1
|
Sharifi N, Bouzari M, Keyvani H, Mehdi Ranjbar M. The effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia Patients-Clinical cohort study. Int Immunopharmacol 2024; 126:111296. [PMID: 38041958 DOI: 10.1016/j.intimp.2023.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies in women, and its treatment has many side effects. Therefore, in this research, the effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia (CIN) patients were investigated. METHODS 15 patients who met the inclusion criteria and diagnosed as CIN II and CIN III were included in the study. The vaccine was injected inside the cervix (neoplasia site) at increasing doses during 21 days, and they were evaluated for adverse events. NDV antibody titer was measured in 90 days and the levels of ki-67 and p16 proteins were studied by immunohistochemistry. Also, the levels of some important inflammatory cytokines in the serum of CIN patients were measured and finally the patients were evaluated according to the final outcomes and the reduction of tumor lesions. RESULTS Only in the first dose of vaccine some patients showed flu-like symptoms. The accumulation of NDV antibodies started on the 7th day of the study and increased until the 90th day. Administration of LaSota vaccine had no significant effect on the expressions of Ki-67 and p16 proteins. Nevertheless, a decrease in the serum levels of Il-1β was observed in patients after the administration of the vaccine, but the serum levels of both Il-2 and INF-γ upregulated significantly. Also, vaccine administration had no significant effect in reducing CIN grades and lesions. CONCLUSIONS In general, we concluded that LaSota strain of NDV vaccine has no therapeutic effectiveness in CIN patients.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
2
|
Wang J, Li M, Li M. Newcastle disease virus LaSota strain induces apoptosis and activates the TNFα/NF-κB pathway in canine mammary carcinoma cells. Vet Comp Oncol 2023; 21:520-532. [PMID: 37282822 DOI: 10.1111/vco.12915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
Spontaneous canine mammary carcinomas (CMCs) have been widely considered a good research model for human breast cancers, which brings much attention to CMCs. In recent years, the oncolytic effect of Newcastle disease virus (NDV) on cancer cells has been widely studied, but its effect on CMCs is still unclear. This study aims to investigate the oncolytic effect of NDV LaSota strain on canine mammary carcinoma cell line (CMT-U27) in vivo and in vitro. The in vitro cytotoxicity and immunocytochemistry experiments showed that NDV selectively replicated in CMT-U27 cells, and inhibited cell proliferation and migration but not in MDCK cells. KEGG analysis of transcriptome sequencing indicated the importance of the TNFα and NF-κB signalling pathways in the anti-tumour effect of NDV. Subsequently, the significantly increased expression of TNFα, p65, phospho-p65, caspase-8, caspase-3 and cleaved-PARP proteins in the NDV group suggested that NDV induced CMT-U27 cells apoptosis by activating the caspase-8/caspase-3 pathway and the TNFα/NF-κB signalling pathway. Nude mice tumour-bearing experiments showed that NDV could significantly decrease the growth rate of CMC in vivo. In conclusion, our study demonstrates the effective oncolytic effects of NDV on CMT-U27 cells in vivo and in vitro, and suggests NDV as a promising candidate for oncolytic therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Eid AAM, Hussein A, Hassanin O, Elbakrey RM, Daines R, Sadeyen JR, Abdien HMF, Chrzastek K, Iqbal M. Newcastle Disease Genotype VII Prevalence in Poultry and Wild Birds in Egypt. Viruses 2022; 14:v14102244. [PMID: 36298799 PMCID: PMC9607356 DOI: 10.3390/v14102244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Newcastle Disease Virus (NDV) genotype VII is a highly pathogenic Orthoavulavirus that has caused multiple outbreaks among poultry in Egypt since 2011. This study aimed to observe the prevalence and genetic diversity of NDV prevailing in domestic and wild birds in Egyptian governorates. A total of 37 oropharyngeal swabs from wild birds and 101 swabs from domestic bird flocks including chickens, ducks, turkeys, and pelicans, were collected from different geographic regions within 13 governorates during 2019–2020. Virus isolation and propagation via embryonated eggs revealed 91 swab samples produced allantoic fluid containing haemagglutination activity, suggestive of virus presence. The use of RT-PCR targeted to the F gene successfully detected NDV in 85 samples. The geographical prevalence of NDV was isolated in 12 governorates in domestic birds, migratory, and non-migratory wild birds. Following whole genome sequencing, we assembled six NDV genome sequences (70–99% of genome coverage), including five full F gene sequences. All NDV strains carried high virulence, with phylogenetic analysis revealing that the strains belonged to class II within genotype VII.1.1. The genetically similar yet geographically distinct virulent NDV isolates in poultry and a wild bird may allude to an external role contributing to the dissemination of NDV in poultry populations across Egypt. One such contribution may be the migratory behaviour of wild birds; however further investigation must be implemented to support the findings of this study. Additionally, continued genomic surveillance in both wild birds and poultry would be necessary for monitoring NDV dissemination and genetic diversification across Egypt, with the aim of controlling the disease and protecting poultry production.
