1
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
2
|
Sardar MS, Kashinath KP, Gupta U, Roy S, Kaity S. Polymeric nanotheranostics for solid tumor management: Recent developments and global regulatory landscape. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractPolymeric nanotheranostics have emerged as promising vehicles for diagnosis‐cum‐targeted therapy in solid tumors, offering precise delivery of therapeutic agents at the site of solid tumors and minimizing systemic side effects. This article summarizes the latest developments in using polymeric nanoparticles for specific treatment strategies in solid tumors. It explores the various methods these nanoparticles utilize for targeted medication delivery. This includes passive targeting through the amplified permeability and retention effect, active targeting via interactions between ligands and receptors, and stimuli‐responsive release mechanisms such as pH, temperature, and enzymatic triggers. Furthermore, we highlight recent developments in stimuli‐responsive polymeric nanoparticles, which enable controlled drug release in response to specific cues in the tumor microenvironment, thus enhancing therapeutic efficacy. Also, we focus on the theranostic polymeric nanoparticles, which are used for diagnosing and treating solid tumors. We discuss critical regulatory considerations and the regulatory bodies of different countries that regulate nanomedicines' safety, efficacy, quality, and manufacturing processes. Overall, this review provides insights into the latest innovations in polymeric nanoparticles for targeted therapy in solid tumors, elucidating their mechanisms of action, stimuli‐responsive properties, and regulatory pathways, which collectively contribute to developing effective and safe nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Md Samim Sardar
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Kardile Punam Kashinath
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Ujjwal Gupta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research Kolkata West Bengal India
| | - Santanu Kaity
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| |
Collapse
|
3
|
Ai S, Zhao P, Fang K, Cheng H, Cheng S, Liu Z, Wang C. Charge Conversional Biomimetic Nanosystem for Synergistic Photodynamic/Protein Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307193. [PMID: 38054765 DOI: 10.1002/smll.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Cytochrome C (Cytc) has received considerable attention due to its ability to induce tumor apoptosis and generate oxygen to improve photodynamic therapy (PDT) efficiency. However, the damage to normal tissues caused by nonspecific accumulation of Cytc limits its application. Herein, in order to reduce its toxicity to normal tissues while retaining its activity, a charge conversional biomimetic nanosystem (CA/Ce6@MSN-4T1) is proposed to improve the tumor targeting ability and realize controlled release of Cytc in the tumor microenvironment. This nanosystem is constructed by coating tumor cell membrane on mesoporous silica nanoparticles coloaded with a photosensitizer (chlorin e6, Ce6) and the citraconic anhydride conjugated Cytc (CA) for synergistic photodynamic/protein therapy. The coating of the tumor cell membrane endows the nanoparticles with homologous targeting ability to the same cancer cells as well as immune escaping capability. CA undergoes charge conversion in the acidic environment of the tumor to achieve a controlled release of Cytc. The released Cytc can relieve cellular hypoxia to improve the PDT efficiency of Ce6 and can induce programmed cell death. Both in vitro and in vivo studies demonstrated that CA/Ce6@MSN-4T1 can efficiently inhibit the growth of tumors through synergistic photodynamic/protein therapy, and meanwhile show reduced side effects on normal tissues.
Collapse
Affiliation(s)
- Shulun Ai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Peisen Zhao
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Kaixuan Fang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Hemei Cheng
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Sixue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhihong Liu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
4
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
5
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
7
|
Liwinska W, Waleka-Bagiel E, Stojek Z, Karbarz M, Zabost E. Enzyme-triggered- and tumor-targeted delivery with tunable, methacrylated poly(ethylene glycols) and hyaluronic acid hybrid nanogels. Drug Deliv 2022; 29:2561-2578. [PMID: 35938558 PMCID: PMC9477489 DOI: 10.1080/10717544.2022.2105443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022] Open
Abstract
Enzyme-responsive polymeric-based nanostructures are potential candidates for serving as key materials in targeted drug delivery carriers. However, the major risk in their prolonged application is fast disassembling of the short-lived polymeric-based structures. Another disadvantage is the limited accessibility of the enzyme to the moieties that are located inside the network. Here, we report on a modified environmentally responsive and enzymatically cleavable nanogel carrier that contains a hybrid network. A properly adjusted volume phase transition (VPT) temperature allowed independent shrinking of a) poly(ethylene glycol) methyl ether methacrylate (OEGMA) with di(ethylene glycol) and b) methyl ether methacrylate (MEO2MA) part of the network, and the exposition of hyaluronic acid methacrylate (MeHa) network based carboxylic groups for its targeted action with the cellular based receptors. This effect was substantial after raising temperature in typical hyperthermia-based treatment therapies. Additionally, novel tunable NGs gained an opportunity to store- and to efficient-enzyme-triggered release relatively low but highly therapeutic doses of doxorubicin (DOX) and mitoxantrone (MTX). The controlled enzymatic degradation of NGs could be enhanced by introducing more hyaluronidase enzyme (HAdase), that is usually overexpressed in cancer environments. MTT assay results revealed effective cytotoxic activity of the NGs against the human MCF-7 breast cancer cells, the A278 ovarian cancer cells and also cytocompatibility against the MCF-10A and HOF healthy cells. The obtained tunable, hybrid network NGs might be used as a useful platform for programmed delivery of other pharmaceuticals and diagnostics in therapeutic applications.
