1
|
Li S, Yang R, Zhao Z, Xie M, Zhou Y, Zeng Q, Zhu X, Zhang X. The multifunctional role of hydroxyapatite nanoparticles as an emerging tool in tumor therapy. Acta Biomater 2025:S1742-7061(25)00344-7. [PMID: 40374135 DOI: 10.1016/j.actbio.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Hydroxyapatite nanoparticles (HANPs) are well-known nanomaterials for bone regeneration or repair. In recent years, HANPs have emerged as a potential tool in tumor therapy because of the numerous advantages the nanoparticles offer, including the diverse physicochemical properties, the selective anti-tumor effect, intrinsic immunomodulatory activity, ability to reverse of drug or immune tolerance, allowance of ion substation, good drug-loading capabilities, etc. Notably, the physicochemical properties of the particles, such as size and shape, significantly influence their anti-tumor efficacy. Therefore, to offer a comprehensive understanding of the key properties of HANPs and the involving molecular mechanisms, and provide crucial cues for rational design and development of novel HANPs-based anti-tumor platforms, this review summarizes various synthesis methods of HANPs with controlled physiochemical characteristics and highlights the multifaceted effects such as interactions with tumor cells and immune cells, regulation of the tumor microenvironment (TME), overcoming drug or immune resistance, and their potentials as effective drug carriers. This review also outlines the emerging strategies leveraging HANPs for tumor therapy and diagnostic imaging. At last, we discuss the challenges HANPs face when used for tumor treatment. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HANPs) have emerged as a promising tool in tumor therapy without compromising biocompatibility. This review highlights the unique and multifaceted features of HANPs in tumor therapy, including the selective induction of tumor cell apoptosis, engagement in immune regulation, reversal of drug or immune resistance, and the loading of diverse anti-tumor drugs or biomaterials. Additionally, this review emphasizes the influence of the intrinsic physicochemical properties of HANPs on their anti-tumor activity, and explores the emerging strategies that leverage HANPs for tumor therapy and diagnostic imaging. In summary, this work aims to provide a comprehensive and deep understanding of the role of HANPs in tumor therapy and is significant for the improved design of HANP-based platforms for tumor therapy.
Collapse
Affiliation(s)
- Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ruinan Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhengyi Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mengzhang Xie
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Liu J, Liu Y, Zhi S, Yang Y, Kim H, Wu D, Wang G, James TD, Yoon J, Zhang H. A Nanotherapeutic Agent for Synergistic Tumor Therapy: Co-Activation of Photochemical-Biological Effects. Angew Chem Int Ed Engl 2025; 64:e202425631. [PMID: 39936628 PMCID: PMC12015378 DOI: 10.1002/anie.202425631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Single-mode photodynamic therapy (PDT) based on photochemical reactions is limited by the tumor microenvironment, which reduces the ablation efficiency for solid tumors. Making it vital to seek ways to improve the tumor therapeutic effect. Based on this, we propose a dual-mode intelligent nanotherapeutic system (HAP@BMPns) based on photochemical-biological effects. HAP@BMPns is composed of an acid-responsive high-calcium biomimetic nanomaterial (HAP) and photosensitizer (BMP), which can spontaneously activate photochemical (Type-I PDT) and biological effects for synergistic cancer therapy. HAP@BMPns breaks down upon entering tumor cells under acidic conditions, releasing a large amount of Ca2+ and BMP. Triggering intracellular Ca2+ overload, which induces mitochondrial damage, leading to apoptosis. Synchronously, Type-I PDT of BMP under two-photon (800 nm) laser irradiation becomes activated, resulting in enhanced destruction of tumor cells by the photochemical effect. Cell studies have indicated that HAP@BMPns (41.6 μg/mL) exhibits a strong inhibitory efficiency on tumor cells growth, with low (22.4 %) survival rate. However, the individual components, i. e. BMP (5.0 μM) and HAP (41.6 μg/mL) display low inhibitory efficiency with high survival rates (55.9 % and 63.0 % respectively). Therefore, this dual-mode synergistic treatment strategy using acid-triggered photochemical-biological effects significantly enhances the ablation of solid tumors, realizing the synergistic effect. We hope that this design strategy can provide guidance for the design and development of a tumor therapeutic platform.