Collapse
Affiliation(s)
- Amal A. M. Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ashraf Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham M. Elbakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rebecca Daines
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | | | - Hanan M. F. Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41622, Egypt
| | | | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Correspondence:
| |
Collapse
|
4
|
Jung BK, An YH, Jang JJ, Jeon JH, Jang SH, Jang H. The human ACE-2 receptor binding domain of SARS-CoV-2 express on the viral surface of the Newcastle disease virus as a non-replicating viral vector vaccine candidate. PLoS One 2022; 17:e0263684. [PMID: 35134091 PMCID: PMC8824364 DOI: 10.1371/journal.pone.0263684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the SARS-CoV-2 infection was identified in December 2019, SARS-CoV-2 infection has rapidly spread worldwide and has become a significant pandemic disease. In addition, human death and serious health problem caused by SARS-CoV-2 infection, the socio-economic impact has been very serious. Here, we describe the development of the viral vector vaccine, which is the receptor-binding domain (RBD) of SARS-CoV-2 expressed on the surface of Newcastle disease virus (LVP-K1-RBD19). The RBD protein concentrations on the viral surface were measured by the sandwich ELISA method. 106.7 TCID50/ml of LVP-K1-RBD19 has a 0.17 μg of RBD protein. Optical density (OD) values of mouse sera inoculated with 10 μg of RBD protein expressed on the surface of LVP-K1-RBD19 generated 1.78-fold higher RBD-specific antibody titers than mice inoculated with 10 μg RBD protein with alum at 28 dpi. Moreover, mice inoculated with 10 μg of RBD protein expressed on the surface of LVP-K1-RBD19 virus showed more than 80% neutralization at 1:256 against the SARS-CoV-2 pseudovirus. These results demonstrated that inactivated LVP-K1-RBD19 virus produces neutralizing antibodies against SARS-CoV-2 in a short period and could be elect protective immunity in humans and LVP-K1-RBD19 will be a good candidate for the COVID-19 vaccine.
Collapse
Affiliation(s)
| | - Yong Hee An
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Jin-Ju Jang
- Libentech Co. LTD, Daejeon, Republic of Korea
| | | | - Sung Hoon Jang
- Department of Biological Sciences, College of Natural Sciences, Inha University, Incheon, Republic of Korea
| | - Hyun Jang
- Libentech Co. LTD, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Pathogenesis of Velogenic Genotype VII.1.1 Newcastle Disease Virus Isolated from Chicken in Egypt via Different Inoculation Routes: Molecular, Histopathological, and Immunohistochemical Study. Animals (Basel) 2021; 11:ani11123567. [PMID: 34944344 PMCID: PMC8698073 DOI: 10.3390/ani11123567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) remains a constant threat to the poultry industry. There is scarce information concerning the pathogenicity and genetic characteristics of the circulating velogenic Newcastle disease virus (NDV) in Egypt. In the present work, NDV was screened from tracheal swabs collected from several broiler chicken farms (N = 12) in Dakahlia Governorate, Egypt. Real-time reverse transcriptase polymerase chain reaction (RRT-PCR) was used for screening of velogenic and mesogenic NDV strains through targeting F gene fragment amplification, followed by sequencing of the resulting PCR products. The identified strain, namely, NDV-CH-EGYPT-F42-DAKAHLIA-2019, was isolated and titrated in the allantoic cavity of 10 day old specific pathogen-free (SPF) embryonated chicken eggs (ECEs), and then their virulence was determined by mean death time (MDT) and intracerebral pathogenicity index (ICPI). The pathogenicity of the identified velogenic NDV strain was also assessed in 28 day old chickens using different inoculation routes as follows: intraocular, choanal slit, intranasal routes, and a combination of both intranasal and intraocular routes. In addition, sera were collected 5 and 10 days post inoculation (pi) for the detection of NDV antibodies by hemagglutination inhibition test (HI), and tissue samples from different organs were collected for histopathological and immunohistochemical examination. A series of different clinical signs and postmortem lesions were recorded with the various routes. Interestingly, histopathology and immunohistochemistry for NDV nucleoprotein displayed widespread systemic distribution. The intensity of viral nucleoprotein immunolabeling was detected within different cells including the epithelial and endothelium lining, as well as macrophages. The onset, distribution, and severity of the observed lesions were remarkably different between various inoculation routes. Collectively, a time-course comparative pathogenesis study of NDV infection demonstrated the role of different routes in the pathogenicity of NDV. The intranasal challenge was associated with a prominent increase in NDV lesions, whereas the choanal slit route was the route least accompanied by severe NDV pathological findings. Clearly, the present findings might be helpful for implementation of proper vaccination strategies against NDV.
