1
|
Marchal GA, Biasci V, Yan P, Palandri C, Campione M, Cerbai E, Loew LM, Sacconi L. Recent advances and current limitations of available technology to optically manipulate and observe cardiac electrophysiology. Pflugers Arch 2023; 475:1357-1366. [PMID: 37770585 PMCID: PMC10567935 DOI: 10.1007/s00424-023-02858-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Optogenetics, utilising light-reactive proteins to manipulate tissue activity, are a relatively novel approach in the field of cardiac electrophysiology. We here provide an overview of light-activated transmembrane channels (optogenetic actuators) currently applied in strategies to modulate cardiac activity, as well as newly developed variants yet to be implemented in the heart. In addition, we touch upon genetically encoded indicators (optogenetic sensors) and fluorescent dyes to monitor tissue activity, including cardiac transmembrane potential and ion homeostasis. The combination of the two allows for all-optical approaches to monitor and manipulate the heart without any physical contact. However, spectral congestion poses a major obstacle, arising due to the overlap of excitation/activation and emission spectra of various optogenetic proteins and/or fluorescent dyes, resulting in optical crosstalk. Therefore, optogenetic proteins and fluorescent dyes should be carefully selected to avoid optical crosstalk and consequent disruptions in readouts and/or cellular activity. We here present a novel approach to simultaneously monitor transmembrane potential and cytosolic calcium, while also performing optogenetic manipulation. For this, we used the novel voltage-sensitive dye ElectroFluor 730p and the cytosolic calcium indicator X-Rhod-1 in mouse hearts expressing channelrhodopsin-2 (ChR2). By exploiting the isosbestic point of ElectroFluor 730p and avoiding the ChR2 activation spectrum, we here introduce a novel optical imaging and manipulation approach with minimal crosstalk. Future developments in both optogenetic proteins and fluorescent dyes will allow for additional and more optimised strategies, promising a bright future for all-optical approaches in the field of cardiac electrophysiology.
Collapse
Affiliation(s)
| | - Valentina Biasci
- European Laboratory for Non-Linear Spectroscopy-LENS, Sesto Fiorentino, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Marina Campione
- Institute of Neuroscience (IN-CNR) and Department of Biomedical Science, University of Padua, Padua, Italy
| | - Elisabetta Cerbai
- European Laboratory for Non-Linear Spectroscopy-LENS, Sesto Fiorentino, Florence, Italy
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC-CNR), Florence, Italy.
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Zahid M, Weber B, Yurko R, Islam K, Agrawal V, Lopuszynski J, Yagi H, Salama G. Cardiomyocyte Targeting Peptide to Deliver Amiodarone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540206. [PMID: 37214919 PMCID: PMC10197706 DOI: 10.1101/2023.05.10.540206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Amiodarone is underutilized due to significant off-target toxicities. We hypothesized that targeted delivery to the heart would lead to lowering of dose by utilizing a cardiomyocyte targeting peptide (CTP), a cell penetrating peptide identified by our prior phage display work. Methods CTP was synthesized thiolated at the N-terminus, conjugated to amiodarone via Schiff base chemistry, HPLC purified and confirmed with MALDI/TOF. Stability of the conjugate was assessed using serial HPLCs. Guinea pigs (GP) were injected intraperitoneally daily with vehicle (7 days), amiodarone (7 days; 80mg/Kg), CTP-amiodarone (5 days;26.3mg/Kg), or CTP (5 days; 17.8mg/Kg), after which GPs were euthanized, hearts excised, perfused on a Langendorff apparatus with Tyrode's solution and blebbistatin (5μM) to minimize contractions. Voltage (RH237) and Ca 2+ -indicator dye (Rhod-2/AM) were injected, fluorescence from the epicardium split and focused on two cameras capturing at 570-595nm for cytosolic Ca 2+ and 610-750nm wavelengths for voltage. Subsequently, hearts were paced at 250ms with programmed stimulation to measure changes in conduction velocities (CV), action potential duration (APD) and Ca 2+ transient durations at 90% recovery (CaTD 90 ). mRNA was extracted from all hearts and RNA sequencing performed with results compared to control hearts. Results CTP-amiodarone remained stable for up to 21 days at 37°C. At ∼1/15 th of the dose of amiodarone, CTP-amiodarone decreased CV in hearts significantly compared to control GPs (0.92±0.05 vs. 1.00±0.03m/s, p=0.0007), equivalent to amiodarone alone (0.87±0.08ms, p=0.0003). Amiodarone increased APD (192±5ms vs. 175±8ms for vehicle, p=0.0025), while CTP-amiodarone decreased it significantly (157±16ms, p=0.0136) similar to CTP alone (155±13ms, p=0.0039). Both amiodarone and CTP-amiodarone significantly decreased calcium transients compared to controls. CTP-amiodarone and CTP decreased CaTD 90 to an extent greater than amiodarone alone (p<0.001). RNA-seq showed that CTP alone increased the expression of DHPR and SERCA2a, while decreasing expression of proinflammatory genes NF-kappa B, TNF-α, IL-1β, and IL-6. Conclusions Our data suggests that CTP can deliver amiodarone to cardiomyocytes at ∼1/15 th the total molar dose of amiodarone needed to produce comparable slowing of CVs. The ability of CTP to decrease AP durations and CaTD 90 may be related to its increase in expression of Ca-handling genes, and merits further study.
Collapse
Affiliation(s)
- Maliha Zahid
- Dept. of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Beth Weber
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ray Yurko
- Peptide Synthesis Facility, University of Pittsburgh, Pittsburgh, PA
| | - Kazi Islam
- Peptide Synthesis Facility, University of Pittsburgh, Pittsburgh, PA
| | - Vaishavi Agrawal
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jack Lopuszynski
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL
| | - Hisato Yagi
- Dept. of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | - Guy Salama
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
An efficient human stem cells derived cardiotoxicity testing platform for testing oncotherapeutic analogues of quercetin and cinnamic acid. Sci Rep 2022; 12:21362. [PMID: 36494370 PMCID: PMC9734143 DOI: 10.1038/s41598-022-21721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Oncotherapeutics research is progressing at a rapid pace, however, not many drugs complete the successful clinical trial because of severe off-target toxicity to cardiomyocytes which ultimately leads to cardiac dysfunction. It is thus important to emphasize the need for early testing for possible cardiotoxicity of emerging oncotherapeutics. In this study, we assessed a novel stem cell-derived cardiac model for testing for cardiotoxicity of novel oncotherapeutics. We evaluated the cardiotoxic effect of synthesized derivatives of oncotherapeutics, quercetin (QMJ-2, -5, and -6) and cinnamic acid (NMJ-1, -2, and -3) using human Wharton's jelly mesenchymal stem cells-derived cardiomyocytes (WJCM) against known cardiotoxic oncologic drugs, doxorubicin, 5-fluorouracil, cisplatin. QMJ-6, NMJ-2, and NMJ-3 were not cardiotoxic and had minimum cardiac side effects. They did not show any effect on cardiomyocyte viability, caused low LDH release, and intracellular ROS production kept the calcium flux minimal and protected the active mitochondrial status in cardiomyocytes. They persevered cardiac-specific gene expression as well. However, compounds QMJ-2, QMJ-5, and NMJ-1 were cardiotoxic and the concentration needs to be reduced to prevent toxic effects on cardiomyocytes. Significantly, we were able to demonstrate that WJCM is an efficient cardiac testing model to analyze the cardiotoxicity of drugs in a human context.
