1
|
Muller I, Maioli S, Armenti M, Porcaro L, Currò N, Iofrida E, Pignataro L, Manso J, Mian C, Geginat J, Salvi M. Alemtuzumab-induced thyroid eye disease successfully treated with a single low dose of rituximab. Eur Thyroid J 2024; 13:e230236. [PMID: 38471303 PMCID: PMC11046353 DOI: 10.1530/etj-23-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Secondary thyroid autoimmunity, especially Graves' disease (GD), frequently develops in patients with multiple sclerosis (MS) following alemtuzumab treatment (ALTZ; anti-CD52). Thyroid eye disease (TED) can also develop, and rituximab (RTX; anti-CD20) is a suitable treatment. Case presentation A 37-year-old woman with MS developed steroid-resistant active moderate-to-severe TED 3 years after ALTZ, that successfully responded to a single 500 mg dose of i.v. RTX. Before RTX peripheral B-cells were low, and were totally depleted immediately after therapy. Follow-up analysis 4 years post ALTZ and 1 year post RTX showed persistent depletion of B cells, and reduction of T regulatory cells in both peripheral blood and thyroid tissue obtained at thyroidectomy. Conclusion RTX therapy successfully inactivated TED in a patient with low B-cell count derived from previous ALTZ treatment. B-cell depletion in both thyroid and peripheral blood was still present 1 year after RTX, indicating a likely cumulative effect of both treatments.
Collapse
Affiliation(s)
- Ilaria Muller
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- Endocrinology Unit, Graves’ Orbitopathy Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Maioli
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Mirco Armenti
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Laura Porcaro
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Nicola Currò
- Endocrinology Unit, Graves’ Orbitopathy Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisabetta Iofrida
- Department of Specialistic Surgical Sciences, Otolaryngology and Head and Neck Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- Department of Specialistic Surgical Sciences, Otolaryngology and Head and Neck Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jacopo Manso
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Jens Geginat
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- National Institute of Molecular Genetics (INGM) “Romeo and Enrica Invernizzi”, Milan, Italy
| | - Mario Salvi
- Endocrinology Unit, Graves’ Orbitopathy Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Kar SS, Gharai SR, Sahu SK, Ravichandiran V, Swain SP. The Current Landscape in the Development of Small-molecule Modulators Targeting Sphingosine-1-phosphate Receptors to Treat Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:2431-2446. [PMID: 38676503 DOI: 10.2174/0115680266288509240422112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this via signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct actions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the approval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clinical trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are affected, and the structural characteristics of several small molecule S1P modulators, with a particular focus on their structure-activity connections.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Faculty of Pharmacy, C. V. Raman Global University, Mahura, Bhubaneswar, 752054, Odisha, India
| | - Soumya Ranjan Gharai
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Sujit Kumar Sahu
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
3
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Stamatellos VP, Papazisis G. Safety and Monitoring of the Treatment with Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS). Curr Rev Clin Exp Pharmacol 2023; 18:39-50. [PMID: 35418296 DOI: 10.2174/2772432817666220412110720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS) are widely used given their proven efficacy in the relapsing form of the disease, while recently, Siponimod and Ocrelizumab have been approved for the progressive forms of the disease. Currently, 22 diseasemodifying drugs are approved by the FDA, while in 2012, only nine were present in the market. From March 2019 until August 2020, six new drugs were approved. This rapid development of new DMTs highlighted the need to update our knowledge about their short and long-term safety. OBJECTIVE This review summarizes the available safety data for all the Disease-Modifying Therapies for Multiple Sclerosis and presents the monitoring plan before and during the treatment. METHODS A literature search was conducted using PUBMED and COCHRANE databases. Key journals and abstracts from major annual meetings of Neurology, references of relevant reviews, and relative articles were also manually searched. We prioritized systematic reviews, large randomized controlled trials (RCTs), prospective cohort studies, and other observational studies. Special attention was paid to guidelines and papers focusing on the safety and monitoring of DMTs. CONCLUSION Data for oral (Sphingosine 1-phosphate (S1P) receptor modulators, Fumarates, Teriflunomide, Cladribine), injectables (Interferons, Glatiramer acetate, Ofatumumab), and infusion therapies (Natalizumab, Ocrelizumab, Alemtuzumab) are presented.
