1
|
Vinnacombe-Willson GA, Núñez-Martínez M, Herrero-Ruiz A, Bevilacqua F, Pazos R, Troncoso-Afonso L, Gallego-González M, Scarabelli L, Liz-Marzán LM. Plasmonic-Hydrogel Hybrid Biomaterials Via In Situ Seeded Growth. Angew Chem Int Ed Engl 2025:e202501854. [PMID: 40211965 DOI: 10.1002/anie.202501854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The combination of hydrogels and functional plasmonic metal nanoparticles affords the development of unique hybrid systems, such as actuators, biosensors, and drug delivery systems, among others. Being typically prepared in colloidal suspension, incorporating shape-controlled plasmonic nanoparticles on polymer substrates typically requires lengthy processes involving synthesis, washing, and self-assembly. We report an alternative, robust in situ seed-mediated growth method whereby either isotropic or anisotropic gold and silver nanoparticles can be prepared directly on gelatin-based hydrogels, taking advantage of the polymer's native chemical functionalities. In-depth characterization of gold precursor-polymer interactions enabled the rational growth of branched gold nanoparticles on biocompatible hydrogels with different physicochemical properties. In situ seeded growth circumvents traditional limitations imposed by the need for colloidal stability, thereby enabling gold nanoparticle synthesis under surfactant-free conditions and in high ionic strength solutions, thus enhancing their suitability for applications involving live cells. This method can be expanded to create libraries of hybrid plasmonic materials with potential impact in the fabrication of functional 3D cell culture substrates, as well as biological and chemical sensors.
Collapse
Affiliation(s)
- Gail A Vinnacombe-Willson
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
| | - Manuel Núñez-Martínez
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Ada Herrero-Ruiz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
| | - Francisco Bevilacqua
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Raquel Pazos
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Lara Troncoso-Afonso
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
- Department of Applied Chemistry, University of the Basque Country, Donostia-San Sebastián, 20018, Spain
| | - Marta Gallego-González
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Leonardo Scarabelli
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Santander, 39005, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Bilbao, 48009, Spain
- CINBIO, Universidade de Vigo, Vigo, 36310, Spain
| |
Collapse
|
2
|
Peng J, Cao J, Wang L, Guo Z, Hou X. A portable hydrogel kit based on Au@GM88A/I combined with mobile phone for polychromatic semi-quantitative and quantitative sensing analysis. Biosens Bioelectron 2024; 266:116682. [PMID: 39241339 DOI: 10.1016/j.bios.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
The development of an affordable, portable, and instrument-free colorimetric biosensor holds significant importance for routine monitoring and clinical diagnosis. To overcome the limitations that traditional monochromatic colorimetric kits struggle to distinguish subtle color changes with the naked eye, we designed and constructed a portable hydrogel kit for polychromatic semi-quantitative and quantitative sensing analysis. When the actual samples and I- were introduced into a gelatin hydrogel encapsulated with MIL-88A(Fe), Au NRs and oxidase (Au@GM88A/I), a noticeable color change occurred. Additionally, a mathematic model between Hue and multicolor signal was set up for the first time by mobile phone photo technology, successfully applied to the glucose detection in serum. The visual detection had a wide concentration range of 0.02-0.80 mM with a limit of detection down to 0.02 mM. Above all, hydrogel kit prepared with gelatin as a carrier addressed the issues of uneven color and slow response rate commonly seen in gels like sodium alginate and agarose. This improvement would be beneficial for enhancing the accuracy of color captured by mobile phone assisted hydrogel kits, making it a valuable tool for biomarker analysis.
Collapse
Affiliation(s)
- Jiayi Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jie Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Louqun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Zongjin Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
3
|
Rong M, Liu D, Xu X, Li A, Bai Y, Yang G, Liu K, Zhang Z, Wang L, Wang K, Lu L, Jiang Y, Liu J, Zhang X. A Superparamagnetic Composite Hydrogel Scaffold as In Vivo Dynamic Monitorable Theranostic Platform for Osteoarthritis Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405641. [PMID: 38877353 DOI: 10.1002/adma.202405641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent disease, characterized by subchondral fractures in its initial stages, which has no precise and specific treatment now. Here, a novel multifunctional scaffold is synthesized by photopolymerizing glycidyl methacrylate-modified hyaluronic acid (GMHA) as the matrix in the presence of hollow porous magnetic microspheres based on hydroxyapatite. In vivo subchondral bone repairing results demonstrate that the scaffold's meticulous design has most suitable properties for subchondral bone repair. The porous structure of inorganic particles within the scaffold facilitates efficient transport of loaded exogenous vascular endothelial growth factor (VEGF). The Fe3O4 nanoparticles assembled in microspheres promote the osteogenic differentiation of bone marrow mesenchymal stem cells and accelerate the new bone generation. These features enable the scaffold to exhibit favorable subchondral bone repair properties and attain high cartilage repair scores. The therapy results prove that the subchondral bone support considerably influences the upper cartilage repair process. Furthermore, magnetic resonance imaging monitoring demonstrates that Fe3O4 nanoparticles, which are gradually replaced by new bone during osteochondral defect repair, allow a noninvasive and radiation-free assessment to track the newborn bone during the OA repair process. The composite hydrogel scaffold (CHS) provides a versatile platform for biomedical applications in OA treatment.
Collapse
Affiliation(s)
- Mayifei Rong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dingge Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoguang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Yihua Bai
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gang Yang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Kaiping Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zhihua Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Langran Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Kai Wang
- School of Mathematics and Physics, Handan University, Handan, 056005, China
| | - Liying Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yong Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
4
|
Taghizadeh S, Tayebi L, Akbarzadeh M, Lohrasbi P, Savardashtaki A. Magnetic hydrogel applications in articular cartilage tissue engineering. J Biomed Mater Res A 2024; 112:260-275. [PMID: 37750666 DOI: 10.1002/jbm.a.37620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Articular cartilage defects afflict millions of individuals worldwide, presenting a significant challenge due to the tissue's limited self-repair capability and anisotropic nature. Hydrogel-based biomaterials have emerged as promising candidates for scaffold production in artificial cartilage construction, owing to their water-rich composition, biocompatibility, and tunable properties. Nevertheless, conventional hydrogels typically lack the anisotropic structure inherent to natural cartilage, impeding their clinical and preclinical applications. Recent advancements in tissue engineering (TE) have introduced magnetically responsive hydrogels, a type of intelligent hydrogel that can be remotely controlled using an external magnetic field. These innovative materials offer a means to create the desired anisotropic architecture required for successful cartilage TE. In this review, we first explore conventional techniques employed for cartilage repair and subsequently delve into recent breakthroughs in the application and utilization of magnetic hydrogels across various aspects of articular cartilage TE.
