1
|
Folda A, Scalcon V, Tonolo F, Rigobello MP, Bindoli A. Thiamine disulfide derivatives in thiol redox regulation: Role of thioredoxin and glutathione systems. Biofactors 2025; 51:e2121. [PMID: 39302148 DOI: 10.1002/biof.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Thiamine (vitamin B1), under the proper conditions, is able to reversibly open the thiazole ring, forming a thiol-bearing molecule that can be further oxidized to the corresponding disulfide. To improve the bioavailability of the vitamin, several derivatives of thiamine in the thioester or disulfide form were developed and extensively studied over time, as apparent from the literature. We have examined three thiamine-derived disulfides: thiamine disulfide, sulbutiamine, and fursultiamine with reference to their intervention in modulating the thiol redox state. First, we observed that both glutathione and thioredoxin (Trx) systems were able to reduce the three disulfides. In particular, thioredoxin reductase (TrxR) reduced these disulfides either directly or in the presence of Trx. In Caco-2 cells, the thiamine disulfide derivatives did not modify the total thiol content, which, however, was significantly decreased by the concomitant inhibition of TrxR. When oxidative stress was induced by tert-butyl hydroperoxide, the thiamine disulfides exerted a protective effect, indicating that the thiol form deriving from the reduction of the disulfides might be the active species. Further, the thiamine disulfides examined were shown to increase the nuclear levels of the transcription factor nuclear factor erythroid 2 related factor 2 and to stimulate both expression and activity of NAD(P)H quinone dehydrogenase 1 and TrxR. However, other enzymes of the glutathione and Trx systems were scarcely affected. As the thiol redox balance plays a critical role in oxidative stress and inflammation, the information presented can be of interest for further research, considering the potential favorable effect exerted in the cell by many sulfur compounds, including the thiamine-derived disulfides.
Collapse
Affiliation(s)
- Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience (CNR), University of Padova, Padova, Italy
| |
Collapse
|
2
|
Hider R, Aviles MV, Chen YL, Latunde-Dada GO. The Role of GSH in Intracellular Iron Trafficking. Int J Mol Sci 2021; 22:ijms22031278. [PMID: 33525417 PMCID: PMC7865746 DOI: 10.3390/ijms22031278] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Evidence is reviewed for the role of glutathione in providing a ligand for the cytosolic iron pool. The possibility of histidine and carnosine forming ternary complexes with iron(II)glutathione is discussed and the physiological significance of these interactions considered. The role of carnosine in muscle, brain, and kidney physiology is far from established and evidence is presented that the iron(II)-binding capability of carnosine relates to this role.
Collapse
|
3
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
4
|
Ferofontov A, Strulovich R, Marom M, Giladi M, Haitin Y. Inherent flexibility of CLIC6 revealed by crystallographic and solution studies. Sci Rep 2018; 8:6882. [PMID: 29720717 PMCID: PMC5931990 DOI: 10.1038/s41598-018-25231-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Chloride intracellular channels (CLICs) are a family of unique proteins, that were suggested to adopt both soluble and membrane-associated forms. Moreover, following this unusual metamorphic change, CLICs were shown to incorporate into membranes and mediate ion conduction in vitro, suggesting multimerization upon membrane insertion. Here, we present a 1.8 Å resolution crystal structure of the CLIC domain of mouse CLIC6 (mCLIC6). The structure reveals a monomeric arrangement and shows a high degree of structural conservation with other CLICs. Small-angle X-ray scattering (SAXS) analysis of mCLIC6 demonstrated that the overall solution structure is similar to the crystallographic conformation. Strikingly, further analysis of the SAXS data using ensemble optimization method unveiled additional elongated conformations, elucidating high structural plasticity as an inherent property of the protein. Moreover, structure-guided perturbation of the inter-domain interface by mutagenesis resulted in a population shift towards elongated conformations of mCLIC6. Additionally, we demonstrate that oxidative conditions induce an increase in mCLIC6 hydrophobicity along with mild oligomerization, which was enhanced by the presence of membrane mimetics. Together, these results provide mechanistic insights into the metamorphic nature of mCLIC6.
