1
|
Okada H, Koori N, Shimizu H, Yamamoto S, Komatsuzaki T, Fuse H, Sasaki K, Miyakawa S, Yasue K, Takahashi M. Development of estimation method for T 1 and T 2 values using the relaxivity of contrast agent and coagulant for a magnetic resonance imaging phantom. Radiol Phys Technol 2025:10.1007/s12194-025-00900-7. [PMID: 40122940 DOI: 10.1007/s12194-025-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
The T1 and T2 values of magnetic resonance imaging phantoms used by researchers should be equivalent to those of the target tissue. However, this is difficult to achieve because of variations in the phantoms depending on the type and concentration of contrast agents and coagulants. The aim of this study was to elucidate the utility of a determination equation derived using the relaxivity of the contrast agent and coagulant. We prepared phantoms using 0.05-10 mmol L-1 contrast agent (Gadovist®; Bayer Yakuhin, Ltd., Osaka, Japan) and 0.1-5.0 wt% agar (agar, powder [010-15815]; Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) and measured their T1 and T2 values. Determination equations for T1 and T2 values were derived using the relaxivity calculated from the T1 and T2 values of the contrast agent and coagulant. Subsequently, the determined values were compared with the measured values. The error rate of the determined T1 and T2 values were 7.66 ± 6.60% and 5.66 ± 4.05%, respectively, with correlation coefficients of 0.996 and 0.999. These results indicate that this method enables easy and highly accurate estimation of T1 and T2 values in MRI phantoms.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Norikazu Koori
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Niigata, Niigata, 950-3198, Japan.
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Niigata, Niigata, 950-3198, Japan.
| | - Hatsune Shimizu
- Department of Radiology, Tsuchiura Kyodo General Hospital, 4-1-1 Otsuno, Tsuchiura, Ibaraki, 300-0028, Japan
| | - Shohei Yamamoto
- Department of Radiology, Tsuchiura Kyodo General Hospital, 4-1-1 Otsuno, Tsuchiura, Ibaraki, 300-0028, Japan
| | - Tetsuya Komatsuzaki
- Department of Radiology, Tsuchiura Kyodo General Hospital, 4-1-1 Otsuno, Tsuchiura, Ibaraki, 300-0028, Japan
| | - Hiraku Fuse
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-03, Japan
| | - Kota Sasaki
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-03, Japan
| | - Shin Miyakawa
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-03, Japan
| | - Kenji Yasue
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-03, Japan
| | - Masato Takahashi
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-03, Japan
| |
Collapse
|
2
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
3
|
Filippou A, Evripidou N, Damianou C. A high magnetic resonance imaging (MRI) contrast agar/silica-based phantom for evaluating focused ultrasound (FUS) protocols. Phys Med 2025; 131:104932. [PMID: 39938401 DOI: 10.1016/j.ejmp.2025.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/20/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
PURPOSE Thermal ablation therapies require tissue mimicking phantoms for evaluating novel systems. Herein, an agar phantom exhibiting high magnetic resonance imaging (MRI) contrast to noise ratio (CNR) was developed for testing focused ultrasound (FUS) protocols. METHODS Four agar based phantoms (6 % w/v) were fabricated with varied silica concentrations (0, 2, 4, or 6 % w/v) and subjected to FUS inside a 3 T MRI. T2-Weighted Fast Spin Echo (T2-W FSE) images were acquired after sonications to assess the effect of varied silica on CNR of inflicted lesions. The highest CNR phantom was sonicated and its proton resonance frequency (PRF) coefficient, thermal dose denaturation threshold and ability to sustain good lesion CNR 0-44 min post exposures were assessed. RESULTS T2-W median lesion CNR between 1.5-453.5 was observed, exponentially increasing with increased silica concentration. High CNR was achieved with 4 % w/v silica, with the PRF coefficient of the phantom calculated at -0.00954 ppm/°C. The thermal dose denaturation threshold was revealed at 2 × 106 CEM43°C by comparing thermal dose maps with T2-W FSE lesion hyperenhancement. Progressive lesion CNR loss was observed, with CNR lost 28 min after sonications. CONCLUSIONS The proposed phantom possesses excellent T2-W contrast of inflicted lesions while exhibiting a tissue like PRF coefficient and can thus constitute an inexpensive reusable tool for validating FUS systems and protocols.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Nikolas Evripidou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| |
Collapse
|
4
|
Hamzaini NN, Ghazali SA, Yusoff AN, Mohd Zaki F, Wan Sulaiman WNA, Dwihapsari Y. FeCl 3 and GdCl 3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. MAGMA (NEW YORK, N.Y.) 2025; 38:141-160. [PMID: 39666219 DOI: 10.1007/s10334-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
OBJECT This study aimed to evaluate the relaxivity and uniformity of agarose gel phantoms added with relaxation modifiers. It is hypothesized that the modifiers could manipulate the T1 and T2 relaxations as well as the signal uniformity. MATERIALS AND METHODS Twenty agarose gel phantoms with different GdCl₃ and FeCl₃ volume fractions were prepared. The phantoms were scanned using a 3-T scanner implementing a turbo spin echo sequence to acquire T1 and T2 images. The SNR of the images were computed using Image-J software from 1, 3, and 25 regions-of-interest (ROIs) and were inverted as T1 and T2 curves. RESULTS With the increase in relaxation modifier content, T1 SNR increased at a faster rate at very short TR and reached saturation at TR well below 400 ms. Agarose gel phantoms containing GdCl3 showed a higher saturation value as compared to phantoms containing FeCl3. For T2 SNR, differences between plots are observed at low TE. As TE gets larger, the SNR between plots is incomparable. The SNR for both groups was uniform among 1, 3, and 25 ROIs. DISCUSSIONS It can be concluded that GdCl₃ and FeCl₃ solutions can be used as effective relaxation modifiers to reduce T1 but not T2 relaxation times.
