1
|
Xi X, Li J, Jia J, Meng Q, Li C, Wang X, Wei L, Zhang X. A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions. Nat Commun 2025; 16:1284. [PMID: 39900922 PMCID: PMC11790924 DOI: 10.1038/s41467-025-56475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory mechanisms, limiting the decoding of regulations behind key cellular events, such as cell state transitions. Here, we present regX, a deep neural network incorporating both gene-level regulation and gene-gene interaction mechanisms, which enables prioritizing potential driver regulators of cell state transitions and providing mechanistic interpretations. Applied to single-cell multi-omics data on type 2 diabetes and hair follicle development, regX reliably prioritizes key transcription factors and candidate cis-regulatory elements that drive cell state transitions. Some regulators reveal potential new therapeutic targets, drug repurposing possibilities, and putative causal single nucleotide polymorphisms. This method to analyze single-cell multi-omics data demonstrates how the interpretable design of neural networks can better decode biological systems.
Collapse
Affiliation(s)
- Xi Xi
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jiaqi Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jinmeng Jia
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Qiuchen Meng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Chen Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Herring JA, Crabtree JE, Hill JT, Tessem JS. Loss of glucose-stimulated β-cell Nr4a1 expression impairs insulin secretion and glucose homeostasis. Am J Physiol Cell Physiol 2024; 327:C1111-C1124. [PMID: 39219449 PMCID: PMC11482045 DOI: 10.1152/ajpcell.00315.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
A central aspect of type 2 diabetes is decreased functional β-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the β-cell. Nr4a1 expression is decreased in type 2 diabetes rodent β-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced β-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 β-cells. Here, we demonstrate that glucose concentration directly regulates β-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 β-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the β-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and β-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.
Collapse
Affiliation(s)
- Jacob A Herring
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, Utah, United States
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah, United States
| | - Jeffery S Tessem
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
3
|
Ellsworth PN, Herring JA, Leifer AH, Ray JD, Elison WS, Poulson PD, Crabtree JE, Van Ry PM, Tessem JS. CEBPA Overexpression Enhances β-Cell Proliferation and Survival. BIOLOGY 2024; 13:110. [PMID: 38392328 PMCID: PMC10887016 DOI: 10.3390/biology13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
A commonality between type 1 and type 2 diabetes is the decline in functional β-cell mass. The transcription factor Nkx6.1 regulates β-cell development and is integral for proper β-cell function. We have previously demonstrated that Nkx6.1 depends on c-Fos mediated upregulation and the nuclear hormone receptors Nr4a1 and Nr4a3 to increase β-cell insulin secretion, survival, and replication. Here, we demonstrate that Nkx6.1 overexpression results in upregulation of the bZip transcription factor CEBPA and that CEBPA expression is independent of c-Fos regulation. In turn, CEBPA overexpression is sufficient to enhance INS-1 832/13 β-cell and primary rat islet proliferation. CEBPA overexpression also increases the survival of β-cells treated with thapsigargin. We demonstrate that increased survival in response to ER stress corresponds with changes in expression of various genes involved in the unfolded protein response, including decreased Ire1a expression. These data show that CEBPA is sufficient to enhance functional β-cell mass by increasing β-cell proliferation and modulating the unfolded protein response.
Collapse
Affiliation(s)
- Peter N Ellsworth
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Herring
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Aaron H Leifer
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jason D Ray
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Peter Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
5
|
Lin J, Li X, Lin Y, Huang Z, He F, Xiong F. Unveiling FOS as a Potential Diagnostic Biomarker and Emetine as a Prospective Therapeutic Agent for Diabetic Nephropathy. J Inflamm Res 2023; 16:6139-6153. [PMID: 38107383 PMCID: PMC10725685 DOI: 10.2147/jir.s435596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Background Diabetic nephropathy (DN) is one of the primary causes of end-stage renal disease, yet effective therapeutic targets remain elusive. This study aims to identify novel diagnostic biomarkers and potential therapeutic candidates for DN. Methods Differentially expressed genes (DEGs) in GSE96804 and GSE142025 were identified and functional enrichment analysis was performed. Diagnostic biomarkers were selected using machine learning algorithms and evaluated by Receiver Operating Characteristic analysis. c-Fos expression was validated in an established DN mouse model. Immune infiltration levels were assessed with Single-Sample Gene Set Enrichment Analysis. Co-expression analysis revealed regulatory relationships involving FOS. cMAP predicted potential therapeutic candidates. Transcriptome sequencing and experiments in RAW264.7 cells was performed to investigate molecular mechanisms of emetine. Results In both datasets, we identified 44 upregulated and 74 downregulated DEGs involved in focal adhesion, ECM-receptor interaction, and the PI3K-Akt signaling pathway. FOS emerged