1
|
Qu L, Chi Z, Ye BC. Development and application of an interbacterial DNA delivery system based on M13 bacteriophage. Arch Microbiol 2025; 207:113. [PMID: 40186660 DOI: 10.1007/s00203-025-04309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
With the rapid development in synthetic biology, bacterial therapy has been widely applied in disease diagnosis and treatment. A key step in regulating the execution of specific instructions by engineered bacteria in vivo involves the transfer of information between bacteria. Currently, small molecule compounds and proteins are commonly used as carriers for inter-bacterial information transfer. However, DNA, as an information carrier, boasts higher information capacity and ease of editing. Based on this, we have developed an engineered bacterial DNA delivery system using M13 bacteriophage to study the cooperative response mechanisms between bacteria. Firstly, we leveraged the ability of engineered bacteria to secrete phagemid DNA into the extracellular environment via bacteriophages and to acquire phagemid DNA through infection by extracellular phagemids, thereby developing a dynamic phagemid replenishment system. This system can maintain the stability of phagemid DNA in environments lacking antibiotic selection pressure, constructing a stable DNA delivery platform for phagemid output. Subsequently, using this engineered bacterial DNA delivery system, we modularized gene circuits and placed them in two different engineered bacteria. Through DNA transfer, we achieved a cooperative response to signals between the two bacteria, laying the groundwork for multi-bacterial joint regulation. Our research not only provides an effective tool for information transfer in engineered bacteria but also offers a novel approach for multi-bacterial therapy.
Collapse
Affiliation(s)
- Li Qu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhou Chi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Ragothaman M, Yoo SY. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines (Basel) 2023; 11:vaccines11050919. [PMID: 37243023 DOI: 10.3390/vaccines11050919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages have emerged as versatile tools in the field of bioengineering, with enormous potential in tissue engineering, vaccine development, and immunotherapy. The genetic makeup of phages can be harnessed for the development of novel DNA vaccines and antigen display systems, as they can provide a highly organized and repetitive presentation of antigens to immune cells. Bacteriophages have opened new possibilities for the targeting of specific molecular determinants of cancer cells. Phages can be used as anticancer agents and carriers of imaging molecules and therapeutics. In this review, we explored the role of bacteriophages and bacteriophage engineering in targeted cancer therapy. The question of how the engineered bacteriophages can interact with the biological and immunological systems is emphasized to comprehend the underlying mechanism of phage use in cancer immunotherapy. The effectiveness of phage display technology in identifying high-affinity ligands for substrates, such as cancer cells and tumor-associated molecules, and the emerging field of phage engineering and its potential in the development of effective cancer treatments are discussed. We also highlight phage usage in clinical trials as well as the related patents. This review provides a new insight into engineered phage-based cancer vaccines.
Collapse
Affiliation(s)
- Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021; 23:402. [PMID: 35008840 PMCID: PMC8745063 DOI: 10.3390/ijms23010402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer, especially the solid tumor sub-set, poses considerable challenges to modern medicine owing to the unique physiological characteristics and substantial variations in each tumor's microenvironmental niche fingerprints. Though there are many treatment methods available to treat solid tumors, still a considerable loss of life happens, due to the limitation of treatment options and the outcomes of ineffective treatments. Cancer cells evolve with chemo- or radiation-treatment strategies and later show adaptive behavior, leading to failed treatment. These challenges demand tailored and individually apt personalized treatment methods. Bacteriophages (or phages) and phage-based theragnostic vectors are gaining attention in the field of modern cancer medicine, beyond their bactericidal ability. With the invention of the latest techniques to fine-tune phages, such as in the field of genetic engineering, synthetic assembly methods, phage display, and chemical modifications, noteworthy progress in phage vector research for safe cancer application has been realized, including use in pre-clinical studies. Herein, we discuss the distinct fingerprints of solid tumor physiology and the potential for bacteriophage vectors to exploit specific tumor features for improvised tumor theragnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi 3290498, Japan; (S.V.); (A.H.A.); (K.K.); (S.W.)
| |
Collapse
|
5
|
Exposure to Bacteriophages T4 and M13 Increases Integrin Gene Expression and Impairs Migration of Human PC-3 Prostate Cancer Cells. Antibiotics (Basel) 2021; 10:antibiotics10101202. [PMID: 34680783 PMCID: PMC8532711 DOI: 10.3390/antibiotics10101202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.
