1
|
Cui H, Li J. Hydrogel adhesives for tissue recovery. Adv Colloid Interface Sci 2025; 341:103496. [PMID: 40168713 DOI: 10.1016/j.cis.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Hydrogel adhesives (HAs) are promising and rewarding tools for improving tissue therapy management. Such HAs had excellent properties and potential applications in biological tissues, such as suture replacement, long-term administration, and hemostatic sealing. In this review, the common designs and the latest progress of HAs based on various methodologies are systematically concluded. Thereafter, how to deal with interfacial water to form a robust wet adhesion and how to balance the adhesion and non-adhesion are underlined. This review also provides a brief description of gelation strategies and raw materials. Finally, the potentials of wound healing, hemostatic sealing, controlled drug delivery, and the current applications in dermal, dental, ocular, cardiac, stomach, and bone tissues are discussed. The comprehensive insight in this review will inspire more novel and practical HAs in the future.
Collapse
Affiliation(s)
- Haohao Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Lei S, Gao Y, Wang K, Wu S, Zhu M, Chen X, Zhou W, Chen X, Zhang J, Duan X, Men K. An Implantable Double-Layered Spherical Scaffold Depositing Gene and Cell Agents to Facilitate Collaborative Cancer Immunotherapy. ACS NANO 2025; 19:17653-17673. [PMID: 40304563 DOI: 10.1021/acsnano.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Gene therapies and adoptive cell therapy (ACT) are promising strategies for cancer immunotherapy. Referring to their different mechanisms, the combination of these two might result in a strategy with potential collaborative and compensatory effects. However, it is challenging to combine gene therapies and ACT that work in a proper logical order. Here, we developed a double-layered spherical scaffold (DLS) to codeliver mRNA and T cells and constructed an implantable hydrogel formulation, named the GD-920 scaffold. With a diameter of 7 mm, this scaffold loaded primary T cells in the inner layer and the Bim mRNA nanocomplex in the outer layer. While maintaining their bioactivities, GD-920 released gene and cell payloads in a controllable and sequential manner. The mRNA complex from the outer layer was first released and induced immunogenic tumor cell death. The produced antigens then migrated into the scaffold with dendritic cells, triggering a tumor-specific immune response. Finally, activated T cells released by the inner layer attacked the tumor tissue via massive infiltration. We showed that in situ implantation of the GD-920 scaffold is capable of effectively inhibiting tumor growth and is far more potent than that of control scaffolds containing a single payload. Our results demonstrated the outstanding potential of this DLS in combining gene and cell therapeutic approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Sibei Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaohua Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weilin Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiayu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ke Men
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
4
|
Baniasadi M, Baghban Salehi M, Baniasadi H. Acrylamide/Alyssum campestre seed gum hydrogels enhanced with titanium carbide: Rheological insights for cardiac tissue engineering. Int J Biol Macromol 2025; 293:139240. [PMID: 39732250 DOI: 10.1016/j.ijbiomac.2024.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.5 % TiC NPs were exfoliated in the hydrogel, while 1 % was intercalated. SEM images showed that ACSG created a semi-interpenetrating polymer network with interconnected cavities averaging 9.1 μm, which reduced to 3.6 μm with 0.5%TiC and 51.8 nm with 1%TiC due to increased crosslinking density. TGA results confirmed hydrogel stability at autoclave temperatures. Rheological testing revealed that the hydrogel exhibited a maximum resistance of 317 kPa. The addition of 1 % TiC enhanced its electrical conductivity to 1.5 × 10-2S/cm, making it suitable for applications in cardiac tissue engineering. MTT assays confirmed the hydrogel's biocompatibility and demonstrated its superior antibacterial activity against Staphylococcus aureus compared to Escherichia coli. The AM/ACSG/TiC hydrogel is a promising material for cardiac tissue engineering because of its adjustable mechanical properties, excellent electrical conductivity, and strong compatibility with cell cultures. The addition of ACSG improves the hydrogel's rheological behavior, which is crucial for promoting effective cell growth.