as a robust diagnostic marker with decreased expression in DN patients and DN mouse. Co-expression analysis revealed potential regulatory mechanisms of FOS, implicating the MAPK signaling pathway, regulation of cell proliferation and apoptotic signaling pathways. Immune dysregulation was observed in DN patients. Notably, emetine was identified as a potential therapeutic candidate. Transcriptome sequencing and experimental validation demonstrated emetine suppressed M1 macrophage polarization by inhibiting the activation of NF-κB signaling pathway, as well as reducing the expression of Il-18 and Ccl5. Conclusion In conclusion, our study identified FOS as a promising diagnostic biomarker and emetine as a potential therapeutic candidate for DN. These findings enhance our understanding of DN pathogenesis and present novel prospects for therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, People’s Republic of China
| | - Xiaoyong Li
- General Surgery Department; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yan Lin
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Fei He
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Díaz‐López YE, Pérez‐Figueroa GE, Cázares‐Domínguez V, Frigolet ME, Gutiérrez‐Aguilar R. ETV5 regulates proliferation and cell cycle genes in the INS-1 (832/13) cell line independently of the concentration of secreted insulin. FEBS Open Bio 2023; 13:2263-2272. [PMID: 37876309 PMCID: PMC10699097 DOI: 10.1002/2211-5463.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023] Open
Abstract
The transcription factor E-twenty-six variant 5 (ETV5) regulates acute insulin secretion. Adequate insulin secretion is dependent on pancreatic β-cell size and cell proliferation, but the effects of ETV5 on proliferation, cell number, and viability, as well as its relationship with insulin secretion, have not been established yet. Here, we partially silenced ETV5 in the INS-1 (832/13) cell line by siRNA transfection and then measured secreted insulin concentration at different time points, observing similar levels to control cells. After 72 h of ETV5 silencing, we observed decreased cell number and proliferation, without any change in viability or apoptosis. Thus, partial silencing of ETV5 modulates cell proliferation in INS-1 (832/13) independently of secreted insulin levels via upregulation of E2F1 and of inhibitors of the cyclin/CDKs complexes (p21Cdkn1a , p27Cdkn1b , and p57Cdkn1c ) and downregulation of cell cycle activators (PAK3 and FOS).
Collapse
Affiliation(s)
- Yael E. Díaz‐López
- División de Investigación, Facultad de MedicinaUniversidad Nacional Autónoma de México (UNAM)México
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| | | | - Vicenta Cázares‐Domínguez
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| | - María E. Frigolet
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| | - Ruth Gutiérrez‐Aguilar
- División de Investigación, Facultad de MedicinaUniversidad Nacional Autónoma de México (UNAM)México
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| |
Collapse
|
7
|
Krueger ES, Griffin LE, Beales JL, Lloyd TS, Brown NJ, Elison WS, Kay CD, Neilson AP, Tessem JS. Bioavailable Microbial Metabolites of Flavanols Demonstrate Highly Individualized Bioactivity on In Vitro β-Cell Functions Critical for Metabolic Health. Metabolites 2023; 13:801. [PMID: 37512508 PMCID: PMC10385630 DOI: 10.3390/metabo13070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dietary flavanols are known for disease preventative properties but are often poorly absorbed. Gut microbiome flavanol metabolites are more bioavailable and may exert protective activities. Using metabolite mixtures extracted from the urine of rats supplemented with flavanols and treated with or without antibiotics, we investigated their effects on INS-1 832/13 β-cell glucose stimulated insulin secretion (GSIS) capacity. We measured insulin secretion under non-stimulatory (low) and stimulatory (high) glucose levels, insulin secretion fold induction, and total insulin content. We conducted treatment-level comparisons, individual-level dose responses, and a responder vs. non-responder predictive analysis of metabolite composition. While the first two analyses did not elucidate treatment effects, metabolites from 9 of the 28 animals demonstrated significant dose responses, regardless of treatment. Differentiation of responders vs. non-responder revealed that levels of native flavanols and valerolactones approached significance for predicting enhanced GSIS, regardless of treatment. Although treatment-level patterns were not discernable, we conclude that the high inter-individual variability shows that metabolite bioactivity on GSIS capacity is less related to flavanol supplementation or antibiotic treatment and may be more associated with the unique microbiome or metabolome of each animal. These findings suggest flavanol metabolite activities are individualized and point to the need for personalized nutrition practices.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (J.L.B.); (T.S.L.); (N.J.B.); (W.S.E.)
| | - Laura E. Griffin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (L.E.G.); (C.D.K.); (A.P.N.)
| | - Joseph L. Beales
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (J.L.B.); (T.S.L.); (N.J.B.); (W.S.E.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (J.L.B.); (T.S.L.); (N.J.B.); (W.S.E.)
| | - Nathan J. Brown
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (J.L.B.); (T.S.L.); (N.J.B.); (W.S.E.)
| | - Weston S. Elison
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (J.L.B.); (T.S.L.); (N.J.B.); (W.S.E.)
| | - Colin D. Kay
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (L.E.G.); (C.D.K.); (A.P.N.)
| | - Andrew P. Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (L.E.G.); (C.D.K.); (A.P.N.)
