1
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. To Better Generate Organoids, What Can We Learn From Teratomas? Front Cell Dev Biol 2021; 9:700482. [PMID: 34336851 PMCID: PMC8324104 DOI: 10.3389/fcell.2021.700482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jinlin Du
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
2
|
Haramoto Y, Onuma Y, Mawaribuchi S, Nakajima Y, Aiki Y, Higuchi K, Shimizu M, Tateno H, Hirabayashi J, Ito Y. A technique for removing tumourigenic pluripotent stem cells using rBC2LCN lectin. Regen Ther 2020; 14:306-314. [PMID: 32462059 PMCID: PMC7240284 DOI: 10.1016/j.reth.2020.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Tumourigenesis attributed to residual undifferentiated cells in a graft is considered to be a significant issue in cell therapy using human pluripotent stem cells. To ensure the safety of regenerative medicine derived from pluripotent stem cells, residual undifferentiated cells must be eliminated in the manufacturing process. We previously described the lectin probe rBC2LCN, which binds harmlessly and specifically to the cell surface of human pluripotent stem cells. We report here a technique using rBC2LCN to remove pluripotent cells from a heterogenous population to reduce the chance of teratoma formation. METHODS We demonstrate a method for separating residual tumourigenic cells using rBC2LCN-bound magnetic beads. This technology is a novel use of their previous discovery that rBC2LCN is a lectin that selectively binds to pluripotent cells. We optimize and validate a method to remove hPSCs from a mixture with human fibroblasts using rBC2LCN-conjugated magnetic beads. RESULTS Cells with the potential to form teratoma could be effectively eliminated from a heterogeneous cell population with biotin-labelled rBC2LCN and streptavidin-bound magnetic beads. The efficiency was measured by FACS, ddPCR, and animal transplantation, suggesting that magnetic cell separation using rBC2LCN is quite efficient for eliminating hPSCs from mixed cell populations. CONCLUSIONS The removal of residual tumourigenic cells based on rBC2LCN could be a practical option for laboratory use and industrialisation of regenerative medicine using human pluripotent stem cells.
Collapse
Affiliation(s)
- Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yasuko Onuma
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shuuji Mawaribuchi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yoshiro Nakajima
- Division of Developmental Biology, Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi, Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuhiko Aiki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kumiko Higuchi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Madoka Shimizu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
3
|
Laing O, Halliwell J, Barbaric I. Rapid PCR Assay for Detecting Common Genetic Variants Arising in Human Pluripotent Stem Cell Cultures. ACTA ACUST UNITED AC 2019; 49:e83. [PMID: 30821932 DOI: 10.1002/cpsc.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) are prone to acquiring genetic changes upon prolonged culture. Particularly common are copy number changes, including gains of chromosomes 1q, 12p, 17q, and 20q, and/or loss of chromosomes 10p and 18q. The variant cells harboring common genetic changes display altered behaviors compared to their diploid counterparts, thus potentially impacting upon the validity of experimental results and safety of hPSC-derived cellular therapies. Hence, a critical quality attribute in hPSC maintenance should include frequent monitoring for genetic changes arising in cultures. This in turn places large demands on the genotyping assays for detection of genetic changes. Traditional methods for screening cells entail specialized cytogenetic analyses, but their high costs and a lengthy turnaround time make them impractical for high-throughput analyses and routine laboratory use. Here, we detail a protocol for a rapid, accessible, and affordable PCR-based method for detection of frequently occurring copy number changes in hPSCs. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Owen Laing
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Jason Halliwell
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Abstract
In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425 Poland
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| |
Collapse
|
5
|
