1
|
Sourij H, Azhar K, Aberer F, Sourij C, Tripolt NJ, Kojzar H, Pferschy PN, Buchmann A, Aziz F, Khalil M. Impact of level 2 hypoglycaemia on neuroaxonal damage biomarker in individuals with type 2 diabetes: A stepwise hypoglycaemic clamp study. Diabetes Obes Metab 2025; 27:3519-3522. [PMID: 40091483 PMCID: PMC12046480 DOI: 10.1111/dom.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Kehkishan Azhar
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Felix Aberer
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Caren Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- Division of CardiologyMedical University of GrazGrazAustria
| | - Norbert J. Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Harald Kojzar
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Peter N. Pferschy
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | | | - Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Michael Khalil
- Department of NeurologyMedical University of GrazGrazAustria
| |
Collapse
|
2
|
Newsome SD, Krzystanek E, Selmaj KW, Dufek M, Goldstick L, Pozzilli C, Figueiredo C, Townsend B, Kletzl H, Bortolami O, Zecevic D, Giacobino C, Clinch S, Shen YA, Bhullar GD, Schneble HM, Centonze D. Subcutaneous Ocrelizumab in Patients With Multiple Sclerosis: Results of the Phase 3 OCARINA II Study. Neurology 2025; 104:e213574. [PMID: 40245351 PMCID: PMC12006663 DOI: 10.1212/wnl.0000000000213574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/26/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVES IV-administered ocrelizumab (OCR) is approved for the treatment of relapsing and primary progressive multiple sclerosis (RMS/PPMS). OCARINA II (NCT05232825) was designed to demonstrate noninferiority in drug exposure of OCR subcutaneous (SC) vs IV administration. METHODS This phase 3, randomized, open-label study enrolled OCR-naive patients aged 18-65 years with RMS/PPMS and an Expanded Disability Status Scale score of 0-6.5. Patients received OCR IV 600 mg or OCR SC 920 mg (controlled period), followed by OCR SC 920 mg every 24 weeks, up to week 96 (OCR IV/SC and OCR SC/SC). The primary end point was OCR area under the serum concentration-time curve from day 1 to week 12 (AUCW1‒12); other end points included clinical, biomarker, and pharmacodynamic outcomes and safety data. RESULTS Baseline demographics were balanced across OCR IV/SC and OCR SC/SC arms (N = 118/118, 40.0 ± 11.9/39.9 ± 11.4 years, 59.3%/65.3% female, 89.0%/89.0% with RMS). The study demonstrated noninferiority of OCR SC 920 mg to OCR IV 600 mg for the primary end point AUCW1-12 and also over the dosing interval for AUCW1‒24 (geometric mean ratios [90% CI] 1.29 [1.23-1.35] and 1.27 [1.21-1.34], respectively). At week 48, 111 of 118 (OCR IV/SC) and 114 of 118 (OCR SC/SC) had received OCR SC. A near-complete suppression of MRI activity was reported in OCR IV/SC and OCR SC/SC: 0 of 113 and 0 of 113 patients had T1 lesions while 1 of 114 and 1 of 113 had 2 and 1 new/enlarging T2 lesions, respectively. Two patients (1.9%) in each arm had 1 relapse, and 1 patient (0.9%; OCR SC/SC) had 2 relapses. In both arms, rapid and sustained B-cell depletion was observed and serum neurofilament light chain reduction was comparable. Patients receiving at least 1 dose of OCR SC 920 mg in the OCR IV/SC and OCR SC/SC arms reported adverse events (AEs): 75.4% and 86.4%, and serious AEs: 5.9% and 2.5%. The most frequently reported AEs were injection reactions (IRs, 51.5%); local and systemic IRs were experienced by 117 of 233 patients (50.2%) and 27 of 233 patients (11.6%), respectively. All IRs were mild/moderate; intensity and duration decreased with subsequent injections. DISCUSSION The OCR SC formulation demonstrated noninferiority to OCR IV formulation regarding drug exposure, providing comparable efficacy and safety and an additional treatment option for patients with multiple sclerosis. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that a single SC injection of 920 mg of OCR achieves a noninferior 12-week area under serum concentration-time curve to that of 2 IV infusions of 300-mg OCR administered 2 weeks apart. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier NCT05232825; submitted: January 27, 2022; first patient enrolled: May 3, 2022; available at: clinicaltrials.gov/study/NCT05232825?term=NCT05232825&rank=1.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- Young Adult
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/adverse effects
- Immunologic Factors/administration & dosage
- Immunologic Factors/pharmacokinetics
- Injections, Subcutaneous
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis, Chronic Progressive/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Treatment Outcome
Collapse
Affiliation(s)
| | - Ewa Krzystanek
- Department of Neurology, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Krzysztof W Selmaj
- Centrum Neurologii, Łódź, Poland
- Department of Neurology, University of Warmia & Mazury, Olsztyn, Poland
| | - Michal Dufek
- First Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Carlo Pozzilli
- Department of Human Neuroscience, S. Andrea MS Center, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome & Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
3
|
Weinhofer I, Rommer P, Berger J. Blood Biomarkers Reflecting Brain Pathology-From Common Grounds to Rare Frontiers. J Inherit Metab Dis 2025; 48:e70032. [PMID: 40325881 DOI: 10.1002/jimd.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Understanding pathological changes in the brain is essential for guiding treatment decisions in brain injuries and diseases. Despite significant advances in brain imaging techniques, clinical practice still faces challenges due to infrastructure reliance and high resource demands. This review explores the current knowledge on blood-based biomarkers that indicate brain pathology, which can assist in identifying at-risk patients, diagnosing patients, predicting disease progression, and treatment response. We focus on the inherited metabolic disorders X-linked adrenoleukodystrophy (X-ALD) and metachromatic leukodystrophy (MLD) which share remarkable phenotypic variability. Disease-specific increases in the lipid metabolites lyso-PC26:0 in X-ALD and sulfatides in MLD might contribute to predicting clinical manifestation. Disease-unspecific biomarkers for axonal damage (neurofilament light chain protein, NfL) and glial degeneration (glial fibrillary acidic protein, GFAP) are able to distinguish X-ALD and MLD phenotypes at the group level. The implementation of X-ALD into newborn screening programs in various countries, including several U.S. states, has increased the demand for predictive blood-based biomarkers capable of detecting the early conversion from the pre-symptomatic to the early neuroinflammatory cerebral form of X-ALD. Among different biomarkers, NfL has proven most effective in reflecting neuroinflammation and correlating with brain lesion volume and the magnetic resonance imaging (MRI)-based severity scores. We discuss how NfL has moved from initial proof-of-principle towards proof-of-concept studies in brain disorders such as multiple sclerosis and how this knowledge could be applied for the clinical implementation of NfL in rare inherited metabolic disorders such as X-ALD.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Bose G, Thebault SDX, Fadda G, Brooks JA, Freedman MS. Role of soluble biomarkers in treating multiple sclerosis and neuroinflammatory conditions. Neurotherapeutics 2025:e00588. [PMID: 40254498 DOI: 10.1016/j.neurot.2025.e00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Multiple sclerosis (MS) is a complex, chronic immune-mediated disease characterized by acute and progressive inflammatory damage of the central nervous system. MS manifests clinically with unpredictable neurological symptoms from focal inflammatory attacks as well as gradual neurodegeneration which contribute significantly to long-term disability progression. As treatment options advance, developing more personalized strategies capture heterogeneous mechanisms of injury which may be targeted or predict outcomes has been a focus of ongoing investigation. The role of soluble biomarkers has emerged as a pivotal tool to assist in these goals. Early promising candidates include neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP); these intermediate filaments that are expressed in neurons and astrocytes, respectively, are reliably measurable from blood samples and can reveal clinical and subclinical changes, as well as predict progression. Changes in these biomarkers can indicate a response to therapy, thus potentially be used as endpoints in clinical trials. Furthermore, recent research has identified a potential role of these and other soluble biomarkers in other neuroimmunological conditions including neuromyelitis spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein associated disease (MOGAD), autoimmune encephalitis, neurosarcoidosis, neuropsychiatric involvement in connective tissue disorders and vasculitides, and a host of neurodegenerative conditions. By integrating biomarker analysis into routine clinical assessments, healthcare providers may move toward a more nuanced and individualized care model, better equipped to meet the challenges posed by these multifaceted diseases. Understanding the dynamics of these biomarkers has many applications that can improve personalized medicine in MS.
Collapse
Affiliation(s)
- Gauruv Bose
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada.
| | - Simon D X Thebault
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and McGill University Health Centre, Canada
| | - Giulia Fadda
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada
| | - John A Brooks
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada
| | - Mark S Freedman
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada
| |
Collapse
|
5
|
Förster M, Räuber S, Albrecht P, Wojtecki L, Meuth SG, Kremer D. Do Nitrosative Stress Molecules Hold Promise as Biomarkers for Multiple Sclerosis? Int J Mol Sci 2025; 26:3412. [PMID: 40244291 PMCID: PMC11989761 DOI: 10.3390/ijms26073412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Multiple sclerosis (MS), an auto-immune disease of the central nervous system (CNS) with inflammatory and neurodegenerative properties, remains an insufficiently understood disease despite more than 150 years of research. In contrast to diseases from other medical fields such as, for instance, oncology, a description of its clinical and non-clinical features based on readouts such as biomarkers is still in its infancy. While, in this regard, neurofilament light chain (NfL) seems to be a promising new tool, the significant intra- and interindividual variation of this serological marker somewhat limits its widespread applicability in everyday clinical reality. This has sparked novel studies in which glial fibrillary acidic protein (GFAP) was proposed as an on-top marker serving to improve overall specificity. In this context, it was found that MS disease progression was significantly more often associated with increased levels of both NfL and GFAP compared to increased NfL levels alone. This highlights the complexity of the disease while also emphasizing the potential benefits of introducing additional markers to enhance current options. We propose that nitrosative stress markers, such as nitrate, nitrite, and nitrotyrosine (3NT), could serve this purpose effectively.
Collapse
Affiliation(s)
- Moritz Förster
- Department of Neurology, Kliniken Maria Hilf GmbH, Academic Teaching Hospital of the RWTH Aachen University Hospital, 41063 Mönchengladbach, Germany; (M.F.); (P.A.)
| | - Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (L.W.); (S.G.M.)
| | - Philipp Albrecht
- Department of Neurology, Kliniken Maria Hilf GmbH, Academic Teaching Hospital of the RWTH Aachen University Hospital, 41063 Mönchengladbach, Germany; (M.F.); (P.A.)
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (L.W.); (S.G.M.)
| | - Lars Wojtecki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (L.W.); (S.G.M.)
- Department of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich Heine University Düsseldorf, 47906 Kempen, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (L.W.); (S.G.M.)
| | - David Kremer
- Department of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich Heine University Düsseldorf, 47906 Kempen, Germany
| |
Collapse
|
6
|
Labib M, Thebault S, Booth RA, Brooks J, Rush C, MacLean H, Bose G, Freedman MS, Fadda G. The utility of serum neurofilament light chain in MOGAD: Current insights and future directions. Mult Scler Relat Disord 2025; 98:106410. [PMID: 40220725 DOI: 10.1016/j.msard.2025.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) has become an increasingly established biomarker for monitoring in multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a demyelinating disorder distinct from MS in terms of pathophysiology and treatment options, also presenting with demyelinating attacks that can result in permanent disability. Given its unpredictable disease course, the need for biomarkers reflective of the risk for poor clinical recovery or relapsing course is pressing. The purpose of this review is to summarize the current knowledge on sNfL levels in people with MOGAD, assess their utility for clinical practice and gain insights for future research. METHODS Embase, MEDLINE, Scopus, and CINAHL databases were searched following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. Keywords used in the search included: (myelin oligodendrocyte glycoprotein OR MOG OR MOGAD) AND (neurofilament* OR neuro filament* OR NfL OR sNfL). This initial search generated 195 reports, 23 of which were original research articles investigating NfL levels in MOGAD patients, therefore meeting our inclusion criteria. RESULTS 422 MOGAD patients were involved across all studies. Most studies revealed higher sNfL in MOGAD patients (n = 292) than in healthy controls (n = 3,172) with one study finding higher sNfL in MOGAD only during relapse. sNfL levels during attacks were similar when comparing MOGAD (n = 94) to MS (n = 256) and MOGAD (n = 149) to APQ4+ neuromyelitis optica spectrum disorder (APQ4+ NMOSD) (n = 214). MOGAD patients with brain lesions on magnetic resonance imaging (MRI) during a recent attack (n = 69 samples) had higher sNfL levels than patients without brain lesions (n = 78 samples). Median sNfL concentration was higher following clinical attacks (n = 69 samples) than in remission (n = 83 samples) in 3/5 studies. sNfL were higher at disease onset than subsequent attacks in 2 studies (n = 133 samples). Onset sNfL levels were not predictive of the likelihood of future relapse (relapsing: n = 15, monophasic: n = 18). A positive correlation was found between sNfL levels and attack severity assessed through various disability scales (n = 202), but not with the severity of acute or residual visual acuity (n = 45 eyes), or with residual retinal thickness among subjects with the optic neuritis (ON) phenotype (n = 11 eyes). The sGFAP/sNfL ratio showed utility in discriminating MOGAD from other autoimmune demyelinating diseases in two studies (MOGAD: n = 56, APQ4+ NMOSD: n = 66, MS: n = 31). DISCUSSION sNfL levels at presentation have limited utility in distinguishing MOGAD from other demyelinating disorders, but their combination with other biomarkers might improve their diagnostic utility. sNfL levels are higher in brain/spinal cord presentations than optic neuritis, correlating with clinical severity of these phenotypes but less so with the severity of visual outcome. Further studies should clarify the utility of sNfL as a biomarker for MOGAD, particularly in relation to long-term outcomes and imaging markers of central nervous system damage. Standardized sNfL testing parameters will improve study comparability and clinical application.
