1
|
Ding X, Miao H, Duan C, Zhao S, Zhang J, Liu Y, Xu J, Sun M, Hu Y. Construction of polydopamine nanomedicine for dual inhibition and degradation of histone deacetylases in cancer cells. Int J Biol Macromol 2025; 313:144340. [PMID: 40389015 DOI: 10.1016/j.ijbiomac.2025.144340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Histone deacetylases (HDACs), key regulators of gene expression and promoters of tumor progression, have emerged as highly promising targets for anti-cancer therapy. However, current HDAC-targeting strategies are limited by challenges such as poor selectivity, drug resistance, and complex combination of therapy strategies. To address these issues, we have developed covalently modified polydopamine nanoparticles (PDA-SAHA NPs) incorporating octenylimide hydroxamic acid (SAHA), a broad-spectrum HDAC inhibitor. PDA-SAHA NPs can achieve the dual function of inhibition and degradation of HDACs in cancer cells. Under near-infrared light irradiation, PDA-SAHA NPs demonstrate excellent photothermal conversion efficiency, generating localized high temperatures in the tumor microenvironment that effectively induce the denaturation and degradation of HDAC proteins. Both in vivo and in vitro experiments indicate that PDA-SAHA NPs significantly inhibit the proliferation of cancer cells and enhance apoptotic effects, thereby effectively suppressing tumor growth. This dual mechanism, combining HDAC inhibition and photothermal-induced degradation, not only offers a novel strategy for overcoming the resistance associated with traditional HDAC inhibitors but also shows substantial potential in cancer treatment.
Collapse
Affiliation(s)
- Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hu Miao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chenwei Duan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Shunchao Zhao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Jin Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Yi Liu
- School of Chemistry and Material Sciences, South-Central Mimzu University, Wuhan 430074, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Juan Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, PR China.
| | - Ming Sun
- Department of Hematology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430000, PR China.
| | - Yanjun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
2
|
Zhang Y, Yu Q, Wang Z, Qing L, Mo X, Liu B, Chai Y, Yu B, Dong Y, Pan W, Zhang S, He H. Rational Design of Methylene Blue-Raloxifene Conjugates for Efficient Breast Tumor Elimination Triggered by ERα Degradation. J Med Chem 2025; 68:8861-8872. [PMID: 40213902 DOI: 10.1021/acs.jmedchem.5c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Small molecules capable of degrading estrogen receptor α (ERα) are of significant interest in breast cancer treatment. Herein, we rationally designed a series of ERα degraders (MR1-MR3) by conjugating methylene blue, a bifunctional photosensitizer, with the raloxifene pharmacophore. The lead compound MR3 exhibited high affinity to ERα, and it can induce a complete depletion of ERα in MCF7 breast cancer cells after 660 nm irradiation (0.4 W/cm2) for 1 min. Owing to the ERα degradation merit, MR3 displayed a 45-fold boosted anticancer activity (IC50 = 0.55 μM) after irradiation. In the breast cancer xenograft mouse model, MR3 induced an obvious tumor regression (tumor growth inhibition = 118%), which was superior to that of the FDA-approved ERα degrader Faslodex. These important features make MR3 extremely intriguing for breast cancer treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Qiying Yu
- Central Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong 226361, Jiangsu, PR China
| | - Ziwei Wang
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Luolong Qing
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoman Mo
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Bing Liu
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Yue'e Chai
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Bingqiong Yu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yongxi Dong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Weidong Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Silong Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Huan He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Su W, Wang H, Pan J, Zhou Q. Advances in Sonodynamic Therapy: Focus on Ferroptosis. J Med Chem 2025; 68:5976-5992. [PMID: 40063557 DOI: 10.1021/acs.jmedchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ferroptosis is a nonapoptotic form of cell death discovered in 2012. Noninvasive treatments regulating ferroptosis are important for a wide range of diseases. Among the noninvasive treatments, sonodynamic therapy (SDT) has become promising due to its strong tissue penetration and few side effects. In recent years, targeted drug delivery platforms constructed on the basis of SDT have provided an efficient delivery mode for the regulation of ferroptosis. Based on the latest research reports, this Perspective introduces the basic mechanism of SDT and the influencing factors of therapeutic effects, elucidates the significance of ferroptosis-targeted SDT, and summarizes the recent studies on ferroptosis-targeted SDT through different pathways. We also present innovative studies of composite ultrasound-responsive drug delivery platforms. Finally, a brief summary and outlook based on current ferroptosis-targeted SDT are presented.