Bouma MJ, van Iterson M, Janssen B, Mummery CL, Salvatori DCF, Freund C. Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays. Stem Cell Reports 2018; 8:1340-1353. [PMID: 28494940 PMCID: PMC5425621 DOI: 10.1016/j.stemcr.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to form teratomas in vivo containing multiple somatic cell types is regarded as functional evidence of pluripotency for human pluripotent stem cells (hPSCs). Since the Teratoma assay is animal dependent, laborious, and only qualitative, the PluriTest and the hPSC ScoreCard assay have been developed as in vitro alternatives. Here we compared normal hPSCs, induced hPSCs (hiPSCs) with reactivated reprogramming transgenes, and human embryonal carcinoma cells (hECs) in these assays. While normal hPSCs gave rise to typical teratomas, the xenografts of the hECs and the hiPSCs with reactivated reprogramming transgenes were largely undifferentiated and malignant. The hPSC ScoreCard assay confirmed the line-specific differentiation propensities in vitro. However, when undifferentiated cells were analyzed by the PluriTest, only hECs were identified as abnormal whereas all other cell lines were indistinguishable and resembled normal hPSCs. Our results indicate that pluripotency assays are best selected on the basis of intended downstream applications. Side-by-side comparison of teratomas/TeratoScore, hPSC ScoreCard, and PluriTest hiPSCs with reactivated transgenes form embryonal carcinomas in vivo hiPSCs with reactivated transgenes show impaired differentiation capacity in vitro • PluriTest does not distinguish hiPSCs with reactivated transgenes from normal hPSCs
Collapse
Affiliation(s)
- Marga J Bouma
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Maarten van Iterson
- Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Bart Janssen
- GenomeScan B.V., Plesmanlaan 1D, 2333 BZ Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Christian Freund
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
6
|
Intrapancreatic Parenchymal Injection of Cells as a Useful Tool for Allowing a Small Number of Proliferative Cells to Grow In Vivo. Int J Mol Sci 2017; 18:ijms18081678. [PMID: 28767080 PMCID: PMC5578068 DOI: 10.3390/ijms18081678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
In vivo inoculation of cells such as tumor cells and induced pluripotent stem (iPS)/embryonic stem (ES) cells into immunocompromised mice has been considered as a powerful technique to evaluate their potential to proliferate or differentiate into various cell types originating from three germ cell layers. Subcutaneous grafting and grafting under the kidney capsule have been widely used for this purpose, but there are some demerits such as the requirement of a large number of tumor cells for inoculation and frequent failure of tumorigenesis. Therefore, grafting into other sites has been explored, including intratesticular or intramuscular grafting as well as grafting into the cochleae, liver, or salivary glands. In this study, we found that intrapancreatic parenchymal injection of cells is useful for allowing a small number of cells (~15 × 103 cells or ~30 cell clumps μL−1·site−1) to proliferate and sometimes differentiate into various types of cells. It requires only surgical exposure of the pancreas over the dorsal skin and subsequent injection of cells towards the pancreatic parenchyma under dissecting microscope-based observation using a mouthpiece-controlled glass micropipette. We now name this technology “intrapancreatic parenchymal cell transplantation (IPPCT)”, which will be useful, especially when only a small number of cells or colonies are available.
Collapse
|
7
|
Efficient, Selective Removal of Human Pluripotent Stem Cells via Ecto-Alkaline Phosphatase-Mediated Aggregation of Synthetic Peptides. Cell Chem Biol 2017; 24:685-694.e4. [DOI: 10.1016/j.chembiol.2017.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/30/2016] [Accepted: 04/17/2017] [Indexed: 01/17/2023]
|
8
|
Parr CJC, Katayama S, Miki K, Kuang Y, Yoshida Y, Morizane A, Takahashi J, Yamanaka S, Saito H. MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Sci Rep 2016; 6:32532. [PMID: 27608814 PMCID: PMC5016789 DOI: 10.1038/srep32532] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 01/28/2023] Open
Abstract
The efficiency of pluripotent stem cell differentiation is highly variable, often resulting in heterogeneous populations that contain undifferentiated cells. Here we developed a sensitive, target-specific, and general method for removing undesired cells before transplantation. MicroRNA-302a-5p (miR-302a) is highly and specifically expressed in human pluripotent stem cells and gradually decreases to basal levels during differentiation. We synthesized a new RNA tool, miR-switch, as a live-cell reporter mRNA for miR-302a activity that can specifically detect human induced pluripotent stem cells (hiPSCs) down to a spiked level of 0.05% of hiPSCs in a heterogeneous population and can prevent teratoma formation in an in vivo tumorigenicity assay. Automated and selective hiPSC-elimination was achieved by controlling puromycin resistance using the miR-302a switch. Our system uniquely provides sensitive detection of pluripotent stem cells and partially differentiated cells. In addition to its ability to eliminate undifferentiated cells, miR-302a switch also holds great potential in investigating the dynamics of differentiation and/or reprograming of live-cells based on intracellular information.