Collapse
Affiliation(s)
- Mona Baniasadi
- Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Mahsa Baghban Salehi
- Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Hossein Baniasadi
- Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
5
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
6
|
Gao J, Zhou Y, Xu G, Wei Z, Ding L, Zhang W, Huang Y. Hybrid hydrogels containing gradients in gold nanoparticles for localized delivery of mesenchymal stem cells and enhanced nerve tissues remodeling in vivo. Mater Today Bio 2025; 30:101411. [PMID: 39811605 PMCID: PMC11730570 DOI: 10.1016/j.mtbio.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated. Herein, firstly reported as specific ROS scavenging agents and paracrine stimulators, gold nanoparticles (GNPs) were incorporated in the chitosan/polyvinyl alcohol hydrogel networks. The GNPs/hydrogel composite can support the survival of mesenchymal stem cells (MSCs) with excellent expansion efficiency and protect MSCs in a simulated ROS microenvironment, decreasing the intracellular ROS levels and simultaneously enhancing cell viability. Moreover, biodegradable scaffolds, along with MSCs, were implanted into sciatic nerve defects in a rat model to show good application value in vivo. Our work demonstrated that the GNPs/hydrogel shows great promise in MSCs therapy for peripheral nerve injury with convincing biological evidence.
Collapse
Affiliation(s)
- Jie Gao
- Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China
| | - Yiduo Zhou
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin 14195, Germany
| | - Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Zhongqing Wei
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
| | - Liucheng Ding
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Yi Huang
- Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China
| |
Collapse
|
7
|
Li A, Nicolas J, Mura S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202409670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 01/06/2025]
Abstract
AbstractHybrid nanocomposite hydrogels consist of the homogeneous incorporation of nano‐objects in a hydrogel matrix. The latter, whether made of natural or synthetic materials, possesses a microporous, soft structure that makes it an ideal host for a variety of polymer and lipid‐based nano‐objects as well as metal‐ and silica‐based ones. By carefully choosing the composition and the proportions of the different constituents, hybrid hydrogels can display a wide array of properties, from simple enhancement of mechanical characteristics to specific bioactivity. This review aims to provide an overview of the state of the art in hybrid hydrogels highlighting key aspects that make them a promising choice for a variety of biomedical applications. Strategies for the preparation of hybrid hydrogels are discussed by covering the selection of individual components. The review will also explore the physico‐chemical and rheological characterization of these materials, which is essential for understanding their structure and function, ultimately satisfying specifications for the intended use. Successful examples of biomedical applications will also be presented, and the main challenges to be met will be discussed, with the aim of stimulating the research community to exploit the full potential of these materials.
Collapse
Affiliation(s)
- Anqi Li
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Julien Nicolas
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Simona Mura
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| |
Collapse
|
8
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
9
|
Xu H, Zhao Z, She P, Ren X, Li A, Li G, Wang Y. Salvaging myocardial infarction with nanoenzyme-loaded hydrogels: Targeted scavenging of mitochondrial reactive oxygen species. J Control Release 2024; 375:788-801. [PMID: 39326500 DOI: 10.1016/j.jconrel.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Myocardial infarction resulting from coronary artery atherosclerosis is the leading cause of heart failure, which represents a significant global health burden. The limitations of conventional pharmacologic thrombolysis and flow reperfusion procedures highlight the urgent need for new therapeutic strategies to effectively treat myocardial infarction. In this study, we present a novel biomimetic approach that integrates polyphenols and metal nanoenzymes, inspired by the structure of pomegranates. We developed tannic acid-coated Mn-Co3O4 (MCT) nanoparticles in combination with an injectable collagen hydrogel for the effective treatment of myocardial infarction. The hydrogel enhanced the infarct microenvironment, while the slow-released MCT targets mitochondria to inhibit the post-infarction surge of reactive oxygen species, providing anti-apoptotic and anti-inflammatory effects. RNA sequencing revealed the potential of hydrogels to serve as an interventional mechanism during the post-infarction inflammatory phase. Notably, we found that the hydrogel, when combined with the nanopomegranate-based therapy, significantly improves adverse ventricular remodeling and restores cardiac function in early infarction management. The MCT hydrogel leverages the unique benefits of both MCT nanopomegranates and collagen, demonstrating a synergistic effect. This approach provides a promising example of the potential cooperation between nanomimetic structures and natural biomaterials in therapeutic applications.