Collapse
|
4
|
Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells 2022; 11:cells11071090. [PMID: 35406654 PMCID: PMC8997666 DOI: 10.3390/cells11071090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte calcium-handling is the key mediator of cardiac excitation-contraction coupling. In the healthy heart, calcium controls both electrical impulse propagation and myofilament cross-bridge cycling, providing synchronous and adequate contraction of cardiac muscles. However, calcium-handling abnormalities are increasingly implicated as a cause of cardiac arrhythmias. Due to the complex, dynamic and localized interactions between calcium and other molecules within a cardiomyocyte, it remains experimentally challenging to study the exact contributions of calcium-handling abnormalities to arrhythmogenesis. Therefore, multiscale computational modeling is increasingly being used together with laboratory experiments to unravel the exact mechanisms of calcium-mediated arrhythmogenesis. This article describes various examples of how integrative computational modeling makes it possible to unravel the arrhythmogenic consequences of alterations to cardiac calcium handling at subcellular, cellular and tissue levels, and discusses the future challenges on the integration and interpretation of such computational data.
Collapse
|
5
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Cooper BL, Gloschat C, Swift LM, Prudencio T, McCullough D, Jaimes R, Posnack NG. KairoSight: Open-Source Software for the Analysis of Cardiac Optical Data Collected From Multiple Species. Front Physiol 2021; 12:752940. [PMID: 34777017 PMCID: PMC8586513 DOI: 10.3389/fphys.2021.752940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a “gold standard” for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named “KairoSight” in reference to the Greek word for “opportune time” (Kairos) and the ability to “see” voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States
| | - Chris Gloschat
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Tomas Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States.,Department of Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
7
|
Martin B, Vanderpool RR, Henry BL, Palma JB, Gabris B, Lai YC, Hu J, Tofovic SP, Reddy RP, Mora AL, Gladwin MT, Romero G, Salama G. Relaxin Inhibits Ventricular Arrhythmia and Asystole in Rats With Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:668222. [PMID: 34295927 PMCID: PMC8290063 DOI: 10.3389/fcvm.2021.668222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) leads to right ventricular cardiomyopathy and cardiac dysfunctions where in the clinical setting, cardiac arrest is the likely cause of death, in ~70% of PAH patients. We investigated the cardiac phenotype of PAH hearts and tested the hypothesis that the insulin-like hormone, Relaxin could prevent maladaptive cardiac remodeling and protect against cardiac dysfunctions in a PAH animal model. PAH was induced in rats with sugen (20 mg/kg), hypoxia then normoxia (3-weeks/each); relaxin (RLX = 0, 30 or 400 μg/kg/day, n ≥ 6/group) was delivered subcutaneously (6-weeks) with implanted osmotic mini-pumps. Right ventricle (RV) hemodynamics and Doppler-flow measurements were followed by cardiac isolation, optical mapping, and arrhythmia phenotype. Sugen-hypoxia (SuHx) treated rats developed PAH characterized by higher RV systolic pressures (50 ± 19 vs. 22 ± 5 mmHg), hypertrophy, reduced stroke volume, ventricular fibrillation (VF) (n = 6/11) and bradycardia/arrest (n = 5/11); both cardiac phenotypes were suppressed with dithiothreitol (DTT = 1 mM) (n = 0/2/group) or RLX (low or high dose, n = 0/6/group). PAH hearts developed increased fibrosis that was reversed by RLX-HD, but not RLX-LD. Relaxin decreased Nrf2 and glutathione transferases but not glutathione-reductase. High-dose RLX improved pulmonary arterial compliance (measured by Doppler flow), suppressed VF even after burst-pacing, n = 2/6). Relaxin suppressed VF and asystole through electrical remodeling and by reversing thiol oxidative stress. For the first time, we showed two cardiac phenotypes in PAH animals and their prevention by RLX. Relaxin may modulate maladaptive cardiac remodeling in PAH and protect against arrhythmia and cardiac arrest.
Collapse
Affiliation(s)
- Brian Martin
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca R Vanderpool
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian L Henry
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua B Palma
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth Gabris
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yen-Chun Lai
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jian Hu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stevan P Tofovic
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rajiv P Reddy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ana L Mora
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Guillermo Romero
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Guy Salama
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Knight WE, Ali HR, Nakano SJ, Wilson CE, Walker LA, Woulfe KC. Ex vivo Methods for Measuring Cardiac Muscle Mechanical Properties. Front Physiol 2021; 11:616996. [PMID: 33488406 PMCID: PMC7820907 DOI: 10.3389/fphys.2020.616996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease continues to be the leading cause of morbidity and mortality in the United States and thousands of manuscripts each year are aimed at elucidating mechanisms underlying cardiac disease. The methods for quantifying cardiac performance are quite varied, with each technique assessing unique features of cardiac muscle mechanical properties. Accordingly, in this review, we discuss current ex vivo methods for quantifying cardiac muscle performance, highlighting what can be learned from each method, and how each technique can be used in conjunction to complement others for a more comprehensive understanding of cardiac function. Importantly, cardiac function can be assessed at several different levels, from the whole organ down to individual protein-protein interactions. Here, we take a reductionist view of methods that are commonly used to measure the distinct aspects of cardiac mechanical function, beginning with whole heart preparations and finishing with the in vitro motility assay. While each of the techniques are individually well-documented in the literature, there is a significant need for a comparison of the techniques, delineating the mechanical parameters that can are best measured with each technique, as well as the strengths and weaknesses inherent to each method. Additionally, we will consider complementary techniques and how these methods can be used in combination to improve our understanding of cardiac mechanical function. By presenting each of these methods, with their strengths and limitations, in a single manuscript, this review will assist cardiovascular biologists in understanding the existing literature on cardiac mechanical function, as well as designing future experiments.
Collapse
Affiliation(s)
- Walter E Knight
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hadi R Ali
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stephanie J Nakano
- Department of Pediatrics, Division of Cardiology, Children's Hospital, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cortney E Wilson
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
9
|
Awad A, Khalil SR, Hendam BM, Abd El-Aziz RM, Metwally MMM, Imam TS. Protective potency of Astragalus polysaccharides against tilmicosin- induced cardiac injury via targeting oxidative stress and cell apoptosis-encoding pathways in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20861-20875. [PMID: 32246429 DOI: 10.1007/s11356-020-08565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Tilmicosin (Til) was purposed to be used in the treatment of a wide range of respiratory diseases in livestock. However, undesirable adverse effects, cardiac toxicity, in particular, may be associated with Til therapy. In the present study, the response of adult rats administered Til subcutaneously at different doses (10, 25, 50, 75, and 100 mg/kg b.w.; single injection) was evaluated. Astragalus polysaccharide (AP) at two doses (100 and 200 mg/kg b.w.; intraperitoneally) was investigated for its potential to counteract the cardiac influences, involving the oxidative stress-induced damage and apoptotic cell death, elicited by the Til treatment at a dose of 75 mg/kg b.w. in rats. Til induced mortalities and altered the levels of the biomarkers for the cardiac damage, particularly in the rats treated with the doses of 75 and 100 mg/kg b.w.; similarly, morphological alterations in cardiac tissue were seen at all studied doses. AP was found to cause a significant (P ˂ 0.05) decline in the levels of impaired cardiac injury markers (troponin, creatine phosphokinase, and creatine phosphokinase-MB), improvement in the antioxidant endpoints (total antioxidant capacity), and attenuation in the oxidative stress indices (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl), associated with a significant (P ˂ 0.05) modulation in the mRNA expression levels of the encoding genes (Bcl-2, Bax, caspase-3, P53, Apaf-1, and AIF), related to the intrinsic pathway of apoptotic cell death in the cardiac tissue. AP administration partially restored the morphological changes in the rat's heart. The highest protective efficacy of AP was recorded at a dose level of 200 mg/kg b.w. Taken together, these results indicated that AP is a promising cardioprotective compound capable of attenuating Til-induced cardiac impact by protecting the rat cardiac tissue from Til-induced apoptosis when administered concurrently with and after the Til injection.