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (J.L.B.); (T.S.L.); (N.J.B.); (W.S.E.)
| |
Collapse
|
8
|
Chung JY, Ma Y, Zhang D, Bickerton HH, Stokes E, Patel SB, Tse HM, Feduska J, Welner RS, Banerjee RR. Pancreatic islet cell type-specific transcriptomic changes during pregnancy and postpartum. iScience 2023; 26:106439. [PMID: 37020962 PMCID: PMC10068570 DOI: 10.1016/j.isci.2023.106439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pancreatic β-cell mass expands during pregnancy and regresses in the postpartum period in conjunction with dynamic metabolic demands on maternal glucose homeostasis. To understand transcriptional changes driving these adaptations in β-cells and other islet cell types, we performed single-cell RNA sequencing on islets from virgin, late gestation, and early postpartum mice. We identified transcriptional signatures unique to gestation and the postpartum in β-cells, including induction of the AP-1 transcription factor subunits and other genes involved in the immediate-early response (IEGs). In addition, we found pregnancy and postpartum-induced changes differed within each endocrine cell type, and in endothelial cells and antigen-presenting cells within islets. Together, our data reveal insights into cell type-specific transcriptional changes responsible for adaptations by islet cells to pregnancy and their resolution postpartum.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Yongjie Ma
- Department of Pharmacology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Dingguo Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hayden H. Bickerton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Eric Stokes
- Department of Pharmacology, University of Colorado Denver/Anschutz, Aurora, CO 80045, USA
| | - Sweta B. Patel
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hubert M. Tse
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Feduska
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Rob S. Welner
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Ronadip R. Banerjee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Wortham M, Liu F, Harrington AR, Fleischman JY, Wallace M, Mulas F, Mallick M, Vinckier NK, Cross BR, Chiou J, Patel NA, Sui Y, McGrail C, Jun Y, Wang G, Jhala US, Schüle R, Shirihai OS, Huising MO, Gaulton KJ, Metallo CM, Sander M. Nutrient regulation of the islet epigenome controls adaptive insulin secretion. J Clin Invest 2023; 133:e165208. [PMID: 36821378 PMCID: PMC10104905 DOI: 10.1172/jci165208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Adaptation of the islet β cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in β cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. β Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Johanna Y. Fleischman
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Martina Wallace
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Medhavi Mallick
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nicholas K. Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Benjamin R. Cross
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nisha A. Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Carolyn McGrail
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Gaowei Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Ulupi S. Jhala
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Roland Schüle
- Department of Urology, University of Freiburg Medical Center, Freiburg, Germany
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, and Physiology and Membrane Biology, School of Medicine, UCD, Davis, California, USA
| | - Kyle J. Gaulton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | | | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| |
Collapse
|
10
|
Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1223-1233. [PMID: 36700987 DOI: 10.1007/s00210-023-02401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.
Collapse
|
11
|
Miranda JG, Schleicher WE, Wells KL, Ramirez DG, Landgrave SP, Benninger RKP. Dynamic changes in β-cell [Ca 2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol Metab 2022; 57:101430. [PMID: 34979329 PMCID: PMC8804269 DOI: 10.1016/j.molmet.2021.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diabetes occurs because of insufficient insulin secretion due to β-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger β-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the β-cell. However, the link between the regulation of β-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.
Collapse
Affiliation(s)
- Jose G Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Samantha P Landgrave
- Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA; Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022; 14:pharmaceutics14020234. [PMID: 35213968 PMCID: PMC8878225 DOI: 10.3390/pharmaceutics14020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Identification of the correct targets is a key element for successful drug development. However, there are limited approaches for predicting drug targets for specific diseases using omics data, and few have leveraged expression profiles from gene perturbations. We present a novel computational approach for drug target discovery based on machine learning (ML) models. ML models are first trained on drug-induced expression profiles with outcomes defined as whether the drug treats the studied disease. The goal is to “learn” the expression patterns associated with treatment. Then, the fitted ML models were applied to expression profiles from gene perturbations (overexpression (OE)/knockdown (KD)). We prioritized targets based on predicted probabilities from the ML model, which reflects treatment potential. The methodology was applied to predict targets for hypertension, diabetes mellitus (DM), rheumatoid arthritis (RA), and schizophrenia (SCZ). We validated our approach by evaluating whether the identified targets may ‘re-discover’ known drug targets from an external database (OpenTargets). Indeed, we found evidence of significant enrichment across all diseases under study. A further literature search revealed that many candidates were supported by previous studies. For example, we predicted PSMB8 inhibition to be associated with the treatment of RA, which was supported by a study showing that PSMB8 inhibitors (PR-957) ameliorated experimental RA in mice. In conclusion, we propose a new ML approach to integrate the expression profiles from drugs and gene perturbations and validated the framework. Our approach is flexible and may provide an independent source of information when prioritizing drug targets.