Collapse
Affiliation(s)
- Callum J C Parr
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shota Katayama
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Miki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yi Kuang
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yoshinori Yoshida
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Asprer JST, Lakshmipathy U. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells. Stem Cell Rev Rep 2016; 11:357-72. [PMID: 25504379 DOI: 10.1007/s12015-014-9580-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) are powerful tools for basic scientific research and promising agents for drug discovery and regenerative medicine. Technological advances have made it increasingly easy to generate PSCs but the various lines generated may differ in their characteristics based on their origin, derivation, number of passages, and culture conditions. In order to confirm the pluripotency, quality, identity, and safety of pluripotent cell lines as they are derived and maintained, it is critical to perform a panel of characterization assays. Functional pluripotency is determined using tests that rely on the expression of specific markers in the undifferentiated and differentiated states; tests for quality, identity and safety are less specialized. This article provides a comprehensive review of current practices in PSC characterization and explores challenges in the field, from the selection of markers to the development of simple and scalable methods. It also delves into emerging trends like the adoption of alternative assays that could be used to supplement or replace traditional methods, specifically the use of in silico assays for determining pluripotency.
Collapse
Affiliation(s)
- Joanna S T Asprer
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008, USA
| | | |
Collapse
|
10
|
Damdimopoulou P, Rodin S, Stenfelt S, Antonsson L, Tryggvason K, Hovatta O. Human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol 2015; 31:2-12. [PMID: 26602389 DOI: 10.1016/j.bpobgyn.2015.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
The establishment of permanent human embryonic stem cell lines (hESCs) was first reported in 1998. Due to their pluripotent nature and ability to differentiate to all cell types in the body, they have been considered as a cell source for regenerative medicine. Since then, intensive studies have been carried out regarding factors regulating pluripotency and differentiation. hESCs are obtained from supernumerary human IVF (in vitro fertilization) embryos that cannot be used for the couple's infertility treatment. Today, we can establish and expand these cells in animal substance-free conditions, even from single cells biopsied from eight-cell stage embryos. There are satisfactory tests for the demonstration of genetic stability, absence of tumorigenic mutations, functionality, and safety of hESCs. Clinical trials are ongoing for age-related macular degeneration (AMD) and spinal cord injury (SCI). This review focuses on the present state of these techniques.
Collapse
Affiliation(s)
- Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Sergey Rodin
- Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Sonya Stenfelt
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Liselotte Antonsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Karl Tryggvason
- Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| | - Outi Hovatta
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
McKee C, Perez-Cruet M, Chavez F, Chaudhry GR. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells. World J Stem Cells 2015; 7:1064-1077. [PMID: 26328022 PMCID: PMC4550630 DOI: 10.4252/wjsc.v7.i7.1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.
METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.
RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.
CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.
Collapse
|
12
|
Nelakanti RV, Kooreman NG, Wu JC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2015; 32:4A.8.1-4A.8.17. [PMID: 25640819 PMCID: PMC4402211 DOI: 10.1002/9780470151808.sc04a08s32] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes protocols for evaluating the pluripotency of embryonic and induced pluripotent stem cells using a teratoma formation assay. Cells are prepared for injection and transplanted into immunodeficient mice at the gastrocnemius muscle, a site well suited for teratoma growth and surgical access. Teratomas that form from the cell transplants are explanted, fixed in paraformaldehyde, and embedded in paraffin. These preserved samples are sectioned, stained, and analyzed. Pluripotency of a cell line is confirmed by whether the teratoma contains tissues derived from each of the embryonic germ layers: endoderm, mesoderm, and ectoderm. Alternatively, explanted and fixed teratomas can be cryopreserved for immunohistochemistry, which allows for more detailed identification of specific tissue types present in the samples.