Collapse
Affiliation(s)
- Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reda M Abd El-Aziz
- Physiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
10
|
Morrissette-McAlmon J, Ginn B, Somers S, Fukunishi T, Thanitcul C, Rindone A, Hibino N, Tung L, Mao HQ, Grayson W. Biomimetic Model of Contractile Cardiac Tissue with Endothelial Networks Stabilized by Adipose-Derived Stromal/Stem Cells. Sci Rep 2020; 10:8387. [PMID: 32433563 PMCID: PMC7239907 DOI: 10.1038/s41598-020-65064-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Cardiac tissue engineering strategies have the potential to regenerate functional myocardium following myocardial infarction. In this study, we utilized novel electrospun fibrin microfiber sheets of different stiffnesses (50.0 ± 11.2 kPa and 90.0 ± 16.4 kPa) to engineer biomimetic models of vascularized cardiac tissues. We characterized tissue assembly, electrophysiology, and contractility of neonatal rat ventricular cardiomyocytes (NRVCMs) cultured on these sheets. NRVCMs cultured on the softer substrates displayed higher conduction velocities (CVs) and improved electrophysiological properties. Human umbilical vein endothelial cells (HUVECs) formed dense networks on the sheets when co-cultured with human adipose-derived stem/stromal cells (hASCs). To achieve vascularized cardiac tissues, we tested various tri-culture protocols of NRVCM:hASC:HUVEC and found that a ratio of 1,500,000:37,500:150,000 cells/cm2 enabled the formation of robust endothelial networks while retaining statistically identical electrophysiological characteristics to NRVCM-only cultures. Tri-cultures at this ratio on 90 kPa substrates exhibited average CVs of 14 ± 0.6 cm/s, Action Potential Duration (APD)80 and APD30 of 152 ± 11 ms and 71 ± 6 ms, respectively, and maximum capture rate (MCR) of 3.9 ± 0.7 Hz. These data indicate the significant potential of generating densely packed endothelial networks together with electrically integrated cardiac cells in vitro as a physiologic 3D cardiac model.
Collapse
Affiliation(s)
- Justin Morrissette-McAlmon
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Ginn
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD, USA
| | - Sarah Somers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takuma Fukunishi
- Department of Surgery & Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chanon Thanitcul
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Rindone
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Narutoshi Hibino
- Department of Surgery & Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD, USA.
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
11
|
Martin B, Gabris B, Barakat AF, Henry BL, Giannini M, Reddy RP, Wang X, Romero G, Salama G. Relaxin reverses maladaptive remodeling of the aged heart through Wnt-signaling. Sci Rep 2019; 9:18545. [PMID: 31811156 PMCID: PMC6897890 DOI: 10.1038/s41598-019-53867-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increases susceptibility to cardiovascular diseases. Relaxin, an insulin-like hormone, suppresses atrial fibrillation, inflammation and fibrosis in aged rats but the mechanisms-of-action are unknown. Here we show that relaxin treatment of aged rats reverses pathological electrical remodeling (increasing Nav1.5 expression and localization of Connexin43 to intercalated disks) by activating canonical Wnt signaling. In isolated adult ventricular myocytes, relaxin upregulated Nav1.5 (EC50 = 1.3 nM) by a mechanism inhibited by the addition of Dickkopf-1. Furthermore, relaxin increased the levels of connexin43, Wnt1, and cytosolic and nuclear β-catenin. Treatment with Wnt1 or CHIR-99021 (a GSK3β inhibitor) mimicked the relaxin effects. In isolated fibroblasts, relaxin blocked TGFβ-induced collagen elevation in a Wnt dependent manner. These findings demonstrate a close interplay between relaxin and Wnt-signaling resulting in myocardial remodeling and reveals a fundamental mechanism of great therapeutic potential.
Collapse
Affiliation(s)
- Brian Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Beth Gabris
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Amr F Barakat
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brian L Henry
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Marianna Giannini
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Scuola Superiore Sant' Anna, Institute of Life Sciences, Pisa, Italy
| | - Rajiv P Reddy
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xuewen Wang
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guy Salama
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
12
|
Khalil SR, Abdel-Motal SM, Abd-Elsalam M, Abd El-Hameed NE, Awad A. Restoring strategy of ethanolic extract of Moringa oleifera leaves against Tilmicosin-induced cardiac injury in rats: Targeting cell apoptosis-mediated pathways. Gene 2019; 730:144272. [PMID: 31812513 DOI: 10.1016/j.gene.2019.144272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Tilmicosin (Til), an effective macrolide antibiotic, is widely used against respiratory diseases in livestock; however, its treatment is associated with cardiac tissue impairments. In this study, the ethanolic extract of Moringa oleifera (MO) leaves was investigated at two doses (400 and 800 mg/kg body weight [bw], orally) to determine its role in counteracting the effects of Til treatment (75 mg/kg bw) on the cardiac tissue in rats, exploring the oxidative stress-mediated damage and apoptosis. A high dose of MO ethanolic extract elicits considerable changes in the body weight, reduces the mortality rate, neutralizes the impaired cardiac injury markers, improves antioxidant endpoints (total antioxidant capacity, superoxide dismutase, catalase activity, and reduced glutathione level). Also it attenuates the oxidative stress indices (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl levels) that are associated with Til injection. The co-administration of MO ethanolic extract with Til considerably modulates the expression of apoptosis pathway-encoding genes (Bcl-2, caspase-3, Bax, p53, apoptosis-inducing factor, and Apaf-1), particularly in the high-dose group. Our results support that the concurrent administration of MO ethanolic extract with Til at a dose of 800 mg/kg bw increases the protective activity of the antioxidant system and delays or slows the pathological development of cardiotoxicity mediated by Til injection.