Collapse
Affiliation(s)
- Nur Najihah Hamzaini
- Diagnostic Imaging and Radiotherapy Program, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Federal Territory Kuala Lumpur, Malaysia
| | - Syafia Afifi Ghazali
- Diagnostic Imaging and Radiotherapy Program, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Federal Territory Kuala Lumpur, Malaysia
| | - Ahmad Nazlim Yusoff
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Federal Territory Kuala Lumpur, Malaysia.
| | - Faizah Mohd Zaki
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, 56000, Federal Territory Kuala Lumpur, Malaysia
| | - Wan Noor Afzan Wan Sulaiman
- Department of Radiology, Children Specialist Hospital, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, 56000, Federal Territory Kuala Lumpur, Malaysia
| | - Yanurita Dwihapsari
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| |
Collapse
|
5
|
Ioannides C, Antoniou A, Zinonos V, Damianou C. Development and Preliminary Evaluation of a Robotic Device for MRI-Guided Needle Breast Biopsy. JOURNAL OF MEDICAL ROBOTICS RESEARCH 2024; 09. [DOI: 10.1142/s2424905x24500016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This study concerns the development and evaluation of a simple and ergonomic robotic system for Magnetic Resonance Imaging (MRI)-guided needle breast biopsy with lateral needle approach. The device comprises two piezoelectrically actuated linear motion stages intended to align a needle supporter with the target for manual needle insertion. The device demonstrated submillimeter accuracy and safe operation within a 3 T clinical MRI scanner. In phantom studies, tumor simulators of varying sizes were successfully targeted in both laboratory and MRI settings.
Collapse
Affiliation(s)
- Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, 1 Nikis Avenue, 4108 Agios Athanasios, Limassol, Cyprus
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| | - Vasiliki Zinonos
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| |
Collapse
|
6
|
Habeeb Y, Zorn PE, Blindauer F, Kharouf N, Semeril D, Bierry G, Kremer S, Dillenseger JP. High-fidelity anatomical phantoms for MRI practical training. Phys Med 2024; 127:104832. [PMID: 39427555 DOI: 10.1016/j.ejmp.2024.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Practical MRI training is essential for bridging the gap between complex theoretical knowledge and clinical applications. Traditional phantoms used in MRI, such as ACR phantoms, are valuable for illustrating system characterization methods but often lack the anatomical complexity required for realistic training. This study presents the development of high-fidelity anatomical phantoms designed specifically for practical MRI training. These phantoms replicate key anatomical structures and tissue contrasts of the head, offering a more realistic training experience for healthcare students and medical imaging staff (radiologists, physicists, radiographers). MATERIALS AND METHODS We focused on the head region, creating phantoms from reference MRI T1-weighted slices and using computer-aided design (CAD) software to design detailed anatomical structures. These phantoms were 3D printed and filled with tissue-mimicking gels. MRI acquisitions were performed using a 1.5T clinical MRI system. RESULTS The resulting images demonstrated high anatomical fidelity and realistic MRI tissue contrasts. The phantoms allow for effective demonstration of the impact of parameter modifications on MRI images and aid in anatomical structure recognition. CONCLUSION While technical improvements are needed to ensure long-term stability and accurate relaxometric properties, these phantoms hold significant potential for enhancing MRI education and sequences evaluations. The approach can be extended to other anatomical regions, further supporting the training and optimization of MRI sequences.