Collapse
Affiliation(s)
- Mark Labib
- Undergraduate Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Simon Thebault
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital and Eastern Ontario Regional Laboratory Association, Ottawa, ON, Canada.
| | - John Brooks
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Carolina Rush
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Heather MacLean
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Gauruv Bose
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Giulia Fadda
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Khedr EM, Nasreldein A, El-Deen HB, El-Mokhtar MA, Mahmoud DM. A real-world data of serum neurofilament light chain in a large cohort of Egyptian multiple sclerosis patients: Hospital-based study. Mult Scler Relat Disord 2025; 94:106286. [PMID: 39879939 DOI: 10.1016/j.msard.2025.106286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Serum neurofilament light chain (sNFL) is a promising biomarker for neuroaxonal injury in multiple sclerosis (MS). Traditional clinical and radiological examinations often fail to capture the underlying neurodegeneration, particularly in the absence of clinical relapses or gadolinium-enhanced lesions. This study aims to assess sNFL levels in real-world MS patients who have no evidence of activity, to evaluate the potential of sNFL as a biomarker for smoldering-associated worsening (SAW). MATERIALS AND METHODS A cross-sectional study, involved 162 MS patients without evidence of disease activity and 40 healthy, age, sex, and education matched controls (HCs). Patients were classified according to MS subtype, DMT status, and type. sNFL levels were measured using an enzyme-linked immunosorbent assay (ELISA) and levels were compared in each group. RESULTS sNFL levels were significantly higher in MS patients compared to (HCs) (p < 0.001). Median sNFL levels were lowest in the clinically isolated (CIS) group and steady increase in RRMS and reaching the highest levels in the SPMS group (p < 0.001). Despite a slight decrease in sNFL levels in patients who started DMT for a year or less than in the naïve group, sNFL levels were highest in patients who were on DMTs for longer durations (p = 0.003). EDSS score was the sole independent predictor of sNFL levels (B = 0.415, p = 0.002). A cut-off value of 23.25 pg/ml was set to distinguish cases and HCs (92 % specificity and 90 % sensitivity), and 75.48 pg/ml was set to distinguish progressive forms (70.00 % sensitivity and 78.30 % specificity). CONCLUSION sNFL is sensitive for detecting subclinical neurodegeneration in the absence of relapse or gadolinium-enhanced lesions, supporting the utility of sNFL measurements into routine clinical practice to improve monitoring and management of MS.
Collapse
Affiliation(s)
- Eman M Khedr
- Department of Neurology and Psychiatry, Faculty of Medicine Assiut University, Assiut, Egypt; Department of Neurology and Psychiatry, Faculty of Medicine Aswan University, Aswan, Egypt.
| | - Ahmed Nasreldein
- Department of Neurology and Psychiatry, Faculty of Medicine Assiut University, Assiut, Egypt.
| | - Hussein Bahey El-Deen
- Department of Neurology and Psychiatry, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Doaa M Mahmoud
- Department of Neurology and Psychiatry, Faculty of Medicine Assiut University, Assiut, Egypt.
| |
Collapse
|
8
|
Britze J, Larsen MH, Pedersen AG, Rosthøj S, Bach Søndergaard H, Magyari M, Pedersen OB, Jensen BA, Ostrowski SR, Erikstrup C, Ullum H, Battistini JLF, Sellebjerg F, Modvig S. Temporal Dynamics of Plasma Neurofilament Light in Blood Donors With Preclinical Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200335. [PMID: 39602675 PMCID: PMC11616971 DOI: 10.1212/nxi.0000000000200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a CNS disease, characterized by demyelination, inflammation, and neurodegeneration. Recent advances in technology allow measurement of the axonal damage marker neurofilament light chain in peripheral blood. Two studies have shown that patients with MS have elevated neurofilament light levels before their first symptom, but longitudinal studies are lacking. We aimed to investigate the intraindividual neurofilament light dynamics during the presymptomatic phase of MS. METHODS The Danish Blood Donor Study (DBDS) has stored plasma samples from blood donors for more than 10 years. We identified DBDS participants, who had subsequently been diagnosed with MS, and included all samples donated before their first demyelinating symptom (median 5.00 samples per case). As controls, we included 2 healthy donors per case. Plasma levels of neurofilament light were measured and compared with quality-of-life data. We used a Bayesian approach to derive estimates for the percentage of cases with presymptomatic increased neurofilament light levels. RESULTS We observed that 12 (17%, 95% CI 9%-28%) of 69 presymptomatic MS donors had intermittently increased neurofilament light levels preclinically. Increased levels were present up to 9 years before clinical onset, also in primary progressive MS. Healthy donors and presymptomatic MS donors with and without increased neurofilament light levels reported equally high physical and mental well-being. Model-based estimates suggested that 55% of cases (95% credible interval [28%-87%]) had experienced increased presymptomatic neurofilament light levels. DISCUSSION Patients with MS periodically sustain axonal injury up to 9 years before clinical onset, even in primary progressive disease. This most likely represents asymptomatic disease activity. Some or even all patients are affected by this intermittent axonal injury, prompting the need for further studies of the presymptomatic phase in relation to prognosis and as a therapeutic window of opportunity.
Collapse
Affiliation(s)
- Josefine Britze
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Margit Hørup Larsen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Anders Gorm Pedersen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Susanne Rosthøj
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Helle Bach Søndergaard
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Melinda Magyari
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Ole Birger Pedersen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Bitten Aagaard Jensen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Christian Erikstrup
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Henrik Ullum
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Jette Lautrup Frederiksen Battistini
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Finn Sellebjerg
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Signe Modvig
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| |
Collapse
|
9
|
Madill E, Healy BC, Molazadeh N, Polgar‐Turcsanyi M, Glanz BI, Weiner HL, Chitnis T. Serum glial fibrillary acidic protein predicts disease progression in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2719-2730. [PMID: 39238198 PMCID: PMC11514927 DOI: 10.1002/acn3.52187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Glial fibrillary acidic protein (GFAP) is expressed in astrocytes and may be a useful marker of non-active progressive multiple sclerosis (MS). We evaluate serum GFAP (sGFAP) in a large cohort of MS patients to determine if it predicts progression independent of relapse activity (PIRA), future gait aid, and conversion to secondary progressive disease (SPMS). METHODS Adults with clinically isolated syndrome or any subtype of MS who were listed in the Brigham MS Center Research Database and had at least one sGFAP result were included. All clinic visits following first sample were analyzed for PIRA, future gait aid, and conversion to SPMS. Future cognitive dysfunction and fatigue were evaluated as secondary outcomes. RESULTS In total, 741 patients were included (average age: 42.3, average disease duration: 3.7 years, median EDSS: 2, and median follow-up duration: 10.0 years). Of 643 patients (86.8%) without progressive disease at baseline, 15.9% developed SPMS. Among all 741, 50.5% had PIRA and 18.6% developed a gait aid requirement. sGFAP level predicted PIRA, future gait aid, and conversion to SPMS in univariable models (p < 0.001, <0.001, and 0.002). sGFAP remained predictive for PIRA and future gait aid in multivariable models in those younger than 50 (p = 0.048, 0.003). Change in sGFAP level over time was not predictive. There was no association between sGFAP and future fatigue or cognitive dysfunction. INTERPRETATION sGFAP helps to predict PIRA, future gait aid, and conversion to SPMS in a large cohort of MS patients. Our data suggest that baseline levels may be more useful than the change over time.
Collapse
Affiliation(s)
- Evan Madill
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian C. Healy
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Negar Molazadeh
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Mariann Polgar‐Turcsanyi
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Bonnie I. Glanz
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Howard L. Weiner
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Højsgaard Chow H, Petersen ER, Olsson A, Hejgaard Laursen J, Bredahl Hansen M, Oturai AB, Soelberg Sørensen P, Bach Søndergaard H, Sellebjerg F. Age-corrected neurofilament light chain ratio decreases but does not predict relapse in highly active multiple sclerosis patients initiating natalizumab treatment. Mult Scler Relat Disord 2024; 88:105701. [PMID: 38889559 DOI: 10.1016/j.msard.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Neurofilament light chain (NFL) is a biomarker for monitoring disease activity and treatment response in multiple sclerosis (MS). However, while most agree that NFL levels predict disease activity and worsening, the predictive value of NFL on future relapse risk remains uncertain. OBJECTIVE The primary aim was to evaluate the predictive value of age-corrected serum NFL (sNFL) ratio on relapse risk in highly active relapsing-remitting MS patients (RRMS) treated with natalizumab. A secondary aim was to investigate the predictive value of sNFL ratios for MRI activity. METHODS From January 1, 2006, to December 31, 2010, 355 patients initiated natalizumab treatment at the Danish Multiple Sclerosis Center. 305 patients were anti-natalizumab antibodies negative and had at least one blood sample available for sNFL analysis using single molecule array analysis at baseline, three, six, or 12 months. The patients were either treatment-naïve (n = 8), switching from interferon-β or glatiramer acetate (n = 253), or switching from mitoxantrone (n = 44). An age-corrected ratio was calculated for sNFL. Time to first relapse was calculated from baseline and after re-baseline at 90 days. Data were collected from baseline until the two-year follow-up or end of treatment and included disease duration, expanded disability status scale, previous treatments, relapses 12 months prior to natalizumab initiation, smoking intensity, body mass index, and body weight. In addition, the patients underwent annual MRI of the brain. RESULTS The sNFL ratio was increased in 173 of 287 samples (60.3 %) at baseline, in 119 of 246 samples (48.8 %) at month three, in 109 of 287 samples (38.0 %) at month six, and in 82 of 270 samples (30.4 %) at month 12. The sNFL ratio continuously declined over 12 months with significant decreases for every measuring timepoint: baseline vs. three months p = 3.0 × 10-6; three months vs. six months p = 3.2 × 10-5; six months vs. 12 months p = 0.002. Univariate Cox regression analysis showed that time to first relapse from 1) natalizumab initiation and from 2) re-baseline was associated with the number of relapses in the previous 12 months (hazard ratio 1.31 per relapse, 95 % CI = 1.2-1.5, p = 2.0 × 10-6; and 1.21 per relapse, 95 % CI = 1.1-1.4, p = 0.002, respectively). sNFL ratio at re-baseline was negatively associated with relapse risk (hazard ratio 0.82 per unit; 95 % CI = 0.7-1.0; p = 0.049). A multivariable Cox regression analysis of relapse risk from re-baseline showed that the number of relapses in the 12 months prior to natalizumab treatment (hazard ratio 1.29; 95 % CI = 1.1-1.5; p = 6.0 × 10-4) and smoking (hazard ratio 1.51 per 20 cigarettes per day; 95 % CI = 1.0-2.2; p = 0.030) were associated with increased risk of relapse; sNFL ratio was associated with a lower risk of relapse (hazard ratio = 0.736 per unit; 95 % CI = 0.6-0.9 p = 0.007). In univariate logistic regression analyses, the sNFL ratio at 12 months and values above the 75th and the 90th percentile predicted MRI activity in the following year (odds ratio [OR] = 2.0, 95 % CI = 1.2-3.6, p = 0.012; OR = 2.2, 95 % CI = 1.2-4.1, p = 0.014; and OR = 2.8, 95 % CI = 1.1-6.7, p = 0.026). CONCLUSION In this highly active RRMS cohort, high sNFL ratios reflected previous relapse activity and decreased after initiation of treatment but were not associated with increased relapse risk in the following two years. Pre-treatment relapses and smoking on treatment were predictors of relapse risk after re-baselining at 90 days. MRI activity in year two was predicted by sNFL ratios at month 12.
