1
|
Wang Q, Liu K, Xing K, Li Y, Liu Y, Tan G, Sun Y, Zhang S. Dual-mode droplet rolling strategy: mimicking Earth's rotation and revolution for dual-cycle synergy in the efficient capture and controlled release of trace targets. LAB ON A CHIP 2025. [PMID: 40370282 DOI: 10.1039/d5lc00110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Current microchips functionalized with antibodies or aptamers primarily enhance the capture and detection efficiency of single targets in microfluidics by refining microchannel designs or developing functional enhancement materials. However, strategies to extend the interaction path for efficiency optimization remain underexplored, as they may cause elevated hydraulic pressure and fluid shear forces within the microchannels, and the potential for path extension is inherently limited. This study introduces a novel dual-mode droplet rolling strategy, mimicking Earth's rotation and revolution, which employs a closed-loop patterned superwetting chip to achieve efficient capture of trace biological targets in gravity-driven droplets. Specifically, the external cyclic motion in the "revolution" mode greatly extends the interaction path between the droplet-contained targets and the active interface. Meanwhile, the internal cyclic vortex flow in the "rotation" mode markedly increases the contact frequency between droplet-contained targets and the active substrate. Consequently, the dual-cycle synergistic amplification significantly enhances the effective contact opportunities between the targets and the functionalized closed-loop track, thereby markedly improving target capture efficiency. As a proof of concept, we demonstrate the specific and efficient capture of both micron-sized polystyrene microspheres (6 μm and 15 μm) and nanoscale AuNPs (50 nm) through multilayer modification of the superslippery track, highlighting the platform's versatility for targets of varying sizes. We achieved 91.3% capture efficiency for circulating tumor cells (MCF-7 cells, ∼20 μm), underscoring the chip's high efficiency in specific target capture. Furthermore, we showcase the strategy's applicability throughout the entire workflow, encompassing efficient capture, controlled release, immediate recovery, and downstream cultivation using pathogenic bacteria (E. coli, ∼1 μm). This strategy holds significant promise for detecting tumor markers and pathogens in body fluid samples, offering an innovative approach to capture-based diagnostics.
Collapse
Affiliation(s)
- Qian Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| | - Kexin Liu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| | - Kunming Xing
- Linyi People's Hospital, Linyi, Shandong 276100, P. R. China
| | - Yuyan Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| | - Yumin Liu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| | - Guangyao Tan
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| | - Yingnan Sun
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, China.
| |
Collapse
|
2
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
3
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
4
|
Ge J, Cheng X, Rong LH, Capadona JR, Caldona EB, Advincula RC. 3D Temperature-Controlled Interchangeable Pattern for Size-Selective Nanoparticle Capture. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422547 DOI: 10.1021/acsami.3c17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Patterned surfaces with distinct regularity and structured arrangements have attracted great interest due to their extensive promising applications. Although colloidal patterning has conventionally been used to create such surfaces, herein, we introduce a novel 3D patterned poly(N-isopropylacrylamide) (PNIPAM) surface, synthesized by using a combination of colloidal templating and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization. In order to investigate the temperature-driven 3D morphological variations at a lower critical solution temperature (LCST) of ∼32 °C, multifaceted characterization techniques were employed. Atomic force microscopy confirmed the morphological transformations at 20 and 40 °C, while water contact angle measurements, upon heating, revealed distinct trends, offering insights into the correlation between surface wettability and topography adaptations. Moreover, quartz crystal microbalance with dissipation monitoring and electrochemical measurements were employed to detect the topographical adjustments of the unique hollow capsule structure within the LCST. Tests using different sizes of PSNPs shed light on the size-selective capture-release potential of the patterned PNIPAM, accentuating its biomimetic open-close behavior. Notably, our approach negates the necessity for expensive proteins, harnessing temperature adjustments to facilitate the noninvasive and efficient reversible capture and release of nanostructures. This advancement hopes to pave the way for future innovative cellular analysis platforms.