Collapse
Affiliation(s)
- Alisa Ferofontov
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Roi Strulovich
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Milit Marom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
5
|
Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4162465. [PMID: 28706574 PMCID: PMC5494587 DOI: 10.1155/2017/4162465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022]
Abstract
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.
Collapse
|
6
|
Computational analysis of the soluble form of the intracellular chloride ion channel protein CLIC1. BIOMED RESEARCH INTERNATIONAL 2013; 2013:170586. [PMID: 24089665 PMCID: PMC3780514 DOI: 10.1155/2013/170586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022]
Abstract
The chloride intracellular channel (CLIC) family of proteins has the remarkable property of maintaining both a soluble form and an integral membrane form acting as an ion channel. The soluble form is structurally related to the glutathione-S-transferase family, and CLIC can covalently bind glutathione via an active site cysteine. We report approximately 0.6 μs of molecular dynamics simulations, encompassing the three possible ligand-bound states of CLIC1, using the structure of GSH-bound human CLIC1. Noncovalently bound GSH was rapidly released from the protein, whereas the covalently ligand-bound protein remained close to the starting structure over 0.25 μs of simulation. In the unliganded state, conformational changes in the vicinity of the glutathione-binding site resulted in reduced reactivity of the active site thiol. Elastic network analysis indicated that the changes in the unliganded state are intrinsic to the protein architecture and likely represent functional transitions. Overall, our results are consistent with a model of CLIC function in which covalent binding of glutathione does not occur spontaneously but requires interaction with another protein to stabilise the GSH binding site and/or transfer of the ligand. The results do not indicate how CLIC1 undergoes a radical conformational change to form a transmembrane chloride channel but further elucidate the mechanism by which CLICs are redox controlled.
Collapse
|
7
|
Sharma S, Rakoczy S, Dahlheimer K, Brown-Borg H. The hippocampus of Ames dwarf mice exhibits enhanced antioxidative defenses following kainic acid-induced oxidative stress. Exp Gerontol 2010; 45:936-49. [PMID: 20804841 PMCID: PMC6432800 DOI: 10.1016/j.exger.2010.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 08/09/2010] [Accepted: 08/19/2010] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The vulnerability of the hippocampus to the effects of aging has been found to be associated with a decline in growth hormone/insulin like growth factor-1 (GH/IGF-1), and an increase in oxidative stress. We have evidence that long-living GH-deficient Ames dwarf mice have enhanced antioxidant protection in the periphery but the protection in the central nervous system is less clear. MATERIAL AND METHODS In the present study, we evaluated the antioxidative defense enzyme status in the hippocampus of Ames dwarf and wild type mice at 3, 12 and 24 months of age and examined the ability of each genotype to resist kainic acid-induced (KA) oxidative stress. An equiseizure concentration of KA was administered such that both genotypes responded with similar seizure scores and lipid peroxidation. RESULTS We found that GH-sufficient wild type mice showed an increase in oxidative stress as indicated by the reduced ratio of glutathione: glutathione disulfide following KA injection while this ratio was maintained in GH-deficient Ames dwarf mice. In addition, glutathione peroxidase activity (GPx) as well as GPx1 mRNA expression was enhanced in KA-injected Ames dwarf mice but decreased in wild type mice. There was no induction of Nrf-2 (an oxidative stress-induced transcription factor) gene expression in Ames dwarf mice following KA further suggesting maintenance of antioxidant defense in GH-deficiency under oxidative stress conditions. DISCUSSION Therefore, based on equiseizure administration of KA, Ames dwarf mice have an enhanced antioxidant defense capacity in the hippocampus similar to that observed in the periphery. This improved defense capability in the brain is likely due to increased GPx availability in Ames mice and may contribute to their enhanced longevity.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Sharlene Rakoczy
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Kristine Dahlheimer
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Holly Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
8
|
Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases. PLoS One 2008; 3:e2459. [PMID: 18560520 PMCID: PMC2426930 DOI: 10.1371/journal.pone.0002459] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/13/2008] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1), a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP), which is prevented by the thiol antioxidant, α-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC), an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT), an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of β-N-oxalyl amino-L-alanine (L-BOAA), an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease), that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP.