Collapse
|
13
|
Simonett SP, Shin S, Herring JA, Bacher R, Smith LA, Dong C, Rabaglia ME, Stapleton DS, Schueler KL, Choi J, Bernstein MN, Turkewitz DR, Perez-Cervantes C, Spaeth J, Stein R, Tessem JS, Kendziorski C, Keleş S, Moskowitz IP, Keller MP, Attie AD. Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. J Clin Invest 2021; 131:e144833. [PMID: 34491912 PMCID: PMC8553569 DOI: 10.1172/jci144833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The transcription factor NFATC2 induces β cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets. By integrating changes in gene expression with genomic binding sites for NFATC2, we identified approximately 2200 transcriptional targets of NFATC2. Genes induced by NFATC2 were enriched for transcripts that regulate the cell cycle and for DNA motifs associated with the transcription factor FOXP. Islets from an endocrine-specific Foxp1, Foxp2, and Foxp4 triple-knockout mouse were less responsive to NFATC2-induced β cell proliferation, suggesting the FOXP family works to regulate β cell proliferation in concert with NFATC2. NFATC2 induced β cell proliferation in both mouse and human islets, whereas NFATC1 did so only in human islets. Exploiting this species difference, we identified approximately 250 direct transcriptional targets of NFAT in human islets. This gene set enriches for cell cycle-associated transcripts and includes Nr4a1. Deletion of Nr4a1 reduced the capacity of NFATC2 to induce β cell proliferation, suggesting that much of the effect of NFATC2 occurs through its induction of Nr4a1. Integration of noncoding RNA expression, chromatin accessibility, and NFATC2 binding sites enabled us to identify NFATC2-dependent enhancer loci that mediate β cell proliferation.
Collapse
Affiliation(s)
- Shane P. Simonett
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sunyoung Shin
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jacob A. Herring
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, Utah, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Linsin A. Smith
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Chenyang Dong
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kathryn L. Schueler
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jeea Choi
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Daniel R. Turkewitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Jason Spaeth
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffery S. Tessem
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, Utah, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ivan P. Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Mark P. Keller
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alan D. Attie
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Benchoula K, Parhar IS, Hwa WE. The molecular mechanism of vgf in appetite, lipids, and insulin regulation. Pharmacol Res 2021; 172:105855. [PMID: 34461221 DOI: 10.1016/j.phrs.2021.105855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Obesity is an indication of an imbalance between energy expenditure and food intake. It is a complicated disease of epidemic proportions as it involves many factors and organs. Sedentary lifestyles and overeating have caused a substantial rise in people with obesity and type 2 diabetes. Thus, the discovery of successful and sustainable therapies for these chronic illnesses is critical. However, the mechanisms of obesity and diabetes and the crosstalk between these diseases are still ambiguous. Numerous studies are being done to study these mechanisms, with updates made frequently. VGF peptide and its derivatives are anticipated to have a role in the development of obesity and diabetes. However, contradictory studies have produced conflicting findings on the function of VGF. Therefore, in this review, we attempt to clarify and explain the role of VGF peptides in the brain, pancreas, and adipose tissue in the development of obesity.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia), BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
15
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Liu G, Li Y, Zhang T, Li M, Li S, He Q, Liu S, Xu M, Xiao T, Shao Z, Shi W, Li W. Single-cell RNA Sequencing Reveals Sexually Dimorphic Transcriptome and Type 2 Diabetes Genes in Mouse Islet β Cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:408-422. [PMID: 34571259 PMCID: PMC8864195 DOI: 10.1016/j.gpb.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes (T2D) is characterized by the malfunction of pancreatic β cells. Susceptibility and pathogenesis of T2D can be affected by multiple factors, including sex differences. However, the mechanisms underlying sex differences in T2D susceptibility and pathogenesis remain unclear. Using single-cell RNA sequencing (scRNA-seq), we demonstrate the presence of sexually dimorphic transcriptomes in mouse β cells. Using a high-fat diet-induced T2D mouse model, we identified sex-dependent T2D altered genes, suggesting sex-based differences in the pathological mechanisms of T2D. Furthermore, based on islet transplantation experiments, we found that compared to mice with sex-matched islet transplants, sex-mismatched islet transplants in healthy mice showed down-regulation of genes involved in the longevity regulating pathway of β cells. Moreover, the diabetic mice with sex-mismatched islet transplants showed impaired glucose tolerance. These data suggest sexual dimorphism in T2D pathogenicity, indicating that sex should be considered when treating T2D. We hope that our findings could provide new insights for the development of precision medicine in T2D.