Collapse
Affiliation(s)
- Wioletta Liwinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, PL, Poland
| | - Ewelina Waleka-Bagiel
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, PL, Poland
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, PL, Poland
| | - Zbigniew Stojek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, PL, Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, PL, Poland
| | - Ewelina Zabost
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, PL, Poland
| |
Collapse
|
8
|
Akbarian M, Bahmani M, Chen SH, Yousefi R, Mohammadi-Samani S, Tayebi L, Panahi F, Farjadian F. Mechanisms behind the Fibrillation and Toxicity of Insulin Fibrils on Neuron Cells by Engineered Curcumin Analogs. ACS Chem Neurosci 2022; 13:2613-2631. [PMID: 35969719 DOI: 10.1021/acschemneuro.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Among foods, the use of plant derivatives as promising drugs and/or excipients has been considered from various perspectives. In the present study, curcumin, which is one of the most important plant derivatives for biological uses, and four curcumin-based pyrido[2,3-d]pyrimidine analogs (C2-C5) were used for investigating the mechanism of insulin fibrillation and evaluating the cytotoxicity of insulin fibrils. The synthesized analogs differed in terms of hydrophobicity and electrostatic charge. The analogs with more hydrophobicity (C1 and C4) in both acidic and neutral environments were able to reduce the rate of insulin fibrillation and the degree of cross-linking in the produced fibrils. Additionally, the toxicity of these fibrils for neural cells (N2a cell line) was very low. However, they did not show any significant effects on the toxicity of non-neural cells (HEK293 cell line), indicating the effect of the biochemical surface diversity on determining the vulnerability to fibrils and even the mechanism of action of additives on cell line survival. Although negatively charged analogs were able to reduce insulin fibrillation in the acidic environment, they indicated an opposite effect in the neutral environment. The resultant fibrils in the acidic medium appeared with a well-distinguished filament, but they were very close at neutral pH levels. Moreover, such fibrils indicated very poor toxicity against the N2a cell line and had no significant effects on HEK293 cells. Considering the docking studies, by creatively using the size exclusion chromatography, it was suggested that analogs C2 and C3 were capable of binding to the C-terminal end of the insulin B chain (low affinity) and HisB10 (high affinity). Hence, it was suggested that different compounds could play different protecting and/or destroying roles in cell toxicity by blocking some ligands at the surface of neuron cells.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Chemistry, National Cheng Kung University, Tainan701, Taiwan
| | - Marzieh Bahmani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, University of Wollongong, NSW, Wollongong2522, Australia
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan701, Taiwan
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran1417466191, Iran
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz7193371, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin53233-2186, United States
| | - Farhad Panahi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
| |
Collapse
|
9
|
Cheng Z, Li Y, Zhao D, Zhao W, Wu M, Zhang W, Cui Y, Zhang P, Zhang Z. Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Front Bioeng Biotechnol 2022; 10:994655. [PMID: 36147526 PMCID: PMC9485877 DOI: 10.3389/fbioe.2022.994655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In the past few decades, the combination of proteins and small-molecule drugs has made tremendous progress in cancer treatment, but it is still not satisfactory. Because there are great differences in molecular weight, water solubility, stability, pharmacokinetics, biodistribution, and the ways of release and action between macromolecular proteins and small-molecule drugs. To improve the efficacy and safety of tumor treatment, people are committed to developing protein and drug co-delivery systems. Currently, intracellular co-delivery systems have been developed that integrate proteins and small-molecule drugs into one nanocarrier via various loading strategies. These systems significantly improve the blood stability, half-life, and biodistribution of proteins and small-molecule drugs, thus increasing their concentration in tumors. Furthermore, proteins and small-molecule drugs within these systems can be specifically targeted to tumor cells, and are released to perform functions after entering tumor cells simultaneously, resulting in improved effectiveness and safety of tumor treatment. This review summarizes the latest progress in protein and small-molecule drug intracellular co-delivery systems, with emphasis on the composition of nanocarriers, as well as on the loading methods of proteins and small-molecule drugs that play a role in cells into the systems, which have not been summarized by others so far.
Collapse
Affiliation(s)
- Zhihong Cheng
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yongshuang Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Song T, Gao Y, Song M, Qian J, Zhang H, Zhou J, Ding Y. Fluoropolymers-mediated efficient biomacromolecule drug delivery. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Jiang Z, Pan Y, Wang J, Li J, Yang H, Guo Q, Liang S, Chen S, Hu Y, Wang L. Bone-Targeted ICG/Cyt c@ZZF-8 Nanoparticles Based on the Zeolitic Imidazolate Framework-8: A New Synergistic Photodynamic and Protein Therapy for Bone Metastasis. Biomater Sci 2022; 10:2345-2357. [PMID: 35383343 DOI: 10.1039/d2bm00185c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone metastasis (BM) is a solid tumor confined to narrow bone marrow cavities with a relatively poor blood supply and hypoxic environment, making conventional anticancer treatments difficult. In our study,...