Collapse
|
9
|
Ho YS, Xiong Y, Ho DS, Gao J, Chua BHL, Pai H, Mieyal JJ. Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Radic Biol Med 2007; 43:1299-312. [PMID: 17893043 PMCID: PMC2196211 DOI: 10.1016/j.freeradbiomed.2007.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 07/21/2007] [Indexed: 01/21/2023]
Abstract
To understand the physiological function of glutaredoxin, a thiotransferase catalyzing the reduction of mixed disulfides of protein and glutathione, we generated a line of knockout mice deficient in the cytosolic glutaredoxin 1 (Grx1). To our surprise, mice deficient in Grx1 were not more susceptible to acute oxidative insults in models of heart and lung injury induced by ischemia/reperfusion and hyperoxia, respectively, suggesting that either changes in S-glutathionylation status of cytosolic proteins are not the major cause of such tissue injury or developmental adaptation in the Glrx1-knockout animals alters the response to oxidative insult. In contrast, mouse embryonic fibroblasts (MEFs) isolated from Grx1-deficient mice displayed an increased vulnerability to diquat and paraquat, but they were not more susceptible to cell death induced by hydrogen peroxide (H(2)O(2)) and diamide. A deficiency in Grx1 also sensitized MEFs to protein S-glutathionylation in response to H(2)O(2) treatment and retarded deglutathionylation of the S-glutathionylated proteins, especially for a single prominent protein band. Additional experiments showed that MEFs lacking Grx1 were more tolerant to apoptosis induced by tumor necrosis factor alphaplus actinomycin D. These findings suggest that various oxidants may damage the cells via distinct mechanisms in which the action of Grx1 may or may not be protective and Grx1 may exert its function on specific target proteins.
Collapse
Affiliation(s)
- Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Xing K, Raza A, Löfgren S, Fernando MR, Ho YS, Lou MF. Low molecular weight protein tyrosine phosphatase (LMW-PTP) and its possible physiological functions of redox signaling in the eye lens. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1774:545-55. [PMID: 17428749 PMCID: PMC1940231 DOI: 10.1016/j.bbapap.2007.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/09/2007] [Accepted: 03/01/2007] [Indexed: 11/23/2022]
Abstract
Low molecular weight protein tyrosine phosphatase (LMW-PTP) was cloned from human lens epithelial B3 cells (HLE B3) and the recombinant enzyme was purified to homogeneity. The pure enzyme reacted positively with anti-LMW-PTP antibody, displayed tyrosine-specific phosphatase activity and was extremely sensitive to H(2)O(2). The inactivated LMW-PTP could be regenerated by thioltransferase (TTase)/GSH system as demonstrated by both activity assay and by mass spectrometry (MS). The MS study also showed that an intramolecular disulfide bond was formed between C13 and C18 at the active site, and was reduced by the TTase/GSH system. The putative role of LMW-PTP in regulating platelet derived growth factor (PDGF)-stimulated cell signaling was demonstrated in wild type mouse lens epithelial cells (LEC) in which LMW-PTP was transiently inactivated, corroborated with the transient phosphorylation of Tyr857 at the active site of PDGF receptor and the downstream signaling components of Akt and ERK1/2. In contrast, LMW-PTP activity in PDGF-stimulated LEC from TTase(-/-) mice was progressively lost, concomitant with the high basal and sustained high phosphorylation levels at Tyr857, Akt and ERK1/2. We conclude that the reversible LMW-PTP activity regulated by ROS-mediated oxidation and TTase/GSH reduction is the likely mechanism of redox signaling in lens epithelial cells.
Collapse
Affiliation(s)
- Kuiyi Xing
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE
- Redox Biological Center, University of Nebraska-Lincoln, Lincoln NE
| | - Ashraf Raza
- Redox Biological Center, University of Nebraska-Lincoln, Lincoln NE
| | - Stefan. Löfgren
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE
- Redox Biological Center, University of Nebraska-Lincoln, Lincoln NE
| | - M. Rohan. Fernando
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE
- Redox Biological Center, University of Nebraska-Lincoln, Lincoln NE
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
| | - Marjorie F. Lou
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE
- Redox Biological Center, University of Nebraska-Lincoln, Lincoln NE
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
11
|
Abstract
Chemical carcinogenesis follows a multistep process involving both mutation and increased cell proliferation. Oxidative stress can occur through overproduction of reactive oxygen and nitrogen species through either endogenous or exogenous insults. Important to carcinogenesis, the unregulated or prolonged production of cellular oxidants has been linked to mutation (induced by oxidant-induced DNA damage), as well as modification of gene expression. In particular, signal transduction pathways, including AP-1 and NFkappaB, are known to be activated by reactive oxygen species, and they lead to the transcription of genes involved in cell growth regulatory pathways. This review examines the evidence of cellular oxidants' involvement in the carcinogenesis process, and focuses on the mechanisms for production, cellular damage produced, and the role of signaling cascades by reactive oxygen species.