Collapse
Affiliation(s)
- Gang Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tengjiao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sheng Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qing He
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Shuxin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Tinghui Xiao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China.
| |
Collapse
|
17
|
Scrt1, a transcriptional regulator of β-cell proliferation identified by differential chromatin accessibility during islet maturation. Sci Rep 2021; 11:8800. [PMID: 33888791 PMCID: PMC8062533 DOI: 10.1038/s41598-021-88003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glucose-induced insulin secretion, a hallmark of mature β-cells, is achieved after birth and is preceded by a phase of intense proliferation. These events occurring in the neonatal period are decisive for establishing an appropriate functional β-cell mass that provides the required insulin throughout life. However, key regulators of gene expression involved in functional maturation of β-cells remain to be elucidated. Here, we addressed this issue by mapping open chromatin regions in newborn versus adult rat islets using the ATAC-seq assay. We obtained a genome-wide picture of chromatin accessible sites (~ 100,000) among which 20% were differentially accessible during maturation. An enrichment analysis of transcription factor binding sites identified a group of transcription factors that could explain these changes. Among them, Scrt1 was found to act as a transcriptional repressor and to control β-cell proliferation. Interestingly, Scrt1 expression was controlled by the transcriptional repressor RE-1 silencing transcription factor (REST) and was increased in an in vitro reprogramming system of pancreatic exocrine cells to β-like cells. Overall, this study led to the identification of several known and unforeseen key transcriptional events occurring during β-cell maturation. These findings will help defining new strategies to induce the functional maturation of surrogate insulin-producing cells.
Collapse
|
18
|
Guo Q, Lu Y, Huang Y, Guo Y, Zhu S, Zhang Q, Zhu D, Wang Z, Luo J. Exosomes from β-Cells Promote Differentiation of Induced Pluripotent Stem Cells into Insulin-Producing Cells Through microRNA-Dependent Mechanisms. Diabetes Metab Syndr Obes 2021; 14:4767-4782. [PMID: 34934332 PMCID: PMC8678630 DOI: 10.2147/dmso.s342647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Exosomes have emerged as potential tools for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells (IPCs). Exosomal microRNAs are receiving increasing attention in this process. Here, we aimed at investigating the role of exosomes derived from a murine pancreatic β-cell line and identifying signature exosomal miRNAs on iPSCs differentiation. METHODS Exosomes were isolated from MIN6 cells and identified with TEM, NTA and Western blot. PKH67 tracer and transwell assay were used to confirm exosome delivery into iPSCs. qRT-PCR was applied to detect key pancreatic transcription gene expression and exosome-derived miRNA expression. Insulin secretion was determined using FCM and immunofluorescence. The specific exosomal miRNAs were determined via RNA-interference of Ago2. The therapeutic effect of 21 day-exosome-induced IPCs was validated in T1D mice induced by STZ. RESULTS iPSCs cultured in medium containing exosomes showed sustained higher expression of MAFA, Insulin1, Insulin2, Isl1, Neuroud1, Nkx6.1 and NGN3 compared to control iPSCs. In FCM analysis, approximately 52.7% of the differentiated cells displayed insulin expression at the middle stage. Consistent with the gene expression data, immunofluorescence assays showed that Nkx6.1 and insulin expression in iPSCs were significantly upregulated. Intriguingly, the expression of pancreatic markers and insulin was significantly decreased in iPSCs cultured with siAgo2 exosomes. Transplantation of 21 day-induced IPCs intoT1D mice efficiently enhanced glucose tolerance and partially controlled hyperglycemia. The therapeutic effect was significantly attenuated in T1D mice that received iPSCs cultured with siAgo2 exosomes. Of the seven exosomal microRNAs selected for validation, miR-706, miR-709, miR-466c-5p, and miR-423-5p showed dynamic expression during 21 days in culture. CONCLUSION These data indicate that differentiation of exosome-induced iPSCs into functional cells is crucially dependent on the specific miRNAs encased within exosomes, whose functional analysis is likely to provide insight into novel regulatory mechanisms governing iPSCs differentiation into IPCs.
Collapse
Affiliation(s)
- Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Qiuqiang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Donghui Zhu
- Nantong University Medical School, Nantong, 226001, People’s Republic of China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Zhiwei Wang Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Xi Si Road, Nantong, 226001, People’s Republic of China Email
| | - Jia Luo
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Correspondence: Jia Luo Department of Pharmacy, Affiliated Hospital of Nantong University, Xi Si Road, Nantong, 226001, People’s Republic of China Email
| |
Collapse
|
19
|
Aigha II, Abdelalim EM. NKX6.1 transcription factor: a crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res Ther 2020; 11:459. [PMID: 33121533 PMCID: PMC7597038 DOI: 10.1186/s13287-020-01977-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.