Collapse
Affiliation(s)
| | - Georgios Papazisis
- Clinical Trials Unit, Special Unit for Biomedical Research and Education & Department of Clinical Pharmacology School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Eforakopoulos F, Giovani M, Mulita F, Koletsis E, Zampakis P, Verras GI, Bouchagier K, Panagiotopoulos I, Charokopos N. Mediastinal abscess and osteomyelitis as side effects of immunomodulatory treatment with fingolimod. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2022; 19:109-112. [PMID: 35891999 PMCID: PMC9290398 DOI: 10.5114/kitp.2022.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Affiliation(s)
| | - Maria Giovani
- Department of Pediatric Surgery, Mitera Children’s Hospital, Marousi, Athens, Greece
| | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | | | - Petros Zampakis
- Department of Radiology, University of Patras, Patras, Greece
| | | | | | | | | |
Collapse
|
7
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
8
|
Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord 2021; 14:17562864211049208. [PMID: 34671423 PMCID: PMC8521409 DOI: 10.1177/17562864211049208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) can be divided into a primary and secondary phase. In the primary phase, hematoma volume is evaluated and therapies are focused on reducing hematoma expansion. In the secondary, neuroprotective phase, complex systemic inflammatory cascades, direct cellular toxicity, and blood-brain barrier disruption can result in worsening perihematomal edema that can adversely affect functional outcome. To date, all major randomized phase 3 trials for ICH have targeted primary phase hematoma volume and incorporated clot evacuation, intensive blood pressure control, and hemostasis. Reasons for this lack of clinical efficacy in the major ICH trials may be due to the lack of therapeutics involving mitigation of secondary injury and inflexible trial design that favors unilateral mechanisms in a complex pathophysiology. Potential pathophysiological targets for attenuating secondary injury are highlighted in this review and include therapies increasing calcium, antagonizing microglial activation, maintaining macrophage M1 versus M2 balance by decreasing M1 signaling, aquaporin inhibition, NKCCl inhibition, endothelin receptor inhibition, Sur1-TRPM4 inhibition, matrix metalloproteinase inhibition, and sphingosine-1-phosphate receptor modulation. Future clinical trials in ICH focusing on secondary phase injury and, potentially implementing adaptive trial design approaches with multifocal targets, may improve insight into these mechanisms and provide potential therapies that may improve survival and functional outcome.
Collapse
Affiliation(s)
- Wendy Bautista
- Center for Advanced Preclinical Research (CAPR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P David Adelson
- Division of Pediatric Neurosurgery, Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Nathan Bicher
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Marios Themistocleous
- Department of Neurosurgery, Pediatric Hospital of Athens, Agia Sophia, Athens, Greece
| | - Georgios Tsivgoulis
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, 110 Irving Street, NW, Rm 4B42, Washington, DC 20010, USA
| |
Collapse
|
9
|
Aoki R, Mori M, Suzuki YI, Uzawa A, Masuda H, Uchida T, Ohtani R, Kuwabara S. Cryptococcal Meningitis in a Fingolimod-Treated Patient: Positive Antigen Test a Year Before Onset. Neurol Clin Pract 2021; 11:e549-e550. [PMID: 34484955 DOI: 10.1212/cpj.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/04/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Reiji Aoki
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Yo-Ichi Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Tomohiko Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Ryohei Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
10
|
Wu X, Xue T, Wang Z, Chen Z, Zhang X, Zhang W, Wang Z. Different Doses of Fingolimod in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2021; 12:621856. [PMID: 34079453 PMCID: PMC8165387 DOI: 10.3389/fphar.2021.621856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Background: The efficacy and safety of fingolimod for relapsing-remitting multiple sclerosis (RRMS) had been well verified in several large randomized controlled trials (RCTs) during the past decade. However, there are fewer systematic comparisons of different doses of fingolimod and whether the dose of 0.5 mg/d is the optimal one still remains to be solved. Objective: The objective of this systematic review was to evaluate the efficacy and safety of the four existing doses of fingolimod in the treatment of RRMS, especially the dose of 0.5 mg/d. Methods: MEDLINE, EMBASE, Cochrane Library, and clinicaltrials.gov were searched for RCTs which were performed to evaluate different doses of fingolimod and the corresponding control (placebo or DMTs) up to October 2020. Review Manager 5.3 software was used to assess the data. The risk ratio (RR) and mean difference (MD) was analyzed and calculated with a random effect model. Results: We pooled 7184 patients from 11 RCTs. Fingolimod 0.5 mg/d was superior to control group in all eight efficacy outcomes including annualized relapse rate (ARR) (MD -0.22, 95%CI -0.29 to -0.14, p < 0.00001) but surprisingly showed a higher risk of basal-cell carcinoma (RR 4.40, 95%CI 1.58 to 12.24, p = 0.004). Although 1.25 mg/d is more than twice the dose of 0.5 mg/d, the effect size was almost similar between them. Dose of 5 mg/d obtained an unsatisfactory efficacy while showing a greater risk of adverse events than other three doses (RR 1.17, 95%CI 1.05 to 1.30, p = 0.003). Additionally, fingolimod 0.25 mg/d not only showed a better performance in delaying the disease progress of magnetic resonance imaging (MRI), but also achieved a certain degree of patient treatment satisfaction. Conclusion: At present, 0.5 mg/d remains to be the optimal dose of fingolimod for RRMS patients but trials of a lower dose are still of great clinical significance and should be paid more attentions.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuwei Zhang
- Department of Neurosurgery, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Wei Zhang
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Pérez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis. Drugs 2021; 81:985-1002. [PMID: 33983615 PMCID: PMC8116828 DOI: 10.1007/s40265-021-01528-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid metabolite that exerts its actions by engaging 5 G-protein-coupled receptors (S1PR1-S1PR5). S1P receptors are involved in several cellular and physiological events, including lymphocyte/hematopoietic cell trafficking. An S1P gradient (low in tissues, high in blood), maintained by synthetic and degradative enzymes, regulates lymphocyte trafficking. Because lymphocytes live long (which is critical for adaptive immunity) and recirculate thousands of times, the S1P-S1PR pathway is involved in the pathogenesis of immune-mediated diseases. The S1PR1 modulators lead to receptor internalization, subsequent ubiquitination, and proteasome degradation, which renders lymphocytes incapable of following the S1P gradient and prevents their access to inflammation sites. These drugs might also block lymphocyte egress from lymph nodes by inhibiting transendothelial migration. Targeting S1PRs as a therapeutic strategy was first employed for multiple sclerosis (MS), and four S1P modulators (fingolimod, siponimod, ozanimod, and ponesimod) are currently approved for its treatment. New S1PR modulators are under clinical development for MS, and their uses are being evaluated to treat other immune-mediated diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and psoriasis. A clinical trial in patients with COVID-19 treated with ozanimod is ongoing. Ozanimod and etrasimod have shown promising results in IBD; while in phase 2 clinical trials, ponesimod has shown improvement in 77% of the patients with psoriasis. Cenerimod and amiselimod have been tested in SLE patients. Fingolimod, etrasimod, and IMMH001 have shown efficacy in RA preclinical studies. Concerns relating to S1PR modulators are leukopenia, anemia, transaminase elevation, macular edema, teratogenicity, pulmonary disorders, infections, and cardiovascular events. Furthermore, S1PR modulators exhibit different pharmacokinetics; a well-established first-dose event associated with S1PR modulators can be mitigated by gradual up-titration. In conclusion, S1P modulators represent a novel and promising therapeutic strategy for immune-mediated diseases.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Manuel Alvarez-Lobos
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Jesús Rivera-Nieves
- San Diego VA Medical Center (SDVAMC), San Diego, CA, USA.
- Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive Bldg. BRF-II Rm. 4A32, San Diego, CA, 92093-0063, USA.
| |
Collapse
|
12
|
Zhang J, Shi S, Zhang Y, Luo J, Tang J, Luo J. Ozanimod for relapsing-remitting multiple sclerosis. Hippokratia 2021. [DOI: 10.1002/14651858.cd013869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Zhang
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Shengliang Shi
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Yueling Zhang
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Jiefeng Luo
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Jian Tang
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Jinglian Luo
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| |
Collapse
|
13
|
Fingolimod in pediatric multiple sclerosis: three case reports. Neurol Sci 2021; 42:19-23. [PMID: 33483884 DOI: 10.1007/s10072-021-05076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 12/22/2022]
Abstract
Treatment for pediatric-onset multiple sclerosis (POMS) currently reflects treatment for adult-onset MS, despite some differences in its clinical course. First-choice treatment of POMS generally consists of interferon β-1a or glatiramer acetate, with therapies such as natalizumab or fingolimod reserved for second-choice treatment. In cases of severe disease, both fingolimod and natalizumab can be considered first-choice therapy. This paper presents three case histories of patients with POMS and highlights the different uses of fingolimod within the POMS treatment algorithm. The first and third cases are examples of escalation therapy, both in females aged 16 to 17 years, with fingolimod administering as second choice following disease progression. The second case is an example of using fingolimod as first-choice therapy, given to a 12-year-old male with severe disease. In all three cases, over a period of approximately 1 year after the initiation of fingolimod treatment, there was no further disease progression and no adverse events were recorded.
Collapse
|
14
|
Tasat DR, Yakisich JS. Rationale for the use of sphingosine analogues in COVID-19 patients. Clin Med (Lond) 2020; 21:e84-e87. [PMID: 33144402 DOI: 10.7861/clinmed.2020-0309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the recent announcement of promising drug candidates to treat COVID-19, there is currently no effective antiviral drug or vaccine. There is strong evidence that acute lung injury/acute respiratory distress syndrome (ALI/ARDS), likely triggered by a cytokine storm, is responsible for the severity of disease seen in COVID-19 patients. In support of this hypothesis, pilot studies using IL-6 receptor inhibitors such as tocilizumab have shown promising results. Therefore, the use of drugs or cocktails of drugs with broader ability to inhibit these cytokine receptors is likely to be effective. In this article, we propose the use of sphingosine analogues, which have been shown to mitigate acute lung damage in animal models of ALI/ARDS, as early adjuvant therapies to prevent and/or mitigate the cytokine response in COVID-19 patients. This proposal is based on the ability of these drugs to decrease the production of IL-6 and other cytokines. The potential application of fingolimod (FTY720), the oldest sphingosine analogue approved for the treatment of multiple sclerosis, in the early stages of COVID-19 is discussed in more detail as a prototype drug.