Collapse
|
6
|
Warner BM, Santry LA, Leacy A, Chan M, Pham PH, Vendramelli R, Pei Y, Tailor N, Valcourt E, Leung A, He S, Griffin BD, Audet J, Willman M, Tierney K, Albietz A, Frost KL, Yates JG, Mould RC, Chan L, Mehrani Y, Knapp JP, Minott JA, Banadyga L, Safronetz D, Wood H, Booth S, Major PP, Bridle BW, Susta L, Kobasa D, Wootton SK. Intranasal vaccination with a Newcastle disease virus-vectored vaccine protects hamsters from SARS-CoV-2 infection and disease. iScience 2021; 24:103219. [PMID: 34632328 PMCID: PMC8492382 DOI: 10.1016/j.isci.2021.103219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.
Collapse
Affiliation(s)
- Bryce M. Warner
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Mable Chan
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Robert Vendramelli
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Nikesh Tailor
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Emelissa Valcourt
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Anders Leung
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Bryan D. Griffin
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Jonathan Audet
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Marnie Willman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Alixandra Albietz
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Kathy L. Frost
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Jacob G.E. Yates
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Robert C. Mould
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Stephanie Booth
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Darwyn Kobasa
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
7
|
Bahrololoumi Shapourabadi M, Momburg F, Roohvand F, Jarahian M, Mohajel N, Arashkia A, Hajari Taheri F, Abbasalipour M, Azadmanesh K. Bi/tri-specific antibodies (HN-Fc-CD16 and HN-Fc-IL-15-CD16) cross-linking natural killer (NK)-CD16 and Newcastle Disease Virus (NDV)-HN, enhanced NK activation for cancer immunotherapy. Int Immunopharmacol 2021; 96:107762. [PMID: 34162140 DOI: 10.1016/j.intimp.2021.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Cancer/tumor cells infected with the "avian paramyxovirus Newcastle Disease Virus (TC-NDV)" express the viral hemagglutinin-neuraminidase (HN) on the cell surface that is used as both the danger signal and anchor for bi/tri-specific antibodies (bs/tsAbs).We constructed a bs-Ab (HN-Fc-CD16) that bindsto HN and natural killer (NK)-CD16 receptor (FcgRIII)and a ts-Ab (HN-Fc-IL15-CD16) harbouring NK-activating cytokine "IL-15" within the bs-Ab.In silicoand computational predictions indicated proper exposure of both Abs in bs/tsAbs.Properbinding of thebi/tsAbstoHN on surface of TC-NDVandCD16+-cells was demonstrated by flow cytometry.The bi/tsAbstriggeredspecificcytotoxicity of NK cells againstTC-NDVand elicited substantial IFN-γproduction by activated NK cells(higher for ts-Ab) that sound promising for cancer immunotherapy purposes.
Collapse
MESH Headings
- Antibodies, Bispecific/biosynthesis
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Binding Sites
- Cytotoxicity Tests, Immunologic
- HEK293 Cells
- HN Protein/immunology
- HeLa Cells
- Humans
- Immunoglobulin Fc Fragments/immunology
- Immunotherapy/methods
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Ligands
- Models, Molecular
- Neoplasms/immunology
- Neoplasms/therapy
- Newcastle disease virus/immunology
- Receptors, IgG/immunology
Collapse
Affiliation(s)
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Unit, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mostafa Jarahian
- Antigen Presentation & T/NK Cell Unit, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Maryam Abbasalipour
- Department of Molecular Medicine, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Efficacy of Vaccination against Infection with Velogenic Newcastle Disease Virus Genotypes VI and VII 1.1 Strains in Japanese Quails. J Comp Pathol 2021; 186:35-50. [PMID: 34340803 DOI: 10.1016/j.jcpa.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
Newcastle disease virus (NDV), a major pathogen of poultry worldwide, causes significant economic losses in the poultry industry. To characterize the ability of recently isolated virulent strains of NDV genotypes VI and VII to cause disease in quails, and to evaluate the efficacy of two NDV vaccines against such strains, Japanese quails were experimentally inoculated with either NDV genotype VI (Pigeon F-VI strain) or VII 1.1 (GHB-328 strain) with or without vaccination with inactivated NDV vaccine of genotype II (La Sota strain) or VII (KBNP strain). Mild to severe neurological signs developed in quails inoculated with the Pigeon F-VI strain from 3 to 14 days post infection (PI) and from 4 to 10 days PI in birds infected with the GHB-328 strain. The mortality rates were 46% and 33% for birds inoculated with NDV VI and NDV VII 1.1, respectively. The severity of histopathological changes depended on the viral isolates used. Vaccination with the La Sota or KBNP vaccine strain successfully protected quails against NDV-induced mortality and decreased the severity of clinical signs, pathological changes and cloacal viral shedding. This study showed that these virulent NDV isolates had mild to moderate pathogenicity in quails and that both vaccines protected against challenge with both virus strains. NDV vaccine genotype VII improved the level of protection against challenge with the VII 1.1 genotype compared with the classic vaccine, but failed to protect quails against challenge with the VI genotype.