Collapse
Affiliation(s)
- Idil I Aigha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
20
|
Wang S, Wei D, Sun X, Li Y, Li D, Chen B. MiR-190b impedes pancreatic β cell proliferation and insulin secretion by targeting NKX6-1 and may associate to gestational diabetes mellitus. J Recept Signal Transduct Res 2020; 41:349-356. [PMID: 32862769 DOI: 10.1080/10799893.2020.1810705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The dysfunction of pancreatic β cells is related to the occurrence of gestational diabetes mellitus (GDM). This study aimed to investigate the mechanism underlying the effects of miR-190b on pancreatic β cell proliferation and insulin secretion. METHODS Quantitative real-time PCR was used to detect miR-190b expression in placenta tissues from GDM patients. The effects of miR-190b on islet cells activity, proliferation, and insulin secretion were measured using MTT assay, BrdU staining, and ELISA. The relationship between miR-190b and NK6 homeobox 1 (NKX6-1) was ensured by dual luciferase reporter assay. RESULTS MiR-190b was overexpressed in placenta tissues from GDM patients compared to normal pregnant woman. MiR-190b inhibitor inhibited the cell activity, proliferation, and insulin secretion of islet β cells, while miR-190b overexpression had an opposite effect. Additionally, miR-190b negatively regulated NKX6-1 expression. Overexpression of NKX6-1 reversed the inhibitory effect of miR-190b-mimics on islet β cell activity, proliferation, and insulin secretion. In mouse islets, knockdown of miR-190b promoted insulin secretion by up-regulating NKX6-1 expression. CONCLUSION Silence of miR-190b accelerated pancreatic β cell proliferation and insulin secretion via targeting NKX6-1, which might be a mechanism underlying the effects of miR-190b on the progression of GDM.
Collapse
Affiliation(s)
- Shuping Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Dongyang Wei
- Department of Obstetrics and Gynecology, Guangzhou First people's Hospital, Guangzhou City, China
| | - Xiaofeng Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Yanfang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Daocheng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Baoyan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, China
| |
Collapse
|
21
|
Zhang T, Wang H, Wang T, Wei C, Jiang H, Jiang S, Yang J, Shao J, Ma L. Pax4 synergistically acts with Pdx1, Ngn3 and MafA to induce HuMSCs to differentiate into functional pancreatic β-cells. Exp Ther Med 2019; 18:2592-2598. [PMID: 31572507 PMCID: PMC6755441 DOI: 10.3892/etm.2019.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
It has been indicated that the combination of pancreatic and duodenal homeobox 1 (Pdx1), MAF bZIP transcription factor A (MafA) and neurogenin 3 (Ngn3) was able to reprogram various cell types towards pancreatic β-like cells (pβLCs). Paired box 4 (Pax4), a transcription factor, has a key role in regulating the maturation of pancreatic β-cells (pβCs). In the present study, it was investigated whether Pax4 is able to synergistically act with Pdx1, Ngn3 and MafA to induce human umbilical cord mesenchymal stem cells (HuMSCs) to differentiate into functional pβCs in vitro. HuMSCs were isolated, cultured and separately transfected with adenovirus (Ad) expressing enhanced green fluorescence protein, Pax4 (Ad-Pax4), Pdx1+MafA+Ngn3 (Ad-3F) or Ad-Pxa4 + Ad-3F. The expression of C-peptide, insulin and glucagon was detected by immunofluorescence. The transcription of a panel of genes was determined by reverse transcription-quantitative PCR, including glucagon (GCG), insulin (INS), NK6 homeobox 1 (NKX6-1), solute carrier family 2 member 2 (SLC2A2), glucokinase (GCK), proprotein convertase subtilisin/kexin type 1 (PCSK1), neuronal differentiation 1 (NEUROD1), ISL LIM homeobox 1 (ISL 1), Pax6 and PCSK type 2 (PCSK2). Insulin secretion stimulated by glucose was determined using ELISA. The results suggested that, compared with Ad-3F alone, cells co-transfected with Ad-Pax4 and Ad-3F expressed higher levels of INS and C-peptide, as well as genes expressed in pancreatic β precursor cells, and secreted more insulin in response to high glucose. Furthermore, the expression of GCG in cells transfected with Ad-3F was depressed by Ad-Pax4. The present study demonstrated that Pax4 was able to synergistically act with the transcription factors Pdx1, Ngn3 and MafA to convert HuMSCs to functional pβLCs. HuMSCs may be potential seed cells for generating functional pβLCs in the therapy of diabetes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Hematological Tumor Center, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, P.R. China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P.R. China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Shayi Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingwei Yang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingbo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
- Correspondence to: Dr Jingbo Shao, Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Luding Road, Shanghai 200062, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong 518038, P.R. China
- Dr Lian Ma, Department of Hematology and Oncology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China, E-mail:
| |
Collapse
|
22
|
Comparison of enteroendocrine cells and pancreatic β-cells using gene expression profiling and insulin gene methylation. PLoS One 2018; 13:e0206401. [PMID: 30379923 PMCID: PMC6209304 DOI: 10.1371/journal.pone.0206401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023] Open
Abstract