Collapse
Affiliation(s)
- Wendi Su
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juhong Pan
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
4
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
5
|
Cun JE, He Z, Fan X, Pan Q, Luo K, He B, Pu Y. Copper-Based Bio-Coordination Nanoparticle for Enhanced Pyroptosis-Cuproptosis Cancer Immunotherapy through Redox Modulation and Glycolysis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409875. [PMID: 39757406 DOI: 10.1002/smll.202409875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Copper-based nanoparticles have garnered significant interest in cancer therapy due to their ability to induce oxidative stress and cuproptosis in cancer cells. However, their antitumor effectiveness is constrained by the dynamic redox balance and the metabolic shift between oxidative phosphorylation and glycolysis. Here, a polydopamine-coated copper-α-ketoglutaric acid (α-KG) coordination polymer nanoparticle (CKPP) is designed for combined pyroptosis-cuproptosis cancer immunotherapy by amplifying reactive oxygen species (ROS) production and regulating cellular metabolism. The intracellular redox imbalance is achieved through the synergistic effects of α-KG-induced mitochondrial metabolic reprogramming, photothermally enhanced superoxide dismutase-like activity of polydopamine, and glutathione depletion by copper ions. The multifaceted redox modulation results in a substantial increase in intracellular ROS levels, triggering oxidative stress and subsequent pyroptosis in cancer cells. Furthermore, α-KG shifts cellular metabolism from glycolysis to oxidative phosphorylation, thereby enhancing cuproptosis induced by copper ions. The combination of ROS dyshomeostasis and glycolysis inhibition results in a potent enhancement of pyroptosis-cuproptosis-mediated cancer therapy. In a murine model of colorectal cancer, CKPP exhibited a remarkable anticancer effect, achieving a tumor inhibition rate of 96.3% and complete tumor eradication in two out of five cases. Overall, this bio-engineered metal-organic nanocomposite demonstrates significant potential for treating cancer through combined pyroptosis-cuproptosis cancer immunotherapy.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Chen X, Feng Y, Zhang P, Ni Z, Xue Y, Liu J. Hydrogel Fibers-Based Biointerfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413476. [PMID: 39578344 DOI: 10.1002/adma.202413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The unique 1D structure of fibers offers intriguing attributes, including a high length-to-diameter ratio, miniatured size, light-weight, and flexibility, making them suitable for various biomedical applications, such as health monitoring, disease treatment, and minimally invasive surgeries. However, traditional fiber devices, typically composed of rigid, dry, and non-living materials, are intrinsically different from the soft, wet, and living essence of biological tissues, thereby posing grand challenges for long-term, reliable, and seamless interfacing with biological systems. Hydrogel fibers have recently emerged as a promising candidate, in light of their similarity to biological tissues in mechanical, chemical and biological aspects, as well as distinct fiber geometry. In this review, a comprehensive overview of recent progress in hydrogel fibers-based biointerfacing technology is provided. It thoroughly summarizes the manufacturing strategy and functional design, especially for hydrogel fibers with distinct optical and electron conductive performance, as well as responsiveness to triggers including thermal, magnetic field and ultrasonic wave, etc. Such unique attributes enable various biomedical applications, which are also examined in detail. Future challenges and potential directions, including biosafety, long-term reliability, sterilization, multi-modalities integration and intelligent therapeutic systems, are raised. This review will serve as a valuable resource for further advancement and implementation as next-generation biointerfacing technology.