Collapse
Affiliation(s)
- Hong Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China
| | - Peiyi She
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China
| | - Xingrong Ren
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China
| | - Annuo Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan university, Chengdu 610064, China.
| |
Collapse
|
10
|
Sasan S, Molavi AM, Moqadam KH, Farrokhi N, Oroojalian F. Enhanced wound healing properties of biodegradable PCL/alginate core-shell nanofibers containing Salvia abrotanoides essential oil and ZnO nanoparticles. Int J Biol Macromol 2024; 279:135152. [PMID: 39214210 DOI: 10.1016/j.ijbiomac.2024.135152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Electrospun nanofibrous membranes, with their unique structural features, can potentially enhance wound healing through controlled delivery of active agents. Here, an innovative porous nanofibrous membrane was developed as a dressing patch with antibacterial and anti-inflammatory functionalities for cutaneous wound healing. Zinc oxide nanoparticles (ZnO NPs) and Salvia abrotanoides essential oil (SAEO) were incorporated into sodium alginate, which served as the shell. Poly(ε-caprolactone) was used as the core of coaxial electrospun wound dressing nanofibers (PCL/SA@ZnO/SAEO). With the addition of ZnO NPs and SAEO, the average diameter of nanofibers was 187 ± 51 nm, with improved tensile strength (4.7 ± 0.4 MPa), elongation at break (32.9 ± 2.1), and elastic modulus (21.4 ± 2.0). Concurrent application of ZnO NPs and SAEO increased antimicrobial activity against Staphylococcus aureus and Escherichia coli and promoted the proliferation, attachment, and viability (>90 %) of L929 cells. The PCL/SA@ZnO/SAEO scaffold accelerated the healing time with total wound healing over 14 days in mouse models carrying full-thickness wounds compared to the nanofibrous scaffold without additives. Histopathological examinations demonstrated better tissue regeneration, i.e., enhanced collagen deposition, improved re-epithelialization, and neovascularization, and increased quantity of hair follicles. Moreover, the chicken chorioallantoic membrane assay confirmed the synergistic angiogenic effects of SAEO and ZnO NPs. Finally, the in vitro and in vivo results proposed the bioactive core-shell nanofibers synthesized as encouraging wound dressing materials for hastening the healing of cutaneous wounds.
Collapse
Affiliation(s)
- Samira Sasan
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Science, Bojnurd 74877-94149, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| |
Collapse
|
11
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
12
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Zhu T, Ye Z, Song J, Zhang J, Zhao Y, Xu F, Wang J, Huang X, Gao B, Li F. Effect of extracellular matrix stiffness on efficacy of Dapagliflozin for diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:273. [PMID: 39049086 PMCID: PMC11270890 DOI: 10.1186/s12933-024-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin β1, but without significant impact on piezo 1. CONCLUSIONS Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.