Collapse
Affiliation(s)
- Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Majid Akbarzadeh
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Oberdick SD, Dodd SJ, Koretsky AP, Zabow G. Shaped Magnetogel Microparticles for Multispectral Magnetic Resonance Contrast and Sensing. ACS Sens 2024; 9:42-51. [PMID: 38113475 DOI: 10.1021/acssensors.3c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Multispectral magnetic resonance imaging (MRI) contrast agents are microfabricated three-dimensional magnetic structures that encode nearby water protons with discrete frequencies. The agents have a unique radiofrequency (RF) resonance that can be tuned by engineering the geometric parameters of these microstructures. Multispectral contrast agents can be used as sensors by incorporating a stimulus-driven shape-changing response into their structure. These geometrically encoded magnetic sensors (GEMS) enable MRI-based sensing via environmentally induced changes to their geometry and their corresponding RF resonance. Previously, GEMS have been made using thin-film lithography techniques in a cleanroom environment. While these approaches offer precise control of the microstructure, they can be a limitation for researchers who do not have cleanroom access or microfabrication expertise. Here, an alternative approach for GEMS fabrication based on soft lithography is introduced. The fabrication scheme uses cheap, accessible materials and simple chemistry to produce shaped magnetic hydrogel microparticles with multispectral MRI contrast properties. The microparticles can be used as sensors by fabricating them out of shape-reconfigurable, "smart" hydrogels. The change in shape causes a corresponding shift in the resonance of the GEMS, producing an MRI-addressable readout of the microenvironment. Proof-of-principle experiments showing a multispectral response to pH change with cylindrical shell-shaped magnetogel GEMS are presented.
Collapse
Affiliation(s)
- Samuel D Oberdick
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary Zabow
- National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
6
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Venupriya V, Krishnaveni V, Ramya M. Fabrication and characterization of fish gelatin-based magnetic nanocomposite for biomedical applications. World J Microbiol Biotechnol 2023; 40:23. [PMID: 38040938 DOI: 10.1007/s11274-023-03800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
Bionanocomposite is considered an advanced way to bridge the gap between the structural and functional material and achieve the desired properties in the nanocomposite. This present study highlighted the synthesis of fish gelatin-based magnetic nanocomposite (GMNC) using three different concentrations of gelatin (6% w/v, G12% w/v, and 18% w/v) individually, through the in situ coprecipitation method. The effect of gelatin concentration on the structural, functional, magnetic properties, and biocompatibility of the GMNC was studied successfully. This variation reduces the crystallite size from 20.8 to 12.2 nm. GMNC obtained at minimum gelatin concentration (6% w/v) produced well-dispersed sphere-shaped magnetite nanoparticles with an average particle size of 33 nm without aggregation. All three reported superparamagnetic behavior at 293 K. It also noted the highly biocompatible and biodegradable nature of GMNC with a high magnetic response at a low magnetic field. This study reported the perspective of this functionalization method for biomedical applications, as GMNC is a potential carrier material that is easily attached to drug molecules through the free functional residues of gelatin molecules. The present study also performed the in vitro drug release behavior of 5'Fluorouracil-loaded GMNC (GF) at physiological conditions (pH 7.4 and 37 °C). It indicates the prepared GF exhibits a sustained drug-release profile for up to 48 h. Hence, these results strongly supported that the functionalized GMNC would be a potential carrier material for advanced drug delivery applications.
Collapse
Affiliation(s)
- V Venupriya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, Coimbatore, Tamilnadu, India.
- Department of ECE, PSG College of Technology, Peelamedu, Coimbatore, Tamilnadu, India.
| | - V Krishnaveni
- Department of ECE, PSG College of Technology, Peelamedu, Coimbatore, Tamilnadu, India
| | - M Ramya
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Song J, Kim S, Saouaf O, Owens C, McKinley GH, Holten-Andersen N. Soft Viscoelastic Magnetic Hydrogels from the In Situ Mineralization of Iron Oxide in Metal-Coordinate Polymer Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37916735 PMCID: PMC10658456 DOI: 10.1021/acsami.3c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/24/2023] [Indexed: 11/03/2023]
Abstract
The design of soft magnetic hydrogels with high concentrations of magnetic particles is complicated by weak retention of the iron oxide particles in the hydrogel scaffold. Here, we propose a design strategy that circumvents this problem through the in situ mineralization of iron oxide nanoparticles within polymer hydrogels functionalized with strongly iron-coordinating nitrocatechol groups. The mineralization process facilitates the synthesis of a high concentration of large iron oxide nanoparticles (up to 57 wt % dry mass per single cycle) in a simple one-step process under ambient conditions. The resulting hydrogels are soft (kPa range) and viscoelastic and exhibit strong magnetic actuation. This strategy offers a pathway for the energy-efficient design of soft, mechanically robust, and magneto-responsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Jake Song
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Sungjin Kim
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Olivia Saouaf
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Crystal Owens
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Gareth H. McKinley
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Niels Holten-Andersen
- Department
of Bioengineering and Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Abstract
Many soft tissues of the human body possess hierarchically anisotropic structures, exhibiting orientation-specific mechanical properties and biological functionality. Hydrogels have been proposed as promising scaffold materials for tissue engineering applications due to their water-rich composition, excellent biocompatibility, and tunable physico-chemical properties. However, conventional hydrogels with homogeneous structures often exhibit isotropic properties that differ from those of biological tissues, limiting their further application. Recently, magnetically anisotropic hydrogels containing long-range ordered magneto-structures have attracted widespread interest owing to their highly controllable assembly strategy, rapid magnetic responsiveness and remote spatiotemporal regulation. In this review, we summarize the latest progress of magnetically anisotropic hydrogels for tissue engineering. The fabrication strategy of magnetically anisotropic hydrogels from magnetic nanofillers with different dimensions is systemically introduced. Then, the effects of magnetically anisotropic cues on the physicochemical properties of hydrogels and the cellular biological behavior are discussed. And the applications of magnetically anisotropic hydrogels in the engineering of different tissues are emphasized. Finally, the current challenges and the future perspectives for magnetically anisotropic hydrogels are presented.