Collapse
Affiliation(s)
- Helene Højsgaard Chow
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Eva Rosa Petersen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Anna Olsson
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Julie Hejgaard Laursen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Malene Bredahl Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Annette Bang Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Per Soelberg Sørensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
11
|
Saucier L, Healy BC, Saxena S, Sanon E, Chitnis T. Glial fibrillary acidic protein and neurofilament light chain as biomarkers in pediatric multiple sclerosis. Mult Scler J Exp Transl Clin 2024; 10:20552173241274567. [PMID: 39193071 PMCID: PMC11348348 DOI: 10.1177/20552173241274567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Background Serum neurofilament light chain (sNfL) is a marker of neuroaxonal injury, and serum glial fibrillary acidic protein (sGFAP) reflects reactive astrogliosis. In adult multiple sclerosis (MS), sNfL correlates with relapsing disease activity while sGFAP correlates with progressive disease. Objectives We evaluate sNfL and sGFAP as biomarkers in pediatric-onset MS (POMS) compared to pediatric healthy controls (PHC), and correlations with the disease course. Methods In this single-center observational cross-sectional study, we extracted data from a longitudinal database and measured NfL and GFAP from bio-banked serum using single-molecule array technology. Results The analysis included 61 POMS patients and 45 PHC. Controlling for age and BMI, sNfL was 414% higher and sGFAP was 42.3% higher in POMS. Disability (EDSS) is associated with higher sNfL (β = 0.32, p = 0.002) and higher sGFAP (β = 0.11, p = 0.03). sNfL is associated with MRI lesion burden, recent disease activity (β =0.95, p < 0.001), and untreated status (β = 0.5, p = 0.006). Conclusion sNfL and sGFAP are elevated in POMS compared to PHC. Both biomarkers are associated with clinical disability. Elevated sGFAP may reflect early neurodegeneration in POMS, while sNfL reflects disease activity and DMT response. Elevated sNfL among some clinically and radiographically stable POMS patients suggests ongoing neuroaxonal injury with a potential role for sNfL monitoring disease stability.
Collapse
Affiliation(s)
- Laura Saucier
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Mass General Brigham Pediatric MS Center, Massachusetts General Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA; Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shrishti Saxena
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eunnindy Sanon
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Mass General Brigham Pediatric MS Center, Massachusetts General Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Barrero Hernández FJ, Romero Villarrubia A, Muñoz Fernández C, Guillén Martinez V, Aguilera Del Moral A, Barrios-López JM, Ramírez Rivas MA, Gálvez Muñoz AJ, Piñar Morales R. Real-World Study of Serum Neurofilament Light Chain Levels in Ocrelizumab-Treated People with Relapsing Multiple Sclerosis. J Pers Med 2024; 14:692. [PMID: 39063946 PMCID: PMC11277843 DOI: 10.3390/jpm14070692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Serum neurofilament light chain (sNfL) levels have been proposed as a biomarker of the clinical activity, disability progression, and response to treatment of people with multiple sclerosis (PwMS); however, questions remain about its implementation in clinical practice. Ocrelizumab (OCR) has proven effective in improving clinical and radiological outcomes and reducing sNfL levels. This real-life study followed the sNfL levels of 30 PwMS treated for 12 months with OCR and evaluated the usefulness of this biomarker for their short-term prognosis, considering expanded disability status scale (EDSS), annualized relapse rate (ARR), radiological activity, and NEDA-3 values. OCR reduced ARR in 83% of PwMS and radiological activity in 80%. EDSS was maintained, while NEDA-3 was achieved in 70% at 12 months. OCR produced an early reduction in sNfL levels (at 3 months). At baseline, greater MRI-evaluated radiological activity was associated with higher sNfL levels. sNfL levels over the first 12 months of treatment did not predict a suboptimal response or sustained control of the disease. Longer-term studies are needed to explore the predictive usefulness of sNfL levels in PwMS treated with high-efficacy drugs.
Collapse
Affiliation(s)
- Francisco J. Barrero Hernández
- Neurology Unit, University Hospital Clinic San Cecilio, 18016 Granada, Spain; (M.A.R.R.); (R.P.M.)
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Departament of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Romero Villarrubia
- Neurology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (A.R.V.); (V.G.M.); (J.M.B.-L.)
| | - Carmen Muñoz Fernández
- Neurology Unit, University Hospital Torrecárdenas, 04009 Almeria, Spain; (C.M.F.); (A.A.D.M.)
| | - Virginia Guillén Martinez
- Neurology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (A.R.V.); (V.G.M.); (J.M.B.-L.)
| | | | - José María Barrios-López
- Neurology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (A.R.V.); (V.G.M.); (J.M.B.-L.)
| | - Maria A. Ramírez Rivas
- Neurology Unit, University Hospital Clinic San Cecilio, 18016 Granada, Spain; (M.A.R.R.); (R.P.M.)
| | - Antonio J. Gálvez Muñoz
- Statistical Advisor and Methodology, Foundation for Biosanitary Research of Eastern Andalusia: FIBAO, 18016 Granada, Spain;
| | - Raquel Piñar Morales
- Neurology Unit, University Hospital Clinic San Cecilio, 18016 Granada, Spain; (M.A.R.R.); (R.P.M.)
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Departament of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
13
|
Jakimovski D, Qureshi F, Ramanathan M, Jalaleddini K, Ghoreyshi A, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Glial cell injury and atrophied lesion volume as measures of chronic multiple sclerosis inflammation. J Neurol Sci 2024; 461:123055. [PMID: 38761669 DOI: 10.1016/j.jns.2024.123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Atrophied lesion volume (aLV), a proposed biomarker of disability progression in multiple sclerosis (MS) and transition into progressive MS (PMS), depicts chronic periventricular white matter (WM) pathology. Meningeal infiltrates, imaged as leptomeningeal contrast enhancement (LMCE), are linked with greater cortical pathology. OBJECTIVES To determine the relationship between serum-derived proteomic data with the development of aLV and LMCE in a heterogeneous group of people with MS (pwMS). METHODS Proteomic and MRI data for 202 pwMS (148 clinically isolated syndrome /relapsing-remitting MS and 54 progressive MS (PMS)) were acquired at baseline and at 5.4-year follow-up. The concentrations of 21 proteins related to multiple MS pathophysiology pathways were derived using a custom-developed Proximity Extension Assay on the Olink™ platform. The accrual of aLV was determined as the volume of baseline T2-weighted lesions that were replaced by cerebrospinal fluid over the follow-up. Regression models and age-adjusted analysis of covariance (ANCOVA) were used. RESULTS Older age (standardized beta = 0.176, p = 0.022), higher glial fibrillary acidic protein (standardized beta = 0.312, p = 0.001), and lower myelin oligodendrocyte glycoprotein levels (standardized beta = -0.271, p = 0.002) were associated with accrual of aLV over follow-up. This relationship was driven by the pwPMS population. The presence of LMCE at the follow-up visit was not predicted by any baseline proteomic biomarker nor cross-sectionally associated with any protein concentration. CONCLUSION Proteomic markers of glial activation are associated with chronic lesional WM pathology (measured as aLV) and may be specific to the progressive MS phenotype. LMCE presence in MS does not appear to relate to proteomic measures.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | | | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
14
|
Liang N, Li H, Zhang K, Wang Y, Xiang L, Xiao L, Luo G. Association of Dietary Retinol Intake and Serum Neurofilament Light Chain Levels: Results from NHANES 2013-2014. Nutrients 2024; 16:1763. [PMID: 38892696 PMCID: PMC11175068 DOI: 10.3390/nu16111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND There is increasing evidence suggesting that serum neurofilament light chain (sNfL) levels can be used as biomarkers for axonal injury. Retinol is recognized for its significant involvement in nervous system function, but the precise connection between dietary retinol and sNfL levels remains uncertain. OBJECTIVE Our objective was to investigate the relationship between dietary retinol intake and sNfL, and to find an optimal retinol intake level for neurological health. METHODS In the National Health and Nutrition Examination Survey (NHANES), conducted from 2013 to 2014, a cohort of 1684 participants who met the criteria were selected for the study. sNfL levels were measured from stored serum samples using a novel high-throughput immunoassay platform from Siemens Healthineers. Assessment of dietary retinol intake was performed by a uniformly trained interviewer through a 24 h dietary recall method. A generalized linear model was evaluated to assess the correlation between dietary retinol intake and sNfL concentrations. Furthermore, the nonlinear association between the two is further explored using restricted cubic spline (RCS) analysis. RESULTS Upon adjusting for potential confounders, a 10% increase in dietary retinol intake was associated with a 3.47% increase in sNfL levels (95% CI: 0.54%, 6.49%) across all participants. This relationship was more pronounced in specific subgroups, including those under 60 years of age, non-obese, impaired estimated glomerular filtration rate (eGFR), and non-diabetic. In subgroup analysis, among those younger than 60 years of age (percent change: 3.80%; 95% CI: 0.43%, 7.28%), changes were found in non-obese participants (percent change: 6.28%; 95% CI: 2.66%, 10.02%), those with impaired eGFR (percent change: 6.90%; 95% CI: 1.44%, 12.65%), and non-diabetic patients (percentage change: 4.17%; 95% CI: 1.08%, 7.36%). RCS analysis showed a linear relationship between dietary retinol intake and sNfL levels. Furthermore, the positive correlation between the two was more significant after the inflection point, according to piecewise linear analysis. CONCLUSION This current investigation uncovered a J-shaped relationship between dietary retinol and sNfL levels, suggesting that axonal damage can occur when dietary retinol intake increases more than a specific threshold. These findings need to be further confirmed in future prospective studies to determine the precise intake level that may trigger axonal injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (H.L.); (K.Z.); (Y.W.); (L.X.); (L.X.)
| |
Collapse
|
15
|
Chitnis T, Qureshi F, Gehman VM, Becich M, Bove R, Cree BAC, Gomez R, Hauser SL, Henry RG, Katrib A, Lokhande H, Paul A, Caillier SJ, Santaniello A, Sattarnezhad N, Saxena S, Weiner H, Yano H, Baranzini SE. Inflammatory and neurodegenerative serum protein biomarkers increase sensitivity to detect clinical and radiographic disease activity in multiple sclerosis. Nat Commun 2024; 15:4297. [PMID: 38769309 PMCID: PMC11106245 DOI: 10.1038/s41467-024-48602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The multifaceted nature of multiple sclerosis requires quantitative biomarkers that can provide insights related to diverse physiological pathways. To this end, proteomic analysis of deeply-phenotyped serum samples, biological pathway modeling, and network analysis were performed to elucidate inflammatory and neurodegenerative processes, identifying sensitive biomarkers of multiple sclerosis disease activity. Here, we evaluated the concentrations of > 1400 serum proteins in 630 samples from three multiple sclerosis cohorts for association with clinical and radiographic new disease activity. Twenty proteins were associated with increased clinical and radiographic multiple sclerosis disease activity for inclusion in a custom assay panel. Serum neurofilament light chain showed the strongest univariate correlation with gadolinium lesion activity, clinical relapse status, and annualized relapse rate. Multivariate modeling outperformed univariate for all endpoints. A comprehensive biomarker panel including the twenty proteins identified in this study could serve to characterize disease activity for a patient with multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Riley Bove
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Refujia Gomez
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Roland G Henry
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | | | | | - Anu Paul
- Brigham and Women's Hospital, Boston, MA, USA
| | - Stacy J Caillier
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Adam Santaniello
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Hajime Yano
- Brigham and Women's Hospital, Boston, MA, USA
| | - Sergio E Baranzini
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Johnsson M, Stenberg YT, Farman HH, Blennow K, Zetterberg H, Malmeström C, Sandgren S, Rosenstein I, Lycke J, Axelsson M, Novakova L. Serum neurofilament light for detecting disease activity in individual patients in multiple sclerosis: A 48-week prospective single-center study. Mult Scler 2024; 30:664-673. [PMID: 38481083 PMCID: PMC11071597 DOI: 10.1177/13524585241237388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Serum neurofilament light (sNfL) reflects neuroaxonal damage and is now used as an outcome in treatment trials of relapsing-remitting multiple sclerosis (RRMS). However, the diagnostic properties of sNfL for monitoring disease activity in individual patients warrant further investigations. METHOD Patients with suspected relapse and/or contrast-enhancing lesions (CELs) were consecutively included and performed magnetic resonance imaging (MRI) of the brain at baseline and weeks 28 and 48. Serum was obtained at baseline and 2, 4, 8, 16, 24, and 48 weeks. Neurofilament light concentration was measured using Single molecule array technology. RESULTS We included 44 patients, 40 with RRMS and 4 with clinically isolated syndrome. The median sNfL level peaked at 2 weeks post-baseline (14.6 ng/L, interquartile range (IQR); 9.3-31.6) and reached nadir at 48 weeks (9.1 ng/L, IQR; 5.5-15.0), equivalent to the median sNfL of controls (9.1 ng/L, IQR; 7.4-12). A baseline Z-score of more than 1.1 (area under the curve; 0.78, p < 0.0001) had a sensitivity of 81% and specificity of 70% to detect disease activity. CONCLUSION One out of five patients with relapse and/or CELs did not change significantly in post-baseline sNfL levels. The utility of repeated sNfL measurements to monitor disease activity is complementary rather than a substitute for clinical and MRI measures.