Collapse
Affiliation(s)
- Junwei Liu
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
| | - Yang Liu
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
| | - Songsong Zhi
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
| | - Yonggang Yang
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
| | - Heejeong Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Korea
| | - Dapeng Wu
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
| | - Ge Wang
- College of Basic MedicineXinxiang Medical UniversityXinxiangHenan453007P. R. China
| | - Tony D. James
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
- Department of ChemistryUniversity of BathBathBA2 7AYUK
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Korea
- Graduate Program in Innovative Biomaterials ConvergenceEwha Womans UniversitySeoul03760Korea
| | - Hua Zhang
- School of Chemistry and Chemical EngineeringHenan Normal University
- Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic FunctionsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007P. R. China
| |
Collapse
|
3
|
Chen J, Zhao Z, Alantary D, Huang J. Nanomedicine for pediatric healthcare: A review of the current state and future prospectives. Eur J Pharm Biopharm 2025; 207:114597. [PMID: 39647671 DOI: 10.1016/j.ejpb.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Nanomedicine has emerged as a valuable treatment and diagnosis option, due to its ability not only to address formulation challenges associated with new therapeutic moieties, but also to improve the existing drugs efficacy. Nanomedicine provides appealing advantages such as increased drug payload, enhanced stability, tailored drug release profile, improved bioavailability and targeted drug delivery, etc. Tremendous research and regulatory efforts have been made in the past decades to advance nanomedicine from the benchtop to clinic. Numerous nanotechnology-based formulation approaches have been seen succeeding in commercialization. Despite the progress in nanomedicine use in adults, the advancement in pediatric population has been much slower. Clearly the treatment of disease in children cannot be simplified by dose adjustment based on body weight or surface, due to the significant differences in physiology thus the drug absorption, distribution, metabolism, excretion and transport (ADMET), between children and adults. This inherent variable among others poses much more challenges when developing pediatric-specific nanomedicine or translating adult nanodrug to pediatric indication. This review therefore intends to highlight the physiological differences between children and adult, and the common pediatric diseases which are good candidates for nanomedicine. The formulation approaches utilized in the marketed nanomedicine with pediatric indications, including liposomes, nanocrystals, polymeric nanoparticles and lipid nanoemulsions are elaborated. Finally, the challenges and gaps in pediatric nanomedicine development and commercialization, and the future prospectives are discussed.
Collapse
Affiliation(s)
- Jiayi Chen
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Zhifeng Zhao
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Doaa Alantary
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Jingjun Huang
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States.
| |
Collapse
|
4
|
Friuli V, Loi C, Bruni G, Maggi L, Bini M. A Perspective on the Use of Hydroxyapatites to Improve the Dissolution Behavior of Poorly Water-Soluble Piretanide. Pharmaceutics 2024; 16:1450. [PMID: 39598573 PMCID: PMC11597431 DOI: 10.3390/pharmaceutics16111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Interest in drug delivery systems (DDS) based on inorganic substrates has increased in parallel with the increase in the number of poorly water-soluble drugs. Hydroxyapatite is one of the ideal matrices for DDS due to its biocompatibility, low cost, and ease of preparation. METHODS We propose two doped hydroxyapatites, one with Ba on Ca sites another with Si on P sites, with the aim of improving the dissolution rate of piretanide, a diuretic, poorly water-soluble drug. The hybrids were characterized by different physical-chemical techniques, and their formation was demonstrated by infrared spectroscopy, thermal analysis, and electron microanalysis, as well as by comparing the results with those obtained on physical mixtures of HAPs and properly prepared piretanide. RESULTS Both the hybrids improved the piretanide dissolution rate compared with the physical mixtures and the drug alone. The dose was completely solubilized from the Si-doped hybrid in about 5 min in the three fluids considered. This remarkable improvement can be explained by an increase in the wettability and solubility of the drug loaded in the drug-carrier systems. CONCLUSIONS Different experimental techniques, in particular spectroscopy and electronic microanalysis, proved the successful loading of piretanide onto doped HAP. Pharmaceutical measurements demonstrated rapid drug release in different fluids simulating gastrointestinal conditions after oral administration. These hybrid systems could be a very promising platform for drug delivery.