Collapse
Affiliation(s)
- Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Hemmati E, Soleimani-Amiri S, Kurdtabar M. A CMC- g-poly(AA- co-AMPS)/Fe 3O 4 hydrogel nanocomposite as a novel biopolymer-based catalyst in the synthesis of 1,4-dihydropyridines. RSC Adv 2023; 13:16567-16583. [PMID: 37274398 PMCID: PMC10234149 DOI: 10.1039/d3ra01389h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
A CMC-g-poly(AA-co-AMPS)/Fe3O4 hydrogel nanocomposite was successfully designed and prepared via graft copolymerization of AA and AMPS on CMC followed by the cross-linking addition of FeCl3/FeCl2. The synthesized hydrogel nanocomposite was characterized by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping, thermogravimetric analysis/differential thermal analysis (TGA/DTA), and vibrating sample magnetometry (VSM). The CMC-g-poly(AA-co-AMPS)/Fe3O4 hydrogel nanocomposite was employed as a biocompatible catalyst for the green synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives under thermal and ultrasound-assisted reaction conditions. High efficiency, low catalyst loadings, short reaction time, frequent catalyst recovery, environmental compatibility and mild conditions were found in both methods.
Collapse
Affiliation(s)
- Elmira Hemmati
- Department of Chemistry, Karaj Branch, Islamic Azad University Karaj Iran
| | | | - Mehran Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University Karaj Iran
| |
Collapse
|
11
|
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X, Hong Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14:116. [PMID: 37122024 PMCID: PMC10150535 DOI: 10.1186/s13287-023-03351-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Considering the high prevalence and the lack of targeted pharmacological management of acute kidney injury (AKI), the search for new therapeutic approaches for it is in urgent demand. Mesenchymal stem cells (MSCs) have been increasingly recognized as a promising candidate for the treatment of AKI. However, clinical translation of MSCs-based therapies is hindered due to the poor retention and survival rates as well as the impaired paracrine ability of MSCs post-delivery. To address these issues, a series of strategies including local administration, three-dimensional culture, and preconditioning have been applied. Owing to the emergence and development of these novel biotechnologies, the effectiveness of MSCs in experimental AKI models is greatly improved. Here, we summarize the different approaches suggested to optimize the efficacy of MSCs therapy, aiming at promoting the therapeutic effects of MSCs on AKI patients.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Song
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
12
|
G K, Kandasubramanian B. Exertions of Magnetic Polymer Composites Fabricated via 3D Printing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishnaja G
- CIPET: Institute of Petrochemicals Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogamandal P.O., Kochi683501, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune, 411025Maharashtra, India
| |
Collapse
|
13
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Pourjalili N, Bagheri Marandi G, Kurdtabar M, Rezanejade Bardajee G. Synthesis and characterization of double network hydrogel based on gellan-gum for drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N. Pourjalili
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - G. Bagheri Marandi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - M. Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
15
|
Popescu T, Oktaviani Matei C, Culita DC, Maraloiu VA, Rostas AM, Diamandescu L, Iacob N, Savopol T, Ilas MC, Feder M, Lupu AR, Iacoban AC, Vlaicu ID, Moisescu MG. Facile synthesis of low toxicity iron oxide/TiO 2 nanocomposites with hyperthermic and photo-oxidation properties. Sci Rep 2022; 12:6887. [PMID: 35477987 PMCID: PMC9046213 DOI: 10.1038/s41598-022-11003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to assess the feasibility of developing low-cost multipurpose iron oxide/TiO2 nanocomposites (NCs) for use in combined antitumor therapies and water treatment applications. Larger size (≈ 100 nm) iron oxide nanoparticles (IONPs) formed magnetic core-TiO2 shell structures at high Fe/Ti ratios and solid dispersions of IONPs embedded in TiO2 matrices when the Fe/Ti ratio was low. When the size of the iron phase was comparable to the size of the crystallized TiO2 nanoparticles (≈ 10 nm), the obtained nanocomposites consisted of randomly mixed aggregates of TiO2 and IONPs. The best inductive heating and ROS photogeneration properties were shown by the NCs synthesized at 400 °C which contained the minimum amount of α-Fe2O3 and sufficiently crystallized anatase TiO2. Their cytocompatibility was assessed on cultured human and murine fibroblast cells and analyzed in relation to the adsorption of bovine serum albumin from the culture medium onto their surface. The tested nanocomposites showed excellent cytocompatibility to human fibroblast cells. The results also indicated that the environment (i.e. phosphate buffer or culture medium) used to disperse the nanomaterials prior to performing the viability tests can have a significant impact on their cytotoxicity.
Collapse
Affiliation(s)
- Traian Popescu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Christien Oktaviani Matei
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Daniela Cristina Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Arpad Mihai Rostas
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Lucian Diamandescu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Nicusor Iacob
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Monica Cristiana Ilas
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Marcel Feder
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Andreea-Roxana Lupu
- "Victor Babes" National Institute of Pathology, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alexandra Corina Iacoban
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Ioana Dorina Vlaicu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania.