Collapse
Affiliation(s)
- James E Klaunig
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
12
|
Abstract
We sought to study the possible physiological function of thioltransferase (TTase) in combating oxidative damage in the lens epithelial cells. The cells transfected with either TTase-containing plasmid or vector only were compared for their resistance to oxidative stress in the presence of a bolus of H2O2 (0.1 mM) for 3 h. Cells depleted of TTase activity upon cadmium treatment were also examined for the resistance to oxidative stress under the same conditions. TTase activity assay, Western blot, and Northern blot analyses confirmed that hTTase gene was successfully transfected into the HLE B3 cells and was overexpressed. The TTase-transfected cells detoxified H2O2 as efficiently as the control cells but displayed a faster and more complete recovery of oxidatively inactivated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase (GPx) activities and suppressed protein thiolation (PSSG formation). With TTase activity being inhibited by cadmium, the spontaneous reactivation of GAPDH under bolus H2O2 treatment was not accomplished in cadmium-pretreated cells. These data indicate a new physiological function of TTase, which involves in the reactivation of the oxidatively inactivated enzymes through dethiolation; thus this redox-regulating enzyme can protect the human lens epithelial cells and maybe other cell types by preventing them from permanent oxidative damage.
Collapse
Affiliation(s)
- Kuiyi Xing
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | |
Collapse
|
13
|
Kenchappa RS, Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J 2003; 17:717-9. [PMID: 12594173 DOI: 10.1096/fj.02-0771fje] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondrial complex I dysfunction is implicated in the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Identification of factors involved in maintenance and restoration of complex I function could potentially help to develop prophylactic and therapeutic strategies for treatment of this class of disorders. Down-regulation of glutaredoxin (thioltransferase, a thiol disulfide oxido-reductase) using antisense oligonucleotides results in the loss of mitochondrial complex I activity in mouse brain. 1-Methyl-4-phenyl-1,2,3,6,tetrahydro-pyridine (MPTP), the neurotoxin that causes Parkinson's disease-like symptoms in primates and dopaminergic cell loss in mice, acts through the inhibition of complex I. Regeneration of complex I activity in the striatum occurs concurrently with increase in glutaredoxin activity, 4 h after the neurotoxic insult, and is mediated through activation of activating protein-1. Down-regulation of glutaredoxin using anti-sense oligonucleotides prevents recovery of complex I in the striatum after MPTP treatment, providing support for the critical role for glutaredoxin in recovery of mitochondrial function in brain. Maintenance and restoration of protein thiol homeostasis by glutaredoxin may be important factors in preventing complex I dysfunction.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Brain/drug effects
- Brain/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Down-Regulation
- Electron Transport Complex I
- Gene Expression Regulation/drug effects
- Glutaredoxins
- Mice
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/metabolism
- NF-kappa B/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Oxidation-Reduction
- Oxidoreductases/drug effects
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Protein Disulfide Reductase (Glutathione)
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Rajappa S Kenchappa
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | | |
Collapse
|
14
|
Every D, Griffin WB, Wilson PE. Ascorbate Oxidase, Protein Disulfide Isomerase, Ascorbic Acid, Dehydroascorbic Acid and Protein Levels in Developing Wheat Kernels and Their Relationship to Protein Disulfide Bond Formation. Cereal Chem 2003. [DOI: 10.1094/cchem.2003.80.1.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- D. Every
- New Zealand Institute for Crop and Food Research, Grain Foods Research Unit, Private Bag 4704, Christchurch, New Zealand
- Corresponding author. E-mail: . Fax: 64-3-325 2074
| | - W. B. Griffin
- New Zealand Institute for Crop and Food Research, Grain Foods Research Unit, Private Bag 4704, Christchurch, New Zealand
| | - P. E. Wilson
- New Zealand Institute for Crop and Food Research, Grain Foods Research Unit, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