Various subtypes of enteroendocrine cells (EECs) are present in the gut epithelium. EECs and pancreatic β-cells share similar pathways of differentiation during embryonic development and after birth. In this study, similarities between EECs and β-cells were evaluated in detail. To obtain specific subtypes of EECs, cell sorting by flow cytometry was conducted from STC-1 cells (a heterogenous EEC line), and each single cell was cultured and passaged. Five EEC subtypes were established according to hormone expression, measured by quantitative RT-PCR and immunostaining: L, K, I, G and S cells expressing glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, cholecystokinin, gastrin and secretin, respectively. Each EEC subtype was found to express not only the corresponding gut hormone but also other gut hormones. Global microarray gene expression profiles revealed a higher similarity between each EEC subtype and MIN6 cells (a β-cell line) than between C2C12 cells (a myoblast cell line) and MIN6 cells, and all EEC subtypes were highly similar to each other. Genes for insulin secretion-related proteins were mostly enriched in EECs. However, gene expression of transcription factors crucial in mature β-cells, such as PDX1, MAFA and NKX6.1, were remarkably low in all EEC subtypes. Each EEC subtype showed variable methylation in three cytosine-guanosine dinucleotide sites in the insulin gene (Ins2) promoter, which were fully unmethylated in MIN6 cells. In conclusion, our data confirm that five EEC subtypes are closely related to β-cells, suggesting a potential target for cell-based therapy in type 1 diabetes.
Collapse
|
23
|
Bitner BF, Ray JD, Kener KB, Herring JA, Tueller JA, Johnson DK, Tellez Freitas CM, Fausnacht DW, Allen ME, Thomson AH, Weber KS, McMillan RP, Hulver MW, Brown DA, Tessem JS, Neilson AP. Common gut microbial metabolites of dietary flavonoids exert potent protective activities in β-cells and skeletal muscle cells. J Nutr Biochem 2018; 62:95-107. [PMID: 30286378 DOI: 10.1016/j.jnutbio.2018.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023]
Abstract
Flavonoids are dietary compounds with potential anti-diabetes activities. Many flavonoids have poor bioavailability and thus low circulating concentrations. Unabsorbed flavonoids are metabolized by the gut microbiota to smaller metabolites, which are more bioavailable than their precursors. The activities of these metabolites may be partly responsible for associations between flavonoids and health. However, these activities remain poorly understood. We investigated bioactivities of flavonoid microbial metabolites [hippuric acid (HA), homovanillic acid (HVA), and 5-phenylvaleric acid (5PVA)] in primary skeletal muscle and β-cells compared to a native flavonoid [(-)-epicatechin, EC]. In muscle, EC was the most potent stimulator of glucose oxidation, while 5PVA and HA simulated glucose metabolism at 25 μM, and all compounds preserved mitochondrial function after insult. However, EC and the metabolites did not uncouple mitochonndrial respiration, with the exception of 5PVA at10 μM. In β-cells, all metabolites more potently enhanced glucose-stimulated insulin secretion (GSIS) compared to EC. Unlike EC, the metabolites appear to enhance GSIS without enhancing β-cell mitochondrial respiration or increasing expression of mitochondrial electron transport chain components, and with varying effects on β-cell insulin content. The present results demonstrate the activities of flavonoid microbial metabolites for preservation of β-cell function and glucose utilization. Additionally, our data suggest that metabolites and native compounds may act by distinct mechanisms, suggesting complementary and synergistic activities in vivo which warrant further investigation. This raises the intriguing prospect that bioavailability of native dietary flavonoids may not be as critical of a limiting factor to bioactivity as previously thought.
Collapse
Affiliation(s)
- Benjamin F Bitner
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, S243 ESC, Provo, UT 84602
| | - Jason D Ray
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, S243 ESC, Provo, UT 84602
| | - Kyle B Kener
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, S243 ESC, Provo, UT 84602
| | - Jacob A Herring
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, S243 ESC, Provo, UT 84602; Department of Microbiology and Molecular Biology, Brigham Young University, 3137 LSB, Provo, UT 84602
| | - Josie A Tueller
- Department of Microbiology and Molecular Biology, Brigham Young University, 3137 LSB, Provo, UT 84602
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, 3137 LSB, Provo, UT 84602
| | - Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, 3137 LSB, Provo, UT 84602
| | - Dane W Fausnacht
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060
| | - Mitchell E Allen
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060
| | - Alexander H Thomson
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, 3137 LSB, Provo, UT 84602
| | - Ryan P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060; Metabolic Phenotyping Core Facility, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060; Metabolic Phenotyping Core Facility, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060
| | - David A Brown
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060; Metabolic Phenotyping Core Facility, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060; Virginia Tech Center for Drug Discovery, 800 West Campus Dr. Room 3111, Blacksburg, VA 24061
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, S243 ESC, Provo, UT 84602
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, 1981 Kraft Dr., Blacksburg, VA 24060.