Collapse
Affiliation(s)
- Y Habeeb
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France
| | - P E Zorn
- Pôle d'imagerie médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - F Blindauer
- Groupe d'imagerie médicale MIM, Strasbourg, France
| | - N Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, 67000 Strasbourg, France; Faculty of Dental Medicine University of Strasbourg, 67000 Strasbourg, France
| | - D Semeril
- UMR-CNRS 7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - G Bierry
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France; Pôle d'imagerie médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, Strasbourg, France
| | - S Kremer
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France; Pôle d'imagerie médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, Strasbourg, France
| | - J P Dillenseger
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France; Pôle d'imagerie médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Filippou A, Evripidou N, Georgiou A, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T. J Med Phys 2024; 49:583-596. [PMID: 39926130 PMCID: PMC11801101 DOI: 10.4103/jmp.jmp_133_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 02/11/2025] Open
Abstract
AIM Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique. MATERIALS AND METHODS Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity. RESULTS Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR. CONCLUSIONS MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
- Department of Electronics and Information Engineering, Hangzhou Diazin University, Hangzhou, China
| |
Collapse
|
8
|
Yusuff H, Chatelin S, Dillenseger JP. Narrative review of tissue-mimicking materials for MRI phantoms: Composition, fabrication, and relaxation properties. Radiography (Lond) 2024; 30:1655-1668. [PMID: 39442387 DOI: 10.1016/j.radi.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Tissue-mimicking materials (TMMs) are now essential reference objects for quality control, development and training in all medical imaging modalities. This review aims to provide a comprehensive synthesis of materials used in the fabrication of TMMs for MRI phantoms, focusing on their composition, fabrication methods, and relaxation properties (T1 and T2). METHODS A systematic review was conducted, covering articles published between 1980 and 2023. Inclusion criteria encompassed studies involving physical MRI phantoms with measured T1 and T2 relaxation times. Exclusion criteria filtered out non-MRI studies, and digital/computational models. RESULTS The review identifies and categorizes TMMs based on their primary gelling agents: agar, carrageenan, gelatin, polyvinyl alcohol (PVA), and other less common gels. Agar emerged as the most frequently used gelling agent due to its versatility and favorable MRI signal properties. Carrageenans, noted for their strength and minimal impact on T2 values, are often used in combination with agar. Gelatin, PVA, and other materials like Polyvinyl chloride (PVC) and PolyvinylPyrrolidone (PVP) also demonstrate unique advantages for specific applications. The review also highlights the challenges in phantom stability and the impact of various additives on the relaxation properties. CONCLUSION This synthesis provides a valuable guide for the fabrication of MRI phantoms tailored to desired T1 and T2 relaxation times, facilitating the development of more accurate and reliable imaging tools. Understanding the detailed properties of TMMs is fundamental to improve the quality control and educational applications of MRI technologies, especially with the advent of new magnetic field strengths and parametric imaging techniques. IMPLICATION FOR PRACTICE As experts in MRI systems, radiographers, educators, and researchers need to understand TMM compositions and methods of fabrications to develop MRI phantoms for educational tools and research purposes. This review serves as a valuable resource to guide them in these efforts.
Collapse
Affiliation(s)
- H Yusuff
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France.
| | - S Chatelin
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France.
| | - J-P Dillenseger
- University of Strasbourg, CNRS, Inserm, ICube UMR 7357, Strasbourg, France; Pôle d'imagerie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
9
|
Mishra A, Cleveland RO. Agarose as a Tissue Mimic for the Porcine Heart, Kidney, and Liver: Measurements and a Springpot Model. Bioengineering (Basel) 2024; 11:589. [PMID: 38927825 PMCID: PMC11200806 DOI: 10.3390/bioengineering11060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Agarose gels are often used as a tissue mimic. The goal of this work was to determine the appropriate agarose concentrations that result in mechanical properties that match three different porcine organs. Strain tests were carried out with an amplitude varying from 0.01% to 10% at a frequency of 1 Hz on a range of agarose concentrations and porcine organs. Frequency sweep tests were performed from 0.1 Hz to a maximum of 9.5 Hz at a shear strain amplitude of 0.1% for agarose and porcine organs. In agarose samples, the effect of pre-compression of the samples up to 10% axial strain was considered during frequency sweep tests. The experimental measurements from agarose samples were fit to a fractional order viscoelastic (springpot) model. The model was then used to predict stress relaxation in response to a step strain of 0.1%. The prediction was compared to experimental relaxation data, and the results agreed within 12%. The agarose concentrations (by mass) that gave the best fit were 0.25% for the liver, 0.3% for the kidney, and 0.4% for the heart. At a frequency of 0.1 Hz and a shear strain of 0.1%, the agarose concentrations that best matched the shear storage modulus of the porcine organs were 0.4% agarose for the heart, 0.3% agarose for the kidney, and 0.25% agarose for the liver.