Collapse
Affiliation(s)
- Deborah R Tasat
- National University of San Martin, San Martin, and University of Buenos Aires
| | | |
Collapse
|
15
|
Mücke VT, Maria Schwarzkopf K, Thomas D, Mücke MM, Rüschenbaum S, Trebicka J, Pfeilschifter J, Zeuzem S, Lange CM, Grammatikos G. Serum Sphingosine-1-Phosphate Is Decreased in Patients With Acute-on-Chronic Liver Failure and Predicts Early Mortality. Hepatol Commun 2020; 4:1477-1486. [PMID: 33024917 PMCID: PMC7527696 DOI: 10.1002/hep4.1561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Sphingosine‐1‐phosphate (S1P) regulates pathophysiological processes, including liver regeneration, vascular tone control, and immune response. In patients with liver cirrhosis, acute deterioration of liver function is associated with high mortality rates. The present study investigated whether serum S1P concentrations are associated with disease severity in patients with chronic liver disease from compensated cirrhosis (CC), acute decompensation (AD), or acute‐on‐chronic liver failure (ACLF). From August 2013 to October 2017, patients who were admitted to the University Hospital Frankfurt with CC, AD, or ACLF were enrolled in our cirrhosis cohort study. Tandem mass spectrometry was performed on serum samples of 127 patients to assess S1P concentration. Our study comprised 19 patients with CC, 55 with AD, and 51 with ACLF, aged 29 to 76 years. We observed a significant decrease of S1P according to advanced liver injury from CC and AD up to ACLF (P < 0.001). S1P levels further decreased with progression to ACLF grade 3 (P < 0.05), and S1P highly inversely correlated with the Model for End‐Stage Liver Disease score (r = −0.508; P < 0.001). In multivariate analysis, S1P remained an independent predictor of 7‐day mortality with high diagnostic accuracy (area under the curve, 0.874; P < 0.001). Conclusion: In patients with chronic liver disease, serum S1P levels dramatically decreased with advanced stages of liver disease and were predictive of early mortality. Because S1P is a potent regulator of endothelial integrity and immune response, low S1P levels may significantly influence progressive multiorgan failure. Our data justify further elucidation of the diagnostic and therapeutic role of S1P in ACLF.
Collapse
Affiliation(s)
- Victoria T Mücke
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Katharina Maria Schwarzkopf
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Dominique Thomas
- Pharmazentrum Frankfurt Institute of Clinical Pharmacology Goethe University Frankfurt am Main Germany
| | - Marcus M Mücke
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Sabrina Rüschenbaum
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg-Essen Essen Germany
| | - Jonel Trebicka
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt Institute of General Pharmacology and Toxicology Goethe University Frankfurt am Main Germany
| | - Stefan Zeuzem
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg-Essen Essen Germany
| | - Georgios Grammatikos
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany.,St. Luke's Hospital Thessaloniki Panorama Greece
| |
Collapse
|
16
|
REALMS study: real-world effectiveness and safety of fingolimod in patients with relapsing-remitting multiple sclerosis in Portugal. Neurol Sci 2020; 42:1995-2003. [PMID: 32997282 PMCID: PMC8043899 DOI: 10.1007/s10072-020-04726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/15/2020] [Indexed: 01/09/2023]
Abstract
Background Fingolimod, an oral sphingosine 1-phosphate receptor modulator, is approved by EMA for relapsing-remitting multiple sclerosis (RRMS). Objectives To assess the effectiveness and safety of fingolimod in patients with RRMS in real-world clinical practice in Portugal. Methods Retrospective, multicentre, non-interventional study, reporting 3 years follow-up of data collected from October 2015 to July 2016. Sociodemographic data and previous treatments at baseline and data regarding disease evolution, including number of relapses, annualised relapse rates (ARR) and Expanded Disability Status Scale (EDSS), were collected. Results Two-hundred and seventy-five participants were enrolled in the REALMS study. Results showed that the main reason to switch to fingolimod was failure of previous treatment (56.7%) and only 3.6% were naïve patients. In the total population, there was a significant decrease in ARR of 64.6% in the first year of treatment, 79.7% in the second year and 82.3% in the third year, compared with baseline. More than 67.0% of patients had no relapses during the 3 years after switching to fingolimod. EDSS remained stable throughout the study. Conclusions Therapy with fingolimod showed a sustained effectiveness and safety over the 3 years, particularly on patients switched from first-line drugs (BRACE). No new safety issues were reported.
Collapse
|
17
|
Pinke KH, Zorzella-Pezavento SFG, de Campos Fraga-Silva TF, Mimura LAN, de Oliveira LRC, Ishikawa LLW, Fernandes AAH, Lara VS, Sartori A. Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy? Neurotherapeutics 2020; 17:218-234. [PMID: 31463682 PMCID: PMC7007452 DOI: 10.1007/s13311-019-00775-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG35-55 and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to in vitro stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.
Collapse
Affiliation(s)
- Karen Henriette Pinke
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil.
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Luiza Ayumi Nishiyama Mimura
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Larissa Ragozo Cardoso de Oliveira
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| |
Collapse
|
18
|
Van Reenen E, Van Der Borg W, Visse M, Van Der Meide H, Visser L. Fear, fight, familiarize: the experiences of people living with relapsing-remitting multiple sclerosis and taking oral medication. Int J Qual Stud Health Well-being 2019; 14:1648946. [PMID: 31390951 PMCID: PMC6713094 DOI: 10.1080/17482631.2019.1648946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose: In addition to becoming familiar with the life changing event of having a chronic illness and exploring its meaning in daily life, people with relapsing-remitting Multiple Sclerosis (RRMS) are faced with important decisions about immunomodulating treatment. Biomedical research on the use of Disease Modifying Therapies (DMTs) mostly focuses on adherence, conceptualized and understood as a behavioral act leading to a desired outcome. Less attention has been paid to the meaning for a person with RRMS of starting and continuing the use of DMTs. Studies on the experiences of people with RRMS taking orally administered DMTs are lacking. The aim of this phenomenological study was to examine the experiences of people with RRMS taking oral medication. Methods: The study was guided by Interpretative Phenomenological Analysis (IPA) and Phenomenology of Practice. 25 persons with RRMS participated in in-depth interviews. Results: In general, participants of this study find themselves in alternating phases that vary by degree of experienced unfamiliarity or familiarity with concern to one's illness, one's changing body, and one's new life. The meaning of taking medication is closely related to these phases. Conclusions: Adherence serves a purpose in the lifeworlds of participants. Medication is the embodiment of this purpose. The pill has inherent meaning.