Collapse
Affiliation(s)
- Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Li-Han Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eugene B Caldona
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Sahoo J, Sahoo S, Subramaniam Y, Bhatt P, Rana S, De M. Photo-Controlled Gating of Selective Bacterial Membrane Interaction and Enhanced Antibacterial Activity for Wound Healing. Angew Chem Int Ed Engl 2024; 63:e202314804. [PMID: 37955346 DOI: 10.1002/anie.202314804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Reversible biointerfaces are essential for on-demand molecular recognition to regulate stimuli-responsive bioactivity such as specific interactions with cell membranes. The reversibility on a single platform allows the smart material to kill pathogens or attach/detach cells. Herein, we introduce a 2D-MoS2 functionalized with cationic azobenzene that interacts selectively with either Gram-positive or Gram-negative bacteria in a light-gated fashion. The trans conformation (trans-Azo-MoS2 ) selectively kills Gram-negative bacteria, whereas the cis form (cis-Azo-MoS2 ), under UV light, exhibits antibacterial activity against Gram-positive strains. The mechanistic investigation indicates that the cis-Azo-MoS2 exhibits higher affinity towards the membrane of Gram-positive bacteria compared to trans-Azo-MoS2 . In case of Gram-negative bacteria, trans-Azo-MoS2 internalizes more efficiently than cis-Azo-MoS2 and generates intracellular ROS to kill the bacteria. While the trans-Azo-MoS2 exhibits strong electrostatic interactions and internalizes faster into Gram-negative bacterial cells, cis-Azo-MoS2 primarily interacts with Gram-positive bacteria through hydrophobic and H-bonding interactions. The difference in molecular mechanism leads to photo-controlled Gram-selectivity and enhanced antibacterial activity. We found strain-specific and high bactericidal activity (minimal bactericidal concentration, 0.65 μg/ml) with low cytotoxicity, which we extended to wound healing applications. This methodology provides a single platform for efficiently switching between conformers to reversibly control the strain-selective bactericidal activity regulated by light.
Collapse
Affiliation(s)
- Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Soumyashree Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | | | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
6
|
Kim Y, Jahan UM, Deltchev AP, Lavrik N, Reukov V, Minko S. Strategy for Nonenzymatic Harvesting of Cells via Decoupling of Adhesive and Disjoining Domains of Nanostructured Stimulus-Responsive Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49012-49021. [PMID: 37824473 PMCID: PMC10614186 DOI: 10.1021/acsami.3c11296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The nanostructured polymer film introduces a novel mechanism of nonenzymatic cell harvesting by decoupling solid cell-adhesive and soft stimulus-responsive cell-disjoining areas on the surface. The key characteristics of this architecture are the decoupling of adhesion from detachment and the impermeability to the integrin protein complex of the adhesive domains. This surface design eliminates inherent limitations of thermoresponsive coatings, namely, the necessity for the precise thickness of the coating, grafting or cross-linking density, and material of the basal substrate. The concept is demonstrated with nanostructured thermoresponsive films made of cell-adhesive epoxy photoresist domains and cell-disjoining poly(N-isopropylacrylamide) brush domains.
Collapse
Affiliation(s)
- Yongwook Kim
- Nanostructured
Material Lab, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Lawrence
Livermore National Lab, Livermore, California 94500, United States
| | - Ummay Mowshome Jahan
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Alexander Pennef Deltchev
- Nanostructured
Material Lab, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Nickolay Lavrik
- Center
for Nanophase Materials Sciences, Oak Ridge
National Lab, Oak Ridge, Tennessee 37831, United States
| | - Vladimir Reukov
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured
Material Lab, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Yu N, Zhang F, Tang X, Liu Y, Zhang J, Yang B, Wang Q. Hierarchical hydrogel microarrays fabricated based on a microfluidic printing platform for high-throughput screening of stem cell lineage specification. Acta Biomater 2023; 161:144-153. [PMID: 36868445 DOI: 10.1016/j.actbio.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
2D cell cultures are suitable for rapid exploration of the factors in the extracellular matrix affecting the development of cells. The technology of the micrometre-sized hydrogel array provides a feasible, miniaturized, and high-throughput strategy for the process. However, current microarray devices lack a handy and parallelized methodology in sample treatment, which makes the process of high-throughput cell screening (HTCS) expensive and inefficient. Here, based on the functionalization of micro-nano structures and the fluid control capability of microfluidic chips, we build a microfluidic spotting-screening platform (MSSP). The MSSP can print 20000 microdroplet spots within 5 min, coupled with a simple strategy for parallel addition of compound libraries. Compared with open microdroplet arrays, the MSSP can control the evaporation rate of nanoliter droplets, providing a stable fabrication platform for hydrogel-microarray-based materials. As a proof-of-concept demonstration, the MSSP successfully controlled the adhesion, adipogenic, and osteogenic differentiation behavior of mesenchymal stem cells by rationally designing the substrate stiffness, adhesion area, and cell density. We anticipate that the MSSP may provide an accessible and promising tool for hydrogel-based HTCS. STATEMENT OF SIGNIFICANCE: High-throughput screening of cells is a common approach to improve the efficiency of biological experiments, and one challenge of the existing technologies is to achieve rapid and precise cell screening with a low-cost and simple strategy. Through the integration of the microfluidic and micro-nanostructure technologies, we fabricated a microfluidic spotting-screening platforms. Benefiting from the flexible control of the fluids, the device can print 20000 microdroplet spots within 5 min, coupled with a simple procedure for parallel addition of compound libraries. High-throughput screening of stem cell lineage specification has also been achieved by the platform, which provides a high-throughput, high-content information extraction strategy for cell-biomaterial interaction research.