Collapse
Affiliation(s)
| | - Robin O. Cleveland
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| |
Collapse
|
10
|
Antoniou A, Evripidou N, Damianou C. Focused ultrasound heating in brain tissue/skull phantoms with 1 MHz single-element transducer. J Ultrasound 2024; 27:263-274. [PMID: 37517052 PMCID: PMC11178743 DOI: 10.1007/s40477-023-00810-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023] Open
Abstract
PURPOSE The study aims to provide insights on the practicality of using single-element transducers for transcranial Focused Ultrasound (tFUS) thermal applications. METHODS FUS sonications were performed through skull phantoms embedding agar-based tissue mimicking gels using a 1 MHz single-element spherically focused transducer. The skull phantoms were 3D printed with Acrylonitrile Butadiene Styrene (ABS) and Resin thermoplastics having the exact skull bone geometry of a healthy volunteer. The temperature field distribution during and after heating was monitored in a 3 T Magnetic Resonance Imaging (MRI) scanner using MR thermometry. The effect of the skull's thickness on intracranial heating was investigated. RESULTS A single FUS sonication at focal acoustic intensities close to 1580 W/cm2 for 60 s in free field heated up the agar phantom to ablative temperatures reaching about 90 °C (baseline of 37 °C). The ABS skull strongly blocked the ultrasonic waves, resulting in zero temperature increase within the phantom. Considerable heating was achieved through the Resin skull, but it remained at hyperthermia levels. Conversely, tFUS through a 1 mm Resin skull showed enhanced ultrasonic penetration and heating, with the focal temperature reaching 70 °C. CONCLUSIONS The ABS skull demonstrated poorer performance in terms of tFUS compared to the Resin skull owing to its higher ultrasonic attenuation and porosity. The thin Resin phantom of 1 mm thickness provided an efficient acoustic window for delivering tFUS and heating up deep phantom areas. The results of such studies could be particularly useful for accelerating the establishment of a wider range of tFUS applications.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus.
| |
Collapse
|
11
|
Wierzba P, Sękowska-Namiotko A, Sabisz A, Kosowska M, Jing L, Bogdanowicz R, Szczerska M. Reply to Comment on 'Nanodiamond incorporated human liver mimicking phantoms: prospective calibration medium of magnetic resonance imaging'. MAGMA (NEW YORK, N.Y.) 2024; 37:315-317. [PMID: 38386152 DOI: 10.1007/s10334-024-01152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Paweł Wierzba
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Anna Sękowska-Namiotko
- Technical Master Data Department, KION Polska Sp. Z O. O, Kołbaskowo 70, 72-001, Kołbaskowo, Poland
| | - Agnieszka Sabisz
- 2nd Department of Radiology, Medical University of Gdansk, 3a Marii Skłodowskiej-Curie Street, 80-210, Gdansk, Poland
| | - Monika Kosowska
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Lina Jing
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 119 West Fourth Ring South Road, Fengtai District, Beijing, 100070, China
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Małgorzata Szczerska
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| |
Collapse
|
12
|
Antoniou A, Evripidou N, Chrysanthou A, Georgiou L, Ioannides C, Spanoudes K, Damianou C. Effect of Magnetic Resonance Imaging on the Motion Accuracy of Magnetic Resonance Imaging-compatible Focused Ultrasound Robotic System. J Med Phys 2024; 49:203-212. [PMID: 39131431 PMCID: PMC11309133 DOI: 10.4103/jmp.jmp_7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/29/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE The current study provides insights into the challenges of safely operating a magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) robotic system in a high-field MRI scanner in terms of robotic motion accuracy. MATERIALS AND METHODS Grid sonications were carried out in phantoms and excised porcine tissue in a 3T MRI scanner using an existing MRgFUS robotic system. Fast low-angle shot-based magnetic resonance thermometry was employed for the intraprocedural monitoring of thermal distribution. RESULTS Strong shifting of the heated spots from the intended points was observed owing to electromagnetic interference (EMI)-induced malfunctions in system's operation. Increasing the slice thickness of the thermometry sequence to at least 8 mm was proven an efficient method for preserving the robotic motion accuracy. CONCLUSIONS These findings raise awareness about EMI effects on the motion accuracy of MRgFUS robotic devices and how they can be mitigated by employing suitable thermometry parameters.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | | | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
13
|
Sofokleous P, Damianou C. High-quality Agar and Polyacrylamide Tumor-mimicking Phantom Models for Magnetic Resonance-guided Focused Ultrasound Applications. J Med Ultrasound 2024; 32:121-133. [PMID: 38882616 PMCID: PMC11175378 DOI: 10.4103/jmu.jmu_68_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Tissue-mimicking phantoms (TMPs) have been used extensively in clinical and nonclinical settings to simulate the thermal effects of focus ultrasound (FUS) technology in real tissue or organs. With recent technological developments in the FUS technology and its monitoring/guided techniques such as ultrasound-guided FUS and magnetic resonance-guided FUS (MRgFUS) the need for TMPs are more important than ever to ensure the safety of the patients before being treated with FUS for a variety of diseases (e.g., cancer or neurological). The purpose of this study was to prepare a tumor-mimicking phantom (TUMP) model that can simulate competently a tumor that is surrounded by healthy tissue. METHODS The TUMP models were prepared using polyacrylamide (PAA) and agar solutions enriched with MR contrast agents (silicon dioxide and glycerol), and the thermosensitive component bovine serum albumin (BSA) that can alter its physical properties once thermal change is detected, therefore offering real-time visualization of the applied FUS ablation in the TUMPs models. To establish if these TUMPs are good candidates to be used in thermoablation, their thermal properties were characterized with a custom-made FUS system in the laboratory and a magnetic resonance imaging (MRI) setup with MR-thermometry. The BSA protein's coagulation temperature was adjusted at 55°C by setting the pH of the PAA solution to 4.5, therefore simulating the necrosis temperature of the tissue. RESULTS The experiments carried out showed that the TUMP models prepared by PAA can change color from transparent to cream-white due to the BSA protein coagulation caused by the thermal stress applied. The TUMP models offered a good MRI contrast between the TMPs and the TUMPs including real-time visualization of the ablation area due to the BSA protein coagulation. Furthermore, the T2-weighted MR images obtained showed a significant change in T2 when the BSA protein is thermally coagulated. MR thermometry maps demonstrated that the suggested TUMP models may successfully imitate a tumor that is present in soft tissue. CONCLUSION The TUMP models developed in this study have numerous uses in the testing and calibration of FUS equipment including the simulation and validation of thermal therapy treatment plans with FUS or MRgFUS in oncology applications.