| |
Collapse
|
24
|
Kener KB, Munk DJ, Hancock CR, Tessem JS. High-resolution Respirometry to Measure Mitochondrial Function of Intact Beta Cells in the Presence of Natural Compounds. J Vis Exp 2018. [PMID: 29443067 DOI: 10.3791/57053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-resolution respirometry allows for the measurement of oxygen consumption of isolated mitochondria, cells and tissues. Beta cells play a critical role in the body by controlling blood glucose levels through insulin secretion in response to elevated glucose concentrations. Insulin secretion is controlled by glucose metabolism and mitochondrial respiration. Therefore, measuring intact beta cell respiration is essential to be able to improve beta cell function as a treatment for diabetes. Using intact 832/13 INS-1 derived beta cells we can measure the effect of increasing glucose concentration on cellular respiration. This protocol allows us to measure beta cell respiration in the presence or absence of various compounds, allowing one to determine the effect of given compounds on intact cell respiration. Here we demonstrate the effect of two naturally occurring compounds, monomeric epicatechin and curcumin, on beta cell respiration under the presence of low (2.5 mM) or high glucose (16.7 mM) conditions. This technique can be used to determine the effect of various compounds on intact beta cell respiration in the presence of differing glucose concentrations.
Collapse
Affiliation(s)
- Kyle B Kener
- Nutrition, Dietetics and Food Science Department, Brigham Young University
| | - Devin J Munk
- Nutrition, Dietetics and Food Science Department, Brigham Young University
| | - Chad R Hancock
- Nutrition, Dietetics and Food Science Department, Brigham Young University
| | - Jeffery S Tessem
- Nutrition, Dietetics and Food Science Department, Brigham Young University;
| |
Collapse
|
25
|
Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. J Nutr Biochem 2017; 49:30-41. [PMID: 28863367 DOI: 10.1016/j.jnutbio.2017.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients.
Collapse
|
26
|
Zeng C, Mulas F, Sui Y, Guan T, Miller N, Tan Y, Liu F, Jin W, Carrano AC, Huising MO, Shirihai OS, Yeo GW, Sander M. Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation. Cell Metab 2017; 25:1160-1175.e11. [PMID: 28467932 PMCID: PMC5501713 DOI: 10.1016/j.cmet.2017.04.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 01/28/2023]
Abstract
Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration.
Collapse
Affiliation(s)
- Chun Zeng
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany Guan
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathanael Miller
- Departments of Medicine and Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Medicine, Boston University, School of Medicine, Boston, MA 02118, USA
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wen Jin
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Orian S Shirihai
- Departments of Medicine and Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Medicine, Boston University, School of Medicine, Boston, MA 02118, USA
| | - Gene W Yeo
- Department of Cellular & Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Sebastiani G, Valentini M, Grieco GE, Ventriglia G, Nigi L, Mancarella F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol 2017; 54:265-281. [PMID: 28039581 DOI: 10.1007/s00592-016-0955-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
AIMS MicroRNAs are a class of small noncoding RNAs, which control gene expression by inhibition of mRNA translation. MicroRNAs are involved in the control of biological processes including cell differentiation. Here, we aim at characterizing microRNA expression profiles during differentiation of human induced pluripotent stem cells (hiPSCs) into insulin-producing cells. METHODS We differentiated hiPSCs toward endocrine pancreatic lineage following a 18-day protocol. We analyzed genes and microRNA expression levels using RT real-time PCR and TaqMan microRNA arrays followed by bioinformatic functional analysis. RESULTS MicroRNA expression profiles analysis of undifferentiated hiPSCs during pancreatic differentiation revealed that 347/768 microRNAs were expressed at least in one time point of all samples. We observed 18 microRNAs differentially expressed: 11 were upregulated (miR-9-5p, miR-9-3p, miR-10a, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-211, miR-342-3p and miR-375) and 7 downregulated (miR-31, miR-127, miR-143, miR-302c-3p, miR-373, miR-518b and miR-520c-3p) during differentiation into insulin-producing cells. Selected microRNAs were further evaluated during differentiation of Sendai-virus-reprogrammed hiPSCs using an improved endocrine pancreatic beta cell derivation protocol and, moreover, in differentiated NKX6.1+ sorted cells. Following Targetscan7.0 analysis of target genes of differentially expressed microRNAs and gene ontology classification, we found that such target genes belong to categories of major significance in pancreas organogenesis and development or exocytosis. CONCLUSIONS We detected a specific hiPSCs microRNAs signature during differentiation into insulin-producing cells and demonstrated that differentially expressed microRNAs target several genes involved in pancreas organogenesis.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Marco Valentini
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Hospital, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|