Collapse
|
9
|
RAJASEKARAN RANJANI, KIRUBAHARAN JJOHN, SHILPA P, VIDHYA M, RAJALAKSHMI S. Viral 2A-peptides mediate continuous transcription and self-cleavage of multiple heterologous genes in fowlpox virus vector. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Applicability of viral 2A-peptides in generation of multi-cistronic transcripts to deliver separate self-cleaved proteins is well established. However, the use of viral 2A-peptides in fowlpox virus vector construction to co-express multiple heterologous genes has not been explored. To evaluate the same, a recombinant transfer plasmid pJFWPVt was constructed through two intermediate plasmid constructs, pJF7F9 and pJFHNGFP. The construction of pJF7F9 involved cloning of F7 and F9 genes of FWPV into pCI-neo with modifications in the F7-F9 intergenic region. For the construction of pJFHNGFP, a synthetic DNA adapter consisting of one synthetic early late promoter (PE/L), two viral 2A-peptides (P2A and T2A) and three multiple cloning sites (MCS1, MCS2 and MCS3) was synthesized chemically and was cloned into pUC19 to obtain pJFHNGFPi. Heterologous genes fusion (F) and haemagglutininneuraminidase (HN) of Avian Avulavirus-1 (AAv1) and marker gene AcGFP were cloned sequentially into MCS1, MCS2 and MCS3 of pJFHNGFPi to obtain pJFHNGFP. The insert (PE/L-F-P2A-HN-T2A-AcGFP) in pJFHNGFP was cloned into pJF7F9 to obtain pJFWPVt, which upon transfection in FWPV infected chicken embryo fibroblast (CEF) cells resulted in fluorescence. This confirmed the expression of AcGFP and the continuous transcription ability of viral 2A-peptides. Further, western blotting of CEF pellet showed separate protein bands of F and HN protein at 66 kDa and 74 kDa respectively, which confirmed the self-cleaving ability of viral 2A-peptides. Herein, in FWPV vector construction, continuous transcription and self-cleaving ability of viral 2A-peptides in FWPV vector construction was confirmed. This warrants scope for future viral 2A-peptide based FWPV vector construction.
Collapse
|
10
|
Santry LA, Jacquemart R, Vandersluis M, Zhao M, Domm JM, McAusland TM, Shang X, Major PM, Stout JG, Wootton SK. Interference chromatography: a novel approach to optimizing chromatographic selectivity and separation performance for virus purification. BMC Biotechnol 2020; 20:32. [PMID: 32552807 PMCID: PMC7301511 DOI: 10.1186/s12896-020-00627-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Oncolytic viruses are playing an increasingly important role in cancer immunotherapy applications. Given the preclinical and clinical efficacy of these virus-based therapeutics, there is a need for fast, simple, and inexpensive downstream processing methodologies to purify biologically active viral agents that meet the increasingly higher safety standards stipulated by regulatory authorities like the Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products. However, the production of virus materials for clinical dosing of oncolytic virotherapies is currently limited—in quantity, quality, and timeliness—by current purification technologies. Adsorption of virus particles to solid phases provides a convenient and practical choice for large-scale fractionation and recovery of viruses from cell and media contaminants. Indeed, chromatography has been deemed the most promising technology for large-scale purification of viruses for biomedical applications. The implementation of new chromatography media has improved process performance, but low yields and long processing times required to reach the desired purity are still limiting. Results Here we report the development of an interference chromatography-based process for purifying high titer, clinical grade oncolytic Newcastle disease virus using NatriFlo® HD-Q membrane technology. This novel approach to optimizing chromatographic performance utilizes differences in molecular bonding interactions to achieve high purity in a single ion exchange step. Conclusions When used in conjunction with membrane chromatography, this high yield method based on interference chromatography has the potential to deliver efficient, scalable processes to enable viable production of oncolytic virotherapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Renaud Jacquemart
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | | | - Mochao Zhao
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Jake M Domm
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Xiaojiao Shang
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Pierre M Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - James G Stout
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
11
|
Kumar R, Kumar V, Kekungu P, Barman NN, Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 2019; 164:3007-3017. [PMID: 31598846 DOI: 10.1007/s00705-019-04425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vishnu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Puro Kekungu
- ICAR Research Complex for North East Hill Region, Shillong, Meghalaya, India
| | - Nagendra N Barman
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
12
|
Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7278459. [PMID: 30175140 PMCID: PMC6098882 DOI: 10.1155/2018/7278459] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
Collapse
|
13
|
Susta L, Segovia D, Olivier TL, Dimitrov KM, Shittu I, Marcano V, Miller PJ. Newcastle Disease Virus Infection in Quail. Vet Pathol 2018; 55:682-692. [PMID: 29661124 DOI: 10.1177/0300985818767996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Newcastle disease (ND), caused by virulent strains of Newcastle disease virus (NDV), is a devastating disease of poultry worldwide. The pathogenesis of ND in quail is poorly documented. To characterize the ability of virulent NDV strains to replicate and cause disease in quail, groups of 14 two-week-old Japanese quail ( Coturnix japonica) were experimentally inoculated with 108 EID50 (embryo infectious dose 50%) units of 1 of 4 virulent NDV strains: 2 isolated from quail ( N2, N23) and 2 from chickens ( Israel, Pakistan). At day 2 postinfection, noninfected quail (contact group) were added to each infection group to assess the efficacy of virus transmission. Tested NDV strains showed moderate pathogenicity, with highest mortality being 28% for the N2 strain and below 10% for the others. Two N2-inoculated birds showed neurological signs, such as head tremor and ataxia. Microscopic lesions were present in N2-, Israel-, and Pakistan-inoculated birds and consisted of nonsuppurative encephalitis. Contact birds showed no clinical signs or lesions. In both inoculated and contact birds, virus replication was moderate to minimal, respectively, as observed by immunohistochemistry in tissues and virus isolation from oropharyngeal and cloacal swabs. Strains originally isolated from quail resulted in higher numbers of birds shedding in the inoculation group; however, transmission appeared slightly more efficient with chicken-derived isolates. This study shows that virulent NDV strains have limited replicative potential and mild to moderate disease-inducing ability in Japanese quail.