Collapse
Affiliation(s)
- Raman V Nelakanti
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
- Departments of Medicine and Radiology (Molecular Imaging Program), Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
- Departments of Medicine and Radiology (Molecular Imaging Program), Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
- Departments of Medicine and Radiology (Molecular Imaging Program), Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
13
|
Zhu F, Sun B, Wen Y, Wang Z, Reijo Pera R, Chen B. A modified method for implantation of pluripotent stem cells under the rodent kidney capsule. Stem Cells Dev 2014; 23:2119-25. [PMID: 24800694 DOI: 10.1089/scd.2014.0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teratoma formation, the standard in vivo pluripotency assay, is also frequently used as a tumorigenicity assay. A common concern in therapeutic stem cell applications is the tumorigenicity potential of a small number of cell impurities in the final product. Estimation of this small number is hampered by the inaccurate methodology of the tumorigenicity assay. Hence, a protocol for tumorigenicity assay that can deliver a defined number of cells, without error introduced by leakage or migration of cells is needed. In this study, we tested our modified transplantation method that allows for transplant of small numbers of pluripotent stem cells (PSCs) under the kidney capsule with minimal cell leakage. A glass capillary with a finely shaped tip and an attached mouth pipette was used to inject PSCs into the rodent kidney capsule. H9 embryonic and induced PSCs were tagged with Fluc and green fluorescence protein reporter genes and divided in different cell doses for transplantation. Bioluminescence imaging (BLI) on the day of surgery showed that the cell signal was confined to the kidney and signal intensity correlated with increasing transplant cell numbers. The overall cell leakage rate was 17% and the rodent survival rate was 96%. Teratoma formation was observed in rodents transplanted with cell numbers between 1 × 10(5)-2 × 10(6). We conclude that this modified procedure for transplanting PSCs under the kidney capsule allows for transplantation of a defined number of PSCs with significant reduction of error associated with cell leakage from the transplant site.
Collapse
Affiliation(s)
- Fuli Zhu
- 1 Department of Obstetrics/Gynecology, Stanford University School of Medicine , Stanford, California
| | | | | | | | | | | |
Collapse
|
14
|
Characterizing Pluripotent Stem Cells Using the TaqMan® hPSC Scorecard(TM) Panel. Methods Mol Biol 2014; 1307:25-37. [PMID: 25138722 DOI: 10.1007/7651_2014_109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid technological developments for the efficient generation of footprint-free induced pluripotent stem cells (iPSC) enabled the creation of patient-specific iPSC for downstream applications in drug discovery and regenerative medicine. However, the large number of iPSCs, generated from diverse genetic backgrounds using various methods and culture conditions, created a steep challenge for rapid characterization and a demand for standardized methods. Current methods rely on a combination of in vitro and in vivo cellular analyses based on the expression of markers of self-renewal and the ability of the cells to differentiate into cell types representative of the three germ layers as a confirmation of functional pluripotency. These methods, though informative and extensively used, are not ideal for parallel analyses of large numbers of samples and hence not amenable to high-throughput environments. Recently, genetic and epigenetic expression signatures were used to define and confirm cell states, thus providing a surrogate molecular assay that can potentially replace complex in vivo cellular assays such as teratoma formation. In this chapter, we describe a molecular assay for rapid characterization and standardization of pluripotent stem cells. The TaqMan(®) hPSC Scorecard™ Panel is a comprehensive gene expression real-time PCR assay that consists of 94 individual q-PCR assays comprised of a combination of control, housekeeping, self-renewal, and lineage-specific genes. The resulting expression data set is analyzed using cloud-based analysis software that compares the expression pattern against a reference standard composed of multiple functionally validated ESC and iPSC lines. This system was successfully used to test several ESC and iPSC lines in their undifferentiated states to confirm their signatures of self renewal, as well as their terminally differentiates states, via spontaneous differentiation and directed differentiation into specific lineages, to determine the lines' differentiation potential. This genetic analysis tool, together with the flexibility to utilize varying sample inputs and preparation methods, provides a rapid method to confirm functional pluripotency of ESCs and iPSCs.