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| |
Collapse
|
16
|
Arifka M, Wilar G, Elamin KM, Wathoni N. Polymeric Hydrogels as Mesenchymal Stem Cell Secretome Delivery System in Biomedical Applications. Polymers (Basel) 2022; 14:polym14061218. [PMID: 35335547 PMCID: PMC8955913 DOI: 10.3390/polym14061218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Secretomes of mesenchymal stem cells (MSCs) have been successfully studied in preclinical models for several biomedical applications, including tissue engineering, drug delivery, and cancer therapy. Hydrogels are known to imitate a three-dimensional extracellular matrix to offer a friendly environment for stem cells; therefore, hydrogels can be used as scaffolds for tissue construction, to control the distribution of bioactive compounds in tissues, and as a secretome-producing MSC culture media. The administration of a polymeric hydrogel-based MSC secretome has been shown to overcome the fast clearance of the target tissue. In vitro studies confirm the bioactivity of the secretome encapsulated in the gel, allowing for a controlled and sustained release process. The findings reveal that the feasibility of polymeric hydrogels as MSC -secretome delivery systems had a positive influence on the pace of tissue and organ regeneration, as well as an enhanced secretome production. In this review, we discuss the widely used polymeric hydrogels and their advantages as MSC secretome delivery systems in biomedical applications.
Collapse
Affiliation(s)
- Mia Arifka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
17
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
18
|
Tavakoli J, Shrestha J, Bazaz SR, Rad MA, Warkiani ME, Raston CL, Tipper JL, Tang Y. Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules 2022; 27:1002. [PMID: 35164268 PMCID: PMC8840180 DOI: 10.3390/molecules27031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Jesus Shrestha
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Sajad R. Bazaz
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Maryam A. Rad
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Majid E. Warkiani
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
19
|
Dutta B, Shelar S, Rajan V, Checker S, Divya, Barick K, Pandey B, Kumar S, Hassan P. Gelatin grafted Fe3O4 based curcumin nanoformulation for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Oberdick SD, Borchers JA, Krycka KL. Magnetic correlations of iron oxide nanoparticles as probed by polarized SANS in stretched magnetic nanoparticle-elastomer composites. APPLIED PHYSICS LETTERS 2022; 120:10.1063/5.0081922. [PMID: 36620127 PMCID: PMC9813909 DOI: 10.1063/5.0081922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 06/17/2023]
Abstract
We have investigated the magnetic correlations among 7 nm iron oxide nanoparticles embedded in stretched silicone elastomers using polarized Small Angle Neutron Scattering (SANS). The magnetic nanoparticle (MNP)-elastomer composite can be stretched during experiments, and macroscopic deformations cause rearrangement of the iron oxide particles on the nanoscale. Polarized neutrons can be used to nondestructively probe the arrangement of magnetic nanoparticles before and after stretching, so that the relationship between applied stress and nanoscale magnetization can be interrogated. We find that stretching the MNP-elastomer composite past a certain threshold dramatically changes the structural and magnetic morphology of the system. The unstretched sample is modeled well by ~40 nm clusters of ~7 nm particles arranged in a hard sphere packing with a "volume fraction" parameter of 0.3. After the sample is stretched 3× its original size, however, the scattering data can be modeled by smaller, 16 nm clusters with a higher volume fraction of 0.4. We suggest that the effect can be understood by considering a stretching transformation on FCC-like crystallites of iron oxide nanoparticles embedded in an elastomeric medium.
Collapse
Affiliation(s)
- S. D. Oberdick
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - J. A. Borchers
- National Institute of Standards and Technology, NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| | - K. L. Krycka
- National Institute of Standards and Technology, NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
21
|
Li F, Li Y, Li L, Luo W, Lu Z, Zhang X, Zheng Z. A Heterostructured FeNi Hydroxide for Effective Electrocatalytic Oxygen Evolution. Chem Sci 2022; 13:9256-9264. [PMID: 36093013 PMCID: PMC9384689 DOI: 10.1039/d2sc02767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogen production technology by water splitting has been heralded as an effective means to alleviate the envisioned energy crisis. However, the overall efficiency of water splitting is limited by the effectiveness of the anodic oxygen evolution reaction (OER) due to the high energy barrier of the 4e− process. The key to addressing this challenge is the development of high-performing catalysts. Transition-metal hydroxides with high intrinsic activity and stability have been widely studied for this purpose. Herein, we report a gelatin-induced structure-directing strategy for the preparation of a butterfly-like FeNi/Ni heterostructure (FeNi/Ni HS) with excellent catalytic performance. The electronic interactions between Ni2+ and Fe3+ are evident both in the mixed-metal “torso” region and at the “torso/wing” interface with increasing Ni3+ as a result of electron transfer from Ni2+ to Fe3+ mediated by the oxo bridge. The amount of Ni3+ also increases in the “wings”, which is believed to be a consequence of charge balancing between Ni and O ions due to the presence of Ni vacancies upon formation of the heterostructure. The high-valence Ni3+ with enhanced Lewis acidity helps strengthen the binding with OH− to afford oxygen-containing intermediates, thus accelerating the OER process. Direct evidence of FeNi/Ni HS facilitating the formation of the Ni–OOH intermediate was provided by in situ Raman studies; the intermediate was produced at lower oxidation potentials than when Ni2(CO3)(OH)2 was used as the reference. The Co congener (FeCo/Co HS), prepared in a similar fashion, also showed excellent catalytic performance. A butterfly-like FeNi/Ni HS featuring a “torso” of Ni-doped FeOOH and two “wings” of Ni2(CO3)(OH)2 showed excellent activity in electrocatalytic oxygen evolution reaction attributable to the increase of higher-valance Ni3+ in the heterostructure.![]()
Collapse
Affiliation(s)
- Fayan Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Key Laboratory of Energy Conversion and Storage Technologies, SUSTech, Ministry of Education Shenzhen 518055 China
| | - Yanyan Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Key Laboratory of Energy Conversion and Storage Technologies, SUSTech, Ministry of Education Shenzhen 518055 China
| | - Lei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Key Laboratory of Energy Conversion and Storage Technologies, SUSTech, Ministry of Education Shenzhen 518055 China
| | - Wen Luo
- Department of Materials Science and Engineering, SUSTech Shenzhen 518055 China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, SUSTech Shenzhen 518055 China
| | - Xinyu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Key Laboratory of Energy Conversion and Storage Technologies, SUSTech, Ministry of Education Shenzhen 518055 China
| | - Zhiping Zheng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Key Laboratory of Energy Conversion and Storage Technologies, SUSTech, Ministry of Education Shenzhen 518055 China
| |
Collapse
|
22
|
Magnetic Properties of Collagen-Chitosan Hybrid Materials with Immobilized Superparamagnetic Iron Oxide Nanoparticles (SPIONs). MATERIALS 2021; 14:ma14247652. [PMID: 34947248 PMCID: PMC8707952 DOI: 10.3390/ma14247652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The paper presents results of our studies on hybrid materials based on polymers of natural origin containing superparamagnetic iron oxide nanoparticles (SPIONs). Such nanoparticles, coated with the chitosan derivative, were immobilized in a chitosan-collagen hydrogel matrix by crosslinking with genipin. Three types of biopolymer matrices of different collagen-to-chitosan ratios were studied. A thorough magnetic characterization was performed, including magnetic susceptibility, magnetization, and hysteresis loop measurements in a temperature range of 4 K to 300 K and a magnetic field induction up to 8 Tesla. The effect of SPION immobilization and material composition on the magnetic properties of the hybrids was investigated. The results showed that hybrid materials with covalently bounded SPIONs preserved the superparamagnetic character of SPIONs and exhibited promising magnetic properties, which are important for their potential applications.
