1
|
Xu C, Du D, Han Z, Si H, Li W, Li L, Tang B. Separation and Analysis of Rare Tumor Cells in Various Body Fluids Based on Microfluidic Technology for Clinical Applications. Anal Chem 2025; 97:7567-7588. [PMID: 40186540 DOI: 10.1021/acs.analchem.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Affiliation(s)
- Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
3
|
Kwizera EA, Ou W, Lee S, Stewart S, Shamul JG, Xu J, Tait N, Tkaczuk KHR, He X. Greatly Enhanced CTC Culture Enabled by Capturing CTC Heterogeneity Using a PEGylated PDMS-Titanium-Gold Electromicrofluidic Device with Glutathione-Controlled Gentle Cell Release. ACS NANO 2022; 16:11374-11391. [PMID: 35797466 PMCID: PMC9649890 DOI: 10.1021/acsnano.2c05195] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up in vitro, which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogeneous (EpCAM+ and CD44+) CTCs with high purity but also glutathione-controlled gentle release of the CTCs with high efficiency and viability. This is enabled by coating the polydimethylsiloxane (PDMS) surface in the device with a 10 nm gold layer through a 4 nm titanium coupling layer, for convenient PEGylation and linkage of capture antibodies via the thiol-gold chemistry. Surprisingly, the percentage of EpCAM+ mammary CTCs can be as low as ∼35% (∼70% on average), showing that the commonly used approach of capturing CTCs with EpCAM alone may miss many EpCAM- CTCs. Furthermore, the CD44+ CTCs can be cultured to form 3D spheroids efficiently for scale-up. In contrast, the CTCs captured with EpCAM alone are poor in proliferation in vitro, consistent with the literature. By capture of the CTC heterogeneity, the percentage of stage IV patients whose CTCs can be successfully cultured/scaled up is improved from 12.5% to 68.8%. These findings demonstrate that the common practice of CTC capture with EpCAM alone misses the CTC heterogeneity including the critical CD44+ CTCs. This study may be valuable to the procurement and scale-up of heterogeneous CTCs, to facilitate the understanding of cancer metastasis and the development of cancer metastasis-targeted personalized cancer therapies conveniently via the minimally invasive liquid/blood biopsy.
Collapse
Affiliation(s)
- Elyahb A Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sojeong Lee
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nancy Tait
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Katherine H R Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
5
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Pahattuge TN, Freed IM, Hupert ML, Vaidyanathan S, Childers K, Witek MA, Weerakoon-Ratnayake K, Park D, Kasi A, Al-Kasspooles MF, Murphy MC, Soper SA. System Modularity Chip for Analysis of Rare Targets (SMART-Chip): Liquid Biopsy Samples. ACS Sens 2021; 6:1831-1839. [PMID: 33938745 DOI: 10.1021/acssensors.0c02728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Liquid biopsies are becoming popular for managing a variety of diseases due to the minimally invasive nature of their acquisition, thus potentially providing better outcomes for patients. Circulating tumor cells (CTCs) are among the many different biomarkers secured from a liquid biopsy, and a number of efficient platforms for their isolation and enrichment from blood have been reported. However, many of these platforms require manual sample handling, which can generate difficulties when translating CTC assays into the clinic due to potential sample loss, contamination, and the need for highly specialized operators. We report a system modularity chip for the analysis of rare targets (SMART-Chip) composed of three task-specific modules that can fully automate processing of CTCs. The modules were used for affinity selection of the CTCs from peripheral blood with subsequent photorelease, simultaneous counting, and viability determinations of the CTCs and staining/imaging of the CTCs for immunophenotyping. The modules were interconnected to a fluidic motherboard populated with valves, interconnects, pneumatic control channels, and a fluidic network. The SMART-Chip components were made from thermoplastics via microreplication, which lowers the cost of production making it amenable to clinical implementation. The utility of the SMART-Chip was demonstrated by processing blood samples secured from colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) patients. We were able to affinity-select EpCAM expressing CTCs with high purity (0-3 white blood cells/mL of blood), enumerate the selected cells, determine their viability, and immunophenotype the cells. The assay could be completed in <4 h, while manual processing required >8 h.