Collapse
Affiliation(s)
- Panagiotis Sofokleous
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
14
|
Filippou A, Evripidou N, Georgiou A, Nikolaou A, Damianou C. Estimation of the Proton Resonance Frequency Coefficient in Agar-based Phantoms. J Med Phys 2024; 49:167-180. [PMID: 39131424 PMCID: PMC11309147 DOI: 10.4103/jmp.jmp_146_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 08/13/2024] Open
Abstract
AIM Agar-based phantoms are popular in high intensity focused ultrasound (HIFU) studies, with magnetic resonance imaging (MRI) preferred for guidance since it provides temperature monitoring by proton resonance frequency (PRF) shift magnetic resonance (MR) thermometry. MR thermometry monitoring depends on several factors, thus, herein, the PRF coefficient of agar phantoms was estimated. MATERIALS AND METHODS Seven phantoms were developed with varied agar (2, 4, or 6% w/v) or constant agar (6% w/v) and varied silica concentrations (2, 4, 6, or 8% w/v) to assess the effect of the concentration on the PRF coefficient. Each phantom was sonicated using varied acoustical power for a 30 s duration in both a laboratory setting and inside a 3T MRI scanner. PRF coefficients were estimated through linear trends between phase shift acquired using gradient sequences and thermocouple-based temperatures changes. RESULTS Linear regression (R 2 = 0.9707-0.9991) demonstrated a proportional dependency of phase shift with temperature change, resulting in PRF coefficients between -0.00336 ± 0.00029 and -0.00934 ± 0.00050 ppm/°C for the various phantom recipes. Weak negative linear correlations of the PRF coefficient were observed with increased agar. With silica concentrations, the negative linear correlation was strong. For all phantoms, calibrated PRF coefficients resulted in 1.01-3.01-fold higher temperature changes compared to the values calculated using a literature PRF coefficient. CONCLUSIONS Phantoms developed with a 6% w/v agar concentration and doped with 0%-8% w/v silica best resemble tissue PRF coefficients and should be preferred in HIFU studies. The estimated PRF coefficients can result in enhanced MR thermometry monitoring and evaluation of HIFU protocols.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasia Nikolaou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
15
|
Evripidou N, Antoniou A, Georgiou L, Ioannides C, Spanoudes K, Damianou C. MRI compatibility testing of commercial high intensity focused ultrasound transducers. Phys Med 2024; 117:103194. [PMID: 38048730 DOI: 10.1016/j.ejmp.2023.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
PURPOSE The study aimed to compare the performance of eight commercially available single-element High Intensity Focused Ultrasound (HIFU) transducers in terms of Magnetic Resonance Imaging (MRI) compatibility. METHODS Imaging of an agar-based MRI phantom was performed in a 3 T MRI scanner utilizing T2-Weighted Fast Spin Echo (FSE) and Fast low angle shot (FLASH) sequences, which are typically employed for high resolution anatomical imaging and thermometry, respectively. Reference magnitude and phase images of the phantom were compared with images acquired in the presence of each transducer in terms of the signal to noise ratio (SNR), introduced artifacts, and overall image quality. RESULTS The degree of observed artifacts highly differed among the various transducers. The transducer whose backing material included magnetic impurities showed poor performance in the MRI, introducing significant susceptibility artifacts such as geometric distortions and signal void bands. Additionally, it caused the most significant SNR drop. Other transducers were shown to exhibit high level of MRI compatibility as the resulting images closely resembled the reference images with minimal to no apparent artifacts and comparable SNR values. CONCLUSIONS The study findings may facilitate researchers to select the most suitable transducer for their research, simultaneously avoiding unnecessary testing. The study further provides useful design considerations for MRI compatible transducers.