Collapse
|
6
|
Sanmukh SG, dos Santos NJ, Barquilha CN, Cucielo MS, de Carvalho M, dos Reis PP, Delella FK, Carvalho HF, Felisbino SL. Bacteriophages M13 and T4 Increase the Expression of Anchorage-Dependent Survival Pathway Genes and Down Regulate Androgen Receptor Expression in LNCaP Prostate Cell Line. Viruses 2021; 13:v13091754. [PMID: 34578333 PMCID: PMC8473360 DOI: 10.3390/v13091754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Wild-type or engineered bacteriophages have been reported as therapeutic agents in the treatment of several types of diseases, including cancer. They might be used either as naked phages or as carriers of antitumor molecules. Here, we evaluate the role of bacteriophages M13 and T4 in modulating the expression of genes related to cell adhesion, growth, and survival in the androgen-responsive LNCaP prostatic adenocarcinoma-derived epithelial cell line. LNCaP cells were exposed to either bacteriophage M13 or T4 at a concentration of 1 × 105 pfu/mL, 1 × 106 pfu/mL, and 1 × 107 pfu/mL for 24, 48, and 72 h. After exposure, cells were processed for general morphology, cell viability assay, and gene expression analyses. Neither M13 nor T4 exposure altered cellular morphology, but both decreased the MTT reduction capacity of LNCaP cells at different times of treatment. In addition, genes AKT, ITGA5, ITGB1, ITGB3, ITGB5, MAPK3, and PI3K were significantly up-regulated, whilst the genes AR, HSPB1, ITGAV, and PGC1A were down-regulated. Our results show that bacteriophage M13 and T4 interact with LNCaP cells and effectively promote gene expression changes related to anchorage-dependent survival and androgen signaling. In conclusion, phage therapy may increase the response of PCa treatment with PI3K/AKT pathway inhibitors.
Collapse
Affiliation(s)
- Swapnil Ganesh Sanmukh
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (S.G.S.); (N.J.d.S.); (C.N.B.); (M.S.C.); (F.K.D.)
| | - Nilton José dos Santos
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (S.G.S.); (N.J.d.S.); (C.N.B.); (M.S.C.); (F.K.D.)
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil;
| | - Caroline Nascimento Barquilha
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (S.G.S.); (N.J.d.S.); (C.N.B.); (M.S.C.); (F.K.D.)
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil;
| | - Maira Smaniotto Cucielo
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (S.G.S.); (N.J.d.S.); (C.N.B.); (M.S.C.); (F.K.D.)
| | - Márcio de Carvalho
- Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.d.C.); (P.P.d.R.)
| | - Patricia Pintor dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.d.C.); (P.P.d.R.)
| | - Flávia Karina Delella
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (S.G.S.); (N.J.d.S.); (C.N.B.); (M.S.C.); (F.K.D.)
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil;
| | - Sérgio Luis Felisbino
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (S.G.S.); (N.J.d.S.); (C.N.B.); (M.S.C.); (F.K.D.)
- Correspondence:
| |
Collapse
|
7
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Nagarajan K, Perumal SK, Marimuthu SK, Palanisamy S, Subbiah L. Addressing Antimicrobial Resistance Through Nanoantibiotics. HANDBOOK OF RESEARCH ON NANO-STRATEGIES FOR COMBATTING ANTIMICROBIAL RESISTANCE AND CANCER 2021:56-86. [DOI: 10.4018/978-1-7998-5049-6.ch003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, the irrational use of antibiotics has escalated the evolution of multidrug-resistant (MDR) bacterial strains. The infectious diseases caused by these MDR bacterial strains remain a major threat to human health and have emerged as the leading cause of morbidity and mortality. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. The antimicrobial resistance (AMR) poses a severe global threat of growing concern to human health and economic burden. Bacteria have developed the ability to resist antimicrobials by altering target site/enzyme, inactivation of the enzyme, decreasing cell permeability, increasing efflux due to over-expression of efflux pumps, target protection, target overproduction, and many other ways. The shortage of new antimicrobials and rapid rise in antibiotic resistance demands pressing need to develop alternate antibacterial agents.