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haoze Yang
- Department of Cardiology, Second Xiangya Hospital, Central South University, China
| | - Qi Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, China
| | - Yihe Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Li Y, Sun J, Li J, Liu K, Zhang H. Engineered protein nanodrug as an emerging therapeutic tool. NANO RESEARCH 2022; 15:5161-5172. [PMID: 35281219 PMCID: PMC8900963 DOI: 10.1007/s12274-022-4103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Functional proteins are the most versatile macromolecules. They can be obtained by extraction from natural sources or by genetic engineering technologies. The outstanding selectivity, specificity, binding activity, and biocompatibility endow engineered proteins with outstanding performance for disease therapy. Nevertheless, their stability is dramatically impaired in blood circulation, hindering clinical translations. Thus, many strategies have been developed to improve the stability, efficacy, bioavailability, and productivity of therapeutic proteins for clinical applications. In this review, we summarize the recent progress in the fabrication and application of therapeutic proteins. We first introduce various strategies for improving therapeutic efficacy via bioengineering and nanoassembly. Furthermore, we highlight their diverse applications as growth factors, nanovaccines, antibody-based drugs, bioimaging molecules, and cytokine receptor antagonists. Finally, a summary and perspective for the future development of therapeutic proteins are presented.
Collapse
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081 Germany
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
13
|
Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-Sensitive Protein Nanogels Enhance Uptake of Model and Tumor Lysate Antigens In Vitro by Mouse- and Human-Derived Dendritic Cells. ACS APPLIED BIO MATERIALS 2021; 4:8291-8300. [PMID: 35005925 DOI: 10.1021/acsabm.1c00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides and proteins represent an emerging class of powerful therapeutics. Peptide and protein nanogels are attractive carriers for the transport and delivery of biologically active peptides and proteins because they allow essentially quantitative encapsulation of these biologics. One interesting field of use of peptide and protein nanogels is the transport of antigens and adjuvants in cancer immunotherapy. This study demonstrates the use of reduction-sensitive protein nanogels for the delivery of ovalbumin and oxidized tumor lysate-based antigens to mouse and human-donor-derived dendritic cells. Challenging mouse-derived and human dendritic cells with reduction-sensitive ovalbumin nanogels was found to significantly enhance antigen uptake as compared to the use of the corresponding free protein antigen. The experiments with mouse-derived dendritic cells further showed that the administration of ovalbumin in the form of reduction-sensitive nanogels enhanced dendritic cell maturation as well as the presentation of the SIINFEKL epitope as compared to experiments that use free ovalbumin. In addition to ovalbumin as a model antigen, the feasibility of reduction-sensitive nanogels was also demonstrated for the delivery of oxidized, whole tumor lysate-based cancer antigens. In experiments with dendritic cells harvested from human donors, dendritic cell uptake of the oxidized tumor lysate antigen was significantly enhanced in experiments that used oxidized tumor lysate nanogels as compared to the free antigen.
Collapse
Affiliation(s)
- Cristiana Berti
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Alice Boarino
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lisa P E Bader
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Harm-Anton Klok
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Tully M, Hauptstein N, Licha K, Meinel L, Lühmann T, Haag R. Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4. J Pharm Sci 2021; 111:1642-1651. [PMID: 34728175 DOI: 10.1016/j.xphs.2021.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
Polymer conjugation to biologics is of key interest to the pharmaceutical industry for the development of potent and long acting biotherapeutics, with poly(ethylene glycol) (PEG) being the gold standard. Within the last years, unwanted PEG-related side effects (immunological reactions, antibody formation) arose, therefore creating several attempts to establish alternative polymers with similar potential to PEG. In this article, we synthesized N-terminal bioconjugates of the potential therapeutic human interleukin-4 (hIL-4 WT) with linear polyglycerol (LPG) of 10 and 40 kDa and compared it with its PEG analogs of same nominal weights. Polyglycerol is a highly hydrophilic polymer with good biocompatibility and therefore represents an alternative polymer to PEG. Both polymer types resulted in similar conjugation yields, comparable hydrodynamic sizes and an unaltered secondary structure of the protein after modification. LPG- and PEG-bioconjugates remained stable in human plasma, whereas binding to human serum albumin (HSA) decreased after polymer modification. Furthermore, only minor differences in bioactivity were observed between LPG- and PEG-bioconjugates of same nominal weights. The presented findings are promising for future pharmacokinetic evaluation of hIL-4-polymer bioconjugates.
Collapse
Affiliation(s)
- Michael Tully
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin Germany
| | - Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin Germany.