Collapse
Affiliation(s)
- Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P.R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingjing Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jun Wang
- Department of Health Evaluation and Promotion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xin Huang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, P.R. China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
14
|
Bonde S, Chandarana C, Prajapati P, Vashi V. A comprehensive review on recent progress in chitosan composite gels for biomedical uses. Int J Biol Macromol 2024; 272:132723. [PMID: 38825262 DOI: 10.1016/j.ijbiomac.2024.132723] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Smita Bonde
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Chandani Chandarana
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Parixit Prajapati
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Vidhi Vashi
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| |
Collapse
|
15
|
Amiri Z, Molavi AM, Amani A, Moqadam KH, Vatanchian M, Hashemi SA, Oroojalian F. Fabrication, Characterization and Wound-Healing Properties of Core-Shell SF@chitosan/ZnO/ Astragalus Arbusculinus Gum Nanofibers. Nanomedicine (Lond) 2024; 19:499-518. [PMID: 38293919 DOI: 10.2217/nnm-2023-0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
AIM Silk fibroin/chitosan/ZnO/Astragalus arbusculinus (Ast) gum fibrous scaffolds along with adipose-derived mesenchymal stem cells (ADSCs) were investigated for accelerating diabetic wound healing. METHODS Scaffolds with a core-shell structure and different compositions were synthesized using the electrospinning method. Biological in vitro investigations included antibacterial testing, cell viability analysis and cell attachment evaluation. In vivo experiments, including the chicken chorioallantoic membrane (CAM) test, were conducted to assess wound-healing efficacy and histopathological changes. RESULTS The incorporation of Ast to the silk fibroin@ chitosan/ZnO scaffold improved wound healing in diabetic mice. In addition, seeding of ADSCs on the scaffold accelerated wound healing. CONCLUSION These findings suggest that the designed scaffold can be useful for skin regeneration applications.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture & Research (ACECR), Khorasan Razavi Branch, Mashhad, 9177-948974, Iran
| | - Amir Amani
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | | | - Mehran Vatanchian
- Department of Anatomical Sciences School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Seyyed Ahmad Hashemi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| |
Collapse
|
16
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors. Gels 2024; 10:144. [PMID: 38391474 PMCID: PMC10887588 DOI: 10.3390/gels10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels are introduced. Subsequently, this paper discusses in detail the specific applications of conductive hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic skin, and human-computer interactions. Finally, the application prospects and challenges are summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels make them one of the most important materials for future wearable technologies. However, further research and innovation are needed to overcome the challenges faced and to realize the wider application of conductive hydrogels in flexible sensors.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Lotfi R, Zandi N, Pourjavadi A, Christiansen JDC, Gurevich L, Mehrali M, Dolatshahi-Pirouz A, Pennisi CP, Tamjid E, Simchi A. Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfaces. ACS Biomater Sci Eng 2024; 10:800-813. [PMID: 38159039 DOI: 10.1021/acsbiomaterials.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.
Collapse
Affiliation(s)
- Roya Lotfi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran 14588-89694, Iran
| | | | - Leonid Gurevich
- Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg 9260, Denmark
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14588-89694, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| |
Collapse
|
18
|
Liang J, Lv R, Li M, Chai J, Wang S, Yan W, Zheng Z, Li P. Hydrogels for the Treatment of Myocardial Infarction: Design and Therapeutic Strategies. Macromol Biosci 2024; 24:e2300302. [PMID: 37815522 DOI: 10.1002/mabi.202300302] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) have become the leading global burden of diseases in recent years and are the primary cause of human mortality and loss of healthy life expectancy. Myocardial infarction (MI) is the top cause of CVDs-related deaths, and its incidence is increasing worldwide every year. Recently, hydrogels have garnered great interest from researchers as a promising therapeutic option for cardiac tissue repair after MI. This is due to their excellent properties, including biocompatibility, mechanical properties, injectable properties, anti-inflammatory properties, antioxidant properties, angiogenic properties, and conductive properties. This review discusses the advantages of hydrogels as a novel treatment for cardiac tissue repair after MI. The design strategies of various hydrogels in MI treatment are then summarized, and the latest research progress in the field is classified. Finally, the future perspectives of this booming field are also discussed at the end of this review.