Collapse
Affiliation(s)
- Nianzuo Yu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130031, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Feiran Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China
| | - Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China
| | - Yongshun Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130031, PR China.
| |
Collapse
|
9
|
Wang J, Zhang Y, Dong M, Liu Z, Guo B, Zhang H, Gao L. Capture and release of circulating tumor cells stimulated by pH and NIR irradiation of magnetic Fe 3O 4@ZIF-8 nanoparticles. Colloids Surf B Biointerfaces 2023; 224:113206. [PMID: 36791519 DOI: 10.1016/j.colsurfb.2023.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Detecting and analyzing circulating tumor cells(CTCs) is significant for early diagnosis, management, and personalized treatment of tumors. Herein, a smart magnetic aptamer modified Fe3O4@ZIF-8 core/shell structured nanoparticle (NPs) was successfully constructed using for capture and simultaneous pH- and NIR-irradiation responsive release of CTCs. Taking MCF-7 as model CTCs, it could be captured ca. 60 % in low-concentration artificial blood by aptamer (SYL3C) on the surface of Fe3O4@ZIF-8 NPs. After magnetic separation, the ZIF-8 shell in aptamer-modified Fe3O4@ZIF-8 NPs carrying captured CTCs would disintegrate within 20 min under the synergistic effect of an acidic environment (pH=6.0) and NIR irradiation leading to the release of CTCs with high cell viability, which was benefited for the subsequent culture and analysis. This magnetic and core/shell structured device integrated high-efficiency capture, quick isolation and perfect release into one system, which showed great potentials for the detection of CTCs in the clinic.
Collapse
Affiliation(s)
- Jidong Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Yating Zhang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Min Dong
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhaopeng Liu
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Binbin Guo
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Haipeng Zhang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liming Gao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Bai M, Tian X, Wang Z, Zhang L, Zhang F, Yang Y, Liu L. Versatile Dynamic Bioactive Lubricant-Infused Surface for Effective Isolation of Circulating Tumor Cells. Anal Chem 2023; 95:5307-5315. [PMID: 36930830 DOI: 10.1021/acs.analchem.2c05357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The rarity of circulating tumor cells (CTCs) and the complexity of blood components present major challenges for the efficient isolation of CTCs in blood. The coexisting matters could interfere with the detection of CTCs by adhering to the binding sites on the material surface, leading to the reduced accuracy of biomarker capture in blood. Herein, we developed dynamic bioactive lubricant-infused slippery surfaces by grafting the 1H,1H,2H,2H-heptadecafluorodecyl acrylate polymer and 3-acrylamidophenylboronic acid polymer brushes on quartz plates by UV light-initiated and then grafted cancer cell-binding peptides via reversible catechol-boronate chemistry between phenylboronic acid groups and 3,4-dihydroxy-l-phenylalanine groups of peptides for high-efficient capture of CTCs and nondestructive release of the desired cells in sugar response. Patterned dynamic bioactive lubricant-infused surfaces (PDBLISs) further exhibited the improved capture efficiency of CTCs and more effective antifouling properties for nonspecific cells and blood components. Moreover, the PDBLIS can efficiently capture rare cancer cells from the mimic of cancer patient's blood samples. We anticipate that the strategy we proposed would be used in further clinical diagnosis of complicated biofluids related to a variety of tumors and exhibit good prospects and potential in future liquid biopsies.