Collapse
Affiliation(s)
- Leonardo Susta
- 1 Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Diego Segovia
- 1 Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Timothy L Olivier
- 2 Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - Kiril M Dimitrov
- 2 Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - Ismaila Shittu
- 3 Regional Laboratory for Animal Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, Vom, Nigeria
| | - Valerie Marcano
- 2 Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA.,4 Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Patti J Miller
- 2 Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA.,5 Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Viktorova EG, Khattar S, Samal S, Belov GA. Poliovirus Replicon RNA Generation, Transfection, Packaging, and Quantitation of Replication. ACTA ACUST UNITED AC 2018; 48:15H.4.1-15H.4.15. [PMID: 29512114 DOI: 10.1002/cpmc.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poliovirus is a prototype member of the Enterovirus genus of the Picornaviridae family of small positive strand RNA viruses, which include important human and animal pathogens. Quantitative assessment of viral replication is very important for investigation of the virus biology and the development of anti-viral strategies. The poliovirus genome structure allows replacement of structural genes with a reporter protein, such as a luciferase or a fluorescent protein, whose signals can be detected and quantified in vivo, thus permitting observation of replication kinetics in live cells. This paper presents protocols for poliovirus replicon RNA production, purification, packaging and transfection, as well as techniques for monitoring Renilla luciferase replication signal in living cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ekaterina G Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Sunil Khattar
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Siba Samal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| |
Collapse
|
15
|
Santry LA, McAusland TM, Susta L, Wood GA, Major PP, Petrik JJ, Bridle BW, Wootton SK. Production and Purification of High-Titer Newcastle Disease Virus for Use in Preclinical Mouse Models of Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 9:181-191. [PMID: 29556508 PMCID: PMC5854916 DOI: 10.1016/j.omtm.2017.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus in the Paramyxoviridae family. Although primarily an avian pathogen, NDV is a potent oncolytic virus that has been shown to be safe and effective in a variety of preclinical cancer models and human clinical trials. To produce virus for oncolytic trials, NDV is commonly amplified in embryonated chicken eggs and purified from the allantoic fluid. Conventional methods for purifying virus from allantoic fluid often result in relatively low-titer preparations containing high levels of impurities, including immunogenic chicken host cell proteins from allantoic fluid. However, large quantities of virus need to be delivered intravenously to administer oncolytic NDV systemically to mice. This route of administration requires virus preparations that are both highly concentrated (to enable delivery of small volumes) and highly pure (to limit toxic effects from contaminants). Given the accumulation of promising preclinical and clinical data demonstrating the efficacy of NDV as an oncolytic agent, strategies for increasing the titer and purity of NDV preparations are sorely needed to allow for effective intravenous administration in mice. Here, we describe an optimized protocol for the rescue, production, and purification of high-titer in vivo-grade NDV for preclinical studies in mouse models.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Pierre P Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Cullen LM, Schmidt MR, Morrison TG. The importance of RSV F protein conformation in VLPs in stimulation of neutralizing antibody titers in mice previously infected with RSV. Hum Vaccin Immunother 2017; 13:2814-2823. [PMID: 28604155 PMCID: PMC5718826 DOI: 10.1080/21645515.2017.1329069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant respiratory pathogen but no vaccine is available. RSV infections present 2 major, unique problems. First, humans can experience repeated infections caused by the same virus sero-group indicating that protective memory responses to RSV infection are defective. Second, most people have been infected with RSV by age 5. Immune responses to these infections, while poorly protective, could impact the effectiveness of a vaccine. The goal of this study was to assess the generation of protective immune responses in mice previously infected with RSV by virus-like particle (VLP) vaccine candidates containing a stabilized pre-fusion form of the RSV F protein or a stabilized post-fusion F protein. We report that a single immunization of RSV-experienced animals with a stabilized pre-fusion F protein VLP stimulated high titers of neutralizing antibody while a single injection of a post-fusion F protein VLP or a second RSV infection only weakly stimulated neutralizing antibody titers. These results suggest that prior RSV infection can induce neutralizing antibody memory responses, which can be activated by pre-F protein VLPs but not by post-F protein VLPs or a subsequent infection. Thus the F protein conformation has a major impact on enhancing production of neutralizing antibodies in RSV-experienced animals. Furthermore, although both VLPs contained the same RSV G protein, the pre-F VLP stimulated significantly higher titers of total anti-G protein IgG than the post-F VLP in both naïve and RSV-experienced animals. Thus the F protein conformation also influences anti-G protein responses.