Collapse
Affiliation(s)
- Jiaheng Liang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology (ABCT), Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Ronghao Lv
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Maorui Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shuo Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710072, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology (ABCT), Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
19
|
Li X, Wu X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review. Int J Biol Macromol 2023; 253:126611. [PMID: 37652329 DOI: 10.1016/j.ijbiomac.2023.126611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
There are many studies on specific macromolecules and their contributions to tissue repair. Macromolecules have supporting and protective effects in organisms and can help regrow, reshape, and promote self-repair and regeneration of damaged tissues. Macromolecules, such as proteins, nucleic acids, and polysaccharides, can be constructed into hydrogels for the preparation of slow-release drug agents, carriers for cell culture, and platforms for gene delivery. Hydrogels and microspheres are fabricated by chemical crosslinking or mixed co-deposition often used as scaffolds, drug carriers, or cell culture matrix, provide proper mechanical support and nutrient delivery, a well-conditioned environment that to promote the regeneration and repair of damaged tissues. This review provides a comprehensive overview of recent developments in the construction of macromolecules into hydrogels and microspheres based on the proteins, nucleic acids, polysaccharides and other polymer and their application in tissue repair. We then discuss the latest research trends regarding the advantages and disadvantages of these composites in repair tissue. Further, we examine the applications of microspheres/hydrogels in different tissue repairs, such as skin tissue, cartilage, tumor tissue, synovial, nerve tissue, and cardiac repair. The review closes by highlighting the challenges and prospects of microspheres/hydrogels composites.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
20
|
Rozhin P, Adorinni S, Iglesias D, Mackiol T, Kralj S, Bisetto M, Abrami M, Grassi M, Bevilacqua M, Fornasiero P, Marchesan S. Nanocomposite Hydrogels with Self-Assembling Peptide-Functionalized Carbon Nanostructures. Chemistry 2023; 29:e202301708. [PMID: 37740618 DOI: 10.1002/chem.202301708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Carbon nanostructures (CNSs) are attractive components to attain nanocomposites, yet their hydrophobic nature and strong tendency to aggregate often limit their use in aqueous conditions and negatively impact their properties. In this work, carbon nanohorns (CNHs), multi-walled carbon nanotubes (CNTs), and graphene (G) are first oxidized, and then reacted to covalently anchor the self-assembling tripeptide L-Leu-D-Phe-D-Phe to improve their dispersibility in phosphate buffer, and favor the formation of hydrogels formed by the self-organizing L-Leu-D-Phe-D-Phe present in solution. The obtained nanocomposites are then characterized by transmission electron microscopy (TEM), oscillatory rheology, and conductivity measurements to gain useful insights as to the key factors that determine self-healing ability for the future design of this type of nanocomposites.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Simone Adorinni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Tino Mackiol
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Department of Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Matteo Bisetto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127, Trieste, Italy
| | - Manuela Bevilacqua
- Institute for the Chemistry of Organometallic Compounds (ICCOM-CNR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto, Fiorentino (FI), Italy
- Third Parties Research Unit (URT-ICCOM), Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
21
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
22
|
Saveh-Shemshaki N, Barajaa MA, Otsuka T, Mirdamadi ES, Nair LS, Laurencin CT. Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration. Regen Biomater 2023; 10:rbad099. [PMID: 38020235 PMCID: PMC10676522 DOI: 10.1093/rb/rbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials (EAMs) on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of RC muscle degeneration. Further, the review covers the recent studies on EAMs for muscle regeneration including RC muscle. Finally, we will discuss the future direction toward the application of EAMs for the augmentation of RCTs.
Collapse
Affiliation(s)
- Nikoo Saveh-Shemshaki
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammed A Barajaa
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Elnaz S Mirdamadi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
23
|
Ghassemi K, Inouye K, Takhmazyan T, Bonavida V, Yang JW, de Barros NR, Thankam FG. Engineered Vesicles and Hydrogel Technologies for Myocardial Regeneration. Gels 2023; 9:824. [PMID: 37888397 PMCID: PMC10606880 DOI: 10.3390/gels9100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increased prevalence of cardiovascular disease and potentially life-threatening complications of myocardial infarction (MI) has led to emerging therapeutic approaches focusing on myocardial regeneration and restoration of physiologic function following infarction. Extracellular vesicle (EV) technology has gained attention owing to the biological potential to modulate cellular immune responses and promote the repair of damaged tissue. Also, EVs are involved in local and distant cellular communication following damage and play an important role in initiating the repair process. Vesicles derived from stem cells and cardiomyocytes (CM) are of particular interest due to their ability to promote cell growth, proliferation, and angiogenesis following MI. Although a promising candidate for myocardial repair, EV technology is limited by the short retention time of vesicles and rapid elimination by the body. There have been several successful attempts to address this shortcoming, which includes hydrogel technology for the sustained bioavailability of EVs. This review discusses and summarizes current understanding regarding EV technology in the context of myocardial repair.