Collapse
Affiliation(s)
- Thilanga N. Pahattuge
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ian M. Freed
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mateusz L. Hupert
- BioFluidica, Inc., 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of BioEngineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Katie Childers
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of BioEngineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Malgorzata A. Witek
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kumuditha Weerakoon-Ratnayake
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Daniel Park
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical & Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Anup Kasi
- Department of Medical Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mazin F Al-Kasspooles
- Department of Medical Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Michael C. Murphy
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical & Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- BioFluidica, Inc., 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Department of BioEngineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Cho HY, Choi JH, Lim J, Lee SN, Choi JW. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers (Basel) 2021; 13:1385. [PMID: 33803846 PMCID: PMC8003176 DOI: 10.3390/cancers13061385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Detecting circulating tumor cells (CTCs) has been considered one of the best biomarkers in liquid biopsy for early diagnosis and prognosis monitoring in cancer. A major challenge of using CTCs is detecting extremely low-concentrated targets in the presence of high noise factors such as serum and hematopoietic cells. This review provides a selective overview of the recent progress in the design of microfluidic devices with optical sensing tools and their application in the detection and analysis of CTCs and their small malignant subset, circulating cancer stem cells (CCSCs). Moreover, discussion of novel strategies to analyze the differentiation of circulating cancer stem cells will contribute to an understanding of metastatic cancer, which can help clinicians to make a better assessment. We believe that the topic discussed in this review can provide brief guideline for the development of microfluidic-based optical biosensors in cancer prognosis monitoring and clinical applications.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
- Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Korea
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| |
Collapse
|
8
|
Kim J, Cho H, Kim J, Park JS, Han KH. A disposable smart microfluidic platform integrated with on-chip flow sensors. Biosens Bioelectron 2020; 176:112897. [PMID: 33342692 DOI: 10.1016/j.bios.2020.112897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/27/2023]
Abstract
Microfluidic devices are powerful tools for biological, biomedical, chemical, and pharmaceutical applications, but their commercialization is still hindered by the lack of methods to automatically control fluid flow in a low-cost, simple, accurate, and safe manner. This study introduces a disposable smart microfluidic platform (DIS-μChip), which can be fully automated and utilized for a wide range of applications. On-chip microfluidic flow sensors are integrated with the platform and placed at all inlet and outlet channels, thereby allowing the DIS-μChip to be fully automated with a pressure control system. Furthermore, these confer a self-diagnosis function through monitoring of all the input and output flow rates. The DIS-μChip consists of a disposable polymeric microchannel superstrate and a permanent multifunctional substrate, which could be assembled and disassembled using only vacuum pressure. The superstrate was fabricated by combining a polydimethylsiloxane microchannel structure with a polyethylene terephthalate (PET) thin film. The substrate contains sense electrodes for the on-chip-integrated flow sensors and functional components for creating an energy field, which can penetrate the PET thin film and manipulate the fluid in the microchannels of the superstrate. Owing to the film-chip technique, the superstrate was disposable and could prevent biological cross-contamination, which cannot be realized with conventional flow sensors. The usefulness of the DIS-μChip was demonstrated by using it to isolate circulating tumor cells from the blood of patients with pancreatic cancer and to obtain cancer-specific genetic information from them with droplet digital PCR.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea
| | - Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea
| | - Junhyeong Kim
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea
| | - Joon Seong Park
- Pancreatobiliary Cancer Clinic, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, South Korea
| | - Ki-Ho Han
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea.
| |
Collapse
|
9
|
Ikeda M, Koh Y, Teraoka S, Sato K, Kanai K, Hayata A, Tokudome N, Akamatsu H, Ozawa Y, Akamatsu K, Endo K, Higuchi M, Nakanishi M, Ueda H, Yamamoto N. Detection of AXL expression in circulating tumor cells of lung cancer patients using an automated microcavity array system. Cancer Med 2020; 9:2122-2133. [PMID: 31999390 PMCID: PMC7064033 DOI: 10.1002/cam4.2846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Noninvasive diagnostics using circulating tumor cells (CTCs) are expected to be useful for decision making in precision cancer therapy. AXL, a receptor tyrosine kinase is associated with tumor progression, epithelial‐to‐mesenchymal transition (EMT), and drug resistance, and is a potential therapeutic target. However, the epithelial markers generally used for CTC detection may be not enough to detect AXL‐expressing CTCs due to EMT. Here, we evaluated the detection of AXL‐expressing CTCs using the mesenchymal marker vimentin with a microcavity array system. To evaluate the recovery of cancer cells, spike‐in experiments were performed using cell lines with varying cytokeratin (CK) or vimentin (VM) expression levels. With high CK and low VM‐expressing cell lines, PC‐9 and HCC827, the recovery rate of AXL‐expressing cancer cells was 1%‐17% using either CK or VM as markers. Whereas, with low CK and high VM‐expressing cell lines, MDA‐MB231 and H1299, it was 52%‐75% using CK and 72%‐88% using VM as a marker. For clinical evaluation, peripheral blood was collected from 20 non–small cell lung cancer patients and CTCs were detected using CK or VM as markers in parallel. Significantly more AXL‐expressing single CTCs were detected in VM‐positive than CK‐positive CTCs (P < .001). Furthermore, CTC clusters were identified only among VM‐positive CTCs in 20% of patients. Patients with one or more prior treatments harbored significantly more VM‐positive AXL‐expressing CTCs, suggesting the involvement of these CTCs in drug resistance. These results indicate the necessity of integrating mesenchymal markers with CTC detection and this should be further evaluated clinically.
Collapse
Affiliation(s)
- Mio Ikeda
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Koichi Sato
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Kuninobu Kanai
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Hayata
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Nahomi Tokudome
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Ozawa
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | | - Katsuya Endo
- Medical Business Sector, Hitachi Chemical Co., Ltd., Chikusei, Japan
| | - Masayuki Higuchi
- Medical Business Sector, Hitachi Chemical Co., Ltd., Chikusei, Japan
| | | | - Hiroki Ueda
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | |
Collapse
|
10
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
11
|
Saxena K, Subbalakshmi AR, Jolly MK. Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 2019; 46:4-5. [PMID: 31399383 PMCID: PMC6712058 DOI: 10.1016/j.ebiom.2019.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
12
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Xie M, Huang WH. Current techniques and future advance of microfluidic devices for circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Green BJ, Nguyen V, Atenafu E, Weeber P, Duong BTV, Thiagalingam P, Labib M, Mohamadi RM, Hansen AR, Joshua AM, Kelley SO. Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking. Anal Chem 2019; 91:9348-9355. [DOI: 10.1021/acs.analchem.9b01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Vivian Nguyen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Eshetu Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Phillip Weeber
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Bill T. V. Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Punithan Thiagalingam
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Reza M. Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Aaron R. Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
- Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|