Collapse
Affiliation(s)
- M Johnsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - YT Stenberg
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - HH Farman
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - K Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - C Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
- Laboratory for Clinical Immunology, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - I Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - J Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - M Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - L Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
17
|
Monreal E, Ruiz PD, San Román IL, Rodríguez-Antigüedad A, Moya-Molina MÁ, Álvarez A, García-Arcelay E, Maurino J, Shepherd J, Cabrera ÁP, Villar LM. Value contribution of blood-based neurofilament light chain as a biomarker in multiple sclerosis using multi-criteria decision analysis. Front Public Health 2024; 12:1397845. [PMID: 38711771 PMCID: PMC11073490 DOI: 10.3389/fpubh.2024.1397845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that represents a leading cause of non-traumatic disability among young and middle-aged adults. MS is characterized by neurodegeneration caused by axonal injury. Current clinical and radiological markers often lack the sensitivity and specificity required to detect inflammatory activity and neurodegeneration, highlighting the need for better approaches. After neuronal injury, neurofilament light chains (NfL) are released into the cerebrospinal fluid, and eventually into blood. Thus, blood-based NfL could be used as a potential biomarker for inflammatory activity, neurodegeneration, and treatment response in MS. The objective of this study was to determine the value contribution of blood-based NfL as a biomarker in MS in Spain using the Multi-Criteria Decision Analysis (MCDA) methodology. Materials and methods A literature review was performed, and the results were synthesized in the evidence matrix following the criteria included in the MCDA framework. The study was conducted by a multidisciplinary group of six experts. Participants were trained in MCDA and scored the evidence matrix. Results were analyzed and discussed in a group meeting through reflective MCDA discussion methodology. Results MS was considered a severe condition as it is associated with significant disability. There are unmet needs in MS as a disease, but also in terms of biomarkers since no blood biomarker is available in clinical practice to determine disease activity, prognostic assessment, and response to treatment. The results of the present study suggest that quantification of blood-based NfL may represent a safe option to determine inflammation, neurodegeneration, and response to treatments in clinical practice, as well as to complement data to improve the sensitivity of the diagnosis. Participants considered that blood-based NfL could result in a lower use of expensive tests such as magnetic resonance imaging scans and could provide cost-savings by avoiding ineffective treatments. Lower indirect costs could also be expected due to a lower impact of disability consequences. Overall, blood-based NfL measurement is supported by high-quality evidence. Conclusion Based on MCDA methodology and the experience of a multidisciplinary group of six stakeholders, blood-based NfL measurement might represent a high-value-option for the management of MS in Spain.
Collapse
Affiliation(s)
- Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Red Española de Esclerosis Múltiple, Red de Enfermedades Inflamatorias, Universidad de Alcalá, Madrid, Spain
| | - Pilar Díaz Ruiz
- Department of Pharmacy, Hospital Nuestra Señora de Candelaria, Tenerife, Spain
| | | | | | | | | | | | | | | | | | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
18
|
Freedman MS, Gnanapavan S, Booth RA, Calabresi PA, Khalil M, Kuhle J, Lycke J, Olsson T. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024; 101:104970. [PMID: 38354532 PMCID: PMC10875256 DOI: 10.1016/j.ebiom.2024.104970] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Neurofilament light chain (NfL) is a long-awaited blood biomarker that can provide clinically useful information about prognosis and therapeutic efficacy in multiple sclerosis (MS). There is now substantial evidence for this biomarker to be used alongside magnetic resonance imaging (MRI) and clinical measures of disease progression as a decision-making tool for the management of patients with MS. Serum NfL (sNfL) has certain advantages over traditional measures of MS disease progression such as MRI because it is relatively noninvasive, inexpensive, and can be repeated frequently to monitor activity and treatment efficacy. sNfL levels can be monitored regularly in patients with MS to determine change from baseline and predict subclinical disease activity, relapse risk, and the development of gadolinium-enhancing (Gd+) lesions. sNfL does not replace MRI, which provides information related to spatial localisation and lesion stage. Laboratory platforms are starting to be made available for clinical application of sNfL in several countries. Further work is needed to resolve issues around comparisons across testing platforms (absolute values) and normalisation (reference ranges) in order to guide interpretation of the results.
Collapse
Affiliation(s)
- Mark S Freedman
- Department of Medicine (Neurology), University of Ottawa, and the Ottawa Hospital Research Institute, Ontario, Canada.
| | | | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital & Eastern Ontario Regional Laboratory Association, Ontario, Canada
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, Switzerland
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| |
Collapse
|
19
|
Solís-Tarazona L, Raket LL, Cabello-Murgui J, Reddam S, Navarro-Quevedo S, Gil-Perotin S. Predictive value of individual serum neurofilament light chain levels in short-term disease activity in relapsing multiple sclerosis. Front Neurol 2024; 15:1354431. [PMID: 38426169 PMCID: PMC10903281 DOI: 10.3389/fneur.2024.1354431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Background The assessment of serum neurofilament light chain (sNFL) has emerged as a diagnostic and prognostic tool in monitoring multiple sclerosis (MS). However, the application of periodic measurement in daily practice remains unclear. Objective To evaluate the predictive value of individual sNFL levels in determining disease activity in patients with relapsing MS (RMS). Methods In this two-year prospective study, 129 RMS patients underwent quarterly sNFL assessments and annual MRI scans. The study analyzed the correlation between individual NFL levels and past, current, and future disease activity. Group-level Z-scores were employed as a comparative measure. Results Among the 37 participants, a total of 61 episodes of disease activity were observed. sNFL levels proved valuable in distinct ways; they were confirmatory of previous and current clinical and/or radiological activity and demonstrated a high negative predictive value for future 90 days activity. Interestingly, Z-scores marginally outperformed sNFL levels in terms of predictive accuracy, indicating the potential for alternative approaches in disease activity assessment. In our cohort, sNFL cut-offs of 10.8 pg./mL (sensitivity 27%, specificity 90%) and 14.3 pg./mL (sensitivity 15%, specificity 95%) correctly identified 7 and 4 out of 26 cases of radiological activity within 90 days, respectively, with 14 and 15% false negatives. When using lower cut-off values, individuals with sNFL levels below 5 pg/mL (with a sensitivity of 92%, specificity of 25%, and negative predictive value of 94%) were less likely to experience radiological activity within the next 3 months. Conclusion Individual sNFL levels may potentially confirm prior or current disease activity and predict short-term future radiological activity in RMS. These findings underscore its periodic measurement as a valuable tool in RMS management and decision-making, enhancing the precision of clinical evaluation in routine practice.
Collapse
Affiliation(s)
- Luis Solís-Tarazona
- Research Group in Immunotherapy and Biomodels for Autoimmunity, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Lars Lau Raket
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Javier Cabello-Murgui
- Research Group in Immunotherapy and Biomodels for Autoimmunity, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Salma Reddam
- Research Group in Immunotherapy and Biomodels for Autoimmunity, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Sara Gil-Perotin
- Research Group in Immunotherapy and Biomodels for Autoimmunity, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Multiple Sclerosis Unit, Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER), CB06/05/1131, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Huppke B, Reinert MC, Hummel-Abmeier H, Stark W, Gärtner J, Huppke P. Pretreatment Neurofilament Light Chain Serum Levels, Early Disease Severity, and Treatment Response in Pediatric Multiple Sclerosis. Neurology 2023; 101:e1873-e1883. [PMID: 37748882 PMCID: PMC10663003 DOI: 10.1212/wnl.0000000000207791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES High disease activity and frequent therapy failure in pediatric multiple sclerosis (MS) make prognostic biomarkers urgently needed. We investigated whether serum neurofilament light chain (sNfL) levels in treatment-naive pediatric patients with MS are associated with early disease severity and indicate treatment outcomes. METHODS A retrospective cohort study of patients seen in the Göttingen Center for MS in Childhood and Adolescence, Germany. Inclusion criteria were MS diagnosis according to the McDonald criteria, MS onset <18 years, and available pretreatment serum sample. sNfL levels were analyzed using a single-molecule array assay. Associations with clinical and MRI evidence of disease severity at sampling were evaluated using the Spearman correlations and nonparametric tests for group comparisons. Correlations between pretreatment sNfL and annualized relapse and new T2 lesion rate on first-line therapy, and odd ratios for switch to high-efficacy therapy were assessed. RESULTS A total of 178 patients (116 women [65%]) with a mean sampling age of 14.3 years were included in the study. Pretreatment sNfL levels were above the ≥90th percentile reported for healthy controls in 80% of patients (median 21.1 pg/mL) and correlated negatively with age, but no correlation was seen with sex, oligoclonal band status, or body mass index. High pretreatment sNfL levels correlated significantly with a high number of preceding relapses, a shorter first interattack interval, a high T2 lesion count, and recent gadolinium-enhancing lesions. Of interest, sNfL levels reflected more strongly MRI activity rather than clinical activity. Pretreatment sNfL levels also correlated significantly with the relapse rate and occurrence of new/enlarging T2 lesions while on first-line injectable therapy. Odds of future therapy escalation increased from 0.14 for sNfL below 7.5 pg/mL to 6.38 for sNfL above 15 pg/mL. In patients with a recent relapse, higher sNfL levels were associated with poorer recovery 3 months after attack. DISCUSSION The results of this study have 3 important implications: First, pretreatment sNfL levels are a valuable biomarker for underlying disease activity in pediatric patients with MS. Second, pretreatment sNfL levels in pediatric patients with MS have a predictive value for the response to first-line therapy and the necessity of future therapy escalation. Third, high sNfL levels during a relapse are associated with poor recovery in this age group.
Collapse
Affiliation(s)
- Brenda Huppke
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany.
| | - Marie-Christine Reinert
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Hannah Hummel-Abmeier
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Wiebke Stark
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Jutta Gärtner
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Peter Huppke
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany.
| |
Collapse
|
21
|
Bose G, Healy BC, Saxena S, Saleh F, Glanz BI, Bakshi R, Weiner HL, Chitnis T. Increasing Neurofilament and Glial Fibrillary Acidic Protein After Treatment Discontinuation Predicts Multiple Sclerosis Disease Activity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200167. [PMID: 37813595 PMCID: PMC10574823 DOI: 10.1212/nxi.0000000000200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Stable patients with multiple sclerosis (MS) may discontinue treatment, but the risk of disease activity is unknown. Serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) are biomarkers of subclinical disease activity and may help risk stratification. In this study, sNfL and sGFAP levels in stable patients were evaluated before and after treatment discontinuation to determine association with disease activity. METHODS This observational study included patients enrolled in the Comprehensive Longitudinal Investigation in MS at the Brigham and Women's Hospital who discontinued treatment after >2 years disease activity-free. Two serum samples within 2 years, before and after treatment stop, were sent for sNfL and sGFAP measurements by single-molecule array. Biannual neurologic examinations and yearly MRI scans determined disease activity by 3 time-to-event outcomes: 6-month confirmed disability worsening (CDW), clinical attacks, and MRI activity (new T2 or contrast-enhancing lesions). Associations between each outcome and log-transformed sNfL and sGFAP levels pretreatment stop and posttreatment stop and the percent change were estimated using multivariable Cox regression analysis adjusting for age, disability, disease duration, and duration from attack before treatment stop. RESULTS Seventy-eight patients (92% female) discontinued treatment at a median (interquartile range) age of 48.5 years (39.0-55.7) and disease duration of 12.3 years (7.5-18.8) and were followed up for 6.3 years (4.2-8.5). CDW occurred in 27 patients (35%), new attacks in 19 (24%), and new MRI activity in 26 (33%). Higher posttreatment stop sNfL level was associated with CDW (adjusted hazard ratio (aHR) 2.80, 95% CI 1.36-5.76, p = 0.005) and new MRI activity (aHR 3.09, 95% CI 1.42-6.70, p = 0.004). Patients who had >100% increase in sNfL level from pretreatment stop to posttreatment stop had greater risk of CDW (HR 3.87, 95% CI 1.4-10.7, p = 0.009) and developing new MRI activity (HR 4.02, 95% CI 1.51-10.7, p = 0.005). Patients who had >50% increase in sGFAP level also had greater risk of CDW (HR 5.34, 95% CI 1.4-19.9, p = 0.012) and developing new MRI activity (HR 5.16, 95% CI 1.71-15.6, p = 0.004). DISCUSSION Stable patients who discontinue treatment may be risk stratified by sNfL and sGFAP levels measured before and after discontinuing treatment. Further studies are needed to validate findings and determine whether resuming treatment in patients with increasing biomarker levels reduces risk of subsequent disease activity.