Collapse
Affiliation(s)
- Krishnanand Nagarajan
- University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | | | | | | | | |
Collapse
|
9
|
Manivannan S, Lee D, Kang DK, Kim K. M13 virus-templated open mouth-like platinum nanostructures prepared by electrodeposition: Influence of M13-virus on structure and electrocatalytic activity. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yoo SY, Badrinath N, Lee HL, Heo J, Kang DH. A Cancer-Favoring, Engineered Vaccinia Virus for Cholangiocarcinoma. Cancers (Basel) 2019; 11:E1667. [PMID: 31717883 PMCID: PMC6896061 DOI: 10.3390/cancers11111667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
While oncolytic vaccinia virus-based therapy has shown promising results for uncured patients with cancer, its effects on cholangiocarcinoma (CCA) remain unclear. Here, we evaluated the anti-cancer activity of the cancer-favoring oncolytic vaccinia virus (CVV), which was recognized as a promising therapy for stem cell-like colon cancer cells (SCCs) and metastatic hepatocellular carcinoma (HCC) in previous studies. CCA presents major challenges, such as clinical complexity, stem cell cancer characteristics, a high refractory rate, resistance to conventional therapy, and a dismal prognosis. In the present study, we confirmed the oncolytic activity of the CVV in CCA with a slightly alkaline microenvironment (pH 7-8), in which the CVV was stable and highly effective at infecting CCA. Taken together, our findings suggest that CVV-based therapy is highly suitable for the treatment of CCA.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (H.L.L.); (D.-H.K.)
| | - Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea; (N.B.); (J.H.)
| | - Hye Lim Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (H.L.L.); (D.-H.K.)
| | - Jeong Heo
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea; (N.B.); (J.H.)
| | - Dae-Hwan Kang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (H.L.L.); (D.-H.K.)
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea; (N.B.); (J.H.)
| |
Collapse
|
11
|
Chae SY, Shrestha KR, Jeong SN, Park G, Yoo SY. Bioinspired RGD-Engineered Bacteriophage Nanofiber Cues against Oxidative Stress. Biomacromolecules 2019; 20:3658-3671. [DOI: 10.1021/acs.biomac.9b00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seon Yeong Chae
- BIO-IT Foundry
Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Kshitiz Raj Shrestha
- BIO-IT Foundry
Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute
for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Su-Nam Jeong
- BIO-IT Foundry
Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute
for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Geuntae Park
- BIO-IT Foundry
Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry
Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute
for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
12
|
Shrestha KR, Yoo SY. Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells Int 2019; 2019:4038560. [PMID: 31073312 PMCID: PMC6470417 DOI: 10.1155/2019/4038560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation of stem cells can be the best option for treating intractable diseases in regenerative medicine, and they occur when these cells reside in a special microenvironment, called the "stem cell niche." Thus, the niche is crucial for the effective performance of the stem cells in both in vivo and in vitro since the niche provides its functional cues by interacting with stem cells chemically, physically, or topologically. This review provides a perspective on the different types of artificial niches including engineered phage and how they could be used to recapitulate or manipulate stem cell niches. Phage-based artificial niche engineering as a promising therapeutic strategy for repair and regeneration of tissues is also discussed.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
13
|
Yoo SY, Jeong SN, Kang JI, Lee SW. Chimeric Adeno-Associated Virus-Mediated Cardiovascular Reprogramming for Ischemic Heart Disease. ACS OMEGA 2018; 3:5918-5925. [PMID: 30023931 PMCID: PMC6044635 DOI: 10.1021/acsomega.8b00904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