Collapse
|
23
|
Magnetic Properties of Iron Oxide Nanoparticles Do Not Essentially Contribute to Ferrogel Biocompatibility. NANOMATERIALS 2021; 11:nano11041041. [PMID: 33921648 PMCID: PMC8073965 DOI: 10.3390/nano11041041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022]
Abstract
Two series of composite polyacrylamide (PAAm) gels with embedded superparamagnetic Fe2O3 or diamagnetic Al2O3 nanoparticles were synthesized, aiming to study the direct contribution of the magnetic interactions to the ferrogel biocompatibility. The proliferative activity was estimated for the case of human dermal fibroblast culture grown onto the surfaces of these types of substrates. Spherical non-agglomerated nanoparticles (NPs) of 20-40 nm in diameter were prepared by laser target evaporation (LTE) electrophysical technique. The concentration of the NPs in gel was fixed at 0.0, 0.3, 0.6, or 1.2 wt.%. Mechanical, electrical, and magnetic properties of composite gels were characterized by the dependence of Young's modulus, electrical potential, magnetization measurements on the content of embedded NPs. The fibroblast monolayer density grown onto the surface of composite substrates was considered as an indicator of the material biocompatibility after 96 h of incubation. Regardless of the superparamagnetic or diamagnetic nature of nanoparticles, the increase in their concentration in the PAAm composite provided a parallel increase in the cell culture proliferation when grown onto the surface of composite substrates. The effects of cell interaction with the nanostructured surface of composites are discussed in order to explain the results.
Collapse
|
24
|
Affiliation(s)
- Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - Sahraoui Chaieb
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
25
|
Grijalvo S, Díaz DD. Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration. Neurochem Int 2021; 147:105005. [PMID: 33667593 DOI: 10.1016/j.neuint.2021.105005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Peripheral nerve injury (PNI) is a serious clinical health problem caused by the damage of peripheral nerves which results in neurological deficits and permanent disability. There are several factors that may cause PNI such as localized damage (car accident, trauma, electrical injury) and outbreak of the systemic diseases (autoimmune or diabetes). While various diagnostic procedures including X-ray, magnetic resonance imaging (MRI), as well as other type of examinations such as electromyography or nerve conduction studies have been efficiently developed, a full recovery in patients with PNI is in many cases deficient or incomplete. This is the reason why additional therapeutic strategies should be explored to favor a complete rehabilitation in order to get appropriate nerve injury regeneration. The use of biomaterials acting as scaffolds opens an interesting approach in regenerative medicine and tissue engineering applications due to their ability to guide the growth of new tissues, adhesion and proliferation of cells including the expression of bioactive signals. This review discusses the preparation and therapeutic strategies describing in vitro and in vivo experiments using graphene-based materials in the context of PNI and their ability to promote nerve tissue regeneration.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - David Díaz Díaz
- Department of Organic Chemistry, University of La Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain; Institute of Bio-Organic Antonio González, University of La Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain; Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg, 93053, Germany.
| |
Collapse
|
26
|
In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nat Commun 2021; 12:667. [PMID: 33510173 PMCID: PMC7844223 DOI: 10.1038/s41467-021-20953-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023] Open
Abstract
Biological organic-inorganic materials remain a popular source of inspiration for bioinspired materials design and engineering. Inspired by the self-assembling metal-reinforced mussel holdfast threads, we tested if metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization. Starting with aqueous solutions of polymers end-functionalized with metal-coordinating ligands of catechol or histidine, here we show that inter-molecular metal-ion coordination complexes can serve as mineral nucleation sites, whereby significant mechanical reinforcement is achieved upon nanoscale particle growth directly at the metal-coordinate network crosslink sites. Biological organic-inorganic materials, such as self-assembling metal-reinforced mussel holdfast threads, remain a popular source of inspiration for materials design and engineering. Here the authors show that metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization.