15
|
Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury. J Neurosci 2002. [PMID: 12351714 DOI: 10.1523/jneurosci.22-19-08402.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-beta-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and protein thiol oxidation that disrupts mitochondrial complex I selectively in motor cortex and lumbosacral cord, the regions affected in humans. We examined the factors regulating postinjury recovery of complex I in CNS regions after a single dose of L-BOAA. The expression of thioltransferase (glutaredoxin), a protein disulfide oxidoreductase regulated through AP1 transcription factor was upregulated within 30 min of L-BOAA administration, providing the first evidence for functional regulation of thioltransferase during restoration of mitochondrial function. Regeneration of complex I activity in motor cortex was concurrent with increase in thioltransferase protein and activity, 1 hr after the excitotoxic insult. Pretreatment with alpha-lipoic acid, a thiol delivery agent that protects motor neurons from L-BOAA-mediated toxicity prevented the upregulation of thioltransferase and AP1 activation, presumably by maintaining thiol homeostasis. Downregulation of thioltransferase using antisense oligonucleotides prevented the recovery of complex I in motor cortex and exacerbated the mitochondrial dysfunction in lumbosacral cord, providing support for the critical role for thioltransferase in maintenance of mitochondrial function in the CNS.
Collapse
|
16
|
Affiliation(s)
- D A Sanders
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
17
|
Luikenhuis S, Perrone G, Dawes IW, Grant CM. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 1998; 9:1081-91. [PMID: 9571241 PMCID: PMC25331 DOI: 10.1091/mbc.9.5.1081] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glutaredoxins are small heat-stable proteins that act as glutathione-dependent disulfide oxidoreductases. Two genes, designated GRX1 and GRX2, which share 40-52% identity and 61-76% similarity with glutaredoxins from bacterial and mammalian species, were identified in the yeast Saccharomyces cerevisiae. Strains deleted for both GRX1 and GRX2 were viable but lacked heat-stable oxidoreductase activity using beta-hydroxyethylene disulfide as a substrate. Surprisingly, despite the high degree of homology between Grx1 and Grx2 (64% identity), the grx1 mutant was unaffected in oxidoreductase activity, whereas the grx2 mutant displayed only 20% of the wild-type activity, indicating that Grx2 accounted for the majority of this activity in vivo. Expression analysis indicated that this difference in activity did not arise as a result of differential expression of GRX1 and GRX2. In addition, a grx1 mutant was sensitive to oxidative stress induced by the superoxide anion, whereas a strain that lacked GRX2 was sensitive to hydrogen peroxide. Sensitivity to oxidative stress was not attributable to altered glutathione metabolism or cellular redox state, which did not vary between these strains. The expression of both genes was similarly elevated under various stress conditions, including oxidative, osmotic, heat, and stationary phase growth. Thus, Grx1 and Grx2 function differently in the cell, and we suggest that glutaredoxins may act as one of the primary defenses against mixed disulfides formed following oxidative damage to proteins.
Collapse
Affiliation(s)
- S Luikenhuis
- Cooperative Research Center for Food Industry Innovation, School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
18
|
Sha S, Yabushita T, Minakuchi K, Masumura T, Tanaka K. Structure of the rice glutaredoxin (thioltransferase) gene. Gene 1997; 188:23-8. [PMID: 9099854 DOI: 10.1016/s0378-1119(96)00771-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated the gene encoding a glutaredoxin in rice (Oryza sativa L.) and determined the nucleotide (nt) sequence of about a 4.2 kb long. The cloned gene (gRASC8) was found to contain four exons interrupted by three introns. The first exon begins the ATG translation start codon and the four exons code for a protein composed of 112 amino acids. The tetrapeptide -Cys-Pro-Phe-Cys- [-Cys-Pro-Phe(Tyr)-Cys-] which constitutes an active site of Escherichia coli and mammalian glutaredoxins, was conserved. The nt sequence contained consensus TATA and CAAT boxes, and two polyadenylation signals. Southern blot analysis of rice genomic DNA suggests that there are two copies of the glutaredoxin genes in rice.