Collapse
|
15
|
Jamil S, Hultman I, Cedervall J, Ali RQ, Fuchs G, Gustavsson B, Asmundsson J, Sandstedt B, Kogner P, Ährlund-Richter L. Tropism of thein situgrowth from biopsies of childhood neuroectodermal tumors following transplantation into experimental teratoma. Int J Cancer 2013; 134:1630-7. [DOI: 10.1002/ijc.28498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Seema Jamil
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - Isabell Hultman
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology; Uppsala University; Uppsala Sweden
| | | | - Gabriel Fuchs
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - Bengt Gustavsson
- Department of Oncology and Pathology; Karolinska Institutet; Stockholm Sweden
| | - Jurate Asmundsson
- Department of Oncology and Pathology; Karolinska Institutet; Stockholm Sweden
- Karolinska University Laboratories, Unit for Pathology; Stockholm Sweden
| | - Bengt Sandstedt
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
- Karolinska University Laboratories, Unit for Pathology; Stockholm Sweden
| | - Per Kogner
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - Lars Ährlund-Richter
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
16
|
Buta C, David R, Dressel R, Emgård M, Fuchs C, Gross U, Healy L, Hescheler J, Kolar R, Martin U, Mikkers H, Müller FJ, Schneider RK, Seiler AE, Spielmann H, Weitzer G. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res 2013; 11:552-62. [PMID: 23611953 PMCID: PMC7615844 DOI: 10.1016/j.scr.2013.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 01/19/2023] Open
Abstract
The induction of teratoma in mice by the transplantation of stem cells into extra-uterine sites has been used as a read-out for cellular pluripotency since the initial description of this phenomenon in 1954. Since then, the teratoma assay has remained the assay of choice to demonstrate pluripotency, gaining prominence during the recent hype surrounding human stem cell research. However, the scientific significance of the teratoma assay has been debated due to the fact that transplanted cells are exposed to a non-physiological environment. Since many mice are used for a result that is heavily questioned, it is time to reconsider the teratoma assay from an ethical point of view. Candidate alternatives to the teratoma assay comprise the directed differentiation of pluripotent stem cells into organotypic cells, differentiation of cells in embryoid bodies, the analysis of pluripotency-associated biomarkers with high correlation to the teratoma forming potential of stem cells, predictive epigenetic footprints, or a combination of these technologies. Each of these assays is capable of addressing one or more aspects of pluripotency, however it is essential that these assays are validated to provide an accepted robust, reproducible alternative. In particular, the rapidly expanding number of human induced pluripotent stem cell lines, requires the development of simple, affordable standardized in vitro and in silico assays to reduce the number of animal experiments performed.
Collapse
Affiliation(s)
| | - Robert David
- Ludwig-Maximilians-Universität, München, Germany
| | | | - Mia Emgård
- Cellartis, Göteborg and Karolinska Institute Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Characterization of pluripotent stem cells is required for the registration of stem cell lines and allows for an impartial and objective comparison of the results obtained when generating multiple lines. It is therefore crucial to establish specific, fast and reliable protocols to detect the hallmarks of pluripotency. Such protocols should include immunocytochemistry (takes 2 d), identification of the three germ layers in in vitro-derived embryoid bodies by immunocytochemistry (immunodetection takes 3 d) and detection of differentiation markers in in vivo-generated teratomas by immunohistochemistry (differentiation marker detection takes 4 d). Standardization of the immunodetection protocols used ensures minimum variations owing to the source, the animal species, the endogenous fluorescence or the inability to collect large amounts of cells, thereby yielding results as fast as possible without loss of quality. This protocol provides a description of all the immunodetection procedures necessary to characterize mouse and human stem cell lines in different circumstances.
Collapse
|
18
|
Jiang Y, Cowley SA, Siler U, Melguizo D, Tilgner K, Browne C, Dewilton A, Przyborski S, Saretzki G, James WS, Seger RA, Reichenbach J, Lako M, Armstrong L. Derivation and functional analysis of patient-specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease. Stem Cells 2012; 30:599-611. [PMID: 22311747 PMCID: PMC3593166 DOI: 10.1002/stem.1053] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chronic granulomatous disease (CGD) is an inherited disorder of phagocytes in which NADPH oxidase is defective in generating reactive oxygen species. In this study, we reprogrammed three normal unrelated patient's fibroblasts (p47(phox) and gp91(phox) ) to pluripotency by lentiviral transduction with defined pluripotency factors. These induced pluripotent stem cells (iPSC) share the morphological features of human embryonic stem cells, express the key pluripotency factors, and possess high