Collapse
|
27
|
Lawrence MB, Joseph J, Usapkar T, Azavedo F. Swelling and DC Conductivity Behaviour of Gelatin-Based Ferrogels. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01682-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zhao Z, Vizetto-Duarte C, Moay ZK, Setyawati MI, Rakshit M, Kathawala MH, Ng KW. Composite Hydrogels in Three-Dimensional in vitro Models. Front Bioeng Biotechnol 2020; 8:611. [PMID: 32656197 PMCID: PMC7325910 DOI: 10.3389/fbioe.2020.00611] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
3-dimensional (3D) in vitro models were developed in order to mimic the complexity of real organ/tissue in a dish. They offer new possibilities to model biological processes in more physiologically relevant ways which can be applied to a myriad of applications including drug development, toxicity screening and regenerative medicine. Hydrogels are the most relevant tissue-like matrices to support the development of 3D in vitro models since they are in many ways akin to the native extracellular matrix (ECM). For the purpose of further improving matrix relevance or to impart specific functionalities, composite hydrogels have attracted increasing attention. These could incorporate drugs to control cell fates, additional ECM elements to improve mechanical properties, biomolecules to improve biological activities or any combinations of the above. In this Review, recent developments in using composite hydrogels laden with cells as biomimetic tissue- or organ-like constructs, and as matrices for multi-cell type organoid cultures are highlighted. The latest composite hydrogel systems that contain nanomaterials, biological factors, and combinations of biopolymers (e.g., proteins and polysaccharide), such as Interpenetrating Networks (IPNs) and Soft Network Composites (SNCs) are also presented. While promising, challenges remain. These will be discussed in light of future perspectives toward encompassing diverse composite hydrogel platforms for an improved organ environment in vitro.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Catarina Vizetto-Duarte
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
29
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
30
|
Tuning rigidity and negative electrostriction of multi-walled carbon nanotube filled poly(lactic acid). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zueva OS, Gubaidullin AT, Makarova AO, Bogdanova LR, Zakharova LY, Zuev YF. Structural features of composite protein-polysaccharide hydrogel in the presence of a carbon nanomaterial. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2802-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Abstract
Advances of nanotechnology led to the development of nanoparticulate systems with many advantages due to their unique physicochemical properties. The use of iron-oxide magnetic nanoparticles (IOMNPs) in pharmaceutical areas increased in the last few decades. This article reviews the conceptual information about iron oxides, magnetic nanoparticles, methods of IOMNP synthesis, properties useful for pharmaceutical applications, advantages and disadvantages, strategies for nanoparticle assemblies, and uses in the production of drug delivery, hyperthermia, theranostics, photodynamic therapy, and as an antimicrobial. The encapsulation, coating, or dispersion of IOMNPs with biocompatible material(s) can avoid the aggregation, biodegradation, and alterations from the original state and also enable entrapping the bioactive agent on the particle via adsorption or covalent attachment. IOMNPs show great potential for target drug delivery, improving the therapy as a consequence of a higher drug effect using lower concentrations, thus reducing side effects and toxicity. Different methodologies allow IOMNP synthesis, resulting in different structures, sizes, dispersions, and surface modifications. These advantages support their utilization in pharmaceutical applications, and getting suitable drug release control on the target tissues could be beneficial in several clinical situations, such as infections, inflammations, and cancer. However, more toxicological clinical investigations about IOMNPs are necessary.
Collapse
|
33
|
Debus C, Wu B, Kollmann T, Duchstein P, Siglreitmeier M, Herrera S, Benke D, Kisailus D, Schwahn D, Pipich V, Faivre D, Zahn D, Cölfen H. Bioinspired multifunctional layered magnetic hybrid materials. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Christian Debus
- Department of Physical Chemistry, University of Konstanz, Konstanz, Germany
| | - Baohu Wu
- Jülich Centre for Neutron Science, Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Tina Kollmann
- Computer Chemistry Centre, University Erlangen–Nuremberg, Erlangen, Germany
| | - Patrick Duchstein
- Computer Chemistry Centre, University Erlangen–Nuremberg, Erlangen, Germany
| | | | - Steven Herrera
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA
| | - Dominik Benke
- Department of Physical Chemistry I, University of Bayreuth, Bayreuth, Germany
| | - David Kisailus
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA
| | - Dietmar Schwahn
- Jülich Centre for Neutron Science, Heinz Maier-Leibnitz Zentrum, Garching, Germany; Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Garching, Germany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science, Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Damien Faivre
- Biosciences and Biotechnologies Institute, Aix Marseille Universite, CEA and CNRS, Saint-Paul-lès-Durance, France
| | - Dirk Zahn
- Computer Chemistry Centre, University Erlangen–Nuremberg, Erlangen, Germany
| | - Helmut Cölfen
- Department of Physical Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
34
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
35
|
Blyakhman FA, Makarova EB, Fadeyev FA, Lugovets DV, Safronov AP, Shabadrov PA, Shklyar TF, Melnikov GY, Orue I, Kurlyandskaya GV. The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties. NANOMATERIALS 2019; 9:nano9020232. [PMID: 30744036 PMCID: PMC6410145 DOI: 10.3390/nano9020232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Iron oxide γ-Fe2O3 magnetic nanoparticles (MNPs) were fabricated by laser target evaporation technique (LTE) and their structure and magnetic properties were studied. Polyacrylamide (PAAm) gels with different cross-linking density of the polymer network and polyacrylamide-based ferrogel with embedded LTE MNPs (0.34 wt.%) were synthesized. Their adhesive and proliferative potential with respect to human dermal fibroblasts were studied. At the same value of Young modulus, the adhesive and proliferative activities of the human dermal fibroblasts on the surface of ferrogel were unexpectedly much higher in comparison with the surface of PAAm gel. Properties of PAAm-100 + γ-Fe2O3 MNPs composites were discussed with focus on creation of a new generation of drug delivery systems combined in multifunctional devices, including magnetic field assisted delivery, positioning, and biosensing. Although exact applications are still under development, the obtained results show a high potential of LTE MNPs to be applied for cellular technologies and tissue engineering. PAAm-100 ferrogel with very low concentration of γ-Fe2O3 MNPs results in significant improvement of the cells’ compatibility to the gel-based scaffold.
