoxic conditions, intracellular ATP levels remained almost unchanged during the incubation period if glucose was present, but decreased significantly in the absence of glucose, despite the enhanced glycolytic enzyme activity. Measurements of stimulated cytokine production demonstrated (i) that cumulative hypoxia stimulates especially the secretion of IL-1beta, IL-10 and IL-8, and (ii) that lack of glucose results in lower cytokine concentrations. We demonstrate that CD4(+) T cells are highly adaptive in bioenergetic terms which ensure their proper function under extreme conditions of glucose and/or oxygen availability as found under physiological and pathophysiological conditions. Hypoxia seems to facilitate inflammatory reactions and angiogenesis.
Collapse
Affiliation(s)
- R Dziurla
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|