telomerase activity. Furthermore, all the iPSC lines formed embryoid bodies in vitro containing cells originating from all three germ layers and were capable of teratoma formation in vivo. They were isogenic with the original patient fibroblasts, exhibited normal karyotype, and retained the p47(phox) or gp91(pho) (x) mutations found in the patient fibroblasts. We further demonstrated that these iPSC could be differentiated into monocytes and macrophages with a similar cytokine profile to blood-derived macrophages under resting conditions. Most importantly, CGD-patient-specific iPSC-derived macrophages showed normal phagocytic properties but lacked reactive oxygen species production, which correlates with clinical diagnosis of CGD in the patients. Together these results suggest that CGD-patient-specific iPSC lines represent an important tool for modeling CGD disease phenotypes, screening candidate drugs, and the development of gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- Institute of Genetic Medicine, Newcastle UniversityNewcastle, United Kingdom
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of OxfordOxford, United Kingdom
| | - Ulrich Siler
- Children's Research Center (CRC), University Children's Hospital of ZurichZurich, Switzerland
| | | | - Katarzyna Tilgner
- Institute of Genetic Medicine, Newcastle UniversityNewcastle, United Kingdom
| | - Cathy Browne
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of OxfordOxford, United Kingdom
| | - Angus Dewilton
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of OxfordOxford, United Kingdom
| | - Stefan Przyborski
- Reinnervate Limited School of Biological and Biomedical Science, University of DurhamDurham, United Kingdom
| | - Gabriele Saretzki
- Institute for Ageing and Health, Newcastle UniversityNewcastle, United Kingdom
| | - William S James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of OxfordOxford, United Kingdom
| | - Reinhard A Seger
- Children's Research Center (CRC), University Children's Hospital of ZurichZurich, Switzerland
| | - Janine Reichenbach
- Children's Research Center (CRC), University Children's Hospital of ZurichZurich, Switzerland
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle UniversityNewcastle, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle UniversityNewcastle, United Kingdom
| |
Collapse
|
19
|
Chou YF, Yabuuchi A. Murine embryonic stem cell derivation, in vitro pluripotency characterization, and in vivo teratoma formation. ACTA ACUST UNITED AC 2012; Chapter 2:Unit2.22. [PMID: 22058054 DOI: 10.1002/0471140856.tx0222s50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The derivation of embryonic stem (ES) cells represents one of the most important breakthroughs in mammalian developmental biology. In addition to their utility in a wide array of in vitro studies, ES cells are also one of the most useful starting materials for the generation of mutants by homologous recombination in mice (Thomson and Solter, 1988). When ES cells are injected into host blastocysts and transferred to the uterus of a pseudo-pregnant mouse, they can contribute to different types of tissues in chimeric mice, including the germ line (Bradley et al., 1984). Hundreds of genes have been studied through genetic manipulation of ES cells to model human genetic diseases. In this unit, the ES cell lines are derived from the 129SvEv mice strain, which has a high probability of promoting germ line transmission. Procedures for validating and characterizing ES cell pluripotency are also described in detail.
Collapse
Affiliation(s)
- Yu-Fen Chou
- Wadsworth Center, New York State Department of Health, Albany, USA
| | | |
Collapse
|
20
|
Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int 2012; 2012:379569. [PMID: 22654918 PMCID: PMC3357635 DOI: 10.1155/2012/379569] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022] Open
Abstract
Development of induced pluripotent stem cells (iPSCs) using forced expression of specific sets of transcription factors has changed the field of stem cell research extensively. Two important limitations for research application of embryonic stem cells (ESCs), namely, ethical and immunological issues, can be circumvented using iPSCs. Since the development of first iPSCs, tremendous effort has been directed to the development of methods to increase the efficiency of the process and to reduce the extent of genomic modifications associated with the reprogramming procedure. The established lineage-specific differentiation protocols developed for ESCs are being applied to iPSCs, as they have great potential in regenerative medicine for cell therapy, disease modeling either for drug development or for fundamental science, and, last but not least, toxicity testing. This paper reviews efforts aimed at practical development of iPSC differentiation to neural/cardiac lineages and further the use of these iPSCs-derived cells for drug development and toxicity testing.
Collapse
|
21
|
Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation. PLoS One 2011; 6:e27741. [PMID: 22140465 PMCID: PMC3227586 DOI: 10.1371/journal.pone.0027741] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 10/24/2011] [Indexed: 11/19/2022] Open
Abstract
Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.