Collapse
Affiliation(s)
- Valeria Friuli
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (V.F.); (L.M.)
| | - Claudia Loi
- Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy; (C.L.); (G.B.)
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy; (C.L.); (G.B.)
- CSGI—Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy
| | - Lauretta Maggi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (V.F.); (L.M.)
| | - Marcella Bini
- Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy; (C.L.); (G.B.)
- CSGI—Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
5
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Hao S, Ge P, Su W, Wang Y, Abd El-Aty AM, Tan M. Steady-State Delivery and Chemical Modification of Food Nutrients to Improve Cancer Intervention Ability. Foods 2024; 13:1363. [PMID: 38731734 PMCID: PMC11083276 DOI: 10.3390/foods13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Peng Ge
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Shen HY, Xing F, Shang SY, Jiang K, Kuzmanović M, Huang FW, Liu Y, Luo E, Edeleva M, Cardon L, Huang S, Xiang Z, Xu JZ, Li ZM. Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18658-18670. [PMID: 38587811 DOI: 10.1021/acsami.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.
Collapse
Affiliation(s)
- Hui-Yuan Shen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Si-Yuan Shang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Jiang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fu-Wen Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mariya Edeleva
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium
| | - Shishu Huang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
9
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
10
|
Zhang Q, Qiang L, Liu Y, Fan M, Si X, Zheng P. Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy. Front Bioeng Biotechnol 2023; 11:1167474. [PMID: 37091350 PMCID: PMC10119417 DOI: 10.3389/fbioe.2023.1167474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant bone tumors can inflict significant damage to affected bones, leaving patients to contend with issues like residual tumor cells, bone defects, and bacterial infections post-surgery. However, hydroxyapatite nanoparticles (nHAp), the principal inorganic constituent of natural bone, possess numerous advantages such as high biocompatibility, bone conduction ability, and a large surface area. Moreover, nHAp's nanoscale particle size enables it to impede the growth of various tumor cells via diverse pathways. This article presents a comprehensive review of relevant literature spanning the past 2 decades concerning nHAp and bone tumors. The primary goal is to explore the mechanisms responsible for nHAp's ability to hinder tumor initiation and progression, as well as to investigate the potential of integrating other drugs and components for bone tumor diagnosis and treatment. Lastly, the article discusses future prospects for the development of hydroxyapatite materials as a promising modality for tumor therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| |
Collapse
|
11
|
Wang J, Li M, Jin L, Guo P, Zhang Z, Zhanghuang C, Tan X, Mi T, Liu J, Wu X, Wei G, He D. Exosome mimetics derived from bone marrow mesenchymal stem cells deliver doxorubicin to osteosarcoma in vitro and in vivo. Drug Deliv 2022; 29:3291-3303. [PMID: 36352741 PMCID: PMC9662035 DOI: 10.1080/10717544.2022.2141921] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Osteosarcoma is a bone tumor with a high incidence in children and adolescents. Chemotherapy for osteosarcoma is limited, and effective targeted drugs are urgently needed to treat osteosarcoma. Exosomes as a natural nano drug delivery platform have been widely studied and proven to have good drug delivery performance. However, the low production of exosomes hinders its development as a carrier. Exosome mimetics (EMs) as an alternative product of exosomes solve the problem of low production of exosomes and maintain the good performance of exosomes as carriers. In this study, bone marrow mesenchymal stem cells (BMSCs) were sequentially extruded to generate EMs to encapsulate doxorubicin (EM-Dox) to treat osteosarcoma. The results showed that we successfully prepared EMs of BMSC, and EM-Dox was prepared using an active-loading approach. Our engineered EM-Dox demonstrated significantly more potent tumor inhibition activity and fewer side effects than free doxorubicin. This novel biological nanomedicine system provides a promising opportunity to develop novel precision medicine for osteosarcoma.