Collapse
Affiliation(s)
- Felix A Blyakhman
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Emilia B Makarova
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Ural Scientific Institute of Traumatology and Orthopaedics, 620014 Ekaterinburg, Russia.
| | - Fedor A Fadeyev
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Center of Specialized Types of Medical Care Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia.
| | - Daiana V Lugovets
- Center of Specialized Types of Medical Care Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia.
| | - Alexander P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Institute of Electrophysics, Ural Division RAS, 620016 Yekaterinburg, Russia.
| | - Pavel A Shabadrov
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Tatyana F Shklyar
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Grigory Yu Melnikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Iñaki Orue
- Advanced Research Facilities (SGIKER), Universidad del País Vasco UPV-EHU, 48080 Bilbao, Spain.
| | - Galina V Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Universidad del País Vasco UPV/EHU, Departamento de Electricidad y Electrónica and BCMaterials, 48080 Bilbao, Spain.
| |
Collapse
|
36
|
Stawski TM, van den Heuvel DB, Besselink R, Tobler DJ, Benning LG. Mechanism of silica-lysozyme composite formation unravelled by in situ fast SAXS. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:182-197. [PMID: 30746312 PMCID: PMC6350881 DOI: 10.3762/bjnano.10.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/11/2018] [Indexed: 05/31/2023]
Abstract
A quantitative understanding of aggregation mechanisms leading to the formation of composites of inorganic nanoparticles (NPs) and proteins in aqueous media is of paramount interest for colloid chemistry. In particular, the interactions between silica (SiO2) NPs and lysozyme (LZM) have attracted attention, because LZM is well-known to adsorb strongly to silica NPs, while at the same time preserving its enzymatic activity. The inherent nature of the aggregation processes leading to NP-LZM composites involves structural changes at length scales from few to at least hundreds of nanometres but also time scales much smaller than one second. To unravel these we used in situ synchrotron-based small-angle X-ray scattering (SAXS) and followed the subtle interparticle interactions in solution at a time resolution of 50 ms/frame (20 fps). We show that if the size of silica NPs (ca. 5 nm diameter) is matched by the dimensions of LZM, the evolving scattering patterns contain a unique structure-factor contribution originating from the presence of LZM. We developed a scattering model and applied it to analyse this structure function, which allowed us to extract structural information on the deformation of lysozyme molecules during aggregation, as well as to derive the mechanisms of composite formation.
Collapse
Affiliation(s)
- Tomasz M Stawski
- German Research Centre for Geosciences, GFZ, Interface Geochemistry, Telegrafenberg, 14473, Potsdam, Germany
| | - Daniela B van den Heuvel
- School of Earth and Environment, University of Leeds, Woodhouse Lane, LS2 9 JT, Leeds, UK
- Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012, Bern, Switzerland
| | - Rogier Besselink
- German Research Centre for Geosciences, GFZ, Interface Geochemistry, Telegrafenberg, 14473, Potsdam, Germany
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Liane G Benning
- German Research Centre for Geosciences, GFZ, Interface Geochemistry, Telegrafenberg, 14473, Potsdam, Germany
- School of Earth and Environment, University of Leeds, Woodhouse Lane, LS2 9 JT, Leeds, UK
- Department of Earth Sciences, Free University of Berlin, Malteserstr. 74–100 / Building A, 12249, Berlin, Germany
| |
Collapse
|
37
|
Contributions of TMAH Surfactant on Hierarchical Structures of PVA/Fe3O4–TMAH Ferrogels by Using SAXS Instrument. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0939-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Rao A, Cölfen H. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter. CHEM REC 2018; 18:1203-1221. [PMID: 29573321 DOI: 10.1002/tcr.201800003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| |
Collapse
|
39
|
Wu B, Siglreitmeier M, Debus C, Schwahn D, Cölfen H, Pipich V. Ionic Dependence of Gelatin Hydrogel Architecture Explored Using Small and Very Small Angle Neutron Scattering Technique. Macromol Biosci 2018; 18:e1800018. [PMID: 29736987 DOI: 10.1002/mabi.201800018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Indexed: 11/11/2022]
Abstract
The hierarchical structure of gelatin hydrogels mimics a natural extracellular matrix and provides an optimized microenvironment for the growth of 3D structured tissue analogs. In the presence of metal ions, gelatin hydrogels exhibit various mechanical properties that are correlated with the molecular interactions and the hierarchical structure. The structure and structural response of gelatin hydrogels to variation of gelatin concentration, pH, or addition of metal ions are explored by small and very small angle neutron scattering over broad length scales. The measurements of the hydrogels reveal the existence of a two-level structure of colloid-like large clusters and a 3D cage-like gel network. In the presence of Fe3+ ions the hydrogels show a highly dense and stiff network, while Ca2+ ions have an opposite effect. The results provide important structural insight for improvement of the design of gelatin based hydrogels and are therefore suitable for various applications.
Collapse
Affiliation(s)
- Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany.,Department of Chemistry, Physical Chemistry, University of Konstanz, Universitaetsstr 10, Konstanz, 78457, Germany
| | - Maria Siglreitmeier
- Department of Chemistry, Physical Chemistry, University of Konstanz, Universitaetsstr 10, Konstanz, 78457, Germany
| | - Christian Debus
- Department of Chemistry, Physical Chemistry, University of Konstanz, Universitaetsstr 10, Konstanz, 78457, Germany
| | - Dietmar Schwahn
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstr 1, Garching, 85748, Germany
| | - Helmut Cölfen
- Department of Chemistry, Physical Chemistry, University of Konstanz, Universitaetsstr 10, Konstanz, 78457, Germany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| |
Collapse
|
40
|
Kurdtabar M, Koutenaee RN, Bardajee GR. Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1499-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Isabettini S, Stucki S, Massabni S, Baumgartner ME, Reckey PQ, Kohlbrecher J, Ishikawa T, Windhab EJ, Fischer P, Kuster S. Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8926-8936. [PMID: 29460620 DOI: 10.1021/acsami.7b17134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln3+)-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH2)-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm3+ and Dy3+. These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide numerous perspectives for future development of tomorrow's smart materials and technologies.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Sandro Stucki
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Sarah Massabni
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Mirjam E Baumgartner
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Pernille Q Reckey
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | | | | | - Erich J Windhab
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| |
Collapse
|
42
|
Weeber R, Hermes M, Schmidt AM, Holm C. Polymer architecture of magnetic gels: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:063002. [PMID: 29261097 DOI: 10.1088/1361-648x/aaa344] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this review article, we provide an introduction to ferrogels, i.e. polymeric gels with embedded magnetic particles. Due to the interplay between magnetic and elastic properties of these materials, they are promising candidates for engineering and biomedical applications such as actuation and controlled drug release. Particular emphasis will be put on the polymer architecture of magnetic gels since it controls the degrees of freedom of the magnetic particles in the gel, and it is important for the particle-polymer coupling determining the mechanisms available for the gel deformation in magnetic fields. We report on the different polymer architectures that have been realized so far, and provide an overview of synthesis strategies and experimental techniques for the characterization of these materials. We further focus on theoretical and simulational studies carried out on magnetic gels, and highlight their contributions towards understanding the influence of the gels' polymer architecture.