Collapse
Affiliation(s)
- Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Wang H, Gou R, Chen J, Wang Q, Li X, Chang J, Chen H, Wang X, Wan G. Catalase-positive Staphylococcus epidermidis based cryo-millineedle platform facilitates the photo-immunotherapy against colorectal cancer via hypoxia improvement. J Colloid Interface Sci 2024; 676:506-520. [PMID: 39047378 DOI: 10.1016/j.jcis.2024.07.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The synergistic anti-tumor impact of phototherapy and a cascading immune response are profoundly limited by hypoxia and a weakened immune response. Intravenous and intratumoral injection of therapeutic drugs also cause pain, rapid drug clearance and low utilization rates. Here, a novel cryo-millineedle platform for intratumoral delivery of a phototherapy system, S.epi@IR820, is developed in this work, combining the properties of Staphylococcus epidermidis (S. epidermidis) and IR820 for photo-immunotherapy of colorectal cancer. In this cryo-millineedle platform, S. epidermidis enhances the near-infrared absorption and light stability of IR820 and catalyzes the decomposition of H2O2 into O2 via an endogenous catalase to relieve tumor hypoxia, improve phototherapy and enhance immunogenic cell death (ICD). More interestingly, the native immunogenicity of S. epidermidis and ICD elicited by phototherapy achieved a potent anti-tumor immune response. To the best of our knowledge, this is the first study to utilize native S. epidermidis to relieve hypoxia and facilitate phototherapy. Both in vitro and in vivo experiments showed that the millineedle based phototherapy system can efficiently catalyse the decomposition of H2O2 into O2, facilitate phototherapeutic killing of CT26 tumor cells by S.epi@IR820 and enhance ICD, thus successfully activated the immune response and achieved the photo-immunotherapy against colorectal cancer. In conclusion, this study provides a novel strategy for enhanced anti-tumor efficiency of photo-immunotherapy, and develops an effective method for orthotopic administration of tumors.
Collapse
Affiliation(s)
- Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoyu Li
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaxin Chang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
| | - Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
8
|
Szukalska M, Grześkowiak BF, Bigaj-Józefowska MJ, Witkowska M, Cicha E, Sujka-Kordowska P, Miechowicz I, Nowicki M, Mrówczyński R, Florek E. Toxicity and Oxidative Stress Biomarkers in the Organs of Mice Treated with Mesoporous Polydopamine Nanoparticles Modified with Iron and Coated with Cancer Cell Membrane. Int J Nanomedicine 2024; 19:12053-12078. [PMID: 39583321 PMCID: PMC11585271 DOI: 10.2147/ijn.s481120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Polydopamine nanoparticles (PDA NPs) have great potential in medicine. Their applications being widely investigated in cancer therapy, imaging, chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and tissue repair. The aim of our study was to assess the in vivo toxicity and changes in oxidative stress biomarkers in organs of animals treated with mesoporous PDA NPs modified with iron (MPDAFe NPs), coated with the cancer cell membrane and loaded with doxorubicin (DOX), and subsequently subjected to PTT. Methods Liver and kidney homogenates were obtained from BALB/c nude mice with xenograft HepG2 human hepatoma cells, treated with iron modified mesoporous PDA nanoparticles, coated with the cancer cell membrane and loaded with doxorubicin (MPDAFe@DOX@Mem NPs), and subjected to PTT. These samples were used for histological evaluation and measurement of oxidative stress biomarkers, including total protein (TP), reduced glutathione (GSH), nitric oxide (NO), S-nitrosothiols (RSNO), thiobarbituric acid reactive substances (TBARS), trolox equivalent antioxidant capacity (TEAC), catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD). Results In the kidney, MPDAFe@DOX@Mem NPs in combination with PTT increased GSH (43%), TBARS (32%), and CAT (27%), while SOD decreased by 20% compared to the control group. Additionally, CAT activity in the liver increased by 79%. Conclusion Significant differences in oxidative stress parameters and histological changes after administration with MPDAFe@DOX@Mem NPs and PTT were observed in the kidneys, showing more pronounced changes than the liver, indicating potential kidney toxicity. Our research provides insights into oxidative stress and possible toxic effects after in vivo administration of mesoporous PDA NPs combined with chemotherapy-photothermal therapy (CT-PTT), which is extremely important for their future applications in anticancer therapies.