Collapse
Affiliation(s)
- Jinkui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mujie Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Peng Guo
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhaoxia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chenghao Zhanghuang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaojun Tan
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiayan Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xin Wu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
12
|
Tang H, Xie Y, Zhu M, Jia J, Liu R, Shen Y, Zheng Y, Guo X, Miao D, Pei J. Estrone-Conjugated PEGylated Liposome Co-Loaded Paclitaxel and Carboplatin Improve Anti-Tumor Efficacy in Ovarian Cancer and Reduce Acute Toxicity of Chemo-Drugs. Int J Nanomedicine 2022; 17:3013-3041. [PMID: 35836838 PMCID: PMC9274295 DOI: 10.2147/ijn.s362263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal gynecologic malignancy. The combination of paclitaxel (PTX) and carboplatin (CBP) is the first-line remedy for clinical ovarian cancer. However, due to the limitations of adverse reaction and lacking of targeting ability, the chemotherapy of ovarian cancer is still poorly effective. Here, a novel estrone (ES)-conjugated PEGylated liposome co-loaded PTX and CBP (ES-PEG-Lip-PTX/CBP) was designed for overcoming the above disadvantages. Methods ES-PEG-Lip-PTX/CBP was prepared by film hydration method and could recognize estrogen receptor (ER) over-expressing on the surface of SKOV-3 cells. The characterizations, stability and in vitro release of ES-PEG-Lip-PTX/CBP were studied. In vitro cellular uptake and its mechanism were observed by fluorescence microscope. In vivo targeting effect in tumor-bearing mice was determined. Pharmacokinetics and biodistribution were studied in ICR mice. In vitro cytotoxicity and in vivo anti-tumor efficacy were evaluated on SKOV-3 cells and tumor-bearing mice, respectively. Finally, the acute toxicity in ICR mice was explored for assessing the preliminary safety of ES-PEG-Lip-PTX/CBP. Results Our results showed that ES-PEG-Lip-PTX/CBP was spherical shape without aggregation. ES-PEG-Lip-PTX/CBP exhibited the optimum targeting effect on uptake in vitro and in vivo. The pharmacokinetics demonstrated ES-PEG-Lip-PTX/CBP had improved the pharmacokinetic behavior. In vitro cytotoxicity showed that ES-PEG-Lip-PTX/CBP maximally inhibited SKOV-3 cell proliferation and its IC50 values was 1.6 times lower than that of non-ES conjugated liposomes at 72 h. The in vivo anti-tumor efficacy study demonstrated that ES-PEG-Lip-PTX/CBP could lead strong SKOV-3 tumor growth suppression with a tumor volume inhibitory rate of 81.8%. Meanwhile, acute toxicity studies confirmed that ES-PEG-Lip-PTX/CBP significantly reduced the toxicity of the chemo drugs. Conclusion ES-PEG-Lip-PTX/CBP was successfully prepared with an optimal physicochemical and ER targeting property. The data of pharmacokinetics, anti-tumor efficacy and safety study indicated that ES-PEG-Lip-PTX/CBP could become a promising therapeutic formulation for human ovarian cancer in the future clinic.
Collapse
Affiliation(s)
- Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Juan Jia
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Marques MS, Lima LA, Poletto F, Contri RV, Kulkamp Guerreiro IC. Nanotechnology for the treatment of paediatric diseases: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhang R, Liu T, Li W, Ma Z, Pei P, Zhang W, Yang K, Tao Y. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J Nanobiotechnology 2022; 20:223. [PMID: 35549949 PMCID: PMC9097166 DOI: 10.1186/s12951-022-01442-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME), characterized by high glutathione (GSH), high hydrogen peroxide (H2O2) and acidic pH levels, is favorable for the growth, invasion and metastasis of cancer cells. Taking advantage of the specific characteristics of tumors, TME-responsive GCBD NPs are designed to deliver nanoscale coordination polymers (NCPs, GA-Cu) and chemotherapy drugs (doxorubicin, DOX) based on bovine serum albumin (BSA) nanocarriers into cancer cells for combined chemodynamic therapy (CDT) and chemotherapy. In an acidic environment, GCBD NPs could release approximately 90% copper ions, which can not only consume overexpressed GSH to modulate the TME but can also react with endogenous H2O2 in a Fenton-like reaction to achieve the CDT effect. Meanwhile, the released DOX could enter the nucleus of tumor cells and affect their proliferation to achieve efficient chemotherapy. Both in vitro and in vivo experiments showed that GCBD NPs had good biosafety and could effectively inhibit the growth of cancer cells. GCBD NPs are promising as a biocompatible nanoplatform to exploit TME characteristics for combined chemo and chemodynamic therapy, providing a novel strategy to eradicate tumors with high efficiency and specificity.