Collapse
Affiliation(s)
- Gauruv Bose
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Brian C Healy
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Shrishti Saxena
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Fermisk Saleh
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Bonnie I Glanz
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Rohit Bakshi
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Howard L Weiner
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Tanuja Chitnis
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada.
| |
Collapse
|
22
|
Zhu W, Chen C, Zhang L, Hoyt T, Walker E, Venkatesh S, Zhang F, Qureshi F, Foley JF, Xia Z. Association between serum multi-protein biomarker profile and real-world disability in multiple sclerosis. Brain Commun 2023; 6:fcad300. [PMID: 38192492 PMCID: PMC10773609 DOI: 10.1093/braincomms/fcad300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024] Open
Abstract
Few studies examined blood biomarkers informative of patient-reported outcome (PRO) of disability in people with multiple sclerosis (MS). We examined the associations between serum multi-protein biomarker profiles and patient-reported MS disability. In this cross-sectional study (2017-2020), adults with diagnosis of MS (or precursors) from two independent clinic-based cohorts were divided into a training and test set. For predictors, we examined seven clinical factors (age at sample collection, sex, race/ethnicity, disease subtype, disease duration, disease-modifying therapy [DMT], and time interval between sample collection and closest PRO assessment) and 19 serum protein biomarkers potentially associated with MS disease activity endpoints identified from prior studies. We trained machine learning (ML) models (Least Absolute Shrinkage and Selection Operator regression [LASSO], Random Forest, Extreme Gradient Boosting, Support Vector Machines, stacking ensemble learning, and stacking classification) for predicting Patient Determined Disease Steps (PDDS) score as the primary endpoint and reported model performance using the held-out test set. The study included 431 participants (mean age 49 years, 81% women, 94% non-Hispanic White). For binary PDDS score, combined feature input of routine clinical factors and the 19 proteins consistently outperformed base models (comprising clinical features alone or clinical features plus one single protein at a time) in predicting severe (PDDS ≥ 4) versus mild/moderate (PDDS < 4) disability across multiple machine learning approaches, with LASSO achieving the best area under the curve (AUCPDDS = 0.91) and other metrics. For ordinal PDDS score, LASSO model comprising combined clinical factors and 19 proteins as feature input (R2PDDS = 0.31) again outperformed base models. The two best-performing LASSO models (i.e., binary and ordinal PDDS score) shared six clinical features (age, sex, race/ethnicity, disease subtype, disease duration, DMT efficacy) and nine proteins (cluster of differentiation 6, CUB-domain-containing protein 1, contactin-2, interleukin-12 subunit-beta, neurofilament light chain [NfL], protogenin, serpin family A member 9, tumor necrosis factor superfamily member 13B, versican). By comparison, LASSO models with clinical features plus one single protein at a time as feature input did not select either NfL or glial fibrillary acidic protein (GFAP) as a final feature. Forcing either NfL or GFAP as a single protein feature into models did not improve performance beyond clinical features alone. Stacking classification model using five functional pathways to represent multiple proteins as meta-features implicated those involved in neuroaxonal integrity as significant contributors to predictive performance. Thus, serum multi-protein biomarker profiles improve the prediction of real-world MS disability status beyond clinical profile alone or clinical profile plus single protein biomarker, reaching clinically actionable performance.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenyi Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lili Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammy Hoyt
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Elizabeth Walker
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shruthi Venkatesh
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fujun Zhang
- Octave Bioscience, Inc., Menlo Park, CA, USA
| | | | - John F Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Plantone D, Sabatelli E, Locci S, Marrodan M, Laakso SM, Mateen FJ, Feresiadou A, Buelens T, Bianco A, Fiol MP, Correale J, Tienari P, Calabresi P, De Stefano N, Iorio R. Clinically relevant increases in serum neurofilament light chain and glial fibrillary acidic protein in patients with Susac syndrome. Eur J Neurol 2023; 30:3256-3264. [PMID: 37335505 DOI: 10.1111/ene.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND PURPOSE Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising neuro-axonal damage and astrocytic activation biomarkers. Susac syndrome (SS) is an increasingly recognized neurological condition and biomarkers that can help assess and monitor disease evolution are highly needed for the adequate management of these patients. sNfL and sGFAP levels were evaluated in patients with SS and their clinical relevance in the relapse and remission phase of the disease was assessed. METHODS As part of a multicentre study that enrolled patients diagnosed with SS from six international centres, sNfL and sGFAP levels were assessed in 22 SS patients (nine during a relapse and 13 in remission) and 59 age- and sex-matched healthy controls using SimoaTM assay Neurology 2-Plex B Kit. RESULTS Serum NfL levels were higher than those of healthy controls (p < 0.001) in SS patients and in both subgroups of patients in relapse and in remission (p < 0.001 for both), with significantly higher levels in relapse than in remission (p = 0.008). sNfL levels showed a negative correlation with time from the last relapse (r = -0.663; p = 0.001). sGFAP levels were slightly higher in the whole group of patients than in healthy controls (p = 0.046) and were more pronounced in relapse than in remission (p = 0.013). CONCLUSION In SS patients, both sNFL and sGFAP levels increased compared with healthy controls. Both biomarkers had higher levels during clinical relapse and much lower levels in remission. sNFL was shown to be time sensitive to clinical changes and can be useful to monitor neuro-axonal damage in SS.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Eleonora Sabatelli
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Sini M Laakso
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amalia Feresiadou
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Section of Neurology, Uppsala University, Uppsala, Sweden
| | - Tom Buelens
- Department of Ophthalmology, CHU St Pierre and Brugmann, Brussels, Belgium
| | - Assunta Bianco
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
| | | | - Jorge Correale
- Neurology Department, Fleni, Buenos Aires, Argentina
- Institute of Biological Chemistry and Biophysics (IQUIFIB) CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Pentti Tienari
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
- Research Program of Translational Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Raffaele Iorio
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Bose G, Healy BC, Barro C, Moreira Ferreira VF, Saxena S, Glanz BI, Lokhande HA, Polgar-Turcsanyi M, Bakshi R, Weiner HL, Chitnis T. Accuracy of serum neurofilament light to identify contrast-enhancing lesions in multiple sclerosis. Mult Scler 2023; 29:1418-1427. [PMID: 37712409 DOI: 10.1177/13524585231198751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
BACKGROUND Contrast-enhancing magnetic resonance imaging (MRI) lesions (CELs) indicate acute multiple sclerosis inflammation. Serum biomarkers, neurofilament light (sNfL), and glial fibrillary acidic protein (sGFAP) may increase in the presence of CELs, and indicate a need to perform MRI. OBJECTIVE We assessed the accuracy of biomarkers to detect CELs. METHODS Patients with two gadolinium-enhanced MRIs and serum biomarkers tested within 3 months were included (N = 557, 66% female). Optimal cut-points from Bland-Altman analysis for spot biomarker level and Youden's index for delta-change from remission were evaluated. RESULTS A total of 116 patients (21%) had CELs. A spot sNfL measurement >23.0 pg/mL corresponded to 7.0 times higher odds of CEL presence (95% CI: 3.8, 12.8), with 25.9% sensitivity, 95.2% specificity, operating characteristic curve (AUC) 0.61; while sNfL delta-change >30.8% from remission corresponded to 5.0 times higher odds (95% CI: 3.2, 7.8), 52.6% sensitivity, 81.9% specificity, AUC 0.67. sGFAP had poor CEL detection. In patients > 50 years, neither cut-point remained significant. sNfL delta-change outperformed spot levels at identifying asymptomatic CELs (AUC 0.67 vs 0.59) and in patients without treatment escalation between samples (AUC 0.67 vs 0.57). CONCLUSION Spot sNfL >23.0 pg/mL or a 30.8% increase from remission provides modest prediction of CELs in patients <50 years; however, low sNfL does not obviate the need for MRI.
Collapse
Affiliation(s)
- Gauruv Bose
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA/Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brian C Healy
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Christian Barro
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Vanessa F Moreira Ferreira
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bonnie I Glanz
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Hrishikesh A Lokhande
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Ulndreaj A, Sohaei D, Thebault S, Pons-Belda OD, Fernandez-Uriarte A, Campbell C, Cheo D, Stengelin M, Sigal G, Freedman MS, Scarisbrick IA, Prassas I, Diamandis EP. Quantitation of neurofilament light chain protein in serum and cerebrospinal fluid from patients with multiple sclerosis using the MSD R-PLEX NfL assay. Diagnosis (Berl) 2023; 10:275-280. [PMID: 36788117 PMCID: PMC10424569 DOI: 10.1515/dx-2022-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Neurofilament light (NfL) chain is a marker of neuroaxonal damage in various neurological diseases. Here we quantitated NfL levels in the cerebrospinal fluid (CSF) and serum from patients with multiple sclerosis (MS) and controls, using the R-PLEX NfL assay, which employs advanced Meso Scale Discovery® (MSD) electrochemiluminescence (ECL)-based detection technology. METHODS NfL was quantitated in samples from 116 individuals from two sites (Ottawa Hospital Research Institute and Mayo Clinic), consisting of patients with MS (n=71) and age- and sex-matched inflammatory neurological controls (n=13) and non-inflammatory controls (n=32). Correlation of NfL levels between CSF and serum was assessed in paired samples in a subset of MS patients and controls (n=61). Additionally, we assessed the correlation between NfL levels obtained with MSD's R-PLEX® and Quanterix's single molecule array (Simoa®) assays in CSF and serum (n=32). RESULTS Using the R-PLEX, NfL was quantitated in 99% of the samples tested, and showed a broad range in the CSF (82-500,000 ng/L) and serum (8.84-2,014 ng/L). Nf-L levels in both biofluids correlated strongly (r=0.81, p<0.0001). Lastly, Nf-L measured by MSD's R-PLEX and Quanterix's Simoa assays were highly correlated for both biofluids (CSF: r=0.94, p<0.0001; serum: r=0.95, p<0.0001). CONCLUSIONS We show that MSD's R-PLEX NfL assay can reliably quantitate levels of NfL in the CSF and serum from patients with MS and controls, where levels correlate strongly with Simoa.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Dorsa Sohaei
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Simon Thebault
- Department of Medicine, Univeristy of Ottawa, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Oscar D. Pons-Belda
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | - David Cheo
- Meso Scale Diagnostics, LLC. (MSD), Rockville, MD, USA
| | | | - George Sigal
- Meso Scale Diagnostics, LLC. (MSD), Rockville, MD, USA
| | - Mark S. Freedman
- Department of Medicine, Univeristy of Ottawa, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Isobel A. Scarisbrick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P. Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| |
Collapse
|
26
|
Chitnis T, Foley J, Ionete C, El Ayoubi NK, Saxena S, Gaitan-Walsh P, Lokhande H, Paul A, Saleh F, Weiner H, Qureshi F, Becich MJ, da Costa FR, Gehman VM, Zhang F, Keshavan A, Jalaleddini K, Ghoreyshi A, Khoury SJ. Clinical validation of a multi-protein, serum-based assay for disease activity assessments in multiple sclerosis. Clin Immunol 2023:109688. [PMID: 37414379 DOI: 10.1016/j.clim.2023.109688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
An 18-protein multiple sclerosis (MS) disease activity (DA) test was validated based on associations between algorithm scores and clinical/radiographic assessments (N = 614 serum samples; Train [n = 426; algorithm development] and Test [n = 188; evaluation] subsets). The multi-protein model was trained based on presence/absence of gadolinium-positive (Gd+) lesions and was also strongly associated with new/enlarging T2 lesions, and active versus stable disease (composite of radiographic and clinical evidence of DA) with improved performance (p < 0.05) compared to the neurofilament light single protein model. The odds of having ≥1 Gd + lesions with a moderate/high DA score were 4.49 times that of a low DA score, and the odds of having ≥2 Gd + lesions with a high DA score were 20.99 times that of a low/moderate DA score. The MSDA Test was clinically validated with improved performance compared to the top-performing single-protein model and can serve as a quantitative tool to enhance the care of MS patients.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Carolina Ionete
- University of Massachusetts Medical School, Worcester, MA, USA.
| | - Nabil K El Ayoubi
- Nehme and Thgerese Tohme Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon.
| | - Shrishti Saxena
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | - Anu Paul
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Fermisk Saleh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard Weiner
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | - Fujun Zhang
- Octave Bioscience, Inc., Menlo Park, CA, USA
| | | | | | | | - Samia J Khoury
- Nehme and Thgerese Tohme Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
27
|
Chitnis T, Qureshi F, Gehman VM, Becich M, Bove R, Cree BAC, Gomez R, Hauser SL, Henry RG, Katrib A, Lokhande H, Paul A, Caillier SJ, Santaniello A, Sattarnezhad N, Saxena S, Weiner H, Yano H, Baranzini SE. Inflammatory and neurodegenerative serum protein biomarkers increase sensitivity to detect disease activity in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291157. [PMID: 37461671 PMCID: PMC10350151 DOI: 10.1101/2023.06.28.23291157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Background/Objectives Serum proteomic analysis of deeply-phenotyped samples, biological pathway modeling and network analysis were performed to elucidate the inflammatory and neurodegenerative processes of multiple sclerosis (MS) and identify sensitive biomarkers of MS disease activity (DA). Methods Over 1100 serum proteins were evaluated in >600 samples from three MS cohorts to identify biomarkers of clinical and radiographic (gadolinium-enhancing lesions) new MS DA. Protein levels were analyzed and associated with presence of gadolinium-enhancing lesions, clinical relapse status (CRS), and annualized relapse rate (ARR) to create a custom assay panel. Results Twenty proteins were associated with increased clinical and radiographic MS DA. Serum neurofilament light chain (NfL) showed the strongest univariate correlation with radiographic and clinical DA measures. Multivariate modeling significantly outperformed univariate NfL to predict gadolinium lesion activity, CRS and ARR. Discussion These findings provide insight regarding correlations between inflammatory and neurodegenerative biomarkers and clinical and radiographic MS DA. Funding Octave Bioscience, Inc (Menlo Park, CA).