| |
Collapse
|
15
|
Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Mukhametzyanov TA, Cragg PJ, Stoikov II. Water-soluble pillar[5]arene sulfo-derivatives self-assemble into biocompatible nanosystems to stabilize therapeutic proteins. Bioorg Chem 2021; 117:105415. [PMID: 34673453 DOI: 10.1016/j.bioorg.2021.105415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pillar[5]arenes containing sulfonate fragments have been shown to form supramolecular complexes with therapeutic proteins to facilitate targeted transport with an increased duration of action and enhanced bioavailability. Regioselective synthesis was used to obtain a water-soluble pillar[5]arene containing the fluorescent label FITC and nine sulfoethoxy fragments. The pillar[5]arene formed complexes with the therapeutic proteins binase, bleomycin, and lysozyme in a 1:2 ratio as demonstrated by UV-vis and fluorescence spectroscopy. The formation of stable spherical nanosized macrocycle/binase complexes with an average particle size of 200 nm was established by dynamic light scattering and transmission electron microscopy. Flow cytometry demonstrated the ability of macrocycle/binase complexes to penetrate into tumor cells where they exhibited significant cytotoxicity towards A549 cells at 10-5-10-6 M while maintaining the enzymatic activity of binase.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Yulia I Aleksandrova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Olga A Mostovaya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgenia V Subakaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Timur A Mukhametzyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Applied Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| |
Collapse
|
16
|
Reusable, Noninvasive, and Sensitive Fluorescence Enhanced ZnO-Nanorod-Based Microarrays for Quantitative Detection of AFP in Human Serum. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9916909. [PMID: 34327239 PMCID: PMC8302379 DOI: 10.1155/2021/9916909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The fabrication of sensitive protein microarrays such as PCR used in DNA microarray is challenging due to lack of signal amplification. The development of microarrays is utilized to improve the sensitivity and limitations of detection towards primal cancer detection. The sensitivity is enhanced by the use of ZnO-nanorods and is investigated as a substrate which enhance the florescent signal to diagnose the hepatocellular carcinoma (HCC) at early stages. The substrate for deposition of ZnO-nanorods is prepared by the conventional chemical bath deposition method. The resultant highly dense ZnO-nanorods enhance the fluorescent signal 7.2 times as compared to the substrate without ZnO-nanorods. The microarray showed sensitivity of 1504.7 ng ml−1 and limit of detection of 0.1 pg ml−1 in wide dynamic range of 0.05 pg-10 μg ml−1 for alpha fetoprotein (AFP) detection in 10% human serum. This immunoassay was successfully applied for human serum samples to detect tumor marker with good recoveries. The ZnO-nanorod substrate is a simple protein microarray which showed a great promise for developing a low-cost, sensitive, and high-throughput protein assay platform for several applications in both fundamental research and clinical diagnosis.
Collapse
|
17
|
Huang W, Zhou S, Tang B, Xu H, Wu X, Li N, Zan X, Geng W. Efficient delivery of cytosolic proteins by protein-hexahistidine-metal co-assemblies. Acta Biomater 2021; 129:199-208. [PMID: 33991683 DOI: 10.1016/j.actbio.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Proteins play key roles in most biological processes, and protein dysfunction can cause various diseases. Over the past few decades, tremendous development has occurred in the protein therapeutic market due to the high specificity, low side effects, and low risk of proteins. Currently, all protein drugs on the market are based on extracellular targeting; more than 70% of intracellular targets remain un-druggable. Efficient delivery of cytosolic proteins is of significance for protein drugs, advanced biotechnology and molecular cell biology. Herein, we developed a co-assembly strategy for protein-hexahistidine-metal for intracellular protein delivery. Based on the coordinative interaction between His6 and metal ions, various proteins were encapsulated in situ into nanosized and positively charged protein encapsulation particles(Protein@HmA) through a co-assembly process with a high loading capacity and loading efficiency. Protein@HmA was able to deliver proteins with diverse physicochemical properties through multiple endocytosis pathways, and the protein could quickly escape from endosomes. In addition, the bioactivity of the loaded protein during co-assembly and the intracellular delivery processes were well preserved and could be properly exerted inside cells. Our results demonstrate that this strategy should be a valuable platform for protein delivery and has huge potential in protein-based theranostics. STATEMENT OF SIGNIFICANCE: Intracellular targets with protein drugs may provide a new way for the treatment of many refractory disease. Herein, we developed a co-assembly strategy for protein-hexahistidine-metal for efficient intracellular protein delivery. Based on the coordinative interaction between His6 and metal ions, various proteins were encapsulated in situ into nanosized and positively charged particles (Protein@HmA) with a high loading efficiency. Protein@HmA was able to deliver different proteins through multiple endocytosis pathways, and the protein could quickly escape from endosomes. In addition, the bioactivity of the loaded protein during co-assembly and the intracellular delivery processes were well preserved and could be properly exerted inside cells. This strategy should be a valuable platform for protein delivery and has huge potential in protein-based theranostics.
Collapse
Affiliation(s)
- Wenjuan Huang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang Province 317000, PR China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Bojiao Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Na Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China.
| |
Collapse
|
18
|
Zhang Q, Zhang J, Song J, Liu Y, Ren X, Zhao Y. Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS NANO 2021; 15:8001-8038. [PMID: 33900074 DOI: 10.1021/acsnano.1c00476] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteins, a type of natural biopolymer that possess many prominent merits, have been widely utilized to engineer nanomedicine for fighting against cancer. Motivated by their ever-increasing attention in the scientific community, this review aims to provide a comprehensive showcase on the current landscape of protein-based nanomedicine for cancer therapy. On the basis of role differences of proteins in nanomedicine, protein-based nanomedicine engineered with protein therapeutics, protein carriers, enzymes, and composite proteins is introduced. The cancer therapeutic benefits of the protein-based nanomedicine are also discussed, including small-molecular therapeutics-mediated therapy, macromolecular therapeutics-mediated therapy, radiation-mediated therapy, reactive oxygen species-mediated therapy, and thermal effect-mediated therapy. Lastly, future developments and potential challenges of protein-based nanomedicine are elucidated toward clinical translation. It is believed that protein-based nanomedicine will play a vital role in the battle against cancer. We hope that this review will inspire extensive research interests from diverse disciplines to further push the developments of protein-based nanomedicine in the biomedical frontier, contributing to ever-greater medical advances.