Collapse
Affiliation(s)
- Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Abd-Elsalam
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Noura E Abd El-Hameed
- Physiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Jaimes R, McCullough D, Siegel B, Swift L, Hiebert J, Mclnerney D, Posnack NG. Lights, camera, path splitter: a new approach for truly simultaneous dual optical mapping of the heart with a single camera. BMC Biomed Eng 2019; 1. [PMID: 31768502 PMCID: PMC6876868 DOI: 10.1186/s42490-019-0024-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Optical mapping of transmembrane voltage and intracellular calcium is a powerful tool for investigating cardiac physiology and pathophysiology. However, simultaneous dual mapping of two fluorescent probes remains technically challenging. We introduce a novel, easy-to-use approach that requires a path splitter, single camera and excitation light to simultaneously acquire voltage and calcium signals from whole heart preparations, which can be applied to other physiological models – including neurons and isolated cardiomyocytes. Results Complementary probes were selected that could be excited with a single wavelength light source. Langendorff-perfused hearts (rat, swine) were stained and imaged using a sCMOS camera outfitted with an optical path splitter to simultaneously acquire two emission fields at high spatial and temporal resolution. Voltage (RH237) and calcium (Rhod2) signals were acquired concurrently on a single sensor, resulting in two 384 × 256 images at 814 frames per second. At this frame rate, the signal-to-noise ratio was 47 (RH237) and 85 (Rhod2). Imaging experiments were performed on small rodent hearts, as well as larger pig hearts with sufficient optical signals. In separate experiments, each dye was used independently to assess crosstalk and demonstrate signal specificity. Additionally, the effect of ryanodine on myocardial calcium transients was validated – with no measurable effect on the amplitude of optical action potentials. To demonstrate spatial resolution, ventricular tachycardia was induced –resulting in the novel finding that spatially discordant calcium alternans can be present in different regions of the heart, even when electrical alternans remain concordant. The described system excels in providing a wide field of view and high spatiotemporal resolution for a variety of cardiac preparations. Conclusions We report the first multiparametric mapping system that simultaneously acquires calcium and voltage signals from cardiac preparations, using a path splitter, single camera and excitation light. This approach eliminates the need for multiple cameras, excitation light patterning or frame interleaving. These features can aid in the adoption of dual mapping technology by the broader cardiovascular research community, and decrease the barrier of entry into panoramic heart imaging, as it reduces the number of required cameras. Electronic supplementary material The online version of this article (10.1186/s42490-019-0024-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Jaimes
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Bryan Siegel
- Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Luther Swift
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - James Hiebert
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Daniel Mclnerney
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences: George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| |
Collapse
|
14
|
Zhabyeyev P, McLean B, Chen X, Vanhaesebroeck B, Oudit GY. Inhibition of PI3Kinase-α is pro-arrhythmic and associated with enhanced late Na + current, contractility, and Ca 2+ release in murine hearts. J Mol Cell Cardiol 2019; 132:98-109. [PMID: 31095940 DOI: 10.1016/j.yjmcc.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphoinositide 3-kinase α (PI3Kα) is a proto-oncogene with high activity in the heart. BYL719 (BYL) is a PI3Kα-selective small molecule inhibitor and a prospective drug for advanced solid tumors. We investigated whether acute pharmacological inhibition of PI3Kα has pro-arrhythmic effects. METHODS & RESULTS In isolated wild-type (WT) cardiomyocytes, pharmacological inhibition of PI3Kα (BYL719) increased contractility by 28%, Ca2+ release by 20%, and prolonged action potential (AP) repolarization by 10-15%. These effects of BYL719 were abolished by inhibition of reverse-mode Na+/Ca2+ exchanger (NCX) (KB-R7943) or by inhibition of late Na+ current (INa-L) (ranolazine). BYL719 had no effect on PI3Kα-deficient cardiomyocytes, suggesting BYL719 effects were PI3Kα-dependent and mediated via NCX and INa-L. INa-L was suppressed by activation of PI3Kα, application of exogenous intracellular PIP3, or ranolazine. Investigation of AP and Ca2+ release in whole heart preparations using epicardial optical mapping showed that inhibition of PI3Kα similarly led to prolongation of AP and enhancement of Ca2+ release. In hearts of PI3Kα-deficient mice, β-adrenergic stimulation in the presence of high Ca2+ concentrations and 12-Hz burst pacing led to delayed afterdepolarizations and ventricular fibrillation. In vivo, administration of BYL719 prolonged QT interval [QTcF (Fridericia) increased by 15%] in WT, but not in PI3Kα-deficient mice. CONCLUSIONS Pharmacological inhibition of PI3Kα is arrhythmogenic due to activation of INa-L leading to increased sarcoplasmic reticulum Ca2+ load and prolonged QT interval. Therefore, monitoring of cardiac electrical activity in patients receiving PI3K inhibitors may provide further insights into the arrhythmogenic potential of PI3Ka inhibition.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Brent McLean
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
15
|
Lin HCA, Déan-Ben XL, Reiss M, Schöttle V, Wahl-Schott CA, Efimov IR, Razansky D. Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart. Sci Rep 2018; 8:14132. [PMID: 30237560 PMCID: PMC6148063 DOI: 10.1038/s41598-018-32317-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/03/2018] [Indexed: 01/22/2023] Open
Abstract
The Langendorff-perfused heart technique has become the model of choice for multiparametric optical mapping of cardiac function and electrophysiology. However, photon scattering in tissues represents a significant drawback of the optical imaging approach, fundamentally limiting its mapping capacity to the heart surface. This work presents the first implementation of the optoacoustic approach for 4D imaging of the entire beating isolated mouse heart. The method combines optical excitation and acoustic detection to simultaneously render rich optical contrast and high spatio-temporal resolution at centimeter-scale depths. We demonstrate volumetric imaging of deeply located cardiac features, including the interventricular septum, chordae tendineae, and papillary muscles while further tracking the heart beat cycle and the motion of the pulmonary, mitral, and tricuspid valves in real time. The technique possesses a powerful combination between high imaging depth, fast volumetric imaging speed, functional and molecular imaging capacities not available with other imaging modalities currently used in cardiac research.
Collapse
Affiliation(s)
- Hsiao-Chun Amy Lin
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany.,Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Xosé Luís Déan-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Reiss
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany.,Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Verena Schöttle
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Christian A Wahl-Schott
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany. .,Faculty of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
16
|
Priya LB, Baskaran R, Huang CY, Padma VV. Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Sci Rep 2017; 7:12283. [PMID: 28947826 PMCID: PMC5612945 DOI: 10.1038/s41598-017-12060-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/29/2017] [Indexed: 12/04/2022] Open
Abstract
Doxorubicin (DOX) mediated cardiomyopathy is a major challenge in cancer chemotherapy. Redox-cycling of doxorubicin by flavoenzymes makes the heart more vulnerable to oxidative stress leading to cardiac dysfunction. The present study evaluates the role of neferine, a bisbenzylisoquinoline alkaloid, in curbing the molecular consequences of DOX-exposure in H9c2 cardiomyoblasts. Neferine pre-treatment increased cell viability upon DOX-exposure. DOX activates NADPH oxidase subunits, (p22phox, p47phox, gp91phox) as the primary event followed by peak in [Ca2+]i accumulation by 2 h, ROS by 3 h and activated ERK1/2 and p38 MAPKinases, time dependently along with the activation and translocation of NFκB and up-regulated COX2 and TNF-α expressions. Neferine pre-treatment modulated NADPH oxidase/ROS system, inhibited MAPKinases and NFκB activation, reduced sub G1 cell population and concomitantly increased cyclin D1 expression reducing DOX-mediated apoptosis. The study demonstrates for the first time, the molecular sequential events behind DOX toxicity and the mechanism of protection offered by neferine with specific relevance to NADPH oxidase system, MAPKinases, inflammation and apoptosis in H9c2 cells. Our data suggests the use of neferine as a new approach in pharmacological interventions against cardiovascular disorders as secondary complications.
Collapse
Affiliation(s)
- Lohanathan Bharathi Priya
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
17
|
Ramratnam M, Salama G, Sharma RK, Wang DWR, Smith SH, Banerjee SK, Huang XN, Gifford LM, Pruce ML, Gabris BE, Saba S, Shroff SG, Ahmad F. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS One 2016; 11:e0167681. [PMID: 27936050 PMCID: PMC5147943 DOI: 10.1371/journal.pone.0167681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM) have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W) mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+) recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force) relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i), and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/-) mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.