Collapse
Affiliation(s)
- Lori M Cullen
- a Department of Microbiology and Physiological Systems, Sherman Center , University of Massachusetts Medical School , Worcester , MA , USA
| | - Madelyn R Schmidt
- a Department of Microbiology and Physiological Systems, Sherman Center , University of Massachusetts Medical School , Worcester , MA , USA
| | - Trudy G Morrison
- a Department of Microbiology and Physiological Systems, Sherman Center , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
17
|
Susta L, He Y, Hutcheson JM, Lu Y, West FD, Stice SL, Yu P, Abdo Z, Afonso CL. Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection. Virol J 2016; 13:205. [PMID: 27919263 PMCID: PMC5139146 DOI: 10.1186/s12985-016-0659-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV-caused disease. Induced pluripotent stem cell (iPSC) technology allows adult cells to be reprogrammed into an embryonic stem cell-like state capable of contributing to live offspring and passing on unique traits in a number of species. Recently, iPSC approaches have been successfully applied to avian cells. If chicken induced pluripotent stem cells (ciPSCs) are genetically or epigenetically modified to resist NDV infection, it may be possible to generate ND resistant poultry. There is limited information on the potential of ciPSCs to be infected by NDV, or the capacity of these cells to become resistant to infection. The aim of the present work was to assess the characteristics of the interaction between NDV and ciPSCs, and to develop a selection method that would increase tolerance of these cells to NDV-induced cellular damage. Results Results showed that ciPSCs were permissive to infection with NDV, and susceptible to virus-mediated cell death. Since ciPSCs that survived infection demonstrated the ability to recover quickly, we devised a system to select surviving cells through multiple infection rounds with NDV. ciPSCs that sustained 9 consecutive infections had a statistically significant increase in survival (up to 36 times) compared to never-infected ciPSCs upon NDV infection (tolerant cells). Increased survival was not caused by a loss of permissiveness to NDV replication. RNA sequencing followed by enrichment pathway analysis showed that numerous metabolic pathways where differentially regulated between tolerant and never-infected ciPSCs. Conclusions Results demonstrate that ciPSCs are permissive to NDV infection and become increasingly tolerant to NDV under selective pressure, indicating that this system could be applied to study mechanisms of cellular tolerance to NDV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0659-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Susta
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA. .,Present address: Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2 W1, Canada.
| | - Ying He
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Present address: College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 53004, China
| | - Jessica M Hutcheson
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Yangqing Lu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Ping Yu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Claudio L Afonso
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA
| |
Collapse
|
18
|
Moura VMBD, Susta L, Cardenas-Garcia S, Stanton JB, Miller PJ, Afonso CL, Brown CC. Neuropathogenic Capacity of Lentogenic, Mesogenic, and Velogenic Newcastle Disease Virus Strains in Day-Old Chickens. Vet Pathol 2015; 53:53-64. [PMID: 26395462 DOI: 10.1177/0300985815600504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Strains of Newcastle disease virus (NDV) have different abilities to elicit neurologic signs. To determine the capacity of different NDV strains to replicate and cause lesions in the brain, independently of their peripheral replication, 1-day-old chickens were inoculated in the subdural space with 7 NDV strains of different virulence (4 velogenic, 2 mesogenic, 1 lentogenic). Velogenic strains induced severe necrotizing and heterophilic ventriculitis and meningitis, as well as edema of the neuroparenchyma, and replicated extensively in the nervous tissue by day 2 postinfection, as demonstrated by immunohistochemistry, when all infected birds died. Clinical signs, microscopic lesions, and viral replication were delayed (days 3 and 4 postinfection) with mesogenic strains. Velogenic and mesogenic NDV strains replicated mainly in neurons, and immunolabeling was first detected in surface-oriented areas (periventricular and submeningeal), possibly as a reflection of the inoculation route. The lentogenic NDV strain did not cause death of infected birds; replication was confined to the epithelium of the ependyma and choroid plexuses; and lesions consisted of lymphoid aggregates limited to the choroid plexuses. Results show that extensive NDV replication in the brain is typical of velogenic and mesogenic, but not lentogenic, NDV strains. In addition, this study suggests that differences in the rate of NDV replication in nervous tissue, not differences in neurotropism, differentiate velogenic from mesogenic NDV strains. This study indicates that intracerebral inoculation might be used as an effective method to study the mechanisms of NDV neuropathogenesis.