Collapse
Affiliation(s)
- Mengqi Bai
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feiyi Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhe Yang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Smart membranes for biomedical applications. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Liu P, Freeley M, Zarbakhsh A, Resmini M. Adsorption of soft NIPAM nanogels at hydrophobic and hydrophilic interfaces: Conformation of the interfacial layers determined by neutron reflectivity. J Colloid Interface Sci 2022; 623:337-347. [PMID: 35594592 DOI: 10.1016/j.jcis.2022.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
The application of stimuli-responsive microgels and nanogels in drug delivery, catalysis, sensing, and coatings is restricted currently by the limited understanding of the factors influencing their adsorption dynamics and structural changes at interfaces. We have used neutron reflectivity to resolve, on the Ångström scale, the structure of 5% crosslinked N-isopropylacrylamide nanogels at both hydrophobic and hydrophilic interfaces in situ, as a function of temperature and bulk nanogel concentration. Our results show that the higher flexibility given by the low crosslinker content allows for a more ordered structure and packing. The adsorption of the thermoresponsive nanogels is primarily driven by temperature, more specifically its proximity to its volume phase transition temperature, while concentration plays a secondary role. Hydrophobic interactions drive the conformation of the first layer at the interface, which plays a key role in influencing the overall nanogel structure. The mobility of the first layer at the air-water interface as opposed to the interfacial confinement at the solid (SiC8)-liquid interface, results in a different conformation, a more compact and less deformed packing structure, which ultimately drives the structure of the subsequent layers. The evidence for the different structural conformations determined by the degree of hydrophobicity of the interface provides new knowledge, which is essential for the development of further applications. The key role of hydrophobic interactions in driving adsorption and interfacial behavior was also confirmed by fluid AFM experiments which visualized adherence of the nanogels to SiC8 modified surfaces.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Chemistry, SPCS, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mark Freeley
- Department of Chemistry, SPCS, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ali Zarbakhsh
- Department of Chemistry, SPCS, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
16
|
Yang D, Xie L, Mao X, Gong L, Peng X, Peng Q, Wang T, Liu Q, Zeng H, Zhang H. Probing Hydrophobic Interactions between Polymer Surfaces and Air Bubbles or Oil Droplets: Effects of Molecular Weight and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5257-5268. [PMID: 34787428 DOI: 10.1021/acs.langmuir.1c02635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrophobic interaction plays an important role in numerous interfacial phenomena and biophysical and industrial processes. In this work, polystyrene (PS) was used as a model hydrophobic polymer for investigating its hydrophobic interaction with highly deformable objects (i.e., air bubbles and oil droplets) in aqueous solutions. The effects of polymer molecular weight, solvent (i.e., addition of ethanol to water), the presence of surface-active species, and hydrodynamic conditions were investigated, via direct surface force measurements using the bubble/drop probe atomic force microscopy (AFM) technique and theoretical calculations based on the Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. It was found that the PS of low molecular weight (i.e., PS590 and PS810) showed slightly weaker hydrophobic interactions with air bubbles or oil droplets, as compared to glassy PS of higher molecular weight (i.e., PS1110, PS2330, PS46300, and PS1M). The hydrophobic interaction between PS and air bubbles in a 1 M NaCl aqueous solution with 10 vol % ethanol was weaker than that in the bare aqueous solution. Such effects on the hydrophobic interactions are possibly achieved by influencing the structuring/ordering of water molecules close to the hydrophobic polymer surfaces by tuning the surface chain mobility and surface roughness of polymers. It was found that the addition of three surface-active species, i.e., cetyltrimethylammonium chloride (CTAC), Pluronic F-127, and sodium dodecyl sulfate (SDS), to the aqueous media could suppress the attachment of the hydrophobic polymer and air bubbles or oil droplets, most likely caused by the additional steric repulsion due to the adsorbed surface-active species at the bubble/polymer/oil interfaces. Our results have improved the fundamental understanding of the interaction mechanisms between hydrophobic polymers and gas bubbles or oil droplets, with useful implications on developing effective methods for modulating the related interfacial interactions in many engineering applications.
Collapse
Affiliation(s)
- Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
17
|
Ding Y, Panzarasa G, Stucki S, Burgert I, Keplinger T. Thermoresponsive Smart Gating Wood Membranes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:5517-5525. [PMID: 35528199 PMCID: PMC9066405 DOI: 10.1021/acssuschemeng.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Smart membranes that can open and/or close their pores in a controlled manner by external stimuli possess potential in various applications, such as water flow manipulation, indoor climate regulation, and sensing. The design of smart gating membranes with high flux, immediate response, and mechanical robustness is still an open challenge, limiting their versatility and practical applicability. Inspired by the controlled opening and closure of plant stomata, we have developed a smart gating wood membrane, taking advantage of the unique wood scaffold with its hierarchical porous structure to carry thermoresponsive hydrogel gates. Laser drilling was applied to cut channels in the wood scaffold with well-aligned pores to incorporate the smart gating membranes. In situ polymerization of poly(N-isopropylacrylamide) above its lower critical solution temperature inside the channels resulted in a hydrogel with a heterogeneous microstructure acting as a thermoresponsive gate. The wood-based smart gating membranes exhibited reversible and stable pore opening/closing under heating/cooling stimuli. The achieved rapid response and feasibility of scale-up open the venue for various practical applications. In this work, we demonstrated their potential for indoor light regulation and as a water flow manipulator.