Collapse
Affiliation(s)
- Qiuhong Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yizhen Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
19
|
Akbarian M. Insulin therapy; a valuable legacy and its future perspective. Int J Biol Macromol 2021; 181:1224-1230. [PMID: 33989689 DOI: 10.1016/j.ijbiomac.2021.05.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Proteins and peptides are widely used in various areas including pharmaceutical, health, food, textile and biofuel industries. At present, pharmaceutical proteins and peptides have attracted the attention of many researchers. These types of drugs are superior to chemical drugs in many ways so that every year the number of drugs with a protein or peptide moiety is increasing. Due to high performance and low side effects, the demand for these drugs has increased year by year. The beginning of the protein and peptide drug industry dates back to 1982 with the introduction of the protein hormone insulin into the field of treatment. From this year onwards, a new number of protein and peptide drugs have entered the field of treatment every year. In this article, we focus on human therapeutic insulin. First, the history of the hormone will be introduced, then-current methods for insulin therapy will be discussed and finally, the treatments by this hormone in the future will be pointed. Reading this article would be very helpful for nano researchers, biochemists, organic chemists, material scientists and other people who are interested in soft and hard matters interfaces.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan..
| |
Collapse
|
20
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tully M, Dimde M, Weise C, Pouyan P, Licha K, Schirner M, Haag R. Polyglycerol for Half-Life Extension of Proteins-Alternative to PEGylation? Biomacromolecules 2021; 22:1406-1416. [PMID: 33792290 DOI: 10.1021/acs.biomac.0c01627] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since several decades, PEGylation is known to be the clinical standard to enhance pharmacokinetics of biotherapeutics. In this study, we introduce polyglycerol (PG) of different lengths and architectures (linear and hyperbranched) as an alternative polymer platform to poly(ethylene glycol) (PEG) for half-life extension (HLE). We designed site-selective N-terminally modified PG-protein conjugates of the therapeutic protein anakinra (IL-1ra, Kineret) and compared them systematically with PEG analogues of similar molecular weights. Linear PG and PEG conjugates showed comparable hydrodynamic sizes and retained their secondary structure, whereas binding affinity to IL-1 receptor 1 decreased with increasing polymer length, yet remained in the low nanomolar range for all conjugates. The terminal half-life of a 40 kDa linear PG-modified anakinra was extended 4-fold compared to the unmodified protein, close to its PEG analogue. Our results demonstrate similar performances of PEG- and PG-anakinra conjugates and therefore highlight the outstanding potential of polyglycerol as a PEG alternative for half-life extension of biotherapeutics.
Collapse
Affiliation(s)
- Michael Tully
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Mathias Dimde
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Paria Pouyan
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Kai Licha
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Michael Schirner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
22
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
23
|
Qiu J, Xu J, Xia Y. Nanobottles for Controlled Release and Drug Delivery. Adv Healthc Mater 2021; 10:e2000587. [PMID: 32543127 PMCID: PMC7738374 DOI: 10.1002/adhm.202000587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Nanobottles refer to colloidal particles with a hollow interior and a single opening in the wall. These unique features make them ideal carriers for the loading, encapsulation, release, and delivery of various types of theranostic agents in an array of biomedical applications. The hollow interior gives them a high loading capacity while the opening enables quick loading and controlled release of the payload(s). More significantly, on-demand release can be readily achieved by adding a stimuli-responsive material as the inner matrix or cork stopper. This progress report begins with an introduction to the general structures and properties of nanobottles, followed by a brief discussion on the methods developed for their fabrication. The use of nanobottles for loading different types of payloads is then showcased, including small-molecule drugs, biomacromolecules, imaging contrast agents, and functional nanoparticles. The strategies explored for controlling the release by varying the size of the opening and/or integrating with a stimuli-responsive material are also highlighted. This paper concludes with some perspectives on future directions for this class of nanomaterials in terms of fabrication, functionalization, and application.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jianchang Xu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release 2021; 329:676-695. [DOI: 10.1016/j.jconrel.2020.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
|
25
|
Jain A, Trindade GF, Hicks JM, Potts JC, Rahman R, Hague RJM, Amabilino DB, Pérez-García L, Rawson FJ. Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. J Colloid Interface Sci 2020; 587:150-161. [PMID: 33360888 DOI: 10.1016/j.jcis.2020.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
Abstract
Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorption on the surface of nanoparticles (NPs) is vital for the development of clinically important protein-based nanomedicines. In this work, new insights on the effect of the different orientation of cytochrome c (cyt c) bound to gold nanoparticles (GNPs) using various ligands on its apoptotic activity is reported. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS), electrochemical and circular dichroism (CD) analyses are used to investigate the characteristics of cyt c orientation and structure on functionalized GNPs. These studies indicate that the orientation and position of the heme ring inside the cyt c structure can be altered by changing the surface chemistry on the GNPs. A difference in the apoptosis inducing capability because of different orientation of cyt c bound to the GNPs is observed. These findings indicate that the biological activity of a protein can be modulated on the surface of NPs by varying its adsorption orientation. This study will impact on the rational design of new nanoscale biosensors, bioelectronics, and nanoparticle-protein based drugs.