Collapse
|
28
|
Ziaei A, Nasr Z, Hart J, Francisco C, Rutatangwa A, Leppert D, Kuhle J, Flanagan E, Waubant E. High serum neurofilament levels are observed close to disease activity events in pediatric-onset MS and MOG antibody-associated diseases. Mult Scler Relat Disord 2023; 74:104704. [PMID: 37031551 DOI: 10.1016/j.msard.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) is an emerging multiple sclerosis (MS) biomarker which measures neuro-axonal damage. However, understanding its temporal association with disease activity in pediatric-onset MS (POMS) and Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) remains limited. OBJECTIVE To investigate the association of sNfL levels and time from disease activity in children with MS and MOGAD. METHODS POMS and MOGAD cases with onset before 18 years of age were enrolled at the University of California San Francisco (UCSF) Regional Pediatric MS Center. Frequency-matched healthy subjects were recruited from general pediatric clinics. Serum samples were tested for MOG-IgG at Mayo Clinic using a live cell-based fluorescent activated cell sorting assay. sNfL levels were measured using single-molecule array (Simoa) technology measured in pg/mL. Data on demographics, clinical features, MRI, CSF, and treatment data were collected by chart review. RESULTS We included 201 healthy controls healthy controls, 142 POMS, and 20 confirmed MOGAD cases with available sNfL levels. The median (IQR) age at the time of sampling was 15.6 (3.9), 15.5 (3.1), and 8.8 (4.1) years for controls, POMS, and MOGAD, respectively. Median sNfL levels (pg/ml) were higher in POMS (19.6) and MOGAD (32.7) cases compared to healthy controls (3.9) (p<0.001). sNfL levels ≥100 pg/ml were only detected within four months of a clinical event or MRI activity in both POMS and MOGAD cases. In addition, sNfL levels were higher in POMS patients with new/enlarged T2 and gadolinium-enhanced lesions than those without MRI activity within four months of sampling in POMS cases. CONCLUSION High sNfL levels were observed close to clinical or MRI events in POMS and MOGAD. Our findings support sNfL as a biomarker of disease activity in pediatric demyelinating disorders.
Collapse
Affiliation(s)
- Amin Ziaei
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Zahra Nasr
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Janace Hart
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Carla Francisco
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alice Rutatangwa
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - David Leppert
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Jens Kuhle
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Eoin Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Emmanuelle Waubant
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
29
|
Zhang F, Gao X, Liu J, Zhang C. Biomarkers in autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1111719. [PMID: 37090723 PMCID: PMC10113662 DOI: 10.3389/fimmu.2023.1111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The autoimmune diseases of the central nervous system (CNS) represent individual heterogeneity with different disease entities. Although clinical and imaging features make it possible to characterize larger patient cohorts, they may not provide sufficient evidence to detect disease activity and response to disease modifying drugs. Biomarkers are becoming a powerful tool due to their objectivity and easy access. Biomarkers may indicate various aspects of biological processes in healthy and/or pathological states, or as a response to drug therapy. According to the clinical features described, biomarkers are usually classified into predictive, diagnostic, monitoring and safety biomarkers. Some nerve injury markers, humoral markers, cytokines and immune cells in serum or cerebrospinal fluid have potential roles in disease severity and prognosis in autoimmune diseases occurring in the CNS, which provides a promising approach for clinicians to early intervention and prevention of future disability. Therefore, this review mainly summarizes the potential biomarkers indicated in autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
- Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
30
|
Bose G, Healy BC, Saxena S, Saleh F, Paul A, Barro C, Lokhande HA, Polgar-Turcsanyi M, Anderson M, Glanz BI, Guttmann CRG, Bakshi R, Weiner HL, Chitnis T. Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes. Mult Scler Relat Disord 2023; 74:104695. [PMID: 37060852 DOI: 10.1016/j.msard.2023.104695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Early risk-stratification in multiple sclerosis (MS) may impact treatment decisions. Current predictive models have identified that clinical and imaging characteristics of aggressive disease are associated with worse long-term outcomes. Serum biomarkers, neurofilament (sNfL) and glial fibrillary acidic protein (sGFAP), reflect subclinical disease activity through separate pathological processes and may contribute to predictive models of clinical and MRI outcomes. METHODS We conducted a retrospective analysis of the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB study), where patients with multiple sclerosis are seen every 6 months and undergo Expanded Disability Status Scale (EDSS) assessment, have annual brain MRI scans where volumetric analysis is conducted to calculate T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and donate a yearly blood sample for subsequent analysis. We included patients with newly diagnosed relapsing-remitting MS and serum samples obtained at baseline visit and 1-year follow-up (both within 3 years of onset), and were assessed at 10-year follow-up. We measured sNfL and sGFAP by single molecule array at baseline visit and at 1-year follow-up. A predictive clinical model was developed using age, sex, Expanded Disability Status Scale (EDSS), pyramidal signs, relapse rate, and spinal cord lesions at first visit. The main outcome was odds of developing of secondary progressive (SP)MS at year 10. Secondary outcomes included 10-year EDSS, brain T2LV and BPF. We compared the goodness-of-fit of the predictive clinical model with and without sNfL and sGFAP at baseline and 1-year follow-up, for each outcome by area under the receiver operating characteristic curve (AUC) or R-squared. RESULTS A total 144 patients with median MS onset at age 37.4 years (interquartile range: 29.4-45.4), 64% female, were included. SPMS developed in 25 (17.4%) patients. The AUC for the predictive clinical model without biomarker data was 0.73, which improved to 0.77 when both sNfL and sGFAP were included in the model (P = 0.021). In this model, higher baseline sGFAP associated with developing SPMS (OR=3.3 [95%CI:1.1,10.6], P = 0.04). Adding 1-year follow-up biomarker levels further improved the model fit (AUC = 0.79) but this change was not statistically significant (P = 0.15). Adding baseline biomarker data also improved the R-squared of clinical models for 10-year EDSS from 0.24 to 0.28 (P = 0.032), while additional 1-year follow-up levels did not. Baseline sGFAP was associated with 10-year EDSS (ß=0.58 [95%CI:0.00,1.16], P = 0.05). For MRI outcomes, baseline biomarker levels improved R-squared for T2LV from 0.12 to 0.27 (P<0.001), and BPF from 0.15 to 0.20 (P = 0.042). Adding 1-year follow-up biomarker data further improved T2LV to 0.33 (P = 0.0065) and BPF to 0.23 (P = 0.048). Baseline sNfL was associated with T2LV (ß=0.34 [95%CI:0.21,0.48], P<0.001) and 1-year follow-up sNfL with BPF (ß=-2.53% [95%CI:-4.18,-0.89], P = 0.003). CONCLUSIONS Early biomarker levels modestly improve predictive models containing clinical and MRI variables. Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP levels and worse MRI outcomes, T2LV and BPF, are associated with higher sNfL levels. Prospective study implementing these predictive models into clinical practice are needed to determine if early biomarker levels meaningfully impact clinical practice.
Collapse
Affiliation(s)
- Gauruv Bose
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brian C Healy
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shrishti Saxena
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fermisk Saleh
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anu Paul
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christian Barro
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hrishikesh A Lokhande
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mariann Polgar-Turcsanyi
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mark Anderson
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bonnie I Glanz
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Charles R G Guttmann
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rohit Bakshi
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Howard L Weiner
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanuja Chitnis
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
32
|
Kuhle J, Chitnis T, Banwell B, Tardieu M, Arnold DL, Rawlings AM, Geertsen SS, Lublin AL, Saubadu S, Truffinet P, Kappos L. Plasma neurofilament light chain in children with relapsing MS receiving teriflunomide or placebo: A post hoc analysis of the randomized TERIKIDS trial. Mult Scler 2023; 29:385-394. [PMID: 36632983 PMCID: PMC9972233 DOI: 10.1177/13524585221144742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The phase 3 TERIKIDS study demonstrated efficacy and manageable safety for teriflunomide versus placebo in children with relapsing multiple sclerosis (RMS). OBJECTIVE Evaluate plasma neurofilament light chain (pNfL) concentrations in TERIKIDS. METHODS Patients received placebo or teriflunomide (14 mg adult equivalent) for up to 96 weeks in the double-blind (DB) period. In the open-label extension (OLE), all patients received teriflunomide until up to 192 weeks after randomization. pNfL was measured using single-molecule array assay (Simoa® NF-light™). RESULTS Baseline mean age was 14.5 years; 69.4% were female. Baseline geometric least square mean pNfL levels were similar for teriflunomide (n = 78) and placebo (n = 33) patients (19.83 vs 18.30 pg/mL). Over the combined DB and OLE periods, pNfL values were lower for teriflunomide versus placebo (analysis of variance p < 0.01; Week 192: 10.61 vs 17.32 pg/mL). Observed between-group pNfL differences were attenuated upon adjustment for gadolinium (Gd)-enhancing or new/enlarged T2 lesion counts at DB Week 24. Higher baseline pNfL levels were associated with shorter time since first MS symptom onset, higher baseline Gd-enhancing lesion counts and T2 lesion volume, and increased hazard of high magnetic resonance imaging activity or clinical relapse during the DB period. CONCLUSION Teriflunomide treatment was associated with significantly reduced pNfL levels in children with RMS. CLINICALTRIALS.GOV IDENTIFIER NCT02201108.
Collapse
Affiliation(s)
- Jens Kuhle
- J Kuhle MS Center, Neurology and Research
Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments
of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University
Hospital Basel and University Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Tanuja Chitnis
- Massachusetts General Hospital for Children,
Boston, MA, USA
| | - Brenda Banwell
- Children’s Hospital of Philadelphia, University
of Pennsylvania, Philadelphia, PA, USA
| | - Marc Tardieu
- Hôpitaux Universitaires Paris-Sud, Paris,
France
| | - Douglas L Arnold
- McGill University, Montréal, QC, Canada NeuroRx
Research, Montréal, QC, Canada
| | | | | | | | | | | | - Ludwig Kappos
- MS Center, Neurology and Research Center for
Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of
Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University
Hospital Basel and University Basel, Basel, Switzerland
| |
Collapse
|
33
|
Brummer T, Muthuraman M, Steffen F, Uphaus T, Minch L, Person M, Zipp F, Groppa S, Bittner S, Fleischer V. Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers. Brain Commun 2022; 4:fcac153. [PMID: 35813883 PMCID: PMC9263885 DOI: 10.1093/braincomms/fcac153] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Disability in multiple sclerosis is generally classified by sensory and motor symptoms, yet cognitive impairment has been identified as a frequent manifestation already in the early disease stages. Imaging- and more recently blood-based biomarkers have become increasingly important for understanding cognitive decline associated with multiple sclerosis. Thus, we sought to determine the prognostic utility of serum neurofilament light chain levels alone and in combination with MRI markers by examining their ability to predict cognitive impairment in early multiple sclerosis. A comprehensive and detailed assessment of 152 early multiple sclerosis patients (Expanded Disability Status Scale: 1.3 ± 1.2, mean age: 33.0 ± 10.0 years) was performed, which included serum neurofilament light chain measurement, MRI markers (i.e. T2-hyperintense lesion volume and grey matter volume) acquisition and completion of a set of cognitive tests (Symbol Digits Modalities Test, Paced Auditory Serial Addition Test, Verbal Learning and Memory Test) and mood questionnaires (Hospital Anxiety and Depression scale, Fatigue Scale for Motor and Cognitive Functions). Support vector regression, a branch of unsupervised machine learning, was applied to test serum neurofilament light chain and combination models of biomarkers for the prediction of neuropsychological test performance. The support vector regression results were validated in a replication cohort of 101 early multiple sclerosis patients (Expanded Disability Status Scale: 1.1 ± 1.2, mean age: 34.4 ± 10.6 years). Higher serum neurofilament light chain levels were associated with worse Symbol Digits Modalities Test scores after adjusting for age, sex Expanded Disability Status Scale, disease duration and disease-modifying therapy (B = −0.561; SE = 0.192; P = 0.004; 95% CI = −0.940 to −0.182). Besides this association, serum neurofilament light chain levels were not linked to any other cognitive or mood measures (all P-values > 0.05). The tripartite combination of serum neurofilament light chain levels, lesion volume and grey matter volume showed a cross-validated accuracy of 88.7% (90.8% in the replication cohort) in predicting Symbol Digits Modalities Test performance in the support vector regression approach, and outperformed each single biomarker (accuracy range: 68.6–75.6% and 68.9–77.8% in the replication cohort), as well as the dual biomarker combinations (accuracy range: 71.8–82.3% and 72.6–85.6% in the replication cohort). Taken together, early neuro-axonal loss reflects worse information processing speed, the key deficit underlying cognitive dysfunction in multiple sclerosis. Our findings demonstrate that combining blood and imaging measures improves the accuracy of predicting cognitive impairment, highlighting the clinical utility of cross-modal biomarkers in multiple sclerosis.