Collapse
|
22
|
Peterson SE, Tran HT, Garitaonandia I, Han S, Nickey KS, Leonardo T, Laurent LC, Loring JF. Teratoma generation in the testis capsule. J Vis Exp 2011:e3177. [PMID: 22158256 PMCID: PMC3308584 DOI: 10.3791/3177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Pluripotent stem cells (PSCs) have the unique characteristic that they can differentiate into cells from all three germ layers. This makes them a potentially valuable tool for the treatment of many different diseases. With the advent of induced pluripotent stem cells (iPSCs) and continuing research with human embryonic stem cells (hESCs) there is a need for assays that can demonstrate that a particular cell line is pluripotent. Germline transmission has been the gold standard for demonstrating the pluripotence of mouse embryonic stem cell (mESC) lines1,2,3. Using this assay, researchers can show that a mESC line can make all cell types in the embryo including germ cells4. With the generation of human ESC lines5,6, the appropriate assay to prove pluripotence of these cells was unclear since human ESCs cannot be tested for germline transmission. As a surrogate, the teratoma assay is currently used to demonstrate the pluripotency of human pluripotent stem cells (hPSCs)7,8,9. Though this assay has recently come under scrutiny and new technologies are being actively explored, the teratoma assay is the current gold standard7. In this assay, the cells in question are injected into an immune compromised mouse. If the cells are pluripotent, a teratoma will eventually develop and sections of the tumor will show tissues from all 3 germ layers10. In the teratoma assay, hPSCs can be injected into different areas of the mouse. The most common injection sites include the testis capsule, the kidney capsule, the liver; or into the leg either subcutaneously or intramuscularly11. Here we describe a robust protocol for the generation of teratomas from hPSCs using the testis capsule as the site for tumor growth.
Collapse
|
23
|
Wang YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, Nazor KL, Tran HT, Lynch CL, Leonardo TR, Liu Y, Peterson SE, Laurent LC, Yamanaka S, Loring JF. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 2011; 21:1551-63. [PMID: 21894191 PMCID: PMC3364725 DOI: 10.1038/cr.2011.148] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications. Using lectin arrays, we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples, and identified a small group of lectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types. These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined, regardless of the laboratory of origin, the culture conditions, the somatic cell type reprogrammed, or the reprogramming method used. We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry, and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation. Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases, which may underlie these differences in protein glycosylation and lectin binding. Taken together, our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells, and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- The Scripps Research Institute, Department of Chemical Physiology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Juopperi TA, Song H, Ming GL. Modeling neurological diseases using patient-derived induced pluripotent stem cells. FUTURE NEUROLOGY 2011; 6:363-373. [PMID: 21731471 DOI: 10.2217/fnl.11.14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reprogramming of somatic cells to an embryonic-like state has dramatically changed the landscape of stem cell research. Although still in its formative stages, the field of induced pluripotent stem cells (iPSCs) has the potential to advance the study of neurodegenerative and neurodevelopmental disorders at the molecular and cellular levels. The iPSC technology could be employed to establish in vitro experimental model systems for the identification of molecular lesions and to aid in the discovery of therapeutic targets and effective compounds. The derivation of patient-specific iPSCs has also opened up the possibility of generating disease-relevant cells for toxicity screening and for cellular therapy. In this article, we review the recent progress in the use of disease-specific iPSCs for in vitro and in vivo modeling of neurological diseases.
Collapse
Affiliation(s)
- Tarja A Juopperi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
25
|
Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, Tsibris JC, Keefe DL, Liu L. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 2011; 21:779-92. [PMID: 21283131 DOI: 10.1038/cr.2011.16] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.
Collapse
Affiliation(s)
- Junjiu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
A teratoma is a nonmalignant tumor comprised of a disorganized mixture of cells and small foci of tissue comprised of cells from all three of the embryonic germ-layers. By definition, a cell is pluripotent if it can differentiate into cells derived from all three of the embryonic germ-layers: ectoderm, mesoderm, and endoderm. In the teratoma assay, putative pluripotent stem cells (PSCs) are implanted into an immune-compromised mouse where they may proliferate and differentiate to form a teratoma. The PSCs grow at the implantation site supported by a complex mixture of factors from the local milieu, as well as circulating factors that are vital components of normal mammalian physiology. After a predetermined time of 6-12 weeks or when the tumor has reached sufficient size, it is removed and subjected to histopathological analysis. The teratoma may be further processed by immunocytochemistry and gene expression profiling. This chapter describes methods to generate teratomas through the implantation of putative PSC lines in the SCID mouse. Implantation at the following sites is described: (1) intramuscular, (2) subcutaneous, (3) under the testis capsule, and (4) under the kidney capsule.