Collapse
Affiliation(s)
- Kaitlyn Ghassemi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Tatevik Takhmazyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Victor Bonavida
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| |
Collapse
|
24
|
Dey K, Sandrini E, Gobetti A, Ramorino G, Lopomo NF, Tonello S, Sardini E, Sartore L. Designing Biomimetic Conductive Gelatin-Chitosan-Carbon Black Nanocomposite Hydrogels for Tissue Engineering. Biomimetics (Basel) 2023; 8:473. [PMID: 37887604 PMCID: PMC10604854 DOI: 10.3390/biomimetics8060473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Conductive nanocomposites play a significant role in tissue engineering by providing a platform to support cell growth, tissue regeneration, and electrical stimulation. In the present study, a set of electroconductive nanocomposite hydrogels based on gelatin (G), chitosan (CH), and conductive carbon black (CB) was synthesized with the aim of developing novel biomaterials for tissue regeneration application. The incorporation of conductive carbon black (10, 15 and 20 wt.%) significantly improved electrical conductivity and enhanced mechanical properties with the increased CB content. We employed an oversimplified unidirectional freezing technique to impart anisotropic morphology with interconnected porous architecture. An investigation into whether any anisotropic morphology affects the mechanical properties of hydrogel was conducted by performing compression and cyclic compression tests in each direction parallel and perpendicular to macroporous channels. Interestingly, the nanocomposite with 10% CB produced both anisotropic morphology and mechanical properties, whereas anisotropic pore morphology diminished at higher CB concentrations (15 and 20%), imparting a denser texture. Collectively, the nanocomposite hydrogels showed great structural stability as well as good mechanical stability and reversibility. Under repeated compressive cyclic at 50% deformation, the nanocomposite hydrogels showed preconditioning, characteristic hysteresis, nonlinear elasticity, and toughness. Overall, the collective mechanical behavior resembled the mechanics of soft tissues. The electrical impedance associated with the hydrogels was studied in terms of the magnitude and phase angle in dry and wet conditions. The electrical properties of the nanocomposite hydrogels conducted in wet conditions, which is more physiologically relevant, showed a decreasing magnitude with increased CB concentrations, with a resistive-like behavior in the range 1 kHz-1 MHz and a capacitive-like behavior for frequencies <1 kHz and >1 MHz. Overall, the impedance of the nanocomposite hydrogels decreased with increased CB concentrations. Together, these nanocomposite hydrogels are compositionally, morphologically, mechanically, and electrically similar to native ECMs of many tissues. These gelatin-chitosan-carbon black nanocomposite hydrogels show great promise for use as conducting substrates for the growth of electro-responsive cells in tissue engineering.
Collapse
Affiliation(s)
- Kamol Dey
- Bio-Nanomaterials and Tissue Engineering Laboratory (BNTELab), Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Emanuel Sandrini
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Anna Gobetti
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Giorgio Ramorino
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (N.F.L.); (E.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, 35131 Padua, Italy;
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (N.F.L.); (E.S.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| |
Collapse
|
25
|
Vijayakanth T, Shankar S, Finkelstein-Zuta G, Rencus-Lazar S, Gilead S, Gazit E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chem Soc Rev 2023; 52:6191-6220. [PMID: 37585216 PMCID: PMC10464879 DOI: 10.1039/d3cs00202k] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/17/2023]
Abstract
The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sudha Shankar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Gal Finkelstein-Zuta
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sharon Gilead
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| |
Collapse
|
26
|
Li X, Ou W, Xie M, Yang J, Li Q, Li T. Nanomedicine-Based Therapeutics for Myocardial Ischemic/Reperfusion Injury. Adv Healthc Mater 2023; 12:e2300161. [PMID: 36971662 PMCID: PMC11468948 DOI: 10.1002/adhm.202300161] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Indexed: 03/29/2023]
Abstract
Myocardial ischemic/reperfusion (IR) injury is a global cardiovascular disease with high mortality and morbidity. Therapeutic interventions for myocardial ischemia involve restoring the occluded coronary artery. However, reactive oxygen species (ROS) inevitably impair the cardiomyocytes during the ischemic and reperfusion phases. Antioxidant therapy holds great promise against myocardial IR injury. The current therapeutic methodologies for ROS scavenging depend predominantly on administering antioxidants. Nevertheless, the intrinsic drawbacks of antioxidants limit their further clinical transformation. The use of nanoplatforms with versatile characteristics greatly benefits drug delivery in myocardial ischemic therapy. Nanoplatform-mediated drug delivery significantly improves drug bioavailability, increases therapeutic index, and reduces systemic toxicity. Nanoplatforms can be specifically and reasonably designed to enhance molecule accumulation at the myocardial site. The present review initially summarizes the mechanism of ROS generation during the process of myocardial ischemia. The understanding of this phenomenon will facilitate the advancement of innovative therapeutic strategies against myocardial IR injury. The latest developments in nanomedicine for treating myocardial ischemic injury are then discussed. Finally, the current challenges and perspectives in antioxidant therapy for myocardial IR injury are addressed.