Collapse
Affiliation(s)
- Eva Van Reenen
- Chair Care Ethics and Policy, University of Humanistic Studies, Utrecht, The Netherlands
| | - Wieke Van Der Borg
- Medical Humanities, VU University Medical Centre, Amsterdam UMC, The Netherlands
| | - Merel Visse
- Chair Care Ethics and Policy, University of Humanistic Studies, Utrecht, The Netherlands
| | | | - Leo Visser
- Chair Care Ethics and Policy, University of Humanistic Studies, Utrecht, The Netherlands
- Neurology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
19
|
García-Revilla J, Alonso-Bellido IM, Burguillos MA, Herrera AJ, Espinosa-Oliva AM, Ruiz R, Cruz-Hernández L, García-Domínguez I, Roca-Ceballos MA, Santiago M, Rodríguez-Gómez JA, Soto MS, de Pablos RM, Venero JL. Reformulating Pro-Oxidant Microglia in Neurodegeneration. J Clin Med 2019; 8:E1719. [PMID: 31627485 PMCID: PMC6832973 DOI: 10.3390/jcm8101719] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022] Open
Abstract
In neurodegenerative diseases, microglia-mediated neuroinflammation and oxidative stress are central events. Recent genome-wide transcriptomic analyses of microglial cells under different disease conditions have uncovered a new subpopulation named disease-associated microglia (DAM). These studies have challenged the classical view of the microglia polarization state's proinflammatory M1 (classical activation) and immunosuppressive M2 (alternative activation). Molecular signatures of DAM and proinflammatory microglia (highly pro-oxidant) have shown clear differences, yet a partial overlapping gene profile is evident between both phenotypes. The switch activation of homeostatic microglia into reactive microglia relies on the selective activation of key surface receptors involved in the maintenance of brain homeostasis (a.k.a. pattern recognition receptors, PRRs). Two relevant PRRs are toll-like receptors (TLRs) and triggering receptors expressed on myeloid cells-2 (TREM2), whose selective activation is believed to generate either a proinflammatory or a DAM phenotype, respectively. However, the recent identification of endogenous disease-related ligands, which bind to and activate both TLRs and TREM2, anticipates the existence of rather complex microglia responses. Examples of potential endogenous dual ligands include amyloid β, galectin-3, and apolipoprotein E. These pleiotropic ligands induce a microglia polarization that is more complicated than initially expected, suggesting the possibility that different microglia subtypes may coexist. This review highlights the main microglia polarization states under disease conditions and their leading role orchestrating oxidative stress.
Collapse
Affiliation(s)
- Juan García-Revilla
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Isabel M Alonso-Bellido
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Miguel A Burguillos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Antonio J Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Ana M Espinosa-Oliva
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Luis Cruz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Irene García-Domínguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - María A Roca-Ceballos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Marti Santiago
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - José A Rodríguez-Gómez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Departament of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain.
| | - Manuel Sarmiento Soto
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Rocío M de Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - José L Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| |
Collapse
|
20
|
Ouspid E, Razazian N, Moghadasi AN, Moradian N, Afshari D, Bostani A, Sariaslani P, Ansarian A. Clinical effectiveness and safety of fingolimod in relapsing remitting multiple sclerosis in Western Iran. ACTA ACUST UNITED AC 2019; 23:129-134. [PMID: 29664454 PMCID: PMC8015441 DOI: 10.17712/nsj.2018.2.20170434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: To investigate the clinical effectiveness and safety of fingolimod in the western Iranian population. Methods: This study was performed as a prospective observational study between March 2014 and October 2015. Sixty patients with relapsing remitting multiple sclerosis (RRMS) who were referred to the MS clinic of Imam Reza Hospital, which is affiliated with Kermanshah University of Medical Sciences, Iran, were treated with 0.5 mg oral fingolimod capsules once daily for 12 months. The outcomes were clinical and included the annualized relapse rate, expanded disability status scale (EDSS) change, proportion of relapse-free patient, and side effects. Results: An 85% reduction in the annualized relapse rate compared with the baseline (from 1.8±1.35 to 0.27±0.58, p=0.001) was observed, and 76.66% of patients were free from relapse after the 12-month intervention. In addition, a significant reduction of EDSS was measured from 3.32 at baseline to 2.97 (p=0.001). The overall adverse events in our study were similar to those in previous studies. Conclusion: The present study confirms the effectiveness of fingolimod as a second-line therapy in western Iranian RRMS patients. Fingolimod side effects were generally mild and tolerable.