Collapse
Affiliation(s)
- Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | - Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Emilia Cicha
- Laboratory of Experimental Animals, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
10
|
Long J, Zhou G, Yu X, Xu J, Hu L, Pranovich A, Yong Q, Xie ZH, Xu C. Harnessing chemical functionality of xylan hemicellulose towards carbohydrate polymer-based pH/magnetic dual-responsive nanocomposite hydrogel for drug delivery. Carbohydr Polym 2024; 343:122461. [PMID: 39174134 DOI: 10.1016/j.carbpol.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
This study reports a pH/magnetic dual-responsive hemicellulose-based nanocomposite hydrogel with nearly 100 % carbohydrate polymer-based and biodegradable polymer compositions for drug delivery. We synthesized pure Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) using a co-precipitation method, then engineering xylan hemicellulose (XH), acrylic acid, poly(ethylene glycol) diacrylate, and Fe3O4 to synthesize the pH/magnetic dual-responsive hydrogel (Fe3O4@XH-Gel), through graft polymerization on XH with in-situ doping Fe3O4 MNPs initiated by the ammonium persulfate/tetramethylethylenediamine redox system. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), swelling gravimetric analysis, vibrating sample magnetometer (VSM) were employed to analyze the hydrogel's chemical structures, morphologies, pH-responsive behaviors, and magnetic responsiveness characteristics, mechanical and rheological properties, as well as cytotoxicity and biodegradability. The results indicate that the Fe3O4@XH-Gel exhibited excellent dual responsiveness to pH and magnetism. Furthermore, an emphasis was placed on the in-depth analysis of the pH response mechanism. Finally, we utilized this cutting-edge hydrogel to investigate the controlled-release behavior of two model drugs, Acetylsalicylic acid and Theophylline. The hydrogel demonstrated exceptional controlled release attributes, positioning it as a potential carrier for targeted drug delivery, particularly to the gastrointestinal conditions.
Collapse
Affiliation(s)
- Jilan Long
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Guangliang Zhou
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Xiaomeng Yu
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Jiayun Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland
| | - Liqiu Hu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland
| | - Andrey Pranovich
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland
| | - Qiwen Yong
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China; Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland; Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China.
| | - Zhi-Hui Xie
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China.
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland.
| |
Collapse
|
11
|
Kang H, Meng F, Liu F, Xie M, Lai H, Li P, Zhang X. Nanomedicines Targeting Ferroptosis to Treat Stress-Related Diseases. Int J Nanomedicine 2024; 19:8189-8210. [PMID: 39157732 PMCID: PMC11328858 DOI: 10.2147/ijn.s476948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.
Collapse
Affiliation(s)
- Hao Kang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
- Wuhu Modern Technology Research and Development Center of Chinese Medicine and Functional Food, Wuhu, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Fengjie Liu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Mengjie Xie
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Pengfei Li
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Zhang X, Li M, Tang YL, Zheng M, Liang XH. Advances in H 2O 2-supplying materials for tumor therapy: synthesis, classification, mechanisms, and applications. Biomater Sci 2024; 12:4083-4102. [PMID: 39010783 DOI: 10.1039/d4bm00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen peroxide (H2O2) as a reactive oxygen species produced by cellular metabolism can be used in antitumor therapy. However, the concentration of intracellular H2O2 limits its application. Some materials could enhance the concentration of intracellular H2O2 to strengthen antitumor therapy. In this review, the recent advances in H2O2-supplying materials in terms of promoting intracellular H2O2 production and exogenous H2O2 supply are summarized. Then the mechanism of H2O2-supplying materials for tumor therapy is discussed from three aspects: reconstruction of the tumor hypoxia microenvironment, enhancement of oxidative stress, and the intrinsic anti-tumor ability of H2O2-supplying materials. In addition, the application of H2O2-supplying materials for tumor therapy is discussed. Finally, the future of H2O2-supplying materials is presented. This review aims to provide a novel idea for the application of H2O2-supplying materials in tumor therapy.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