Collapse
Affiliation(s)
- Xi Li
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Wei Ou
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
- Department of AnesthesiologyNanchong Central HospitalNanchong637000P. R. China
| | - Maodi Xie
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Jing Yang
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Qian Li
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Tao Li
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| |
Collapse
|
27
|
Zhou T, Qiao Z, Yang M, Wu K, Xin N, Xiao J, Liu X, Wu C, Wei D, Sun J, Fan H. Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics. Biosens Bioelectron 2023; 231:115288. [PMID: 37058960 DOI: 10.1016/j.bios.2023.115288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Bacterial cellulose (BC) with its inherent nanofibrils framework is an attractive building block for the fabrication of sustainable bioelectronics, but there still lacks an effective and green strategy to regulate the hydrogen-bonding topological structure of BC to improve its optical transparency and mechanical stretchability. Herein, we report an ultra-fine nanofibril-reinforced composite hydrogel by utilizing gelatin and glycerol as hydrogen-bonding donor/acceptor to mediate the rearrangement of the hydrogen-bonding topological structure of BC. Attributing to the hydrogen-bonding structural transition, the ultra-fine nanofibrils were extracted from the original BC nanofibrils, which reduced the light scattering and endowed the hydrogel with high transparency. Meanwhile, the extracted nanofibrils were connected with gelatin and glycerol to establish an effective energy dissipation network, leading to an increase in stretchability and toughness of hydrogels. The hydrogel also displayed tissue-adhesiveness and long-lasting water-retaining capacity, which acted as bio-electronic skin to stably acquire the electrophysiological signals and external stimuli even after the hydrogel was exposing to air condition for 30 days. Moreover, the transparent hydrogel could also serve as a smart skin dressing for optical identification of bacterial infection and on-demand antibacterial therapy after combined with phenol red and indocyanine green. This work offers a strategy to regulate the hierarchical structure of natural materials for designing skin-like bioelectronics toward green, low cost, and sustainability.
Collapse
Affiliation(s)
- Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jiamei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengheng Wu
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
28
|
Lu Y, Xu X, Li J. Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications. J Mater Chem B 2023; 11:3338-3355. [PMID: 36987937 DOI: 10.1039/d3tb00251a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Adhesive materials are natural or synthetic polymers with the ability to adhere to the surface of luminal mucus or epithelial cells. They are widely used in the biomedical field due to their unique adhesion, biocompatibility, and excellent surface properties. When used in the human body, they can adhere to an accessible target and remain at the focal site for a longer period, improving the therapeutic effect on local disease. An adhesive material with bacteriostatic properties can play an antibacterial role at the focal site and the adhesive properties of the material can prevent the focal site from being infected by bacteria for a period. In addition, some adhesive materials can promote cell growth and tissue repair. In this review, the properties and mechanism of natural adhesive materials, organic adhesive materials, composite adhesive materials, and underwater adhesive materials have been introduced systematically. The applications of these adhesive materials in drug delivery, antibacterials, tissue repair, and other applications are described in detail. Finally, we have discussed the prospects and challenges of using adhesive materials in the field of biomedicine.
Collapse
Affiliation(s)
- Yongping Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|