Collapse
Affiliation(s)
- Rudolf Weeber
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
43
|
Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21938] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asghar Bakravi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Yashar Ahamadian
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hamed Hashemi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN); Tabriz University of Medical Science; Tabriz Iran
| |
Collapse
|
44
|
Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications. SENSORS 2018; 18:s18010257. [PMID: 29337918 PMCID: PMC5795928 DOI: 10.3390/s18010257] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a "soft matter." this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. The basic composition of the FG comprised the polymeric network of polyacrylamide, synthesized by free radical polymerization of monomeric acrylamide (AAm) in water solution at three levels of concentration (1.1 M, 0.85 M and 0.58 M) to provide the FG with varying elasticity. To improve FG biocompatibility and to prevent the precipitation of the particles, polysaccharide thickeners-guar gum or xanthan gum were used. The content of magnetic particles in FG varied up to 5.2 wt % depending on the FG composition. The mechanical properties of FG and their deformation in a uniform magnetic field were comparatively analyzed. FG filled with strontium hexaferrite particles have larger Young's modulus value than FG filled with magnetite particles, most likely due to the specific features of the adhesion of the network's polymeric subchains on the surface of the particles. FG networks with xanthan are stronger and have higher modulus than the FG with guar. FG based on magnetite, contract in a magnetic field 0.42 T, whereas some FG based on strontium hexaferrite swell. Weak FG with the lowest concentration of AAm shows a much stronger response to a field, as the concentration of AAm governs the Young's modulus of ferrogel. A small magnetic field magnetoimpedance sensor prototype with Co68.6Fe3.9Mo3.0Si12.0B12.5 rapidly quenched amorphous ribbon based element was designed aiming to develop a sensor working with a disposable stripe sensitive element. The proposed protocol allowed measurements of the concentration dependence of magnetic particles in gels using magnetoimpedance responses in the presence of magnetite and strontium hexaferrite ferrogels with xanthan. We have discussed the importance of magnetic history for the detection process and demonstrated the importance of remnant magnetization in the case of the gels with large magnetic particles.
Collapse
|
45
|
Pesqueira T, Costa-Almeida R, Mithieux SM, Babo PS, Franco AR, Mendes BB, Domingues RMA, Freitas P, Reis RL, Gomes ME, Weiss AS. Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. J Mater Chem B 2018; 6:1066-1075. [DOI: 10.1039/c7tb02035j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic biomaterials are a key focus in medical research.
Collapse
|
46
|
Gilbert T, Alsop RJ, Babi M, Moran-Mirabal J, Rheinstädter MC, Hoare T. Nanostructure of Fully Injectable Hydrazone-Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42179-42191. [PMID: 29131571 DOI: 10.1021/acsami.7b11637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we comprehensively investigate the internal morphology of fully injectable interpenetrating networks (IPNs) prepared via coextrusion of functionalized precursor polymer solutions based on thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and nonthermoresponsive poly(vinyl pyrrolidone) (PVP) by reactive mixing using kinetically orthogonal hydrazone and thiosuccinimide cross-linking mechanisms. Small-angle neutron scattering, probing both the full IPN as well as the individual constituent networks of the IPN using index-matching, suggests a partially mixed internal structure characterized by PNIPAM-rich domains entrapped in a clustered PVP-rich phase. This interpretation is supported by super-resolution fluorescence microscopy (direct stochastic optical reconstruction microscopy) measurements on the same gels on a different length scale, which show both the overall phase segregation typical of an IPN as well as moderate mixing of PNIPAM into the PVP-rich phase. Such a morphology is consistent with the kinetics of both gelation and phase separation in this in situ gelling system, in which gelation effectively traps a fraction of the PNIPAM in the PVP phase prior to full phase separation; by contrast, such interphase mixing is not observed in semi-IPN control hydrogels. This knowledge has significant potential for the design of an injectable hydrogel with internal morphologies optimized for particular biomedical applications.
Collapse
Affiliation(s)
- Trevor Gilbert
- Department of Chemical Engineering, McMaster University , 1280 Main St. W, Hamilton, Ontario L8S 4L7, Canada
| | | | | | | | | | - Todd Hoare
- Department of Chemical Engineering, McMaster University , 1280 Main St. W, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
47
|
Gelli R, Del Buffa S, Tempesti P, Bonini M, Ridi F, Baglioni P. Multi-scale investigation of gelatin/poly(vinyl alcohol) interactions in water. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Horst MF, Ninago MD, Lassalle V. Magnetically responsive gels based on crosslinked gelatin: An overview on the synthesis, properties, and their potential in water remediation. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1362640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Fernanda Horst
- INQUISUR-CONICET-UNS, Departamento de Química, Bahía Blanca, Buenos Aires, Argentina
| | - Mario Daniel Ninago
- PLAPIQUI-CONICET-UNS, Departamento de Ingeniería Química, Bahía Blanca, Buenos Aires, Argentina
| | - Verónica Lassalle
- INQUISUR-CONICET-UNS, Departamento de Química, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
49
|
|
50
|
de Toledo LDAS, Rosseto HC, Bruschi ML. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharm Dev Technol 2017; 23:316-323. [DOI: 10.1080/10837450.2017.1337793] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lucas de Alcântara Sica de Toledo
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Hélen Cássia Rosseto
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|