Collapse
Affiliation(s)
- Elham Ouspid
- Department of Neurology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cohen JA, Tenenbaum N, Bhatt A, Zhang Y, Kappos L. Extended treatment with fingolimod for relapsing multiple sclerosis: the 14-year LONGTERMS study results. Ther Adv Neurol Disord 2019; 12:1756286419878324. [PMID: 31598139 PMCID: PMC6763939 DOI: 10.1177/1756286419878324] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/31/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic disease that may require decades of
ongoing treatment. Therefore, the long-term safety and efficacy of
disease-modifying therapies is an important consideration. Methods: The LONGTERMS study evaluated the safety and efficacy of fingolimod in
patients with relapsing MS (RMS) with up to 14 years of exposure. This phase
IIIb, open-label extension study included patients aged ⩾ 18 years with
confirmed RMS diagnosis who completed previous phase II/III/IIIb
core/extension studies of fingolimod. Patients received fingolimod 0.5 mg
orally once daily; safety and efficacy (clinical and magnetic resonance
imaging) were the main outcomes. Results: Of 4086 patients from the core studies who entered LONGTERMS, 3480 (85.2%)
completed the study. The median age (range) was 38 (17–65) years and median
fingolimod exposure was 944.5 (range 75–4777) days. Overall, 85.5% of
patients experienced at least one adverse event (AE); most common AEs (⩾10%)
were viral upper respiratory tract infection (17.3%), headache (13.3%),
hypertension (11.0%) and lymphopenia (10.7%). Among patients with serious
AEs (12.6%), basal cell carcinoma and MS relapse (0.9% each) were most
frequently reported. The aggregate annualized relapse rate decreased from
0.22 (in years 0–2) to 0.17 (years 0–10); 45.5% of patients remained relapse
free after 10 years. At year 10, 63.2% of patients were free from 6-month
confirmed disability worsening. Conclusion: This long-term observational study of patients treated for up to 14 years
with fingolimod confirmed its established safety profile with no new safety
concerns. Patients with RMS receiving fingolimod had sustained low levels of
disease activity and progression. Trial Registration: ClinicalTrials.gov identifier: NCT01201356.
Collapse
Affiliation(s)
- Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic Foundation, 9500 Euclid Avenue/U10, Cleveland, OH 44195, USA
| | | | - Alit Bhatt
- Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Ying Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Ludwig Kappos
- Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
23
|
Fingolimod Suppresses the Proinflammatory Status of Interferon-γ-Activated Cultured Rat Astrocytes. Mol Neurobiol 2019; 56:5971-5986. [PMID: 30701416 DOI: 10.1007/s12035-019-1481-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Astroglia, the primary homeostatic cells of the central nervous system, play an important role in neuroinflammation. They act as facultative immunocompetent antigen-presenting cells (APCs), expressing major histocompatibility complex (MHC) class II antigens upon activation with interferon (IFN)-γ and possibly other proinflammatory cytokines that are upregulated in disease states, including multiple sclerosis (MS). We characterized the anti-inflammatory effects of fingolimod (FTY720), an established drug for MS, and its phosphorylated metabolite (FTY720-P) in IFN-γ-activated cultured rat astrocytes. The expression of MHC class II compartments, β2 adrenergic receptor (ADR-β2), and nuclear factor kappa-light-chain enhancer of activated B cells subunit p65 (NF-κB p65) was quantified in immunofluorescence images acquired by laser scanning confocal microscopy. In addition, MHC class II-enriched endocytotic vesicles were labeled by fluorescent dextran and their mobility analyzed in astrocytes subjected to different treatments. FTY720 and FTY720-P treatment significantly reduced the number of IFN-γ-induced MHC class II compartments and substantially increased ADR-β2 expression, which is otherwise small or absent in astrocytes in MS. These effects could be partially attributed to the observed decrease in NF-κB p65 expression, because the NF-κB signaling cascade is activated in inflammatory processes. We also found attenuated trafficking and secretion from dextran-labeled endo-/lysosomes that may hinder efficient delivery of MHC class II molecules to the plasma membrane. Our data suggest that FTY720 and FTY720-P at submicromolar concentrations mediate anti-inflammatory effects on astrocytes by suppressing their action as APCs, which may further downregulate the inflammatory process in the brain, constituting the therapeutic effect of fingolimod in MS.
Collapse
|
24
|
de Jong BA, van Kempen ZLE, Wattjes MP, Smit PM, Peferoen L, Berry D, Chamuleau MED, de Jong D. Intracerebral lymphoproliferative disorder in an MS patient treated with fingolimod. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e483. [PMID: 30027107 PMCID: PMC6047430 DOI: 10.1212/nxi.0000000000000483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/05/2018] [Indexed: 12/02/2022]
Affiliation(s)
- Brigit A de Jong
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Mike P Wattjes
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick M Smit
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Laura Peferoen
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Daniella Berry
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Martine E D Chamuleau
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Neurology (B.A.d.J., Z.L.E.v.K.), Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center; Department of Radiology & Nuclear Medicine (M.P.W.), VUmc MS Center, Amsterdam, The Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Hannover, Germany; and Departments of Hematology (P.M.S., M.E.D.C.), and Pathology (L.P., D.B., D.d.J.), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Di Pardo A, Basit A, Armirotti A, Amico E, Castaldo S, Pepe G, Marracino F, Buttari F, Digilio AF, Maglione V. De novo Synthesis of Sphingolipids Is Defective in Experimental Models of Huntington's Disease. Front Neurosci 2017; 11:698. [PMID: 29311779 PMCID: PMC5742211 DOI: 10.3389/fnins.2017.00698] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
Alterations of lipid metabolism have been frequently associated with Huntington's disease (HD) over the past years. HD is the most common neurodegenerative disorder, with a complex pathogenic profile, typically characterized by progressive striatal and cortical degeneration and associated motor, cognitive and behavioral disturbances. Previous findings from our group support the idea that disturbed sphingolipid metabolism could represent an additional hallmark of the disease. Although such a defect represents a common biological denominator among multiple disease models ranging from cells to humans through mouse models, more efforts are needed to clearly define its clinical significance and the role it may play in the progression of the disease. In this study, we provided the first evidence of a defective de novo biosynthetic pathway of sphingolipids in multiple HD pre-clinical models. qPCR analysis revealed perturbed gene expression of sphingolipid-metabolizing enzymes in both early and late stage of the disease. In particular, reduction in the levels of sptlc1 and cerS1 mRNA in the brain tissues from manifest HD mice resulted in a significant decrease in the content of dihydroSphingosine, dihydroSphingosine-1-phospahte and dihydroCeramide [C18:0] as assessed by mass spectrometry. Moreover, in vitro studies highlighted the relevant role that aberrant sphingolipid metabolism may have in the HD cellular homeostasis. With this study, we consolidate the evidence of disturbed sphingolipid metabolism in HD and demonstrate for the first time that the de novo biosynthesis pathway is also significantly affected in the disease. This finding further supports the hypothesis that perturbed sphingolipid metabolism may represent a crucial factor accounting for the high susceptibility to disease in HD.