Collapse
Affiliation(s)
- V M B D Moura
- Animal Pathology, School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Susta
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - S Cardenas-Garcia
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - J B Stanton
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - P J Miller
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - C L Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - C C Brown
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
19
|
Susta L, Diel DG, Courtney S, Cardenas-Garcia S, Sundick RS, Miller PJ, Brown CC, Afonso CL. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens. Virol J 2015; 12:122. [PMID: 26253150 PMCID: PMC4528788 DOI: 10.1186/s12985-015-0353-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens (herpes simplex virus, vaccinia virus, human respiratory syncytial virus, human immunodeficiency virus) by activating natural killer cells (NK), cytotoxic T lymphocytes and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such it might have the potential to affect replication and pathogenesis of Newcastle disease virus (NDV). METHODS To assess the effect of IL-2 during NDV infection in chickens, we produced a recombinant virulent NDV strain expressing chicken IL-2 (rZJ1-IL2). The effects of IL-2 expression were investigated in vivo using the intracerebral pathogenicity index (ICPI) in day-old chicks and pathogenesis experiments in 4-week-old chickens. In these studies, rZJ1-IL2 was compared to a control virus expressing the green fluorescent protein (rZJ1-GFP). Assessed parameters included survival curves, detailed histological and immunohistochemical grading of lesions in multiple organs, and virus isolation in blood, spleen and mucosal secretions of infected birds. RESULTS At the site of infection (eyelid), expression of IL-2 was demonstrated in areas of rZJ-IL2 replication, confirming IL-2 production in vivo. Compared to rZJ1-GFP strain, rZJ1-IL2 caused milder lesions and displayed decreased viral load in blood, spleen and mucosal secretions of infected birds. In the rZJ1-IL2-infected group, virus level in the blood peaked at day 4 post-infection (pi) (10(3.46) EID50 /0.1 ml) and drastically decreased at day 5 pi (10(0.9) EID50/0.1 ml), while in the rZJ1-GFP-infected group virus levels in the blood reached 10(5.35) EID50/0.1 ml at day 5. However, rZJ1-IL2-infected groups presented survival curves similar to control birds infected with rZJ1-GFP, with comparable clinical signs and 100 % mortality. Further, expression of IL-2 did not significantly affect the ICPI scores, compared to rZJ1-GFP strain. CONCLUSIONS Increased expression of chicken IL-2 during virulent NDV replication in naïve chickens decreased viral titers in blood, spleens, oral and cloacal secretions on day 4-5 post infection. This is consistent with the previously described role of IL-2 in enhancing the clearance of viruses in mammals, such as human respiratory syncytial virus.
Collapse
Affiliation(s)
- Leonardo Susta
- USDA ARS, Southeast Poultry Research Laboratory, 934 College Station Rd, Athens, GA, 30605, USA. .,Present address: Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Diego G Diel
- USDA ARS, Southeast Poultry Research Laboratory, 934 College Station Rd, Athens, GA, 30605, USA. .,Present address: Department of Veterinary and Biomedical Sciences, College of Agriculture and Biological Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| | - Sean Courtney
- USDA ARS, Southeast Poultry Research Laboratory, 934 College Station Rd, Athens, GA, 30605, USA.
| | - Stivalis Cardenas-Garcia
- USDA ARS, Southeast Poultry Research Laboratory, 934 College Station Rd, Athens, GA, 30605, USA.
| | - Roy S Sundick
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI, 48201, USA.
| | - Patti J Miller
- USDA ARS, Southeast Poultry Research Laboratory, 934 College Station Rd, Athens, GA, 30605, USA.
| | - Corrie C Brown
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30605, USA.
| | - Claudio L Afonso
- USDA ARS, Southeast Poultry Research Laboratory, 934 College Station Rd, Athens, GA, 30605, USA.
| |
Collapse
|
20
|
Viability reduction and Rac1 gene downregulation of heterogeneous ex-vivo glioma acute slice infected by the oncolytic Newcastle disease virus strain V4UPM. BIOMED RESEARCH INTERNATIONAL 2013; 2013:248507. [PMID: 23586025 PMCID: PMC3622289 DOI: 10.1155/2013/248507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 02/24/2013] [Indexed: 11/21/2022]
Abstract
Oncolytic viruses have been extensively evaluated for anticancer therapy because this virus preferentially infects cancer cells without interfering with normal cells. Newcastle Disease Virus (NDV) is an avian virus and one of the intensively studied oncolytic viruses affecting many types of cancer including glioma. Nevertheless, the capability of NDV infection on heterogeneous glioma tissue in a cerebrospinal fluid atmosphere has never been reported. Recently, Rac1 is reported to be required for efficient NDV replication in human cancer cells and established a link between tumourigenesis and sensitivity to NDV. Rac1 is a member of the Rho GTPases involved in the regulation of the cell migration and cell-cycle progression. Rac1 knockdown leads to significant inhibition of viral replication. In this work, we demonstrated that NDV treatment led to significant reduction of tumour tissue viability of freshly isolated heterogeneous human brain tumour slice, known as an ex vivo glioma acute slice (EGAS). Analysis of gene expression indicated that reduced tissue viability was associated with downregulation of Rac1. However, the viability reduction was not persistent. We conclude that NDV treatment induced EGAS viability suppression, but subsequent downregulation of Rac1 gene may reduce the NDV replication and lead to regrowth of EGAS tissue.