Collapse
Affiliation(s)
- Yong Ding
- Wood
Materials Science, Institute for Building
Materials, ETH Zürich, Zürich 8093, Switzerland
- WoodTec
Group, Cellulose & Wood Materials, Empa, Dübendorf 8600, Switzerland
| | - Guido Panzarasa
- Wood
Materials Science, Institute for Building
Materials, ETH Zürich, Zürich 8093, Switzerland
- WoodTec
Group, Cellulose & Wood Materials, Empa, Dübendorf 8600, Switzerland
| | - Sandro Stucki
- Wood
Materials Science, Institute for Building
Materials, ETH Zürich, Zürich 8093, Switzerland
- WoodTec
Group, Cellulose & Wood Materials, Empa, Dübendorf 8600, Switzerland
| | - Ingo Burgert
- Wood
Materials Science, Institute for Building
Materials, ETH Zürich, Zürich 8093, Switzerland
- WoodTec
Group, Cellulose & Wood Materials, Empa, Dübendorf 8600, Switzerland
| | - Tobias Keplinger
- Wood
Materials Science, Institute for Building
Materials, ETH Zürich, Zürich 8093, Switzerland
- WoodTec
Group, Cellulose & Wood Materials, Empa, Dübendorf 8600, Switzerland
| |
Collapse
|
18
|
Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials 2022; 283:121450. [PMID: 35247636 PMCID: PMC8977253 DOI: 10.1016/j.biomaterials.2022.121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Across diverse research and application areas, dynamic functionality-such as programmable changes in biochemical property, in mechanical property, or in microscopic or macroscopic architecture-is an increasingly common biomaterials design criterion, joining long-studied criteria such as cytocompatibility and biocompatibility, drug release kinetics, and controlled degradability or long-term stability in vivo. Despite tremendous effort, achieving dynamic functionality while simultaneously maintaining other desired design criteria remains a significant challenge. Reversible dynamic functionality, rather than one-time or one-way dynamic functionality, is of particular interest but has proven especially challenging. Such reversible functionality could enable studies that address the current gap between the dynamic nature of in vivo biological and biomechanical processes, such as cell traction, cell-extracellular matrix (ECM) interactions, and cell-mediated ECM remodeling, and the static nature of the substrates and ECM constructs used to study the processes. This review assesses dynamic materials that have traditionally been used to control cell activity and static biomaterial constructs, experimental and computational techniques, with features that may inform continued advances in reversible dynamic materials. Taken together, this review presents a perspective on combining the reversibility of smart materials and the in-depth dynamic cell behavior probed by static polymers to design smart bi-directional ECM platforms that can reversibly and repeatedly communicate with cells.
Collapse
Affiliation(s)
- Ameya R Narkar
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Zhuoqi Tong
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Pranav Soman
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
19
|
He W, Bai J, Chen X, Suo D, Wang S, Guo Q, Yin W, Geng D, Wang M, Pan G, Zhao X, Li B. Reversible dougong structured receptor-ligand recognition for building dynamic extracellular matrix mimics. Proc Natl Acad Sci U S A 2022; 119:e2117221119. [PMID: 35181608 PMCID: PMC8872741 DOI: 10.1073/pnas.2117221119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Dynamic biomaterials excel at recapitulating the reversible interlocking and remoldable structure of the extracellular matrix (ECM), particularly in manipulating cell behaviors and adapting to tissue morphogenesis. While strategies based on dynamic chemistries have been extensively studied for ECM-mimicking dynamic biomaterials, biocompatible molecular means with biogenicity are still rare. Here, we report a nature-derived strategy for fabrication of dynamic biointerface as well as a three-dimensional (3D) hydrogel structure based on reversible receptor-ligand interaction between the glycopeptide antibiotic vancomycin and dipeptide d-Ala-d-Ala. We demonstrate the reversible regulation of multiple cell types with the dynamic biointerface and successfully implement the dynamic hydrogel as a functional antibacterial 3D scaffold to treat tissue repair. In view of the biogenicity and high applicability, this nature-derived reversible molecular strategy will bring opportunities for malleable biomaterial design with great potential in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxiang Bai
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Suo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, China;
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China;
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China
- Department of Orthopaedic Surgery, The Affiliated Haian Hospital of Nantong University, Haian, Nantong 226600, China
| |
Collapse
|
20
|
Xu K, Jiao X, Wang P, Chen C, Chen C. Isolation of circulating tumor cells based on magnetophoresis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
22
|
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022; 8:449-477. [PMID: 34541413 PMCID: PMC8429475 DOI: 10.1016/j.bioactmat.2021.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guannan Wang
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
23
|
Liu M, Wan X, Yang M, Wang Z, Bao H, Dai B, Liu H, Wang S. Thermo‐Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid–Solid Switchable Materials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bing Dai
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
24
|
Wen Y, Mensah NN, Song X, Zhu J, Tan WS, Chen X, Li J. A hydrogel with supramolecular surface functionalization for cancer cell capture and multicellular spheroid growth and release. Chem Commun (Camb) 2022; 58:681-684. [PMID: 34919108 DOI: 10.1039/d1cc05846k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A hydrogel scaffold with a non-fouling but specific cancer cell-adhesive surface was fabricated through surface modification using β-cyclodextrin-based host-guest chemistry. Interestingly, the hydrogel surface not only selectively captured specific cancer cells, but also grew the cells into multicellular spheroids. The spheroids could be released without damaging the cell viability through replacing the host moieties on the scaffold, and the released spheroids showed no changes in size or morphology.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| | - Nana Nyarko Mensah
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| | - Wui Siew Tan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Xinwei Chen
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| |
Collapse
|
25
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
26
|
Zhang J, Wong SHD, Wu X, Lei H, Qin M, Shi P, Wang W, Bian L, Cao Y. Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105765. [PMID: 34561928 DOI: 10.1002/adma.202105765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Regulating stem cell functions by precisely controlling the nanoscale presentation of bioactive ligands has a substantial impact on tissue engineering and regenerative medicine but remains a major challenge. Here it is shown that bioactive ligands can become mechanically "invisible" by increasing their tether lengths to the substrate beyond a critical length, providing a way to regulate mechanotransduction without changing the biochemical conditions. Building on this finding, light switchable tethers are rationally designed, whose lengths can be modulated reversibly by switching a light-responsive protein, pdDronpa, in between monomer and dimer states. This allows the regulation of the adhesion, spreading, and differentiation of stem cells by light on substrates of well-defined biochemical and physical properties. Spatiotemporal regulation of differential cell fates on the same substrate is further demonstrated, which may represent an important step toward constructing complex organoids or mini tissues by spatially defining the mechanical cues of the cellular microenvironment with light.