Collapse
Affiliation(s)
- Tobias Brummer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Lena Minch
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz , Langenbeckstr, 1, Mainz 55131 , Germany
| |
Collapse
|
34
|
Lie IA, Kaçar S, Wesnes K, Brouwer I, Kvistad SS, Wergeland S, Holmøy T, Midgard R, Bru A, Edland A, Eikeland R, Gosal S, Harbo HF, Kleveland G, Sørenes YS, Øksendal N, Varhaug KN, Vedeler CA, Barkhof F, Teunissen CE, Bø L, Torkildsen Ø, Myhr KM, Vrenken H. Serum neurofilament as a predictor of 10-year grey matter atrophy and clinical disability in multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328568. [PMID: 35649699 PMCID: PMC9304101 DOI: 10.1136/jnnp-2021-328568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The predictive value of serum neurofilament light chain (sNfL) on long-term prognosis in multiple sclerosis (MS) is still unclear. OBJECTIVE Investigate the relation between sNfL levels over a 2-year period in patients with relapsing-remitting MS, and clinical disability and grey matter (GM) atrophy after 10 years. METHODS 85 patients, originally enrolled in a multicentre, randomised trial of ω-3 fatty acids, participated in a 10-year follow-up visit. sNfL levels were measured by Simoa quarterly until month 12, and then at month 24. The appearance of new gadolinium-enhancing (Gd+) lesions was assessed monthly between baseline and month 9, and then at months 12 and 24. At the 10-year follow-up visit, brain atrophy measures were obtained using FreeSurfer. RESULTS Higher mean sNfL levels during early periods of active inflammation (Gd+ lesions present or recently present) predicted lower total (β=-0.399, p=0.040) and deep (β=-0.556, p=0.010) GM volume, lower mean cortical thickness (β=-0.581, p=0.010) and higher T2 lesion count (β=0.498, p=0.018). Of the clinical outcomes, higher inflammatory sNfL levels were associated with higher disability measured by the dominant hand Nine-Hole Peg Test (β=0.593, p=0.004). Mean sNfL levels during periods of remission (no Gd+ lesions present or recently present) did not predict GM atrophy or disability progression. CONCLUSION Higher sNfL levels during periods of active inflammation predicted more GM atrophy and specific aspects of clinical disability 10 years later. The findings suggest that subsequent long-term GM atrophy is mainly due to neuroaxonal degradation within new lesions.
Collapse
Affiliation(s)
- Ingrid Anne Lie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sezgi Kaçar
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kristin Wesnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Neurology, St. Olav's University Hospital, Trondheim, Norway
| | - Iman Brouwer
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Silje S Kvistad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Norwegian Multiple Sclerosis Registry and Biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Rune Midgard
- Department of Neurology, Molde Hospital, Molde, Norway
| | - Alla Bru
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Astrid Edland
- Department of Neurology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Randi Eikeland
- Department of Research and Education, Sørlandet Hospital Trust, Kristiansand, Norway
- Faculty of Health and Sport Science, University of Agder, Grimstad, Norway
| | - Sonia Gosal
- Department of Neurology, Østfold Hospital Kalnes, Grålum, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Grethe Kleveland
- Department of Neurology, Innlandet Hospital Trust, Lillehammer, Norway
| | | | - Nina Øksendal
- Department of Neurology, Nordland Hospital Trust, Bodø, Norway
| | - Kristin N Varhaug
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Christian A Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Lokhande H, Rosso M, Tauhid S, Chu R, Healy BC, Saxena S, Barro C, Paul A, Polgar-Turcsanyi M, Anderson M, Glanz BI, Kropshofer H, Granziera C, Leppert D, Kappos L, Kuhle J, Weiner HL, Bakshi R, Chitnis T. Serum NfL levels in the first five years predict 10-year thalamic fraction in patients with MS. Mult Scler J Exp Transl Clin 2022; 8:20552173211069348. [PMID: 35035990 PMCID: PMC8753083 DOI: 10.1177/20552173211069348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background Serum neurofilament light chain (sNfL) levels are associated with relapses, MRI lesions, and brain volume in multiple sclerosis (MS). Objective To explore the value of early serum neurofilament light (sNfL) measures in prognosticating 10-year regional brain volumes in MS. Methods Patients with MS enrolled in the Comprehensive Longitudinal Investigations in MS at Brigham and Women's Hospital (CLIMB) study within five years of disease onset who had annual blood samples from years 1–10 (n = 91) were studied. sNfL was measured with a single molecule array (SIMOA) assay. We quantified global cortical thickness and normalized deep gray matter (DGM) volumes (fractions of the thalamus, caudate, putamen, and globus pallidus) from high-resolution 3 T MRI at 10 years. Correlations between yearly sNfL levels and 10-year MRI outcomes were assessed using linear regression models. Results sNfL levels from years 1 and 2 were associated with 10-year thalamus fraction. Early sNfL levels were not associated with 10-year putamen, globus pallidus or caudate fractions. At 10 years, cortical thickness was not associated with early sNfL levels, but was weakly correlated with total DGM fraction. Conclusions Early sNfL levels correlate with 10-year thalamic volume, supporting its role as a prognostic biomarker in MS.
Collapse
Affiliation(s)
| | - Mattia Rosso
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Renxin Chu
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christian Barro
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | | | - Mark Anderson
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Bonnie I Glanz
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
36
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
37
|
Lin TY, Vitkova V, Asseyer S, Martorell Serra I, Motamedi S, Chien C, Ditzhaus M, Papadopoulou A, Benkert P, Kuhle J, Bellmann-Strobl J, Ruprecht K, Paul F, Brandt AU, Zimmermann HG. Increased Serum Neurofilament Light and Thin Ganglion Cell-Inner Plexiform Layer Are Additive Risk Factors for Disease Activity in Early Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1051. [PMID: 34348969 PMCID: PMC8362351 DOI: 10.1212/nxi.0000000000001051] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Objective To investigate the association of combined serum neurofilament light chain (sNfL) and retinal optical coherence tomography (OCT) measurements with future disease activity in patients with early multiple sclerosis (MS). Methods We analyzed sNfL by single molecule array technology and performed OCT measurements in a prospective cohort of 78 patients with clinically isolated syndrome and early relapsing-remitting MS with a median (interquartile range) follow-up of 23.9 (23.3–24.7) months. Patients were grouped into those with abnormal or normal sNfL levels, defined as sNfL ≥/<80th percentile of age-corrected reference values. Likewise, patients were grouped by a median split into those with thin or thick ganglion cell and inner plexiform layer (GCIP), peripapillary retinal nerve fiber layer, and inner nuclear layer in nonoptic neuritis eyes. Outcome parameters were violation of no evidence of disease activity (NEDA-3) criteria or its components. Results Patients with abnormal baseline sNfL had a higher risk of violating NEDA-3 (hazard ratio [HR] 2.28, 95% CI 1.27–4.09, p = 0.006) and developing a new brain lesion (HR 2.47, 95% CI 1.30–4.69, p = 0.006), but not for a new relapse (HR 2.21, 95% CI 0.97–5.03, p = 0.058). Patients with both abnormal sNfL and thin GCIP had an even higher risk for NEDA-3 violation (HR 3.61, 95% CI 1.77–7.36, p = 4.2e−4), new brain lesion (HR 3.19, 95% CI 1.51–6.76, p = 0.002), and new relapse (HR 5.38, 95% CI 1.61–17.98, p = 0.006) than patients with abnormal sNfL alone. Conclusions In patients with early MS, the presence of both abnormal sNfL and thin GCIP is a stronger risk factor for future disease activity than the presence of each parameter alone.
Collapse
Affiliation(s)
- Ting-Yi Lin
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Viktoriya Vitkova
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Susanna Asseyer
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Ivette Martorell Serra
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Seyedamirhosein Motamedi
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Claudia Chien
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Marc Ditzhaus
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Athina Papadopoulou
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Pascal Benkert
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Jens Kuhle
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Judith Bellmann-Strobl
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Klemens Ruprecht
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Friedemann Paul
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Alexander U Brandt
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Hanna G Zimmermann
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine.
| |
Collapse
|
38
|
Harris S, Comi G, Cree BAC, Arnold DL, Steinman L, Sheffield JK, Southworth H, Kappos L, Cohen JA. Plasma neurofilament light chain concentrations as a biomarker of clinical and radiologic outcomes in relapsing multiple sclerosis: Post hoc analysis of Phase 3 ozanimod trials. Eur J Neurol 2021; 28:3722-3730. [PMID: 34292643 PMCID: PMC9291872 DOI: 10.1111/ene.15009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/03/2023]
Abstract
Background and purpose We investigated plasma neurofilament light chain concentration (pNfL) as a biomarker for neuroaxonal damage and disease activity using data from Phase 3 trials of ozanimod in relapsing multiple sclerosis (RMS). Methods pNfL was measured before and after ozanimod 0.46 mg or 0.92 mg daily or interferon β‐1a 30 µg weekly in the randomized, double‐blind SUNBEAM and RADIANCE trials. In these post hoc analyses, we investigated relationships between pNfL (at baseline and median percentage change from baseline to Month 12 [SUNBEAM] or 24 [RADIANCE]) and clinical and magnetic resonance imaging outcomes. Results Median (Q1, Q3) baseline pNfL, available in 1244 of 1346 SUNBEAM participants, was 14.70 (10.16, 23.26) pg/ml and in 1109 of 1313 RADIANCE participants was 13.35 (9.42, 20.41) pg/ml. Baseline gadolinium‐enhancing (GdE) and T2 lesion counts increased and brain volume decreased with increasing baseline pNfL. Baseline pNfL was higher in those with versus without on‐treatment relapse. Median percentage reduction in pNfL at 12 months in SUNBEAM (n = 1238) and 24 months in RADIANCE (n = 1088) was greater for ozanimod (20%–27%) than interferon β‐1a (13%–16%; p < 0.01). Greater pNfL reduction was associated with fewer GdE lesions, fewer new/enlarging T2 lesions per scan, less loss of brain volume, lower annualized relapse rate (ARR), and no evidence of disease activity. The following models predicted ARR: 0.5111 + 0.0116 × ΔNfL at 12 months (SUNBEAM) and 0.4079 + 0.0088 × ΔNfL at 24 months (RADIANCE). Conclusions pNfL was associated with clinical and radiologic measures of disease and treatment effects in RMS, supporting its use as a biomarker.