Collapse
Affiliation(s)
- Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI, United States of America
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Guy Salama
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ravi K. Sharma
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David Wen Rui Wang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Stephen H. Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sanjay K. Banerjee
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xueyin N. Huang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lindsey M. Gifford
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Michele L. Pruce
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bethann E. Gabris
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Samir Saba
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sanjeev G. Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ferhaan Ahmad
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Henry BL, Gabris B, Li Q, Martin B, Giannini M, Parikh A, Patel D, Haney J, Schwartzman DS, Shroff SG, Salama G. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels. Heart Rhythm 2016; 13:983-91. [PMID: 26711798 PMCID: PMC4801709 DOI: 10.1016/j.hrthm.2015.12.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) contributes significantly to morbidity and mortality in elderly patients and has been correlated with enhanced age-dependent atrial fibrosis. Reversal of atrial fibrosis has been proposed as therapeutic strategy to suppress AF. OBJECTIVE To test the ability of relaxin to reverse age-dependent atrial fibrosis and suppress AF. METHODS Aged F-344 rats (24 months old) were treated with subcutaneous infusion of vehicle or relaxin (0.4 mg/kg/day) for 2 weeks. Rat hearts were excised, perfused on a Langendorff apparatus, and stained with voltage and Ca(2+) indicator dyes. Optical mapping and programmed electrical stimulation was used to test arrhythmia vulnerability and changes in electrophysiological characteristics. Changes in protein expression and Na(+) current density (INa) were measured by tissue immunofluorescence and whole-cell patch clamp technique. RESULTS In aged rats, sustained AF was readily induced with a premature pulse (n = 7/8) and relaxin treatment suppressed sustained AF by a premature impulse or burst pacing (n = 1/6) (P < .01). Relaxin significantly increased atrial action potential conduction velocity and decreased atrial fibrosis. Relaxin treatment increased Nav1.5 expression (n = 6; 36% ± 10%) and decreased total collagen and collagen I (n = 5-6; 55%-66% ± 15%) in aged atria (P < .05) and decreased collagen I and III and TGF-β1 mRNA (P < .05). Voltage-clamp experiments demonstrated that relaxin treatment (100 nM for 2 days) increased atrial INa by 46% ± 4% (n = 12-13/group, P < .02). CONCLUSION Relaxin suppresses AF through an increase in atrial conduction velocity by decreasing atrial fibrosis and increasing INa. These data provide compelling evidence that relaxin may serve as an effective therapy to manage AF in geriatric patients by reversing fibrosis and modulating cardiac ionic currents.
Collapse
Affiliation(s)
- Brian L Henry
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Beth Gabris
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Qiao Li
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Brian Martin
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Marianna Giannini
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Ashish Parikh
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Divyang Patel
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Jamie Haney
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - David S Schwartzman
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Sanjeev G Shroff
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Guy Salama
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania,; University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
19
|
Jaimes R, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW. A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Heart Circ Physiol 2016; 310:H1388-401. [PMID: 27016580 DOI: 10.1152/ajpheart.00665.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
Optical mapping of Ca(2+)-sensitive fluorescence probes has become an extremely useful approach and adopted by many cardiovascular research laboratories to study a spectrum of myocardial physiology and disease conditions. Optical mapping data are often displayed as detailed pseudocolor images, providing unique insight for interpreting mechanisms of ectopic activity, action potential and Ca(2+) transient alternans, tachycardia, and fibrillation. Ca(2+)-sensitive fluorescent probes and optical mapping systems continue to evolve in the ongoing effort to improve therapies that ease the growing worldwide burden of cardiovascular disease. In this technical review we provide an updated overview of conventional approaches for optical mapping of Cai (2+) within intact myocardium. In doing so, a brief history of Cai (2+) probes is provided, and nonratiometric and ratiometric Ca(2+) probes are discussed, including probes for imaging sarcoplasmic reticulum Ca(2+) and probes compatible with potentiometric dyes for dual optical mapping. Typical measurements derived from optical Cai (2+) signals are explained, and the analytics used to compute them are presented. Last, recent studies using Cai (2+) optical mapping to study arrhythmias, heart failure, and metabolic perturbations are summarized.
Collapse
Affiliation(s)
- Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia
| | - Richard D Walton
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Philippe Pasdois
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Olivier Bernus
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia;
| |
Collapse
|
20
|
Zhao F, Fu L, Yang W, Dong Y, Yang J, Sun S, Hou Y. Cardioprotective effects of baicalein on heart failure via modulation of Ca(2+) handling proteins in vivo and in vitro. Life Sci 2015; 145:213-23. [PMID: 26706290 DOI: 10.1016/j.lfs.2015.12.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
AIMS Baicalein is a widely used Chinese herbal medicine extracted from Labiatae plants Scutellaria baicalensis Georgi's dry root, which has multiple pharmacological activities. However, the precise mechanism of baicalein against myocardial remodeling remains poorly understood. The aim of our study was to investigate the underlying mechanism of baicalein treatment in rats model of heart failure (HF) and rat myocardial cells (H9C2). MAIN METHODS HF model was established by abdominal aorta constriction in rats and incubation with 50μM isoproterenol for 48h in H9C2 cells. Various molecular biological experiments were performed to assess the effects of baicalein on cardiac function, myocardial remodeling, apoptosis and Ca(2+) handling proteins. KEY FINDINGS In the present study, first we found that baicalein alleviated HF in vivo. Additionally, treatment with baicalein inhibited the myocardial fibrosis, restrained the expression and activity of MMP2 and MMP9, and suppressed apoptosis in heart tissue. Moreover, baicalein could inhibit the cardiac myocyte hypertrophy and apoptosis induced by isoproterenol in vitro. Finally we found that baicalein could modulate the expressions and activities of Ca(2+) handling proteins, including downregulation of phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and expression of Na(+)/Ca(2+)-exchangers (NCX1), upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) and ryanodine receptor 2 (RYR2). Baicalein also restrained the decreased SERCA activity induced by aortic banding. SIGNIFICANCE Our studies suggested that baicalein alleviated myocardial remodeling and improved cardiac function via modulation of Ca(2+) handling proteins, which may be a potential phytochemical flavonoid for therapeutics of HF.
Collapse
Affiliation(s)
- Fali Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Lu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China.