Collapse
Affiliation(s)
- Junsheng Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xin Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Peng Shi
- School of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Liming Bian
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- School of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
27
|
Chun B, Chun MS. Electrostatic Potential Analysis in Polyelectrolyte Brush-Grafted Microchannels Filled with Polyelectrolyte Dispersion. MICROMACHINES 2021; 12:mi12121475. [PMID: 34945324 PMCID: PMC8706125 DOI: 10.3390/mi12121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
In this study, the model framework that includes almost all relevant parameters of interest has been developed to quantify the electrostatic potential and charge density occurring in microchannels grafted with polyelectrolyte brushes and simultaneously filled with polyelectrolyte dispersion. The brush layer is described by the Alexander-de Gennes model incorporated with the monomer distribution function accompanying the quadratic decay. Each ion concentration due to mobile charges in the bulk and fixed charges in the brush layer can be determined by multi-species ion balance. We solved 2-dimensional Poisson–Nernst–Planck equations adopted for simulating electric field with ion transport in the soft channel, by considering anionic polyelectrolyte of polyacrylic acid (PAA). Remarkable results were obtained regarding the brush height, ionization, electrostatic potential, and charge density profiles with conditions of brush, dispersion, and solution pH. The Donnan potential in the brush channel shows several times higher than the surface potential in the bare channel, whereas it becomes lower with increasing PAA concentration. Our framework is fruitful to provide comparative information regarding electrostatic interaction properties, serving as an important bridge between modeling and experiments, and is possible to couple with governing equations for flow field.
Collapse
Affiliation(s)
- Byoungjin Chun
- Complex Fluids Laboratory, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Myung-Suk Chun
- Complex Fluids Laboratory, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Biomedical Engineering Department, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
28
|
Liu M, Wan X, Yang M, Wang Z, Bao H, Dai B, Liu H, Wang S. Thermo-Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid-Solid Switchable Materials. Angew Chem Int Ed Engl 2021; 61:e202114602. [PMID: 34807500 DOI: 10.1002/anie.202114602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/11/2022]
Abstract
Nanoparticle aggregation for constructing functional materials has shown enormous advantages in various applications. Most efforts focused on ordered nanoparticle aggregation for specific functions but were often limited to irreversible aggregation processes due to the thermodynamic equilibrium. Herein, we report a reversible disordered aggregation of SiO2 -PNIPAAm nanoparticles (SPNPs) through thermo-responsive jamming, obtaining smart liquid-solid switchable materials. The smart materials can display a switch between liquid-like state and solid-like state responding to a temperature change. This unique macroscopic behavior originates from the reversible disordered aggregation modulated by temperature-dependent hydrophobic interactions among the SPNPs. Notably, the materials at the solid-like state show anti-impact properties and can withstand the impact of a steel sphere with a speed of 328 cm s-1 . We envision that this finding offers inspiration to design smart liquid-solid switchable materials for impact protection.