Collapse
Affiliation(s)
| | - Abdul Basit
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | | - Anna F Digilio
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | | |
Collapse
|
26
|
Multiple sclerosis treatment with fingolimod: profile of non-cardiologic adverse events. Acta Neurol Belg 2017; 117:821-827. [PMID: 28528469 DOI: 10.1007/s13760-017-0794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/15/2017] [Indexed: 01/25/2023]
Abstract
Fingolimod was the first oral medication approved for management of multiple sclerosis and is currently used by tens of thousands patients worldwide. Fingolimod acts via the sphingosine 1-phosphate (S1P) receptor, maintaining peripheral lymphocytes entrapped in the lymph nodes. In consequence, there is a reduction in the infiltration of aggressive lymphocytes into the central nervous system. The drug is safe and effective, and its first hours of use are associated with related to S1P receptors in the heart. This side effect is well known by all doctors prescribing fingolimod. However, the drug has other potential adverse events that, although relatively rare, require awareness from the neurologist. Among these there are infections (herpes simplex, herpes zoster, Cryptococcus, Epstein-Barr virus, hepatitis, Molluscum Contagiosum, and leishmaniosis), lung and thyroid complications, refractory headaches, encephalopathy, vasculopathy, tumefactive lesions in magnetic resonance imaging and ophthalmological disorders. The present review lists the non-cardiologic adverse events that all neurologists prescribing fingolimod should be aware of.
Collapse
|
27
|
Elounais F, Aburahma A, Alkotob ML, Al Hadidi S. Ventricular tachycardia after initiation of fingolimod. BMJ Case Rep 2017; 2017:bcr-2017-221819. [PMID: 28954755 DOI: 10.1136/bcr-2017-221819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Fingolimod, a sphingosine-1-phosphate receptor modulator, is used for the treatment of relapsing-remitting multiple sclerosis. It is well known to cause bradyarrhythmias. We present a 63-year-old woman who was admitted to the hospital with sustained monomorphic ventricular tachycardia 2 weeks after fingolimod initiation. Further evaluation showed that the patient's ventricular tachycardia was most likely secondary to her medication. Medical practitioners need to be aware of such possible life-threatening side effects while using fingolimod.
Collapse
Affiliation(s)
- Farah Elounais
- Department of Internal Medicine, Hurley Medical Center, Flint, Michigan, USA
| | - Ahmed Aburahma
- Department of Internal Medicine, Hurley Medical Center, Flint, Michigan, USA
| | | | - Samer Al Hadidi
- Department of Internal Medicine, Michigan State University/Hurley Medical Center, Flint, Michigan, USA
| |
Collapse
|
28
|
Yoshii F, Moriya Y, Ohnuki T, Ryo M, Takahashi W. Neurological safety of fingolimod: An updated review. ACTA ACUST UNITED AC 2017; 8:233-243. [PMID: 28932291 PMCID: PMC5575715 DOI: 10.1111/cen3.12397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/23/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Fingolimod (FTY) is the first oral medication approved for treatment of relapsing–remitting multiple sclerosis (RRMS). Its effectiveness and safety were confirmed in several phase III clinical trials, but proper evaluation of safety in the real patient population requires long‐term post‐marketing monitoring. Since the approval of FTY for RRMS in Japan in 2011, it has been administered to approximately 5000 MS patients, and there have been side‐effect reports from 1750 patients. Major events included infectious diseases, hepatobiliary disorders, nervous system disorders and cardiac disorders. In the present review, we focus especially on central nervous system adverse events. The topics covered are: (i) clinical utility of FTY; (ii) safety profile; (iii) post‐marketing adverse events in Japan; (iv) white matter (tumefactive) lesions; (v) rebound after FTY withdrawal; (vi) relationship between FTY and progressive multifocal leukoencephalopathy; (vii) FTY and progressive multifocal leukoencephalopathy‐related immune reconstitution inflammatory syndrome; and (viii) neuromyelitis optica and leukoencephalopathy.