Collapse
Affiliation(s)
- S Sha
- Department of Biochemistry, College of Agriculture, Kyoto Prefectural University, Shimogamo, Japan
| | | | | | | | | |
Collapse
|
19
|
Muller EG. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 1996; 7:1805-13. [PMID: 8930901 PMCID: PMC276027 DOI: 10.1091/mbc.7.11.1805] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A glutathione reductase null mutant of Saccharomyces cerevisiae was isolated in a synthetic lethal genetic screen for mutations which confer a requirement for thioredoxin. Yeast mutants that lack glutathione reductase (glr1 delta) accumulate high levels of oxidized glutathione and have a twofold increase in total glutathione. The disulfide form of glutathione increases 200-fold and represents 63% of the total glutathione in a glr1 delta mutant compared with only 6% in wild type. High levels of oxidized glutathione are also observed in a trx1 delta, trx2 delta double mutant (22% of total), in a glr1 delta, trx1 delta double mutant (71% of total), and in a glr1 delta, trx2 delta double mutant (69% of total). Despite the exceptionally high ratio of oxidized/reduced glutathione, the glr1 delta mutant grows with a normal cell cycle. However, either one of the two thioredoxins is essential for growth. Cells lacking both thioredoxins and glutathione reductase are not viable under aerobic conditions and grow poorly anaerobically. In addition, the glr1 delta mutant shows increased sensitivity to the thiol oxidant diamide. The sensitivity to diamide was suppressed by deletion of the TRX2 gene. The genetic analysis of thioredoxin and glutathione reductase in yeast runs counter to previous studies in Escherichia coli and for the first time links thioredoxin with the redox state of glutathione in vivo.
Collapse
Affiliation(s)
- E G Muller
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA
| |
Collapse
|
20
|
Park JB, Levine M. Purification, cloning and expression of dehydroascorbic acid-reducing activity from human neutrophils: identification as glutaredoxin. Biochem J 1996; 315 ( Pt 3):931-8. [PMID: 8645179 PMCID: PMC1217296 DOI: 10.1042/bj3150931] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dehydroascorbic acid-reducing activity in normal human neutrophil lysates was characterized and identified by activity-based purification and measurement of newly synthesized ascorbate by HPLC. The initial reducing activity was non-dialysable and could not be accounted for by the activity of glutathione as a reducing agent. The reducing activity was purified to homogeneity as an 11 kDa protein. The protein had a specific activity of 3 mumol/min per mg of protein and was glutathione dependent. Kinetic experiments showed that the protein had a K(m) for glutathione of 2.0 mM and a K(m) for dehydroascorbic acid of 250 microM. Dehydroascorbic acid reduction by the purified protein was pH dependent and was maximal at pH 7.5. Peptide fragments from the purified protein were analysed for amino acid sequence and the protein was identified as glutaredoxin. By using degenerate oligonucleotides based on the amino acid sequence, glutaredoxin was cloned from a human neutrophil library. Expressed purified glutaredoxin displayed reducing activity and kinetics that were indistinguishable from those of native purified enzyme. Several approaches indicated that glutaredoxin was responsible for the most of the protein-mediated dehydroascorbic acid reduction in lysates. From protein purification data, glutaredoxin was responsible for at least 47% of the initial reducing activity. Dehydroascorbic acid reduction was at least 5-fold greater in neutrophil lysates than in myeloid tumour cell lysates, and glutaredoxin was detected in normal neutrophil lysates but not in myeloid tumour cell lysates by Western blotting. Glutaredoxin inhibitors inhibited dehydroascorbic acid reduction in neutrophil lysates as much as 80%. These findings indicate that glutaredoxin plays a major role in dehydroascorbic acid reduction in normal human neutrophil lysates, and represent the first identification of dehydroascorbic acid reductase in human tissue by activity-based purification.