| | - Wei Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuhui Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jing Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Shoubin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuling Hou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
21
|
Park H, Ku SH, Park H, Hong J, Kim D, Choi BR, Pak HN, Lee MH, Mok H, Jeong JH, Choi D, Kim SH, Joung B. RAGE siRNA-mediated gene silencing provides cardioprotection against ventricular arrhythmias in acute ischemia and reperfusion. J Control Release 2015; 217:315-26. [PMID: 26381899 DOI: 10.1016/j.jconrel.2015.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/18/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023]
|
22
|
Kim JJ, Němec J, Li Q, Salama G. Synchronous systolic subcellular Ca2+-elevations underlie ventricular arrhythmia in drug-induced long QT type 2. Circ Arrhythm Electrophysiol 2015; 8:703-12. [PMID: 25722252 PMCID: PMC4472565 DOI: 10.1161/circep.114.002214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Repolarization delay is a common clinical problem, which can promote ventricular arrhythmias. In myocytes, abnormal sarcoplasmic reticulum Ca(2+)-release is proposed as the mechanism that causes early afterdepolarizations, the cellular equivalent of ectopic-activity in drug-induced long-QT syndrome. A crucial missing link is how such a stochastic process can overcome the source-sink mismatch to depolarize sufficient ventricular tissue to initiate arrhythmias. METHODS AND RESULTS Optical maps of action potentials and Ca(2+)-transients from Langendorff rabbit hearts were measured at low (150×150 μm(2)/pixel) and high (1.5×1.5 μm(2)/pixel) resolution before and during arrhythmias. Drug-induced long QT type 2, elicited with dofetilide inhibition of IKr (the rapid component of rectifying K+ current), produced spontaneous Ca(2+)-elevations during diastole and systole, before the onset of arrhythmias. Diastolic Ca(2+-)waves appeared randomly, propagated within individual myocytes, were out-of-phase with adjacent myocytes, and often died-out. Systolic secondary Ca(2+-)elevations were synchronous within individual myocytes, appeared 188±30 ms after the action potential-upstroke, occurred during high cytosolic Ca(2+) (40%-60% of peak-Ca(2+)-transients), appeared first in small islands (0.5×0.5 mm(2)) that enlarged and spread throughout the epicardium. Synchronous systolic Ca(2+-)elevations preceded voltage-depolarizations (9.2±5 ms; n=5) and produced pronounced Spatial Heterogeneities of Ca(2+)-transient-durations and action potential-durations. Early afterdepolarizations originating from sites with the steepest gradients of membrane-potential propagated and initiated arrhythmias. Interestingly, more complex subcellular Ca(2+)-dynamics (multiple chaotic Ca(2+)-waves) occurred during arrhythmias. K201, a ryanodine receptor stabilizer, eliminated Ca(2+)-elevations and arrhythmias. CONCLUSIONS The results indicate that systolic and diastolic Ca(2+)-elevations emanate from sarcoplasmic reticulum Ca(2+)-release and systolic Ca(2+)-elevations are synchronous because of high cytosolic and luminal-sarcoplasmic reticulum Ca(2+), which overcomes source-sink mismatch to trigger arrhythmias in intact hearts.
Collapse
Affiliation(s)
- Jong J Kim
- From the Department of Bioengineering (J.J.K., G.S.), and Department of Medicine, Heart and Vascular Institute (J.J.K., J.N., Q.L., G.S.), University of Pittsburgh, PA; and Tsinghua University School of Medicine, China (Q.L)
| | - Jan Němec
- From the Department of Bioengineering (J.J.K., G.S.), and Department of Medicine, Heart and Vascular Institute (J.J.K., J.N., Q.L., G.S.), University of Pittsburgh, PA; and Tsinghua University School of Medicine, China (Q.L)
| | - Qiao Li
- From the Department of Bioengineering (J.J.K., G.S.), and Department of Medicine, Heart and Vascular Institute (J.J.K., J.N., Q.L., G.S.), University of Pittsburgh, PA; and Tsinghua University School of Medicine, China (Q.L)
| | - Guy Salama
- From the Department of Bioengineering (J.J.K., G.S.), and Department of Medicine, Heart and Vascular Institute (J.J.K., J.N., Q.L., G.S.), University of Pittsburgh, PA; and Tsinghua University School of Medicine, China (Q.L).
| |
Collapse
|
23
|
Kim JJ, Yang L, Lin B, Zhu X, Sun B, Kaplan AD, Bett GCL, Rasmusson RL, London B, Salama G. Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J Mol Cell Cardiol 2015; 81:81-93. [PMID: 25644533 PMCID: PMC4409767 DOI: 10.1016/j.yjmcc.2015.01.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/26/2014] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The creation of cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs) has spawned broad excitement borne out of the prospects to diagnose and treat cardiovascular diseases based on personalized medicine. A common feature of hiPS-CMs is their spontaneous contractions but the mechanism(s) remain uncertain. METHODS Intrinsic activity was investigated by the voltage-clamp technique, optical mapping of action potentials (APs) and intracellular Ca(2+) (Cai) transients (CaiT) at subcellular-resolution and pharmacological interventions. RESULTS The frequency of spontaneous CaiT (sCaiT) in monolayers of hiPS-CMs was not altered by ivabradine, an inhibitor of the pacemaker current, If despite high levels of HCN transcripts (1-4). HiPS-CMs had negligible If and IK1 (inwardly-rectifying K(+)-current) and a minimum diastolic potential of -59.1±3.3mV (n=18). APs upstrokes were preceded by a depolarizing-foot coincident with a rise of Cai. Subcellular Cai wavelets varied in amplitude, propagated and died-off; larger Cai-waves triggered cellular sCaTs and APs. SCaiTs increased in frequency with [Ca(2+)]out (0.05-to-1.8mM), isoproterenol (1μM) or caffeine (100μM) (n≥5, p<0.05). HiPS-CMs became quiescent with ryanodine receptor stabilizers (K201=2μM); tetracaine; Na-Ca exchange (NCX) inhibition (SEA0400=2μM); higher [K(+)]out (5→8mM), and thiol-reducing agents but could still be electrically stimulated to elicit CaiTs. Cell-cell coupling of hiPS-CM in monolayers was evident from connexin-43 expression and CaiT propagation. SCaiTs from an ensemble of dispersed hiPS-CMs were out-of-phase but became synchronous through the outgrowth of inter-connecting microtubules. CONCLUSIONS Automaticity in hiPS-CMs originates from a Ca(2+)-clock mechanism involving Ca(2+) cycling across the sarcoplasmic reticulum linked to NCX to trigger APs.
Collapse
Affiliation(s)
- Jong J Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Yang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bo Lin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaodong Zhu
- University of Iowa, Carver College of Medicine, Division of Cardiovascular Medicine, Iowa City, IA 52242, USA
| | - Bin Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aaron D Kaplan
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Gynecology-Obstetrics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Randall L Rasmusson
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Barry London
- University of Iowa, Carver College of Medicine, Division of Cardiovascular Medicine, Iowa City, IA 52242, USA
| | - Guy Salama
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
24
|
Yan J, Thomson JK, Zhao W, Fast VG, Ye T, Ai X. Voltage and calcium dual channel optical mapping of cultured HL-1 atrial myocyte monolayer. J Vis Exp 2015:52542. [PMID: 25867896 PMCID: PMC4401363 DOI: 10.3791/52542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Optical mapping has proven to be a valuable technique to detect cardiac electrical activity on both intact ex vivo hearts and in cultured myocyte monolayers. HL-1 cells have been widely used as a 2-Dimensional cellular model for studying diverse aspects of cardiac physiology. However, it has been a great challenge to optically map calcium (Ca) transients and action potentials simultaneously from the same field of view in a cultured HL-1 atrial cell monolayer. This is because special handling and care is required to prepare healthy cells that can be electrically captured and optically mapped. Therefore, we have developed an optimal working protocol for dual channel optical mapping. In this manuscript, we have described in detail how to perform the dual channel optical mapping experiment. This protocol is a useful tool to enhance the understanding of action potential propagation and Ca kinetics in arrhythmia development.