Collapse
Affiliation(s)
- Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | | | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
16
|
Antoniou A, Evripidou N, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Tumor phantom model for MRI-guided focused ultrasound ablation studies. Med Phys 2023; 50:5956-5968. [PMID: 37226334 DOI: 10.1002/mp.16480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The persistent development of focused ultrasound (FUS) thermal therapy in the context of oncology creates the need for tissue-mimicking tumor phantom models for early-stage experimentation and evaluation of relevant systems and protocols. PURPOSE This study presents the development and evaluation of a tumor-bearing tissue phantom model for testing magnetic resonance imaging (MRI)-guided FUS (MRgFUS) ablation protocols and equipment based on MR thermometry. METHODS Normal tissue was mimicked by a pure agar gel, while the tumor simulator was differentiated from the surrounding material by including silicon dioxide. The phantom was characterized in terms of acoustic, thermal, and MRI properties. US, MRI, and computed tomography (CT) images of the phantom were acquired to assess the contrast between the two compartments. The phantom's response to thermal heating was investigated by performing high power sonications with a 2.4 MHz single element spherically focused ultrasonic transducer in a 3T MRI scanner. RESULTS The estimated phantom properties fall within the range of literature-reported values of soft tissues. The inclusion of silicon dioxide in the tumor material offered excellent tumor visualization in US, MRI, and CT. MR thermometry revealed temperature elevations in the phantom to ablation levels and clear evidence of larger heat accumulation within the tumor owing to the inclusion of silicon dioxide. CONCLUSION Overall, the study findings suggest that the proposed tumor phantom model constitutes a simple and inexpensive tool for preclinical MRgFUS ablation studies, and potentially other image-guided thermal ablation applications upon minimal modifications.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
17
|
Antoniou A, Nikolaou A, Evripidou N, Georgiou A, Filippou A, Zinonos V, Giannakou M, Chrysanthou A, Ioannides C, Damianou C. Phantom-based assessment of motion and needle targeting accuracy of robotic devices for magnetic resonance imaging-guided needle biopsy. Int J Med Robot 2023; 19:e2526. [PMID: 37165718 DOI: 10.1002/rcs.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The current study proposes simple methods for assessing the performance of robotic devices intended for Magnetic Resonance Imaging (MRI)-guided needle biopsy. METHODS In-house made agar-based breast phantoms containing biopsy targets served as the main tool in the evaluation process of an MRI compatible positioning device comprising a needle navigator. The motion accuracy of mechanical stages was assessed by calliper measurements. Laboratory evaluation of needle targeting included a repeatability phantom test and a laser-based method. The accuracy and repeatability of needle targeting was also assessed by MRI. RESULTS The maximum error of linear motion for steps up to 10 mm was 0.1 mm. Needle navigation relative to the phantom and alignment with the various biopsy targets were performed successfully in both the laboratory and MRI settings. The proposed biopsy phantoms offered tissue-like signal in MRI and good haptic feedback during needle insertion. CONCLUSIONS The proposed methods could be valuable in the process of validating the accuracy of MRI-guided biopsy robotic devices in both laboratory and real environments.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasia Nikolaou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Antria Filippou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Vasiliki Zinonos
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | | | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
18
|
Filippou A, Evripidou N, Damianou C. Robotic system for magnetic resonance imaging-guided focused ultrasound treatment of thyroid nodules. Int J Med Robot 2023; 19:e2525. [PMID: 37149886 DOI: 10.1002/rcs.2525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Herein, a robotic system offering Magnetic Resonance-guided Focused Ultrasound (MRgFUS) therapy of thyroid nodules was developed. METHODS The robotic system offers linear motion in 2 PC-controlled axes that navigate a 3 MHz single-element focused transducer. The system, through a C-arm structure attaches to the table of Magnetic Resonance Imaging (MRI) scanners and couples to the neck of patients lying in the supine position. The MRI compatibility of the developed system was assessed inside a 3 T scanner. Benchtop and MRI feasibility studies evaluating the heating performance of the system were executed on excised pork tissue and on homogeneous and thyroid model agar-based phantoms. RESULTS The MRI compatibility of the system was successfully established. Grid sonications executed using robotic motion inflicted discrete and overlapping lesions on the excised tissue, while magnetic resonance (MR) thermometry successfully monitored thermal heating in agar-based phantoms. CONCLUSIONS The developed system was found to be efficient with ex-vivo evaluation. The system can perform clinical MRgFUS therapy of thyroid nodules and other shallow targets after further in-vivo evaluation.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
19
|
Kraft M, Ryger S, Berman BP, Downs ME, Jordanova KV, Poorman ME, Oberdick SD, Ogier SE, Russek SE, Dagher J, Keenan KE. Towards a barrier-free anthropomorphic brain phantom for quantitative magnetic resonance imaging: Design, first construction attempt, and challenges. PLoS One 2023; 18:e0285432. [PMID: 37437022 DOI: 10.1371/journal.pone.0285432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/21/2023] [Indexed: 07/14/2023] Open
Abstract
Existing magnetic resonance imaging (MRI) reference objects, or phantoms, are typically constructed from simple liquid or gel solutions in containers with specific geometric configurations to enable multi-year stability. However, there is a need for phantoms that better mimic the human anatomy without barriers between the tissues. Barriers result in regions without MRI signal between the different tissue mimics, which is an artificial image artifact. We created an anatomically representative 3D structure of the brain that mimicked the T1 and T2 relaxation properties of white and gray matter at 3 T. While the goal was to avoid barriers between tissues, the 3D printed barrier between white and gray matter and other flaws in the construction were visible at 3 T. Stability measurements were made using a portable MRI system operating at 64 mT, and T2 relaxation time was stable from 0 to 22 weeks. The phantom T1 relaxation properties did change from 0 to 10 weeks; however, they did not substantially change between 10 weeks and 22 weeks. The anthropomorphic phantom used a dissolvable mold construction method to better mimic anatomy, which worked in small test objects. The construction process, though, had many challenges. We share this work with the hope that the community can build on our experience.