Here, we demonstrated chimeric adeno-associated virus (chimeric AAV), AAV-DJ-mediated cardiovascular reprogramming strategy to generate new cardiomyocytes and limit collagen deposition in cardiac fibroblasts by inducing synergism of chimeric AAV-expressing Gata4, Mef2c, Tbx5 (AAV-GMT)-mediated heart reprogramming and chimeric AAV-expressing thymosin β4 (AAV-Tβ4)-mediated heart regeneration. AAV-GMT promoted a gradual increase in expression of cardiac-specific genes, including Actc1, Gja1, Myh6, Ryr2, and cTnT, with a gradual decrease in expression of a fibrosis-specific gene, procollagen type I and here AAV-Tβ4 help to induce GMT expression, providing a chimeric AAV-mediated therapeutic cell reprogramming strategy for ischemic heart diseases.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT
Foundry Technology Institute, Pusan National
University, Busan 46241, Republic of Korea
- Research
Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Su-Nam Jeong
- BIO-IT
Foundry Technology Institute, Pusan National
University, Busan 46241, Republic of Korea
| | - Jeong-In Kang
- Research
Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Control
and Instrumentation Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering,
University of California, Berkeley, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Lee HS, Kang JI, Chung WJ, Lee DH, Lee BY, Lee SW, Yoo SY. Engineered Phage Matrix Stiffness-Modulating Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4349-4358. [PMID: 29345898 DOI: 10.1021/acsami.7b17871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herein, we demonstrate an engineered phage mediated matrix for osteogenic differentiation with controlled stiffness by cross-linking the engineered phage displaying Arg-Gly-Asp (RGD) and His-Pro-Gln (HPQ) with various concentrations of streptavidin or polymer, poly(diallyldimethylammonium)chloride (PDDA). Osteogenic gene expressions showed that they were specifically increased when MC3T3 cells were cultured on the stiffer phage matrix than the softer one. Our phage matrixes can be easily functionalized using chemical/genetic engineering and used as a stem cell tissue matrix stiffness platform for modulating differential cell expansion and differentiation.
Collapse
Affiliation(s)
- Hee-Sook Lee
- Bioengineering, University of California, Berkeley, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Ministry of Food and Drug Safety, Center for Test and Analysis , Busan 48562, Republic of Korea
| | - Jeong-In Kang
- BIO-IT Foundry Technology Institute, Pusan National University , Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital , Yangsan 50612, Republic of Korea
- Control and Instrumentation Engineering, Korea Maritime and Ocean University , Busan 49112, Republic of Korea
| | - Woo-Jae Chung
- Genetic Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Do Hoon Lee
- Mechanical Engineering, Korea University , Seoul 02841, Republic of Korea
| | - Byung Yang Lee
- Mechanical Engineering, Korea University , Seoul 02841, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering, University of California, Berkeley, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University , Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital , Yangsan 50612, Republic of Korea
| |
Collapse
|
15
|
Abstract
M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.
Collapse
Affiliation(s)
- Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- College of Pharmacy, Ajou University, Suwon, Korea.
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Tshinghua Berkeley Shenzhen Institute, Berkeley, CA, USA
| |
Collapse
|
16
|
Manivannan S, Seo Y, Kang DK, Kim K. Colorimetric and optical Hg(ii) ion sensor developed with conjugates of M13-bacteriophage and silver nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj04496a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hg(ii) produces an AgHg amalgam on a conjugate of Ag nanoparticles and M13-bacteriophage, which effectively quenches the optical absorption of the Ag nanoparticles.