Collapse
Affiliation(s)
- Sarah Harris
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Bruce A C Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Douglas L Arnold
- NeuroRx Research and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, California, USA
| | | | | | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Department of Neurology, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
39
|
Jakimovski D, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Disease biomarkers in multiple sclerosis: current serum neurofilament light chain perspectives. Neurodegener Dis Manag 2021; 11:329-340. [PMID: 34196596 DOI: 10.2217/nmt-2020-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The continuous neuroinflammatory and neurodegenerative pathology in multiple sclerosis (MS) results in irreversible accumulation of physical and cognitive disability. Reliable early detection of MS disease processes can aid in the diagnosis, monitoring and treatment management of MS patients. Recent assay technological advancements now allow reliable quantification of serum-based neurofilament light chain (sNfL) levels, which provide temporal information regarding the degree of neuroaxonal damage. The relationship and predictive value of sNfL with clinical and cognitive outcomes, other paraclinical measures and treatment response is reviewed. sNfL measurement is an emerging, noninvasive and disease-responsive MS biomarker that is currently utilized in research and clinical trial settings. Understanding sNfL confounders and further assay standardization will allow clinical implementation of this biomarker.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, 20148, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment & Research Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
40
|
Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144:2954-2963. [PMID: 34180982 PMCID: PMC8634125 DOI: 10.1093/brain/awab241] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis is a highly heterogeneous disease, and the detection of neuroaxonal damage as well as its quantification is a critical step for patients. Blood-based serum neurofilament light chain (sNfL) is currently under close investigation as an easily accessible biomarker of prognosis and treatment response in patients with multiple sclerosis. There is abundant evidence that sNfL levels reflect ongoing inflammatory-driven neuroaxonal damage (e.g. relapses or MRI disease activity) and that sNfL levels predict disease activity over the next few years. In contrast, the association of sNfL with long-term clinical outcomes or its ability to reflect slow, diffuse neurodegenerative damage in multiple sclerosis is less clear. However, early results from real-world cohorts and clinical trials using sNfL as a marker of treatment response in multiple sclerosis are encouraging. Importantly, clinical algorithms should now be developed that incorporate the routine use of sNfL to guide individualized clinical decision-making in people with multiple sclerosis, together with additional fluid biomarkers and clinical and MRI measures. Here, we propose specific clinical scenarios where implementing sNfL measures may be of utility, including, among others: initial diagnosis, first treatment choice, surveillance of subclinical disease activity and guidance of therapy selection.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D'Hebron, Cemcat, Barcelona, Spain
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
41
|
Engel S, Protopapa M, Steffen F, Papanastasiou V, Nicolaou C, Protopapas M, Zipp F, Bittner S, Luessi F. Implications of extreme serum neurofilament light chain levels for the management of patients with relapsing multiple sclerosis. Ther Adv Neurol Disord 2021; 14:17562864211001977. [PMID: 33959194 PMCID: PMC8060778 DOI: 10.1177/17562864211001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) is a promising biomarker to complement the decision-making process in multiple sclerosis (MS) patients. However, although sNfL levels are able to detect disease activity and to predict future disability, the growing evidence has not yet been translated into practicable recommendations for an implementation into clinical routine. METHODS The observation of a patient with extensive inflammatory activity in magnetic resonance imaging (MRI) along with an extremely high sNfL level in the absence of any clinical symptoms prompted us to investigate common characteristics of our MS patients with the highest sNfL levels in a retrospective cohort study. The 97.5th percentile was chosen as a cut-off value because the mean sNfL level of the resulting extreme neurofilament light chain (NfL) cohort corresponded well to the sNfL level of the presented case. Patient characterization included clinical and MRI assessment with a focus on disease activity markers. sNfL levels were determined by single molecule array. RESULTS The 97.5th percentile of our MS cohort (958 sNfL measurements in 455 patients) corresponded to a threshold value of 46.1 pg/ml. The mean sNfL level of the extreme sNfL cohort (n = 24) was 95.6 pg/ml (standard deviation 68.4). Interestingly, only 15 patients suffered from a relapse at the time point of sample collection, whereas nine patients showed no signs of clinical disease activity. sNfL levels of patients with and without relapse did not differ [median 81.3 pg/ml (interquartile range [IQR] 48.0-128) versus 80.2 pg/ml (IQR 46.4-97.6), p = 0.815]. The proportion of patients with contrast-enhancing lesions was high and also did not differ between patients with and without relapse (92.9% versus 87.5%, p = 0.538); 78.9% of the patients not receiving a high-efficacious therapy had ongoing disease activity during a 2-year follow-up. CONCLUSION Extremely high sNfL levels are indicative of subclinical disease activity and might complement treatment decisions in ambiguous cases.
Collapse
Affiliation(s)
- Sinah Engel
- Department of Neurology, Focus Program
Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main
Neuroscience Network (rmn), University Medical Center of the
Johannes Gutenberg University, Mainz, Germany
| | - Maria Protopapa
- Department of Neurology, Focus Program
Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main
Neuroscience Network (rmn), University Medical Center of the
Johannes Gutenberg University, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program
Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main
Neuroscience Network (rmn), University Medical Center of the
Johannes Gutenberg University, Mainz, Germany
| | | | | | | | - Frauke Zipp
- Department of Neurology, Focus Program
Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main
Neuroscience Network (rmn), University Medical Center of the
Johannes Gutenberg University, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program
Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main
Neuroscience Network (rmn), University Medical Center of the
Johannes Gutenberg University, Mainz, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program
Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²),
University Medical Center of the Johannes Gutenberg University Mainz,
Langenbeckstrasse 1, Mainz 55131, Germany
| |
Collapse
|
42
|
Comabella M, Clarke MA, Schaedelin S, Tintoré M, Pareto D, Fissolo N, Pinteac R, Granziera C, Sastre-Garriga J, Benkert P, Auger C, Kuhle J, Montalban X, Rovira A. CSF chitinase 3-like 1 is associated with iron rims in patients with a first demyelinating event. Mult Scler 2021; 28:71-81. [PMID: 33870790 DOI: 10.1177/13524585211010082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Chronic active lesions with iron rims have prognostic implications in patients with multiple sclerosis. OBJECTIVE To assess the relationship between iron rims and levels of chitinase 3-like 1 (CHI3L1), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in patients with a first demyelinating event. METHODS Iron rims were identified using 3T susceptibility-weighted imaging. Serum NfL and GFAP levels were measured by single-molecule array assays. CSF (cerebrospinal fluid) CHI3L1 levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Sixty-one patients were included in the study. The presence of iron rims was associated with higher T2 lesion volume and higher number of gadolinium-enhancing lesions. In univariable analysis, having ⩾2 iron rims (vs 0) was associated with increased CSF CHI3L1 levels (β = 1.41; 95% confidence interval (CI) = 1.10-1.79; p < 0.01) and serum NfL levels (β = 2.30; 95% CI = 1.47-3.60; p < 0.01). In multivariable analysis, however, only CSF CHI3L1 levels remained significantly associated with the presence of iron rim lesions (β = 1.45; 95% CI = 1.11-1.90; p < 0.01). The presence of ⩾2 iron rims was not associated with increased serum GFAP levels in univariable or multivariable analyses. CONCLUSION These findings support an important contribution of activated microglia/macrophages to the pathophysiology of chronic active lesions with iron rims in patients with a first demyelinating event.
Collapse
Affiliation(s)
- Manuel Comabella
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margareta A Clarke
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sabine Schaedelin
- Clinical Trial Unit, Department of Clinical Research, University Hospital of Basel, Basel, Switzerland
| | - Mar Tintoré
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nicolás Fissolo
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rucsanda Pinteac
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Neurology Clinic and Policlinic and RC2NB, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jaume Sastre-Garriga
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital of Basel, Basel, Switzerland
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Xavier Montalban
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Thebault S, Booth RA, Rush CA, MacLean H, Freedman MS. Serum Neurofilament Light Chain Measurement in MS: Hurdles to Clinical Translation. Front Neurosci 2021; 15:654942. [PMID: 33841093 PMCID: PMC8027110 DOI: 10.3389/fnins.2021.654942] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Measurement of serum neurofilament light chain concentration (sNfL) promises to become a convenient, cost effective and meaningful adjunct for multiple sclerosis (MS) prognostication as well as monitoring disease activity in response to treatment. Despite the remarkable progress and an ever-increasing literature supporting the potential role of sNfL in MS over the last 5 years, a number of hurdles remain before this test can be integrated into routine clinical practice. In this review we highlight these hurdles, broadly classified by concerns relating to clinical validity and analytical validity. After setting out an aspirational roadmap as to how many of these issues can be overcome, we conclude by sharing our vision of the current and future role of sNfL assays in MS clinical practice.
Collapse
Affiliation(s)
- Simon Thebault
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, The Eastern Ontario Regional Laboratory Association, The Ottawa Hospital, Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Carolina A Rush
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Heather MacLean
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
44
|
Thebault S, Bose G, Booth R, Freedman MS. Serum neurofilament light in MS: The first true blood-based biomarker? Mult Scler 2021; 28:1491-1497. [PMID: 33565908 PMCID: PMC9315170 DOI: 10.1177/1352458521993066] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A simple blood-derived biomarker is desirable in the routine management
of multiple sclerosis (MS) patients and serum neurofilament light
chain (sNfL) is the most promising candidate. Although its utility was
first shown in cerebrospinal fluid (CSF), technological advancements
have enabled reliable detection in serum and less frequently plasma,
obviating the need for repeated lumbar punctures. In this review,
after defining the knowledge gap in MS management that many hope sNfL
could fill, we summarize salient studies demonstrating associations of
sNfL levels with outcomes of interest. We group these outcomes into
inflammatory activity, progression, treatment response, and
prediction/prognosis. Where possible we focus on data from real-world
perspective observational cohorts. While acknowledging the limitations
of sNfL and highlighting key areas for ongoing work, we conclude with
our opinion of the role for sNfL as an objective, convenient, and
cost-effective adjunct to clinical assessment. Paving the way for
other promising biomarkers both blood-derived and otherwise, sNfL is
an incremental step toward precision medicine for MS patients.
Collapse
Affiliation(s)
- Simon Thebault
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gauruv Bose
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ronald Booth
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada/The University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
45
|
Galetta K, Deshpande C, Healy BC, Glanz B, Ziehn M, Saxena S, Paul A, Saleh F, Collins M, Gaitan-Walsh P, Castro-Mendoza P, Weiner HL, Chitnis T. Serum neurofilament levels and patient-reported outcomes in multiple sclerosis. Ann Clin Transl Neurol 2021; 8:631-638. [PMID: 33492760 PMCID: PMC7951092 DOI: 10.1002/acn3.51305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Serum neurofilament light (sNfL) is a promising new biomarker in multiple sclerosis (MS). We explored the relationship between sNfL and health outcomes and resource use in MS patients. METHODS MS patients with serum samples and health-outcome measurements collected longitudinally between 2011 and 2016 were analyzed. sNfL values were evaluated across age and gender. Data were analyzed using correlation with log-transformed sNfL values. RESULTS A total of 304 MS patients with a mean age of 32.9 years, average EDSS of 1.6 (SD = 1.5) and baseline sNfL of 8.8 (range 1.23-78.3) pg/mL were studied. Baseline sNFL values increased with age and were higher in females. Baseline sNfL correlated with baseline Multiple Sclerosis Quality of Life physical composite (mean = 49.4 (9.1), P = 0.035) and baseline EDSS (P = 0.002). Other PRO measures at baseline did not show a significant relationship with baseline sNfL. Average of baseline and follow-up sNfL correlated with MSQoL physical-role limitations (mean = 48.9 (10.8), P = 0.043) and social-functioning (mean = 52.3 (7), P = 0.034) at 24-month follow-up. We found a trend for numerically higher sNfL levels in nonpersistent patients compared to those who were persistent to treatment (11.13 vs. 8.53 pg/mL, P = 0.093) measured as average of baseline and 24-month values. Baseline NfL was associated with number of intravenous steroid infusions (mean = 0.2; SD = 3.0, P = 0.013), whereas the average of baseline and 12 months NfL values related to inpatient stays at 12 months (mean = 0.2; SD = 3.0 P = 0.053). CONCLUSION Serum NfL is a patient-centric biomarker that correlated with MS patient health-outcomes and healthcare utilization measures in a real-world cohort.
Collapse
Affiliation(s)
- Kristin Galetta
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Brian C Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Bonnie Glanz
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marina Ziehn
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Fermisk Saleh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mikaela Collins
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Patricia Gaitan-Walsh
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Paola Castro-Mendoza
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Howard L Weiner
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Rosso M, Healy BC, Saxena S, Paul A, Bjornevik K, Kuhle J, Benkert P, Leppert D, Guttmann C, Bakshi R, Weiner HL, Chitnis T. MRI Lesion State Modulates the Relationship Between Serum Neurofilament Light and Age in Multiple Sclerosis. J Neuroimaging 2021; 31:388-393. [DOI: 10.1111/jon.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Mattia Rosso
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
| | - Brian C. Healy
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
- Biostatistics Center Massachusetts General Hospital Boston MA
| | - Shrishti Saxena
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
| | - Anu Paul
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
| | - Kjetil Bjornevik
- Harvard T.H. Chan School of Public Health Harvard University Boston MA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research University Hospital Basel University of Basel Basel Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel University of Basel Basel Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research University Hospital Basel University of Basel Basel Switzerland
| | - Charles Guttmann
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
| | - Rohit Bakshi
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Howard L. Weiner
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Tanuja Chitnis
- Brigham and Women's Hospital Harvard Medical School Boston MA
- Ann Romney Center for Neurologic Diseases Harvard Medical School Boston MA
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital Harvard Medical School Boston MA
| |
Collapse
|
47
|
Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Ann Clin Transl Neurol 2020; 7:2508-2523. [PMID: 33146954 PMCID: PMC7732243 DOI: 10.1002/acn3.51234] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal injury is a universal event that occurs in disease processes that affect both the central and peripheral nervous systems. A blood biomarker linked to neuronal injury would provide a critical measure to understand and treat neurologic diseases. Neurofilament light chain (NfL), a cytoskeletal protein expressed only in neurons, has emerged as such a biomarker. With the ability to quantify neuronal damage in blood, NfL is being applied to a wide range of neurologic conditions to investigate and monitor disease including assessment of treatment efficacy. Blood NfL is not specific for one disease and its release can also be induced by physiological processes. Longitudinal studies in multiple sclerosis, traumatic brain injury, and stroke show accumulation of NfL over days followed by elevated levels over months. Therefore, it may be hard to determine with a single measurement when the peak of NfL is reached and when the levels are normalized. Nonetheless, measurement of blood NfL provides a new blood biomarker for neurologic diseases overcoming the invasiveness of CSF sampling that restricted NfL clinical application. In this review, we examine the use of blood NfL as a biologic test for neurologic disease.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|