Collapse
Affiliation(s)
- Mikail Kraft
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
| | - Slavka Ryger
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
| | - Ben P Berman
- The MITRE Corporation, McLean, Virginia, United States of America
| | - Matthew E Downs
- The MITRE Corporation, McLean, Virginia, United States of America
| | - Kalina V Jordanova
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
| | - Megan E Poorman
- Hyperfine, Inc, Guilford, Connecticut, United States of America
| | - Samuel D Oberdick
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
- Department of Physics, University of Colorado, Boulder, Colorado, United States of America
| | - Stephen E Ogier
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
- Department of Physics, University of Colorado, Boulder, Colorado, United States of America
| | - Stephen E Russek
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
| | - Joseph Dagher
- The MITRE Corporation, McLean, Virginia, United States of America
| | - Kathryn E Keenan
- National Institute of Standards and Technology, Physical Measurement Laboratory, Boulder, Colorado, United States of America
| |
Collapse
|
20
|
Antoniou A, Damianou C. Simple, inexpensive, and ergonomic phantom for quality assurance control of MRI guided Focused Ultrasound systems. J Ultrasound 2023; 26:401-408. [PMID: 36329304 PMCID: PMC10247591 DOI: 10.1007/s40477-022-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The popularity of Magnetic Resonance guided Focused Ultrasound (MRgFUS) as a beneficial therapeutic solution for many diseases is increasing rapidly, thus raising the need for reliable quality assurance (QA) phantoms for routine testing of MRgFUS systems. In this study, we propose a thin acrylic film as the cheapest and most easily accessible phantom for assessing the functionality of MRgFUS hardware and software. METHODS Through the paper, specific QA tests are detailed in the framework of evaluating an MRgFUS preclinical robotic device comprising a single element spherically focused transducer with a nominal frequency of 2.75 MHz. These tests take advantage of the reflection of ultrasonic waves at a plastic-air interface, which results in almost immediate lesion formation on the film at a threshold of applied acoustic energy. RESULTS The phantom offered qualitative information on the power field distribution of the FUS transducer and the ability to visualize different FUS protocols. It also enabled quick and reliable assessment of various navigation algorithms as they are used in real treatments, and also allowed for the assessment of the accuracy of robotic motion. CONCLUSION Therefore, it could serve as a useful tool for detecting defects in system's performance over its lifetime after establishing a baseline while concurrently contributing to establish QA and calibration guidelines for clinical routine controls.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus.
| |
Collapse
|
21
|
Filippou A, Louca I, Damianou C. Characterization of a fat tissue mimicking material for high intensity focused ultrasound applications. J Ultrasound 2023; 26:505-515. [PMID: 36414928 PMCID: PMC10247632 DOI: 10.1007/s40477-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Tissue-mimicking materials (TMMs) have a prominent role in validating new high intensity focused ultrasound (HIFU) therapies. Agar-based TMMs are often developed mimicking the thermal properties of muscle tissue, while TMMs simulating fat tissue properties are rarely developed. Herein, twelve agar-based TMMs were iteratively developed with varied concentrations of agar, water, glycerol and propan-2-ol, and characterized for their suitability in emulating the thermal conductivity of human fat tissue. METHODS Varied agar concentrations (2%, 4%, 6%, 8%, 12%, 16% and 20% w/v) were utilized for developing seven water-based TMMs, while a 20% w/v agar concentration was utilized for developing two water/alcohol-based TMMs (50% v/v water and 50% v/v either glycerol or propan-2-ol) and three alcohol-based TMMs (varied glycerol and propan-2-ol concentrations). Thermal conductivity was measured for all TMMs, and the tissue mimicking material (TMM) exhibiting thermal conductivity closest to human fat was considered the optimum fat TMM and was further characterized using ultrasound (US) and Magnetic Resonance Imaging (MRI). RESULTS For the seven water-based TMMs an inverse linear trend was observed between thermal conductivity and increased agar concentration, being between 0.524 and 0.445 W/m K. Alcohol addition decreased thermal conductivity of the two water/alcohol-based TMMs to about 0.33 W/m K, while in the alcohol-based TMMs, increased concentrations of propan-2-ol emerged as a modifier of thermal conductivity. The optimum fat TMM (33.3% v/v glycerol and 66.7% v/v propan-2-ol) exhibited a 0.231 W/m K thermal conductivity, and appeared hypoechoic on US images and with increased brightness on T1-Weighted MRI images. CONCLUSION The optimum fat TMM emulates the thermal conductivity of human fat tissue and exhibits a fat-like appearance on US and MRI images. The TMM is cost-effective and has a long lifespan and possesses great potential for use in HIFU applications as a fat TMM.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Irene Louca
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus.