Collapse
Affiliation(s)
- Ruiyi Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhiyuan Ma
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
15
|
Liu Y, Nadeem A, Sebastian S, Olsson MA, Wai SN, Styring E, Engellau J, Isaksson H, Tägil M, Lidgren L, Raina DB. Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Mater Today Bio 2022; 14:100227. [PMID: 35265825 PMCID: PMC8898975 DOI: 10.1016/j.mtbio.2022.100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022] Open
Abstract
Efficient systemic pharmacological treatment of solid tumors is hampered by inadequate tumor concentration of cytostatics necessitating development of smart local drug delivery systems. To overcome this, we demonstrate that doxorubicin (DOX), a cornerstone drug used for osteosarcoma treatment, shows reversible accretion to hydroxyapatite (HA) of both nano (nHA) and micro (mHA) size. nHA particles functionalized with DOX get engulfed in the lysosome of osteosarcoma cells where the acidic microenvironment causes a disruption of the binding between DOX and HA. The released DOX then accumulates in the mitochondria causing cell starvation, reduced migration and apoptosis. The HA+DOX delivery system was also tested in-vivo on osteosarcoma bearing mice. Locally delivered DOX via the HA particles had a stronger tumor eradication effect compared to the controls as seen by PET-CT and immunohistochemical staining of proliferation and apoptosis markers. These results indicate that in addition to systemic chemotherapy, an adjuvant nHA could be used as a carrier for intracellular delivery of DOX for prevention of tumor recurrence after surgical resection in an osteosarcoma. Furthermore, we demonstrate that nHA particles are pivotal in this approach but a combination of nHA with mHA could increase the safety associated with particulate nanomaterials while maintaining similar therapeutic potential.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and the Laboratory for Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sujeesh Sebastian
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin A. Olsson
- Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund, Sweden
| | - Sun N. Wai
- Department of Molecular Biology and the Laboratory for Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Emelie Styring
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob Engellau
- Medical Radiation Physics, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Hanna Isaksson
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Lidgren
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Xu Y, Yu X, Zhang M, Zheng Q, Sun Z, He Y, Guo W. Promising Advances in LINC01116 Related to Cancer. Front Cell Dev Biol 2021; 9:736927. [PMID: 34722518 PMCID: PMC8553226 DOI: 10.3389/fcell.2021.736927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with a length of no less than 200 nucleotides that are not translated into proteins. Accumulating evidence indicates that lncRNAs are pivotal regulators of biological processes in several diseases, particularly in several malignant tumors. Long intergenic non-protein coding RNA 1116 (LINC01116) is a lncRNA, whose aberrant expression is correlated with a variety of cancers, including lung cancer, gastric cancer, colorectal cancer, glioma, and osteosarcoma. LINC01116 plays a crucial role in facilitating cell proliferation, invasion, migration, and apoptosis. In addition, numerous studies have recently suggested that LINC01116 has emerged as a novel biomarker for prognosis and therapy in malignant tumors. Consequently, we summarize the clinical significance of LINC01116 associated with biological processes in various tumors and provide a hopeful orientation to guide clinical treatment of various cancers in future studies.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
17
|
Cheng X, Xu Y, Zhang Y, Jia C, Wei B, Hu T, Tang R, Li C. Glucose-Targeted Hydroxyapatite/Indocyanine Green Hybrid Nanoparticles for Collaborative Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37665-37679. [PMID: 34342216 DOI: 10.1021/acsami.1c09852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoscale hydroxyapatite (nHA) is considered as a promising drug carrier or therapeutic agent against malignant tumors. But the strong agglomeration tendency and lack of active groups seriously hamper their usage in vivo. To address these issues, we fabricated an organic-inorganic hybrid nanosystem composed of poly(acrylic acid) (PAA), nHA, and indocyanine green (ICG), and further modified with glucose to give a targeting nanosystem (GA@HAP/ICG-NPs). These hybrid nanoparticles (∼90 nm) showed excellent storage and physiological stability assisted by PAA and had a sustained drug release in an acidic tumor environment. In vitro cell experiments confirmed that glucose-attached particles significantly promoted cellular uptake and increased intracellular ICG and Ca2+ concentrations by glucose transporter 1 (GLUT1)-mediated endocytosis. Subsequently, the excessive Ca2+ induced cell or organelle damage and ICG triggered photothermal and photodynamic effects (PTT/PDT) under laser irradiation, resulting in enhanced cell toxicity and apoptosis. In vivo tests revealed that the hybrid nanosystem possessed good hemocompatibility and biosafety, facilitating in vivo circulation and usage. NIR imaging further showed that tumor tissues had more drug accumulation, resulting in the highest tumor growth inhibition (87.89%). Overall, the glucose-targeted hybrid nanosystem was an effective platform for collaborative therapy and expected to be further used in clinical trials.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Yong Zhang