Collapse
|
21
|
Abstract
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.
Collapse
|
22
|
Shim JB, So HH, Won HK, Mo IP. Characterization of avian paramyxovirus type 1 from migratory wild birds in chickens. Avian Pathol 2012; 40:565-72. [PMID: 22107090 DOI: 10.1080/03079457.2011.616187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Newcastle disease virus (NDV) is one of the most important infectious agents in the poultry industry, and vaccines against it have been widely used for prevention and control. Live vaccines, which can replicate in the respiratory and digestive systems, have been especially needed in areas with outbreaks of viscerotropic velogenic Newcastle disease. Towards the goal of searching for a new live vaccine candidate, avian paramyxovirus type 1 (APMV-1) was isolated from the faeces of wild birds. Three APMV-1 strains thus isolated were characterized in terms of phylogeny, pathogenicity, immunogenicity and tissue tropism, and on the basis of these analyses were classified as lentogenic genotype I NDV. CBU2179, one of the three APMV-1 strains, was selected and was evaluated in terms of its efficacy and safety in specific pathogen-free chickens and commercial broilers. The manufactured trial vaccine from this strain, also called CBU2179, induced similar immune responses to those of VG/GA and B1 commercial vaccines, and provided 100% protection against challenge from viscerotropic velogenic NDV, KJW/49 strain (the official challenge strain in Korea). Also, the CBU2179 virus was re-isolated and persisted as long as or longer than other vaccine strains in both the respiratory and alimentary tracts. Therefore, the CBU2179 strain may represent a good candidate for a live Newcastle disease vaccine to protect chickens against viscerotropic velogenic NDV.
Collapse
Affiliation(s)
- Jong-Bo Shim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | |
Collapse
|
23
|
The transmembrane domain sequence affects the structure and function of the Newcastle disease virus fusion protein. J Virol 2011; 85:3486-97. [PMID: 21270151 DOI: 10.1128/jvi.02308-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.
Collapse
|
24
|
Assembly and biological and immunological properties of Newcastle disease virus-like particles. J Virol 2010; 84:4513-23. [PMID: 20181713 DOI: 10.1128/jvi.01931-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-like particles (VLPs) released from avian cells expressing the Newcastle disease virus (NDV) strain AV proteins NP, M, HN (hemagglutinin-neuraminidase), and F were characterized. The VLP-associated HN and F glycoproteins directed the attachment of VLPs to cell surfaces and fusion of VLP membranes with red blood cell membranes, indicating that they were assembled into VLPs in an authentic conformation. These particles were quantitatively prepared and used as an immunogen, without adjuvant, in BALB/c mice. The resulting immune responses, detected by enzyme-linked immunosorbent assay (ELISA), virus neutralization, and intracellular cytokine staining, were comparable to the responses to equivalent amounts of inactivated NDV vaccine virus. HN and F proteins from another strain of NDV, strain B1, could be incorporated into these VLPs. Foreign peptides were incorporated into these VLPs when fused to the NP or HN protein. The ectodomain of a foreign glycoprotein, the Nipah virus G protein, fused to the NDV HN protein cytoplasmic and transmembrane domains was incorporated into ND VLPs. Thus, ND VLPs are a potential NDV vaccine candidate. They may also serve as a platform to construct vaccines for other pathogens.
Collapse
|
25
|
Abstract
Newcastle disease virus (NDV) entry into host cells is mediated by the hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins. We previously showed that production of free thiols in F protein is required for membrane fusion directed by F protein (S. Jain et al., J. Virol. 81:2328-2339, 2007). In the present study we evaluated the oxidation state of F protein in virions and virus-like particles and its relationship to activation of F protein by HN protein, F protein conformational intermediates, and virus-cell fusion. F protein, in particles, does not have free thiols, but free thiols were produced upon binding of particles to target cells. Free thiols were produced at 16 degrees C in F protein in virions bound to the target cells. They also appeared in different fusion defective mutant F proteins. Free thiols were produced in the presence of mutant HN proteins that are defective in F protein activation but are attachment competent. These results suggest that free thiols appear prior to any of the proposed major conformational changes in F protein which accompany fusion activation. These results also indicate that HN protein binding to its receptor likely facilitates the interaction between F protein and host cell isomerases, leading to reduction of disulfide bonds in F protein. Taken together, these results show that free thiols are produced in F protein at a very early stage during the onset of fusion and that the production of free thiols is required for fusion in addition to activation by HN protein.
Collapse
|