Collapse
Affiliation(s)
- Jiajie Yan
- Department of Cell and Molecular Physiology, Loyola University Chicago
| | - Justin K Thomson
- Department of Cell and Molecular Physiology, Loyola University Chicago
| | - Weiwei Zhao
- Department of Cell and Molecular Physiology, Loyola University Chicago
| | - Vladimir G Fast
- Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Tong Ye
- Department of Bioengineering, Clemson University
| | - Xun Ai
- Department of Cell and Molecular Physiology, Loyola University Chicago;
| |
Collapse
|
25
|
Fenton FH, Gizzi A, Cherubini C, Pomella N, Filippi S. Role of temperature on nonlinear cardiac dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042717. [PMID: 23679459 DOI: 10.1103/physreve.87.042717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/19/2012] [Indexed: 06/02/2023]
Abstract
Thermal effects affecting spatiotemporal behavior of cardiac tissue are discussed by relating temperature variations to proarrhythmic dynamics in the heart. By introducing a thermoelectric coupling in a minimal model of cardiac tissue, we are able to reproduce experimentally measured dynamics obtained simultaneously from epicardial and endocardial canine right ventricles at different temperatures. A quantitative description of emergent proarrhythmic properties of restitution, conduction velocity, and alternans regimes as a function of temperature is presented. Complex discordant alternans patterns that enhance tissue dispersion consisting of one wave front and three wave backs are described in both simulations and experiments. Possible implications for model generalization are finally discussed.
Collapse
Affiliation(s)
- Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
26
|
Kim JJ, Němec J, Papp R, Strongin R, Abramson JJ, Salama G. Bradycardia alters Ca(2+) dynamics enhancing dispersion of repolarization and arrhythmia risk. Am J Physiol Heart Circ Physiol 2013; 304:H848-60. [PMID: 23316064 DOI: 10.1152/ajpheart.00787.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradycardia prolongs action potential (AP) durations (APD adaptation), enhances dispersion of repolarization (DOR), and promotes tachyarrhythmias. Yet, the mechanisms responsible for enhanced DOR and tachyarrhythmias remain largely unexplored. Ca(2+) transients and APs were measured optically from Langendorff rabbit hearts at high (150 × 150 μm(2)) or low (1.5 × 1.5 cm(2)) magnification while pacing at a physiological (120 beats/min) or a slow heart rate (SHR = 50 beats/min). Western blots and pharmacological interventions were used to elucidate the regional effects of bradycardia. As a result, bradycardia (SHR 50 beats/min) increased APDs gradually (time constant τf→s = 48 ± 9.2 s) and caused a secondary Ca(2+) release (SCR) from the sarcoplasmic reticulum during AP plateaus, occurring at the base on average of 184.4 ± 9.7 ms after the Ca(2+) transient upstroke. In subcellular imaging, SCRs were temporally synchronous and spatially homogeneous within myocytes. In diastole, SHR elicited variable asynchronous sarcoplasmic reticulum Ca(2+) release events leading to subcellular Ca(2+) waves, detectable only at high magnification. SCR was regionally heterogeneous, correlated with APD prolongation (P < 0.01, n = 5), enhanced DOR (r = 0.9277 ± 0.03, n = 7), and was gradually reversed by pacing at 120 beats/min along with APD shortening (P < 0.05, n = 5). A stabilizer of leaky ryanodine receptors (RyR2), 3-(4-benzylcyclohexyl)-1-(7-methoxy-2,3-dihydrobenzo[f][1,4]thiazepin-4(5H)-yl)propan-1-one (K201; 1 μM), suppressed SCR and reduced APD at the base, thereby reducing DOR (P < 0.02, n = 5). Ventricular ectopy induced by bradycardia (n = 5/15) was suppressed by K201. Western blot analysis revealed spatial differences of voltage-gated L-type Ca(2+) channel protein (Cav1.2α), Na(+)-Ca(2+) exchange (NCX1), voltage-gated Na(+) channel (Nav1.5), and rabbit ether-a-go-go-related (rERG) protein [but not RyR2 or sarcoplasmic reticulum Ca(2+) ATPase 2a] that correlate with the SCR distribution and explain the molecular basis for SCR heterogeneities. In conclusion, acute bradycardia elicits synchronized subcellular SCRs of sufficient magnitude to overcome the source-sink mismatch and to promote afterdepolarizations.
Collapse
Affiliation(s)
- Jong J Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cardiac electrophysiological imaging systems scalable for high-throughput drug testing. Pflugers Arch 2012; 464:645-56. [PMID: 23053475 PMCID: PMC3513599 DOI: 10.1007/s00424-012-1149-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 12/02/2022]
Abstract
Multi-parametric electrophysiological measurements using optical methods have become a highly valued standard in cardiac research. Most published optical mapping systems are expensive and complex. Although some applications demand high-cost components and complex designs, many can be tackled with simpler solutions. Here, we describe (1) a camera-based voltage and calcium imaging system using a single ‘economy’ electron-multiplying charge-coupled device camera and demonstrate the possibility of using a consumer camera for imaging calcium transients of the heart, and (2) a photodiode-based voltage and calcium high temporal resolution measurement system using single-element photodiodes and an optical fibre. High-throughput drug testing represents an application where system scalability is particularly attractive. Therefore, we tested our systems on tissue exposed to a well-characterized and clinically relevant calcium channel blocker, nifedipine, which has been used to treat angina and hypertension. As experimental models, we used the Langendorff-perfused whole-heart and thin ventricular tissue slices, a preparation gaining renewed interest by the cardiac research community. Using our simplified systems, we were able to monitor simultaneously the marked changes in the voltage and calcium transients that are responsible for the negative inotropic effect of the compound.
Collapse
|
28
|
Lee P, Yan P, Ewart P, Kohl P, Loew LM, Bollensdorff C. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Arch 2012; 464:403-14. [PMID: 22886365 DOI: 10.1007/s00424-012-1135-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electrophysiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart.
Collapse
Affiliation(s)
- Peter Lee
- Department of Physics, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
29
|
Lee P, Taghavi F, Yan P, Ewart P, Ashley EA, Loew LM, Kohl P, Bollensdorff C, Woods CE. In situ optical mapping of voltage and calcium in the heart. PLoS One 2012; 7:e42562. [PMID: 22876327 PMCID: PMC3411684 DOI: 10.1371/journal.pone.0042562] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022] Open
Abstract
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches.
Collapse
Affiliation(s)
- Peter Lee
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Fouad Taghavi
- Division of Cardiothoracic Surgery, Papworth Hosptial, Cambridge, United Kingdom
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Paul Ewart
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Euan A. Ashley
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Leslie M. Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Christian Bollensdorff
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- * E-mail: (CB); (CEW)
| | - Christopher E. Woods
- Department of Medicine, Stanford University, Stanford, California, United States of America
- * E-mail: (CB); (CEW)
| |
Collapse
|
30
|
Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 2012; 303:H156-67. [PMID: 22636675 DOI: 10.1152/ajpheart.00333.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The isolated retrograde-perfused Langendorff heart and the isolated ejecting heart have, over many decades, resulted in fundamental discoveries that form the underpinnings of our current understanding of the biology and physiology of the heart. These two experimental methodologies have proven invaluable in studying pharmacological effects on myocardial function, metabolism, and vascular reactivity and in the investigation of clinically relevant disease states such as ischemia-reperfusion injury, diabetes, obesity, and heart failure. With the advent of the genomics era, the isolated mouse heart preparation has gained prominence as an ex vivo research tool for investigators studying the impact of gene modification in the intact heart. This review summarizes the historical development of the isolated heart and provides a practical guide for the establishment of the Langendorff and ejecting heart preparations with a particular emphasis on the murine heart. In addition, current applications and novel methods of recording cardiovascular parameters in the isolated heart preparation will be discussed. With continued advances in methodological recordings, the isolated mouse heart preparation will remain physiologically relevant for the foreseeable future, serving as an integral bridge between in vitro assays and in vivo approaches.