Collapse
Affiliation(s)
- Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gustavo F Trindade
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jordan C Potts
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J M Hague
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK
| | - David B Amabilino
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, UK
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
26
|
Lv J, Wang C, Li H, Li Z, Fan Q, Zhang Y, Li Y, Wang H, Cheng Y. Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both In Vitro and In Vivo. NANO LETTERS 2020; 20:8600-8607. [PMID: 33155820 DOI: 10.1021/acs.nanolett.0c03287] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of stimuli-responsive polymers for cytosolic protein delivery with robust efficiency is of great importance but remains a challenging task. Here, we reported a bioreducible and amphiphilic dendrimer bearing a fluoroalkyl tail for this purpose. The fluorolipid was conjugated to the focal point of a cysteamine-cored polyamidoamine dendrimer via disulfide bond, while phenylboronic acid moieties were decorated on dendrimer surface for efficient protein binding. The yielding polymer showed high protein binding capability and complex stability and could efficiently release the cargo proteins in a glutathione-responsive manner. The designed polymer was effective in the delivery of various membrane-impermeable proteins into living cells with reserved bioactivities. In addition, the polymer efficiently delivered a toxin protein saporin into 4T1 breast cancer cells and inhibited the tumor growth in vivo after intravenous injection. The developed polymer in this study is a promising vector for the delivery of membrane-impermeable proteins to treat various diseases.
Collapse
Affiliation(s)
- Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changping Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongru Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qianqian Fan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
27
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
28
|
Chen K, Chen X, Han X, Fu Y. A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks. Int J Biol Macromol 2020; 163:1291-1300. [DOI: 10.1016/j.ijbiomac.2020.07.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022]
|
29
|
Zhou C, Xia Y, Wei Y, Cheng L, Wei J, Guo B, Meng F, Cao S, van Hest JCM, Zhong Z. GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma. Acta Biomater 2020; 113:512-521. [PMID: 32562803 DOI: 10.1016/j.actbio.2020.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a leading malignancy with a high mortality and little improvement in treatments. Protein drugs though known for their extraordinary potency and specificity have rarely been investigated for HCC therapy owing to lack of appropriate delivery systems. Here, we designed GE11 peptide-installed chimaeric polymersomes (GE11-CPs) for high-efficiency EGFR-targeted protein therapy of orthotopic SMMC-7721 HCC-bearing nude mice. GE11-CPs were assembled from poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate)-b-poly(aspartic acid) (PEG-P(TMC-DTC)-PAsp) and GE11-functionalized PEG-P(TMC-DTC), which allowed efficient loading and protection of proteins in the watery interior and fine-tuning of GE11 densities at the surface. CPs with short PAsp segments (degree of polymerization (DP) = 5, 10 and 15) exhibited a protein loading efficiency of 60%-72% and glutathione-responsive protein release. Saporin-loaded GE11-CPs had a size of 36 - 62 nm depending on GE11 densities and DP of PAsp. Notably, GE11-CPs with 10% GE11 revealed greatly enhanced uptake in SMMC-7721 cells, boosting the anticancer potency of saporin for over 3-folds compared with non-targeted control (half-maximal inhibitory concentration (IC50) = 11.0 versus 36.3 nM). The biodistribution studies using Cy5-labeled cytochrome C as a model protein demonstrated about 3-fold higher accumulation of GE11-CPs formulation than CPs counterpart in both subcutaneous and orthotopic SMMC-7721 tumor models. Notably, saporin-loaded GE11-CPs revealed low toxicity, effective tumor inhibition and significant improvement of survival rate compared with PBS and non-targeted groups (median survival time: 99 versus 37 and 42 days). EGFR-targeted chimaeric polymersomes carrying proteins appear an interesting HCC treatment modality.
Collapse
Affiliation(s)
- Cheng Zhou
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Liang Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China.
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| | - Shoupeng Cao
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
30
|
Ding L, Lin X, Lin Z, Wu Y, Liu X, Liu J, Wu M, Zhang X, Zeng Y. Cancer Cell-Targeted Photosensitizer and Therapeutic Protein Co-Delivery Nanoplatform Based on a Metal-Organic Framework for Enhanced Synergistic Photodynamic and Protein Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36906-36916. [PMID: 32706242 DOI: 10.1021/acsami.0c09657] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient and cancer cell-targeted delivery of photosensitizer (PS) and therapeutic protein has great potentiality for improving the anticancer effects. Herein, zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, one of the most attractive metal-organic framework materials, were used for coencapsulating the chlorin e6 (Ce6, a potent PS) and cytochrome c (Cyt c, a protein apoptosis inducer); then the nanoparticle was subsequently decorated with the hyaluronic acid (HA) shell to form cancer cell-active targeted nanoplatform (Ce6/Cyt c@ZIF-8/HA). The in vitro and in vivo experiments show the cancer cell targeting capability and pH-responsive decomposition and the release behavior of Ce6/Cyt c@ZIF-8/HA. Upon light irradiation, the released Ce6 produced cytotoxic reactive oxygen species for photodynamic therapy. Meanwhile, the released Cyt c-induced programmed cell death for protein therapy. Furthermore, the Cyt c worked normally under hypoxia conditions and could decompose H2O2 to O2 (with peroxidase-/catalase-like activity), resulting in synergistically improved therapeutic efficiency. These small molecules and protein codelivery nanoplatforms would promote the development of complementary and synergetic modes for biomedical applications.