Collapse
Affiliation(s)
- J B Park
- Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Wells WW, Dou CZ, Dybas LN, Jung CH, Kalbach HL, Xu DP. Ascorbic acid is essential for the release of insulin from scorbutic guinea pig pancreatic islets. Proc Natl Acad Sci U S A 1995; 92:11869-73. [PMID: 8524865 PMCID: PMC40504 DOI: 10.1073/pnas.92.25.11869] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic islets from young normal and scorbutic male guinea pigs were examined for their ability to release insulin when stimulated with elevated D-glucose. Islets from normal guinea pigs released insulin in a D-glucose-dependent manner showing a rapid initial secretion phase and three secondary secretion waves during a 120-min period. Islets from scorbutic guinea pigs failed to release insulin during the immediate period, and only delayed and decreased responses were observed over the 40-60 min after D-glucose elevation. Insulin release from scorbutic islets was greatly elevated if 5 mM L-ascorbic acid 2-phosphate was supplemented in the perifusion medium during the last 60 min of perifusion. When 5 mM L-ascorbic acid 2-phosphate was added to the perifusion medium concurrently with elevation of medium D-glucose, islets from scorbutic guinea pigs released insulin as rapidly as control guinea pig islets and to a somewhat greater extent. L-Ascorbic acid 2-phosphate without elevated D-glucose had no effect on insulin release by islets from normal or scorbutic guinea pigs. The pancreas from scorbutic guinea pigs contained 2.4 times more insulin than that from control guinea pigs, suggesting that the decreased insulin release from the scorbutic islets was not due to decreased insulin synthesis but due to abnormal insulin secretion.
Collapse
Affiliation(s)
- W W Wells
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | |
Collapse
|
22
|
Katti SK, Robbins AH, Yang Y, Wells WW. Crystal structure of thioltransferase at 2.2 A resolution. Protein Sci 1995; 4:1998-2005. [PMID: 8535236 PMCID: PMC2142994 DOI: 10.1002/pro.5560041005] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report here the first three-dimensional structure of a mammalian thioltransferase as determined by single crystal X-ray crystallography at 2.2 A resolution. The protein is known for its thiol-redox properties and dehydroascorbate reductase activity. Recombinant pig liver thioltransferase expressed in Escherichia coli was crystallized in its oxidized form by vapor diffusion technique. The structure was determined by multiple isomorphous replacement method using four heavy-atom derivatives. The protein folds into an alpha/beta structure with a four-stranded mixed beta-sheet in the core, flanked on either side by helices. The fold is similar to that found in other thiol-redox proteins, viz. E. coli thioredoxin and bacteriophage T4 glutaredoxin, and thus seems to be conserved in these functionally related proteins. The active site disulfide (Cys 22-Cys 25) is located on a protrusion on the molecular surface. Cys 22, which is known to have an abnormally low pKa of 3.8, is accessible from the exterior of the molecule. Pro 70, which is in close proximity to the disulfide bridge, assumes a conserved cis-peptide configuration. Mutational data available on the protein are in agreement with the three-dimensional structure.
Collapse
Affiliation(s)
- S K Katti
- Bayer Corporation, Pharmaceutical Division, West Haven, Connecticut 06516, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Dehydroascorbic acid is generated in plants and animal cells by oxidation of ascorbic acid. The reaction is believed to occur by the one-electron oxidation of ascorbic acid to semidehydroascorbate radical followed by disproportionation to dehydroascorbic acid and ascorbic acid. Semidehydroascorbic acid may recycle to ascorbic acid catalyzed by membrane-bound NADH-semidehydroscorbate reductase. However, disproportionation of the free radical occurs at a rapid rate, 10(5) M-1 s-1, accounting for measurable cellular levels of dehydroascorbate. Dehydroascorbate reductase, studied earlier and more extensively in plants, is now recognized as the intrinsic activity of thioltransferases (glutaredoxins) and protein disulfide isomerase in animal cells. These enzymes catalyze the glutathione-dependent two-electron regeneration of ascorbic acid. The importance of the latter route of ascorbic acid renewal was seen in studies of GSH-deficient rodents (Meister, A. (1992) Biochem. Pharmacol. 44, 1905-1915). GSH deficiency in newborn animals resulted in decreased tissue ascorbic acid and increased dehydroascorbate-to-ascorbate ratios. Administration of ascorbic acid daily to GSH-deficient animals decreased animal mortality and cell damage from oxygen stress. A cellular role is proposed for dehydroascorbate in the oxidation of nascent protein dithiols to disulfides catalyzed in the endoplasmic reticulum compartment by protein disulfide isomerase.
Collapse
Affiliation(s)
- W W Wells
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|