Collapse
Affiliation(s)
- Shanmugam Manivannan
- Electrochemistry Laboratory for Sensors & Energy (ELSE)
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Yeji Seo
- Electrochemistry Laboratory for Sensors & Energy (ELSE)
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Dong-Ku Kang
- Nanobio Laboratory
- Department of Chemistry
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors & Energy (ELSE)
- Incheon National University
- Incheon 22012
- Republic of Korea
| |
Collapse
|
17
|
Alberts E, Warner C, Barnes E, Pilkiewicz K, Perkins E, Poda A. Genetically tunable M13 phage films utilizing evaporating droplets. Colloids Surf B Biointerfaces 2018; 161:210-218. [DOI: 10.1016/j.colsurfb.2017.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022]
|
18
|
Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017; 24:1898-1908. [PMID: 29191048 PMCID: PMC8241185 DOI: 10.1080/10717544.2017.1410259] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.
Collapse
Affiliation(s)
- Zhigang Ju
- Medicine College, Guiyang University of Chinese Medicine, Huaxi university town, Guiyang City, Guizhou Province, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, College of Life Science, Guizhou Normal University, Huaxi university town, Guiyang City, Guizhou Province, China
| |
Collapse
|
19
|
Manivannan S, Kang I, Seo Y, Jin HE, Lee SW, Kim K. M13 Virus-Incorporated Biotemplates on Electrode Surfaces To Nucleate Metal Nanostructures by Electrodeposition. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32965-32976. [PMID: 28872295 DOI: 10.1021/acsami.7b06545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a virus-incorporated biological template (biotemplate) on electrode surfaces and its use in electrochemical nucleation of metal nanocomposites as an electrocatalytic material for energy applications. The biotemplate was developed with M13 virus (M13) incorporated in a silicate sol-gel matrix as a scaffold to nucleate Au-Pt alloy nanostructures by electrodeposition, together with reduced graphene oxide (rGO). The phage when engineered with Y3E peptides could nucleate Au-Pt alloy nanostructures, which ensured adequate packing density, simultaneous stabilization of rGO, and a significantly increased electrochemically active surface area. Investigation of the electrocatalytic activity of the resulting sol-gel composite catalyst toward methanol oxidation in an alkaline medium showed that this catalyst had mass activity greater than that of the biotemplate containing wild-type M13 and that of monometallic Pt and other Au-Pt nanostructures with different compositions and supports. M13 in the nanocomposite materials provided a close contact between the Au-Pt alloy nanostructures and rGO. In addition, it facilitated the availability of an OH--rich environment to the catalyst. As a result, efficient electron transfer and a synergistic catalytic effect of the Au and Pt in the alloy nanostructures toward methanol oxidation were observed. Our nanocomposite synthesis on the novel biotemplate and its application might be useful for developing novel clean and green energy-generating and energy-storage materials.
Collapse
Affiliation(s)
- Shanmugam Manivannan
- Electrochemistry Laboratory for Sensors & Energy (ELSE) Department of Chemistry, Incheon National University , Incheon 406-772, Republic of Korea
| | - Inhak Kang
- Electrochemistry Laboratory for Sensors & Energy (ELSE) Department of Chemistry, Incheon National University , Incheon 406-772, Republic of Korea
| | - Yeji Seo
- Electrochemistry Laboratory for Sensors & Energy (ELSE) Department of Chemistry, Incheon National University , Incheon 406-772, Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors & Energy (ELSE) Department of Chemistry, Incheon National University , Incheon 406-772, Republic of Korea
| |
Collapse
|
20
|
Lee JH, Warner CM, Jin HE, Barnes E, Poda AR, Perkins EJ, Lee SW. Production of tunable nanomaterials using hierarchically assembled bacteriophages. Nat Protoc 2017; 12:1999-2013. [DOI: 10.1038/nprot.2017.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Lam P, Steinmetz NF. Plant viral and bacteriophage delivery of nucleic acid therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia Lam
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
| | - Nicole F. Steinmetz
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
- Department of RadiologyCase Western Reserve UniversityClevelandOHUSA
- Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandOHUSA
- Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandOHUSA
- Division of General Medical Sciences‐Oncology, Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
22
|
Tseng SJ, Huang KY, Kempson IM, Kao SH, Liu MC, Yang SC, Liao ZX, Yang PC. Remote Control of Light-Triggered Virotherapy. ACS NANO 2016; 10:10339-10346. [PMID: 27934080 DOI: 10.1021/acsnano.6b06051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clinical virotherapy has been successfully approved for use in cancer treatment by the U.S. Food and Drug Administration; however, a number of improvements are still sought to more broadly develop virotherapy. A particular challenge is to administer viral therapy systemically and overcome limitations in intratumoral injection, especially for complex tumors within sensitive organs. To achieve this, however, a technique is required that delivers the virus to the tumor before the body's natural self-defense eradicates the virus prematurely. Here we show that recombinant adeno-associated virus serotype 2 (AAV2) chemically conjugated with iron oxide nanoparticles (∼5 nm) has a remarkable ability to be remotely guided under a magnetic field. Transduction is achieved with microscale precision. Furthermore, a gene for production of the photosensitive protein KillerRed was introduced into the AAV2 genome to enable photodynamic therapy (PDT), or light-triggered virotherapy. In vivo experiments revealed that magnetic guidance of "ironized" AAV2-KillerRed injected by tail vein in conjunction with PDT significantly decreases the tumor growth via apoptosis. This proof-of-principle demonstrates guided and highly localized microscale, light-triggered virotherapy.