Collapse
Affiliation(s)
- Ronglih Liao
- Cardiac Muscle Research Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Igor Efimov
- Department of Biomedical Engineering
Washington University
St. Louis, MO (Efimov)
| | - Guy Salama
- Department of Medicine
University of Pittsburgh
Pittsburgh, PA(Salama)
| |
Collapse
|
32
|
Parikh A, Mantravadi R, Kozhevnikov D, Roche MA, Ye Y, Owen LJ, Puglisi JL, Abramson JJ, Salama G. Ranolazine stabilizes cardiac ryanodine receptors: a novel mechanism for the suppression of early afterdepolarization and torsades de pointes in long QT type 2. Heart Rhythm 2012; 9:953-60. [PMID: 22245792 DOI: 10.1016/j.hrthm.2012.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ranolazine (Ran) is known to inhibit multiple targets, including the late Na(+)current, the rapid delayed rectifying K(+)current, the L-type Ca(2+)current, and fatty acid metabolism. Functionally, Ran suppresses early afterdepolarization (EADs) and torsades de pointes (TdP) in drug-induced long QT type 2 (LQT2) presumably by decreasing intracellular [Na(+)](i) and Ca(2+)overload. However, simulations of EADs in LQT2 failed to predict their suppression by Ran. OBJECTIVE To elucidate the mechanism(s) whereby Ran alters cardiac action potentials (APs) and cytosolic Ca(2+)transients and suppresses EADs and TdP in LQT2. METHODS The known effects of Ran were included in simulations (Shannon and Mahajan models) of rabbit ventricular APs and Ca(2+)transients in control and LQT2 models and compared with experimental optical mapping data from Langendorff rabbit hearts treated with E4031 (0.5 μM) to block the rapid delayed rectifying K(+)current. Direct effects of Ran on cardiac ryanodine receptors (RyR2) were investigated in single channels and changes in Ca(2+)-dependent high-affinity ryanodine binding. RESULTS Ran (10 μM) alone prolonged action potential durations (206 ± 4.6 to 240 ± 7.8 ms; P <0.05); E4031 prolonged action potential durations (204 ± 6 to 546 ± 35 ms; P <0.05) and elicited EADs and TdP that were suppressed by Ran (10 μM; n = 7 of 7 hearts). Simulations (Shannon but not Mahajan model) closely reproduced experimental data except for EAD suppression by Ran. Ran reduced open probability (P(o)) of RyR2 (half maximal inhibitory concentration = 10 ± 3 μM; n = 7) in bilayers and shifted half maximal effective concentration for Ca(2+)-dependent ryanodine binding from 0.42 ± 0.02 to 0.64 ± 0.02 μM with 30 μM Ran. CONCLUSIONS Ran reduces P(o) of RyR2, desensitizes Ca(2+)-dependent RyR2 activation, and inhibits Ca(i) oscillations, which represents a novel mechanism for its suppression of EADs and TdP.
Collapse
Affiliation(s)
- Ashish Parikh
- Department of Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scull JA, McSpadden LC, Himel HD, Badie N, Bursac N. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers. Ann Biomed Eng 2011; 40:1006-17. [PMID: 22124794 DOI: 10.1007/s10439-011-0478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
Simultaneous mapping of transmembrane voltage (V(m)) and intracellular Ca(2+) concentration (Ca(i)) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca(2+)-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Ca(i) transients without significant crosstalk from V(m). Crosstalk present in V(m) signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Ca(i) transient. This method was applied to study delay between onsets of action potentials and Ca(i) transients in anisotropic cardiac monolayers.
Collapse
Affiliation(s)
- James A Scull
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
34
|
Lang D, Sulkin M, Lou Q, Efimov IR. Optical mapping of action potentials and calcium transients in the mouse heart. J Vis Exp 2011:3275. [PMID: 21946907 PMCID: PMC3230201 DOI: 10.3791/3275] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (Vm), calcium transients (CaT), and other parameters. Excitation-contraction coupling is characterized by action potential and intracellular calcium dynamics; therefore, it is critically important to map both Vm and CaT simultaneously from the same location on the heart1-4. Simultaneous optical mapping from Langendorff perfused mouse hearts has the potential to elucidate mechanisms underlying heart failure, arrhythmias, metabolic disease, and other heart diseases. Visualization of activation, conduction velocity, action potential duration, and other parameters at a myriad of sites cannot be achieved from cellular level investigation but is well solved by optical mapping1,5,6. In this paper we present the instrumentation setup and experimental conditions for simultaneous optical mapping of Vm and CaT in mouse hearts with high spatio-temporal resolution using state-of-the-art CMOS imaging technology. Consistent optical recordings obtained with this method illustrate that simultaneous optical mapping of Langendorff perfused mouse hearts is both feasible and reliable.
Collapse
Affiliation(s)
- Di Lang
- Department of Biomedical Engineering, Washington University in St. Louis, USA
| | | | | | | |
Collapse
|
35
|
Lee P, Bollensdorff C, Quinn TA, Wuskell JP, Loew LM, Kohl P. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 2011; 8:1482-91. [PMID: 21459161 PMCID: PMC3167353 DOI: 10.1016/j.hrthm.2011.03.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 03/28/2011] [Indexed: 11/28/2022]
Abstract
Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar.
Collapse
Affiliation(s)
- Peter Lee
- Cardiac Mechano-Electric Feedback Lab, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Salama G, Akar FG. Deciphering Arrhythmia Mechanisms - Tools of the Trade. Card Electrophysiol Clin 2011; 3:11-21. [PMID: 21572551 PMCID: PMC3093299 DOI: 10.1016/j.ccep.2010.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pathophysiological remodeling of cardiac function occurs at multiple levels, spanning the spectrum from molecular and sub-cellular changes to those occurring at the organ-system levels. Of key importance to arrhythmias are changes in electrophysiological and calcium handling properties at the tissue level. In this review, we discuss how high-resolution optical action potential and calcium transient imaging has advanced our understanding of basic arrhythmia mechanisms associated with multiple cardiovascular disorders, including the long QT syndrome, heart failure, and ischemia-reperfusion injury. We focus on the role of repolarization gradients (section 1) and calcium mediated triggers (section 2) in the initiation and maintenance of complex arrhythmias in these settings.
Collapse
Affiliation(s)
- Guy Salama
- University of Pittsburgh, The Cardiovascular Institute, Pittsburgh, PA, 15261
| | - Fadi G. Akar
- Mount Sinai School of Medicine, New York, NY 10029, Tel: 212-241-9251; FAX: 212-241-4080
| |
Collapse
|
37
|
Bursac N, Kirkton RD, McSpadden LC, Liau B. Characterizing functional stem cell-cardiomyocyte interactions. Regen Med 2010; 5:87-105. [PMID: 20017697 DOI: 10.2217/rme.09.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite the progress in traditional pharmacological and organ transplantation therapies, heart failure still afflicts 5.3 million Americans. Since June 2000, stem cell-based approaches for the prevention and treatment of heart failure have been pursued in clinics with great excitement; however, the exact mechanisms of how transplanted cells improve heart function remain elusive. One of the main difficulties in answering these questions is the limited ability to directly access and study interactions between implanted cells and host cardiomyocytes in situ. With the growing number of candidate cell types for potential clinical use, it is becoming increasingly more important to establish standardized, well-controlled in vitro and in situ assays to compare the efficacy and safety of different stem cells in cardiac repair. This article describes recent innovative methodologies to characterize direct functional interactions between stem cells and cardiomyocytes, aimed to facilitate the rational design of future cell-based therapies for heart disease.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|