Collapse
Affiliation(s)
- Lei Ding
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiao Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Yanni Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Ming Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
31
|
Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Indexed: 05/24/2023]
Abstract
Therapeutic systems with site-specific pharmaceutical activation hold great promise to enhance therapeutic efficacy while reducing systemic toxicity in cancer therapy. With operational flexibility, noninvasiveness, and high spatiotemporal resolution, photoactivatable nanomedicines have drawn growing attention. Distinct from traditional controlled release systems relying on the difference of biomarker concentrations between disease and healthy tissues, photoactivatable nanomedicines capitalize on the interaction between nanotransducers and light to either trigger photochemical reactions or generate reactive oxygen species (ROS) or heat effect to remotely induce pharmaceutical actions in living subjects. Herein, the recent advances in the development of photoactivatable protherapeutic nanoagents for oncology are summarized. The design strategies and therapeutic applications of these nanoagents are described. Representative examples of each type are discussed in terms of structure, photoactivation mechanism, and preclinical models. Last, potential challenges and perspectives to further develop photoactivatable protherapeutic nanoagents in cancer nanomedicine are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Xiangliang Yang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
32
|
Zhang N, Mei K, Guan P, Hu X, Zhao Y. Protein-Based Artificial Nanosystems in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907256. [PMID: 32378796 DOI: 10.1002/smll.201907256] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 05/21/2023]
Abstract
Proteins, like actors, play different roles in specific applications. In the past decade, significant achievements have been made in protein-engineered biomedicine for cancer therapy. Certain proteins such as human serum albumin, working as carriers for drug/photosensitizer delivery, have entered clinical use due to their long half-life, biocompatibility, biodegradability, and inherent nonimmunogenicity. Proteins with catalytic abilities are promising as adjuvant agents for other therapeutic modalities or as anticancer drugs themselves. These catalytic proteins are usually defined as enzymes with high biological activity and substrate specificity. However, clinical applications of these kinds of proteins remain rare due to protease-induced denaturation and weak cellular permeability. Based on the characteristics of different proteins, tailor-made protein-based nanosystems could make up for their individual deficiencies. Therefore, elaborately designed protein-based nanosystems, where proteins serve as drug carriers, adjuvant agents, or therapeutic drugs to make full use of their intrinsic advantages in cancer therapy, are reviewed. Up-to-date progress on research in the field of protein-based nanomedicine is provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kun Mei
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ping Guan
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
33
|
Zhang H, Pei M, Liu P. pH-Activated surface charge-reversal double-crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor-targeting DOX delivery. Int J Biol Macromol 2020; 150:1104-1112. [DOI: 10.1016/j.ijbiomac.2019.10.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023]
|
34
|
Lv J, Tan E, Wang Y, Fan Q, Yu J, Cheng Y. Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery. J Control Release 2020; 320:412-420. [DOI: 10.1016/j.jconrel.2020.01.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
|
35
|
Iqbal S, Blenner M, Alexander-Bryant A, Larsen J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules 2020; 21:1327-1350. [DOI: 10.1021/acs.biomac.9b01754] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shoaib Iqbal
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Angela Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
36
|
Sensitive competitive label-free electrochemical immunosensor for primal detection of ovarian cancer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01100-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Liang K, Chen H. Protein-based nanoplatforms for tumor imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1616. [PMID: 31999083 DOI: 10.1002/wnan.1616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death all over the world. The development of nanoplatform provides a promising strategy for the diagnosis and treatment of cancer. As the foundation of the nanoplatform, the composition of nanocarrier decides the basic properties. Protein exists in all kinds of life and participates in any life activities, having great potentials to serve as a nanocarrier because of its excellent biocompatibility, abundance of functional groups, and inherent biological activity. As a result, protein-based nanoplatforms have evoked extensive interests for tumor imaging and therapy. This review presents the latest progresses on the advancement of protein-based nanoplatforms, introducing the most common protein nanocarriers (such as human/bovine serum albumin, ferritin, human transferrin) thoroughly including their physiochemical properties and specific applications. Also, other kinds of protein are briefly involved. Finally, the prospects and challenges of the development of protein-based nanoplatforms are summarized. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Kaicheng Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Zhang S, Cheng Y. Boronic acid-engineered gold nanoparticles for cytosolic protein delivery. Biomater Sci 2020; 8:3741-3750. [DOI: 10.1039/d0bm00679c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Boronic acid-engineered gold nanoparticles for effective cytosolic protein delivery with the help of hypertonicity.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology
- School of Molecular Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology
- School of Molecular Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
39
|