Collapse
Affiliation(s)
- Fumihito Yoshii
- Department of Neurology Saiseikai Hiratsuka Hospital Hiratsuka Japan.,Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Yusuke Moriya
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Tomohide Ohnuki
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Masafuchi Ryo
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Wakoh Takahashi
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| |
Collapse
|
29
|
Berkovich R, Bakshi R, Amezcua L, Axtell RC, Cen SY, Tauhid S, Neema M, Steinman L. Adrenocorticotropic hormone versus methylprednisolone added to interferon β in patients with multiple sclerosis experiencing breakthrough disease: a randomized, rater-blinded trial. Ther Adv Neurol Disord 2017; 10:3-17. [PMID: 28450891 PMCID: PMC5400152 DOI: 10.1177/1756285616670060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The objective of this study was to evaluate monthly intramuscular adrenocorticotropic hormone (ACTH) gel versus intravenous methylprednisolone (IVMP) add-on therapy to interferon β for breakthrough disease in patients with relapsing forms of multiple sclerosis. METHODS This was a prospective, open-label, examiner-blinded, 15-month pilot study evaluating patients with Expanded Disability Status Scale (EDSS) score 3.0-6.5 and at least one clinical relapse or new T2 or gadolinium-enhanced lesion in the previous year. Twenty-three patients were randomized to ACTH (n = 12) or IVMP (n = 11) and completed the study. The primary outcome measure was the cumulative number of relapses. Secondary outcomes included EDSS, Mental Health Inventory (MHI), plasma cytokines, MS Functional Composite (MSFC), Quality-of-Life (MS-QOL) score, bone mineral density (BMD), and new or worsened psychiatric symptoms per month. Brain magnetic resonance imaging was analyzed post hoc. This was a preliminary and small-scale study. RESULTS Relapse rates differed significantly [ACTH 0.08, 95% confidence interval (CI) 0.01-0.54 versus IVMP 0.80, 95% CI 0.36-1.75; rate ratio, IVMP versus ACTH: 9.56, 95% CI 1.23-74.6; p = 0.03]. ACTH improved (p = 0.03) MHI (slope 0.95 ± 0.38 points/month; p = 0.02 versus slope -0.38 ± 0.43 points/month; p = 0.39). On-study decreases (all p < 0.05) in eight cytokine levels occurred only in the ACTH group. However, on-study EDSS, MSFC, MS-QOL, BMD, and MRI lesion changes were not significant between groups. Psychiatric symptoms per patient were greater with IVMP than ACTH (0.55, 95% CI 0.12-2.6 versus 0; p < 0.0001). Other common adverse events were insomnia and urinary tract infections (IVMP, seven events each) and fatigue or flu symptoms (ACTH, five events each). CONCLUSIONS This study provided class II evidence that ACTH produced better examiner-assessed cumulative rates of relapses per patient than IVMP in the adjunctive treatment of breakthrough disease in multiple sclerosis.
Collapse
Affiliation(s)
- Regina Berkovich
- USC MS Comprehensive Care Center and Research Group, 1520 San Pablo Street, Suite 3000, Los Angeles, CA 90033, USA
| | - Rohit Bakshi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lilyana Amezcua
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | | | - Steven Y. Cen
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Shahamat Tauhid
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohit Neema
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Abstract
Inflammatory mechanisms are currently considered as a prime target for stroke therapy. There is evidence from animal studies that immune signals and mediators can have both detrimental and beneficial effects in particular stages of the disease process. Moreover, several of these mechanisms are turned on with sufficient delay after ischemia onset to make them amenable to therapeutic intervention. Several clinical proof-of concept trials have investigated the efficacy of different immunomodulatory approaches in patients with stroke. Trials targeting the innate immune system have focused on reduction of microglial activation, inhibition of neutrophil migration, and interleukin-1 receptor blockade, suggesting that interleukin-1 receptor blockade may be a promising strategy. Studies aiming at halting T-cell migration have also been undertaken with controversial findings regarding prevention of infarct growth in neuroimaging studies. Consistently, recent proof-of-concept trials targeting lymphocytes with drugs such as natalizumab and fingolimod have yielded some promising results on clinical endpoints, but confirmation in larger trials is needed. At present, the understanding of the role of immune mechanisms in neurorepair and neurodegeneration is limited. Improving long-term brain function by mitigating prolonged neuroinflammation that was triggered by acute brain injury could be a strategy in addition to neuroprotection.
Collapse
Affiliation(s)
- Roland Veltkamp
- Department of Stroke Medicine, Imperial College London, London, UK.
| | - Dipender Gill
- Department of Stroke Medicine, Imperial College London, London, UK
| |
Collapse
|
31
|
Kasper IR, Apostolidis SA, Sharabi A, Tsokos GC. Empowering Regulatory T Cells in Autoimmunity. Trends Mol Med 2016; 22:784-797. [PMID: 27461103 PMCID: PMC5003773 DOI: 10.1016/j.molmed.2016.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) are capable of dampening immune-mediated inflammation and avert the destructive effects of uncontrolled inflammation. Distinct molecules and pathways, including various transcription factors, phosphatases, and kinases, impact the ability of Tregs to function as negative regulators of the immune response, and are presumably amenable to therapeutic manipulation. Here, we discuss recently identified molecular networks and the therapeutic potential for treating autoimmune diseases.
Collapse
Affiliation(s)
- Isaac R Kasper
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Sokratis A Apostolidis
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amir Sharabi
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Clinical Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|