| |
Collapse
|
22
|
Antoniou A, Nikolaou A, Georgiou A, Evripidou N, Damianou C. Development of an US, MRI, and CT imaging compatible realistic mouse phantom for thermal ablation and focused ultrasound evaluation. ULTRASONICS 2023; 131:106955. [PMID: 36854247 DOI: 10.1016/j.ultras.2023.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Tissue mimicking phantoms (TMPs) play an essential role in modern biomedical research as cost-effective quality assurance and training tools, simultaneously contributing to the reduction of animal use. Herein, we present the development and evaluation of an anatomically accurate mouse phantom intended for image-guided thermal ablation and Focused Ultrasound (FUS) applications. The proposed mouse model consists of skeletal and soft tissue mimics, whose design was based on the Computed tomography (CT) scans data of a live mouse. Advantageously, it is compatible with US, CT, and Magnetic Resonance Imaging (MRI). The compatibility assessment was focused on the radiological behavior of the phantom due to the lack of relevant literature. The X-ray linear attenuation coefficient of candidate materials was estimated to assess the one that matches best the radiological behavior of living tissues. The bone part was manufactured by Fused Deposition Modeling (FDM) printing using Acrylonitrile styrene acrylate (ASA) material. For the soft-tissue mimic, a special mold was 3D printed having a cavity with the unique shape of the mouse body and filled with an agar-based silica-doped gel. The mouse phantom accurately matched the size and reproduced the body surface of the imaged mouse. Tissue-equivalency in terms of X-ray attenuation was demonstrated for the agar-based soft-tissue mimic. The phantom demonstrated excellent MRI visibility of the skeletal and soft-tissue mimics. Good radiological contrast between the skeletal and soft-tissue models was also observed in the CT scans. The model was also able to reproduce realistic behavior during trans-skull sonication as proved by thermocouple measurements. Overall, the proposed phantom is inexpensive, ergonomic, and realistic. It could constitute a powerful tool for image-guided thermal ablation and FUS studies in terms of testing and optimizing the performance of relevant equipment and protocols. It also possess great potential for use in transcranial FUS applications, including the emerging topic of FUS-mediated blood brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Anastasia Nikolaou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
23
|
Kilian D, Kilian W, Troia A, Nguyen TD, Ittermann B, Zilberti L, Gelinsky M. 3D Extrusion Printing of Biphasic Anthropomorphic Brain Phantoms Mimicking MR Relaxation Times Based on Alginate-Agarose-Carrageenan Blends. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48397-48415. [PMID: 36270624 PMCID: PMC9634698 DOI: 10.1021/acsami.2c12872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The availability of adapted phantoms mimicking different body parts is fundamental to establishing the stability and reliability of magnetic resonance imaging (MRI) methods. The primary purpose of such phantoms is the mimicking of physiologically relevant, contrast-creating relaxation times T1 and T2. For the head, frequently examined by MRI, an anthropomorphic design of brain phantoms would imply the discrimination of gray matter and white matter (WM) within defined, spatially distributed compartments. Multichannel extrusion printing allows the layer-by-layer fabrication of multiple pastelike materials in a spatially defined manner with a predefined shape. In this study, the advantages of this method are used to fabricate biphasic brain phantoms mimicking MR relaxation times and anthropomorphic geometry. The printable ink was based on purely naturally derived polymers: alginate as a calcium-cross-linkable gelling agent, agarose, ι-carrageenan, and GdCl3 in different concentrations (0-280 μmol kg-1) as the paramagnetic component. The suggested inks (e.g., 3Alg-1Agar-6Car) fulfilled the requirements of viscoelastic behavior and printability of large constructs (>150 mL). The microstructure and distribution of GdCl3 were assessed by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX). In closely monitored steps of technological development and characterization, from monophasic and biphasic samples as printable inks and cross-linked gels, we describe the construction of large-scale phantom models whose relaxation times were characterized and checked for stability over time.
Collapse
Affiliation(s)
- David Kilian
- Centre
for Translational Bone, Joint and Soft Tissue Research, Faculty of
Medicine Carl Gustav Carus, Technische Universität
Dresden (TUD), Dresden01307, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische
Bundesanstalt (PTB), Berlin10587, Germany
| | - Adriano Troia
- Istituto
Nazionale di Ricerca Metrologica (INRiM), Turin10135, Italy
| | - Thanh-Duc Nguyen
- Centre
for Translational Bone, Joint and Soft Tissue Research, Faculty of
Medicine Carl Gustav Carus, Technische Universität
Dresden (TUD), Dresden01307, Germany
| | - Bernd Ittermann
- Physikalisch-Technische
Bundesanstalt (PTB), Berlin10587, Germany
| | - Luca Zilberti
- Istituto
Nazionale di Ricerca Metrologica (INRiM), Turin10135, Italy
| | - Michael Gelinsky
- Centre
for Translational Bone, Joint and Soft Tissue Research, Faculty of
Medicine Carl Gustav Carus, Technische Universität
Dresden (TUD), Dresden01307, Germany
| |
Collapse
|