Collapse
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Dai
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Wang B, Zhang S, Meng J, Min L, Luo J, Zhu Z, Bao H, Zang R, Deng S, Zhang F, Ma L, Wang S. Evaporation-Induced rGO Coatings for Highly Sensitive and Non-Invasive Diagnosis of Prostate Cancer in the PSA Gray Zone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103999. [PMID: 34398465 DOI: 10.1002/adma.202103999] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 05/16/2023]
Abstract
The prostate-specific antigen (PSA) has been widely used for the early diagnosis of prostate cancer during routine check-ups. However, the low sensitivity of regular PSA tests in the PSA gray zone often means that patients are required to undergo further invasive needle biopsy for the diagnosis of prostate cancer, which may lead to potential overdiagnosis and overtreatment. In this study, a circulating tumor cell (CTC)-chip based on an evaporation-induced reduced graphene oxide (rGO) coating is presented, which enables a highly specific and non-invasive diagnosis of prostate cancer in the PSA gray zone. During the evaporation process of the rGO dispersion, the Marangoni effect induces the self-assembly of a hierarchical micro/nanowrinkled rGO coating, which can capture CTCs after subsequent surface modification of capture agents. Compared to the low diagnostic sensitivity (58.3%) of regular PSA tests, a combination of CTC detection and PSA-based hematological tests via machine-learning analysis can greatly upgrade the diagnostic sensitivity of this disease to 91.7% in clinical trial. Therefore, this study provides a non-invasive alternative with high sensitivity for the diagnosis of prostate cancer in the PSA gray zone.
Collapse
Affiliation(s)
- Binshuai Wang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Jing Luo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Zhongpeng Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Ruhua Zang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Shaohui Deng
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Fan Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Mao X, Cheng M, Chen L, Cheng J, Li H. Host–Guest Chemistry Triggered Differential HeLa Cell Behavior Based on Pillar[5]arene-Modified Graphene Oxide Surfaces. ACS APPLIED BIO MATERIALS 2021; 4:6954-6961. [DOI: 10.1021/acsabm.1c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
31
|
Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chem Res Chin Univ 2021; 37:846-854. [PMID: 34376961 PMCID: PMC8339700 DOI: 10.1007/s40242-021-1197-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 02/02/2023]
Abstract
Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates. The superior throughput, resolution, and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level. Herein, we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing. Benefitting from uniform, reproducible, and large-area array patterns, DPN-based biosensors have shown high sensitivity, excellent selectivity, and fast response in target analyte detection and specific cellular recognition. We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed, programmable, and commercial array-based sensing biochips.
Collapse
|
32
|
Wang F, Sha X, Wu R, Zhang L, Song X, Tian X, Pan G, Liu L. A versatile pH-responsive peptide based dynamic biointerface for tracking bacteria killing and infection resistance. Biomater Sci 2021; 9:5785-5790. [PMID: 34350905 DOI: 10.1039/d1bm00950h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we reported a versatile dynamic biointerface based on pH-responsive peptide self-assembly and disassembly to capture the bacteria to avoid bacteria further infected tissue around that can release peptides from the surface in a slightly acidic environment to kill the bacteria with the specificity. The exposed biointerface still presented infection resistance.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Garcia-Hernando M, Saez J, Savva A, Basabe-Desmonts L, Owens RM, Benito-Lopez F. An electroactive and thermo-responsive material for the capture and release of cells. Biosens Bioelectron 2021; 191:113405. [PMID: 34144472 DOI: 10.1016/j.bios.2021.113405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Non-invasive collection of target cells is crucial for research in biology and medicine. In this work, we combine a thermo-responsive material, poly(N-isopropylacrylamide), with an electroactive material, poly(3,4-ethylene-dioxythiopene):poly(styrene sulfonate), to generate a smart and conductive copolymer for the label-free and non-invasive detection of the capture and release of cells on gold electrodes by electrochemical impedance spectroscopy. The copolymer is functionalized with fibronectin to capture tumor cells, and undergoes a conformational change in response to temperature, causing the release of cells. Simultaneously, the copolymer acts as a sensor, monitoring the capture and release of cancer cells by electrochemical impedance spectroscopy. This platform has the potential to play a role in top-notch label-free electrical monitoring of human cells in clinical settings.
Collapse
Affiliation(s)
- Maite Garcia-Hernando
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena S/n, 48940, Leioa, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006, Vitoria-Gasteiz, Spain.
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006, Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain; BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, 48940, Leioa, Spain; Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena S/n, 48940, Leioa, Spain; Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain; BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, 48940, Leioa, Spain.
| |
Collapse
|
34
|
Hou M, Yin X, Jiang J, He J. DNAzyme-Triggered Sol-Gel-Sol Transition of a Hydrogel Allows Target Cell Enrichment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15031-15039. [PMID: 33764744 DOI: 10.1021/acsami.1c02262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enrichment of rare cancer cells from various cell mixtures for subsequent analysis or culture is essential for understanding cancer formation and progression. In particular, maintaining the viability of captured cancer cells and gently releasing them for relevant applications remain challenging for many reported methods. Here, a physically cross-linked deoxyribozyme (DNAzyme)-based hydrogel strategy was developed for the specific envelopment and release of targeted cancer cells, allowing the aptamer-guided capture, 3D envelopment, and Zn2+-dependent release of viable cancer cells. The DNAzyme hydrogel is constructed through the intertwinement and hybridization of two complementary DNAzyme strands located on two rolling circle amplification-synthesized ultralong DNA chains. The enveloping and separation of target cells were achieved during the formation of the DNAzyme hydrogel (sol-gel transition). Triggered by Zn2+, the encapsulated cells can be gently released from the dissociated DNAzyme hydrogel with high viability (gel-sol transition). Successful isolations of target cells from cancer cell mixtures and peripheral blood mononuclear cells (PBMC) were demonstrated. This method offers an attractive approach for the separation of target cancer cells for various downstream applications that require viable cells.