Collapse
Affiliation(s)
- S-Ja Tseng
- National Taiwan University Cancer Center (YongLin Scholar) , Taipei 10051, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia , Mawson Lakes, S.A. 5095, Australia
| | - Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University , Taichung 40402, Taiwan
| | - Meng-Chia Liu
- Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| |
Collapse
|
23
|
Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 2016; 106:45-62. [PMID: 26994592 PMCID: PMC5026880 DOI: 10.1016/j.addr.2016.03.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology & Nanomedicine Research Group [ANNRG], Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mohsen Moghoofei
- Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran; Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Yang L, Liu A, Cao S, Putri RM, Jonkheijm P, Cornelissen JJLM. Self-Assembly of Proteins: Towards Supramolecular Materials. Chemistry 2016; 22:15570-15582. [DOI: 10.1002/chem.201601943] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Liulin Yang
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Aijie Liu
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Shuqin Cao
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Rindia M. Putri
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
25
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Lee JY, Chung WJ, Kim G. A mechanically improved virus-based hybrid scaffold for bone tissue regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra07054j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hybrid scaffold (M13-phage/alginate and PCL) was proposed as a biomedical scaffold.
Collapse
Affiliation(s)
- Jae Yoon Lee
- Department of Biomechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Woo-Jae Chung
- Department of Genetic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|
27
|
Lee JY, Chung J, Chung WJ, Kim G. Fabrication and in vitro biocompatibilities of fibrous biocomposites consisting of PCL and M13 bacteriophage-conjugated alginate for bone tissue engineering. J Mater Chem B 2015; 4:656-665. [PMID: 32262947 DOI: 10.1039/c5tb01748c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the M13 bacteriophage, which has integrin binding and calcium binding sites, provides topological cues from the nanofibrous shape and biochemical cues from the Arg-Gly-Asp (RGD) sequence attached to the surface of fibrous phage, it has been recommended as a bioactive component for use in bone tissue engineering. However, although it has good biological activities, its low mechanical properties and low processing ability represent major issues that must be overcome before its use as a tissue engineering substitute. To overcome these issues, we chemically conjugated the M13 bacteriophage and alginate with a cross-linking agent and it was used as a bioactive component on electrospun poly(ε-caprolactone) (PCL) micro/nanofibres. Assessment of the physical properties and in vitro biocompatibility using osteoblast-like cells indicated that the biocomposite supplemented with the conjugated phage/alginate was mechanically enhanced, and the extent of mineralisation of cells on the composite was significantly higher compared to that on the fibrous composites fabricated using physically mixed M13 phage/alginate and RGD-modified alginate. These results indicate that M13 phage-conjugated alginate may have potential to be used as an excellent bioactive component for bone tissue regeneration.
Collapse
Affiliation(s)
- Jae Yoon Lee
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | | | | | | |
Collapse
|