Collapse
Affiliation(s)
- Robin L Wesselschmidt
- Center for Department of Applied Technology Development, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
27
|
Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 2010; 28:661-73. [PMID: 20073085 DOI: 10.1002/stem.307] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The generation of induced pluripotent stem cells (iPSC) has enormous potential for the development of patient-specific regenerative medicine. Human embryonic stem cells (hESC) are able to defend their genomic integrity by maintaining low levels of reactive oxygen species (ROS) through a combination of enhanced removal capacity and limited production of these molecules. Such limited ROS production stems partly from the small number of mitochondria present in hESC; thus, it was important to determine that human iPSC (hiPSC) generation is able to eliminate the extra mitochondria present in the parental fibroblasts (reminiscent of "bottleneck" situation after fertilization) and to show that hiPSC have antioxidant defenses similar to hESC. We were able to generate seven hiPSC lines from adult human dermal fibroblasts and have fully characterized two of those clones. Both hiPSC clones express pluripotency markers and are able to differentiate in vitro into cells belonging to all three germ layers. One of these clones is able to produce fully differentiated teratoma, whereas the other hiPSC clone is unable to silence the viral expression of OCT4 and c-MYC, produce fully differentiated teratoma, and unable to downregulate the expression of some of the pluripotency genes during the differentiation process. In spite of these differences, both clones show ROS stress defense mechanisms and mitochondrial biogenesis similar to hESC. Together our data suggest that, during the reprogramming process, certain cellular mechanisms are in place to ensure that hiPSC are provided with the same defense mechanisms against accumulation of ROS as the hESC.
Collapse
Affiliation(s)
- Lyle Armstrong
- Institute of Human Genetics, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vallier L, Touboul T, Brown S, Cho C, Bilican B, Alexander M, Cedervall J, Chandran S, Ahrlund-Richter L, Weber A, Pedersen RA. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 2010; 27:2655-66. [PMID: 19688839 DOI: 10.1002/stem.199] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human pluripotent stem cells from embryonic origins and those generated from reprogrammed somatic cells share many characteristics, including indefinite proliferation and a sustained capacity to differentiate into a wide variety of cell types. However, it remains to be demonstrated whether both cell types rely on similar mechanisms to maintain their pluripotent status and to control their differentiation. Any differences in such mechanisms would suggest that reprogramming of fibroblasts to generate induced pluripotent stem cells (iPSCs) results in novel states of pluripotency. In that event, current methods for expanding and differentiating human embryonic stem cells (ESCs) might not be directly applicable to human iPSCs. However, we show here that human iPSCs rely on activin/nodal signaling to control Nanog expression and thereby maintain pluripotency, thus revealing their mechanistic similarity to human ESCs. We also show that growth factors necessary and sufficient for achieving specification of human ESCs into extraembryonic tissues, neuroectoderm, and mesendoderm also drive differentiation of human iPSCs into the same tissues. Importantly, these experiments were performed in fully chemically defined medium devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Together these data reveal that human iPSCs rely on mechanisms similar to human ESCs to maintain their pluripotency and to control their differentiation, showing that these pluripotent cell types are functionally equivalent.
Collapse
Affiliation(s)
- Ludovic Vallier
- Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith KP, Luong MX, Stein GS. Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 2009; 220:21-9. [PMID: 19326392 DOI: 10.1002/jcp.21681] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the advent of technologies for the derivation of embryonic stem cells and reprogrammed stem cells, use of the term "pluripotent" has become widespread. Despite its increased scientific and political importance, there are ambiguities with this designation and a common standard for experimental approaches that precisely define this state in human cells remains elusive. Recent studies have revealed that reprogramming may occur via many pathways which do not always lead to pluripotency. In addition, the pluripotent state itself appears to be highly dynamic, leading to significant variability in the results of molecular studies. Establishment of a stringent set of criteria for defining pluripotency will be vital for biological studies and potential clinical applications in this rapidly evolving field. In this review, we explore the various definitions of pluripotency, examine the current status of pluripotency testing in the field and provide an analysis of how these assays have been used to establish pluripotency in the scientific literature.
Collapse
Affiliation(s)
- Kelly P Smith
- Department of Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
30
|
Species-Specific In vivo Engraftment of the Human BL Melanoma Cell Line Results in an Invasive Dedifferentiated Phenotype Not Present in Xenografts. Cancer Res 2009; 69:3746-54. [DOI: 10.1158/0008-5472.can-08-3746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|