13
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
14
|
Li D, Fan M, Wang H, Zhu Y, Yu B, Zhang P, Huang H. Facile synthesis of a hydrazone-based zinc(ii) complex for ferroptosis-augmented sonodynamic therapy. Chem Sci 2024; 15:10027-10035. [PMID: 38966369 PMCID: PMC11220576 DOI: 10.1039/d4sc02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Sonodynamic therapy (SDT), as a novel non-invasive cancer treatment modality derived from photodynamic therapy (PDT), has drawn much attention due to its unique advantages for the treatment of deep tumors. Zinc-based complexes have shown great clinical prospect in PDT due to their excellent photodynamic activity and biosafety. However, their application in SDT has lagged seriously behind. Exploring efficient zinc-based complexes as sono-sensitizers remains an appealing but significantly challenging task. Herein, we develop a hydrazone ligand-based zinc complex (ZnAMTC) for SDT of tumors in vitro and in vivo. ZnAMTC was facilely synthesized via a two-step reaction from low-cost raw materials without tedious purification. It shows negligible dark toxicity and can produce singlet oxygen (1O2) under ultrasound (US) irradiation, exhibiting high sono-cytotoxicity to various cancer cells. Mechanism studies show that ZnAMTC can effectively reduce the levels of glutathione (GSH) and glutathione peroxidase 4 (GPX4) under US irradiation and later cause ferroptosis of cancer cells. In vivo studies further demonstrate that ZnAMTC exhibits efficient tumor growth inhibition under US irradiation and has good biosafety. This work provides useful insights into the design of first-row transition metal complexes for SDT application.
Collapse
Affiliation(s)
- Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Minghui Fan
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Yongjie Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Bole Yu
- Laboratory of Life Science, Shenzhen Research Institute of the Hong Kong Polytechnic University Shenzhen 518057 China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University No. 66, Gongchang Road Shenzhen 518107 China
| |
Collapse
|
15
|
Liu J, Li W, Sun S, Huang L, Wan M, Li X, Zhang L, Yang D, Liu F, Liao X, Lu H, Xiao J, Zhang S, Cao Z. Comparison of cardiotoxicity induced by alectinib, apatinib, lenvatinib and anlotinib in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109834. [PMID: 38218563 DOI: 10.1016/j.cbpc.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.
Collapse
Affiliation(s)
- Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Sujie Sun
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Dou Yang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
16
|
Jin Z, Al Amili M, Guo S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024; 12:417. [PMID: 38398021 PMCID: PMC10886702 DOI: 10.3390/biomedicines12020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In clinical practice, drug therapy for cancer is still limited by its inefficiency and high toxicity. For precision therapy, various drug delivery systems, including polymeric micelles self-assembled from amphiphilic polymeric materials, have been developed to achieve tumor-targeting drug delivery. Considering the characteristics of the pathophysiological environment at the drug target site, the design, synthesis, or modification of environmentally responsive polymeric materials has become a crucial strategy for drug-targeted delivery. In comparison to the normal physiological environment, tumors possess a unique microenvironment, characterized by a low pH, high reactive oxygen species concentration, hypoxia, and distinct enzyme systems, providing various stimuli for the environmentally responsive design of polymeric micelles. Polymeric micelles with tumor microenvironment (TME)-responsive characteristics have shown significant improvement in precision therapy for cancer treatment. This review mainly outlines the most promising strategies available for exploiting the tumor microenvironment to construct internal stimulus-responsive drug delivery micelles that target tumors and achieve enhanced antitumor efficacy. In addition, the prospects of TME-responsive polymeric micelles for gene therapy and immunotherapy, the most popular current cancer treatments, are also discussed. TME-responsive drug delivery via polymeric micelles will be an efficient and robust approach for developing clinical cancer therapies in the future.
Collapse
Affiliation(s)
- Zhu Jin
- Correspondence: (Z.J.); (S.G.)
| | | | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|