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Chaochao Jia
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Bing Wei
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Ting Hu
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| |
Collapse
|
18
|
Bu Y, Huang R, Li Z, Zhang P, Zhang L, Yang Y, Liu Z, Guo K, Gao F. Anisotropic Truncated Octahedral Au with Pt Deposition on Arris for Localized Surface Plasmon Resonance-Enhanced Photothermal and Photodynamic Therapy of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35328-35341. [PMID: 34291912 DOI: 10.1021/acsami.1c07181] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The multifunctional combined nanoplatform has a wide application prospect in the synergistic treatment of cancer. Nevertheless, the traditional treatment of phototherapy is limited by the catalytic nanomaterial itself, so the effect is not satisfactory. Here, the arris of the anisotropic truncated octahedral Au (TOh Au) was coated with noble metal Pt to form a spatial separation structure, which enhanced the local surface plasmonic resonance and thus boosted the photocatalytic effect. In this system, the highly efficient photocatalysis provides a strong guarantee for oncotherapy. On the one hand, the structure of arris deposition adequately improves the efficiency of photothermal conversion, which substantially improves the effectiveness of photothermal therapy. On the other hand, in situ oxygen production of Pt ameliorates tumor hypoxia, and through the O2 self-production and sales mode, the growth and development of tumor were inhibited. Meanwhile, under the enhanced photocatalysis, more O2 were produced, which greatly evolved the treatment effect of photodynamic therapy. In the end, the addition of hyaluronic acid can specifically target osteosarcoma cells while improving the retention time and biocompatibility of the material in the body. Thus, the nanocomposite shows superexcellent synergistic enhancement of photothermal conversion efficiency and photodynamic capability in vitro and in vivo, which provides a potential possibility for osteosarcoma cure.
Collapse
Affiliation(s)
- Yeyang Bu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Ruqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Peng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Zhejiang 325027, P. R. China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Zhejiang 325027, P. R. China
| | - Zhao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| |
Collapse
|
19
|
Nieto González N, Obinu A, Rassu G, Giunchedi P, Gavini E. Polymeric and Lipid Nanoparticles: Which Applications in Pediatrics? Pharmaceutics 2021; 13:pharmaceutics13050670. [PMID: 34066953 PMCID: PMC8148525 DOI: 10.3390/pharmaceutics13050670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
This review aims to provide the state of the art on polymeric and lipid nanoparticles, used or suggested to approach pediatric diseases’ problems and needs, and to inspire new researches in this field. Several drugs are currently not available in formulations suitable for pediatric patients. The United States Pediatric Formulation Initiative suggested applying new technologies to pediatric drug formulations, for instance, nanotechnology. The literature analysis showed that polymeric and lipid nanoparticles have been widely studied to treat pediatric diseases, and albumin nanoparticles and liposomes are already used in clinical practice. Nevertheless, these studies are focused almost exclusively on pediatric cancer treatment. Although nanomedicine may solve many needs of pediatric diseases and medicines, the unavailability of data on pharmacokinetics, safety and efficacy of both drugs and nanoparticles in pediatric patients limits the development of new pediatric medicines based on nanoparticles. Therefore, nanomedicine applied in pediatrics remains a significant challenge in the near future.
Collapse
Affiliation(s)
- Noelia Nieto González
- PhD Program in Chemical Science and Technology, Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy;
| | - Antonella Obinu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (P.G.); (E.G.)
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (P.G.); (E.G.)
- Correspondence: ; Tel.: +39-079228735
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (P.G.); (E.G.)
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (P.G.); (E.G.)
| |
Collapse
|