Jia J, Zhang S, Wen K, Li Q. Nano-Scaled Zeolitic Imidazole Framework-8 as an Efficient Carrier for the Intracellular Delivery of RNase A in Cancer Treatment. Int J Nanomedicine 2019; 14:9971-9981. [PMID: 31908453 PMCID: PMC6927590 DOI: 10.2147/ijn.s210107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Zeolitic imidazole framework-8 (ZIF-8) as an emerging platform has exhibited great potential in the protein delivery owing to its tunable chemical functionality. Materials and methods ZIF-8 was employed as a carrier for the encapsulation and intracellular delivery of RNase A, aimed to achieve a rapid release of proteins in an acidic environment. The intracellular uptake of RNase A was studied by confocal laser scanning microscopy (CLSM), and the inhibition of cell proliferation after the delivery of RNase A was evaluated by MTT assay, Live/Dead staining, and TUNEL cell apoptosis analysis, using human lung adenocarcinoma cell line A549 as a model. The biocompatibility of RNase A@ZIF-8 nanoparticles was systematically detected through the hemolysis and cytotoxicity assay. Results The RNase A@ZIF-8 nanoparticles constructed by biomimetic mineralization could not only facilitate the encapsulation of protein molecules (protein loading: 13.4%) but also maintain the enzymatic activity and stability of RNase A. The CLSM images showed that RNase A@ZIF-8 nanoparticles could efficiently improve the intracellular uptake of RNase A. Moreover, RNase A@ZIF-8 nanoparticles could obviously inhibit the cell proliferation through the induction of cell apoptosis, with 31.3% of cell death at an RNase A concentration of 10 μg/mL. Finally, RNase A@ZIF-8 nanoparticles were elucidated to possess excellent biocompatibility, with hemolysis of <5% using the same concentration of RNase A@ZIF-8. Conclusion ZIF-8 could be used as an effective carrier to deliver the therapeutic protein RNase A into the cytosol, which will be beneficial for improving the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Shudi Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
40
|
Zheng F, Wang C, Meng T, Zhang Y, Zhang P, Shen Q, Zhang Y, Zhang J, Li J, Min Q, Chen J, Zhu JJ. Outer-Frame-Degradable Nanovehicles Featuring Near-Infrared Dual Luminescence for in Vivo Tracking of Protein Delivery in Cancer Therapy. ACS NANO 2019; 13:12577-12590. [PMID: 31657911 DOI: 10.1021/acsnano.9b03424] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vivo monitoring of cargo protein delivery is critical for understanding the pharmacological efficacies and mechanisms during cancer therapy, but it still remains a formidable challenge because of the difficulty in observing nonfluorescent proteins at high resolution and sensitivity. Here we report an outer-frame-degradable nanovehicle featuring near-infrared (NIR) dual luminescence for real-time tracking of protein delivery in vivo. Upconversion nanoparticles (UCNPs) and fluorophore-doped degradable macroporous silica (DS) with spectral overlap were coupled to form a core-shell nanostructure as a therapeutic protein nanocarrier, which was eventually enveloped with a hyaluronic acid (HA) shell to prevent protein leakage and for recognizing tumor sites. The DS layer served as both a container to accommodate the therapeutic proteins and a filter to attenuate upconversion luminescence (UCL) of the inner UCNPs. After the nanovehicles selectively accumulated at tumor sites and entered cancer cells, intracellular hyaluronidase (HAase) digested the outermost HA protective shell and initiated the outer frame degradation-induced protein release and UCL restoration of UCNPs in the intracellular environment. Significantly, the biodistribution of the nanovehicles can be traced at the 710 nm NIR fluorescence channel of DS, whereas the protein release can be monitored at the 660 nm NIR fluorescence channel of UCNPs. Real-time tracking of protein delivery and release was achieved in vitro and in vivo by NIR fluorescence imaging. Moreover, in vitro and in vivo studies manifest that the protein cytochrome c-loaded nanovehicles exhibited excellent cancer therapeutic efficacy. This nanoplatform assembled by the outer-frame-degradable nanovehicles featuring NIR dual luminescence not only advances our understanding of where, when, and how therapeutic proteins take effect in vivo but also provides a universal route for visualizing the translocation of other bioactive macromolecules in cancer treatment and intervention.
Collapse
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- School of Environmental & Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang , Jiangsu 212003 , China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yuqian Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Penghui Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yuchao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
41
|
Sun H, Gu X, Zhang Q, Xu H, Zhong Z, Deng C. Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules 2019; 20:4299-4311. [DOI: 10.1021/acs.biomac.9b01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Hao Xu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
42
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
43
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
44
|
Qiu M, Glass Z, Xu Q. Nonviral Nanoparticles for CRISPR-Based Genome Editing: Is It Just a Simple Adaption of What Have Been Developed for Nucleic Acid Delivery? Biomacromolecules 2019; 20:3333-3339. [PMID: 31342740 DOI: 10.1021/acs.biomac.9b00783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-editing technologies hold tremendous potential for treating genetic diseases. However, the efficient and safe delivery of genome-editing elements to the location of interest, and the achievement of specific targeted gene correction without off-target side effect remains a big challenge. In this Perspective, we highlight recent developments and discuss the challenges of nonviral nanoparticles for the delivery of genome-editing tools. Finally, we will propose promising strategies to improve the delivery efficacy and advance the clinical translation of gene-editing technology.
Collapse
Affiliation(s)
- Min Qiu
- Department of Biomedical Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| | - Zachary Glass
- Department of Biomedical Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| | - Qiaobing Xu
- Department of Biomedical Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| |
Collapse
|
45
|
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
46
|
Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization. Mol Pharm 2019; 16:1633-1647. [PMID: 30817164 PMCID: PMC6448105 DOI: 10.1021/acs.molpharmaceut.8b01318] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023]
Abstract
In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.
Collapse
Affiliation(s)
- Lucía Martínez-Jothar
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nataliia Beztsinna
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sabrina Oliveira
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Division
of Cell Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
47
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|