Collapse
Affiliation(s)
- Min Hou
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiang Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianjun He
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
35
|
Karimipour K, Keyvan Rad J, Shirvalilou S, Khoei S, Mahdavian AR. Spiropyran-based photoswitchable acrylic nanofibers: A stimuli-responsive substrate for light controlled C6 glioma cells attachment/detachment. Colloids Surf B Biointerfaces 2021; 203:111731. [PMID: 33831752 DOI: 10.1016/j.colsurfb.2021.111731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
Reversible and remote cell manipulation with high spatiotemporal precision is now a highly attractive subject in various biological applications such as tissue engineering and cell-matrix interaction. Herein, photoresponsive poly(methyl methacrylate-co-hydroxy ethyl methacrylate-co-spiropyran ethyl acrylate) terpolymer (MHSP) was prepared using emulsion polymerization and the corresponding nanofibers (MHSP@NF) and film (MHSP@F) were prepared using electrospinning and drop-casting techniques, respectively. Structure of MHSP@NF with cylindrical cross-section and uniform diameter size of 169 nm were characterized by 1H-NMR and SEM analyses. Time-dependent UV-vis spectra of the prepared acrylic nanofibers and films demonstrated maximum forward photoisomerization after 3- and 8-min UV irradiation at 365 nm together with a 96° and 5° decrement in their surface water contact angles, respectively. High photoresponsivity of the nanofibers was attributed to their extensive surface area which exposes more spiropyran groups to UV light. MHSP@F and MHSP@NF with chemically-attached spiropyran groups demonstrated significant biocompatibility with negligible toxicity toward C6 glioma cancer cells up to 5 days. However, MH/SP@NF with doped SPOH exhibited a sudden decrease in cell viability relating to the migration and leakage of SPOH molecules. Photoreversible cell adhesion results showed a dramatic and switchable C6 cells attachment/detachment upon alternating UV and visible lights irradiations for MHSP@NF sample, while this was not observed for the similar film. These indicate potentiality of MHSP@NF as a promising substrate for dynamic switching of biomolecules and cell sheet engineering.
Collapse
Affiliation(s)
- Kianoush Karimipour
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, 14977-13115 Tehran, Iran
| | - Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, 14977-13115 Tehran, Iran
| | - Sakine Shirvalilou
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, 1449614535 Tehran, Iran
| | - Samideh Khoei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, 1449614535 Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, 14977-13115 Tehran, Iran.
| |
Collapse
|
36
|
Skovlund Madsen J, Geisler M, Berri Lotz M, Zalkovskij M, Bilenberg B, Korhonen R, Peltonen P, Erik Hansen P, Alkærsig Jensen S. In-line characterization of nanostructures produced by roll-to-roll nanoimprinting. OPTICS EXPRESS 2021; 29:3882-3890. [PMID: 33770978 DOI: 10.1364/oe.411669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
We present an in-line metrology solution for dimensional characterization of roll-to-roll imprinted nanostructures. The solution is based on a scatterometric analysis of optical data from a hyperspectral camera deployed at a production facility, where nanostructures are produced at speeds of 10m/min. The system combines the ease of use of a real-space imaging system with the spectral information used in scatterometry. We present nanoscale dimensional measurements on one-dimensional line gratings with various periods and orientations. The depths of the produced structures are accurately characterized with uncertainties on the scale of a few nanometers. The hyperspectral imaging capabilities of the system can also be used to avoid vibrational effects.
Collapse
|
37
|
Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. PROGRESS IN MATERIALS SCIENCE 2021; 115:100702. [DOI: 10.1016/j.pmatsci.2020.100702] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Nagase K, Shimura M, Shimane R, Hanaya K, Yamada S, Akimoto AM, Sugai T, Kanazawa H. Selective capture and non-invasive release of cells using a thermoresponsive polymer brush with affinity peptides. Biomater Sci 2021; 9:663-674. [DOI: 10.1039/d0bm01453b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thermoresponsive block copolymer brush with cell affinity peptides was prepared via two steps of ATRP and subsequent click reaction. The prepared polymer brush can purify cells with high selectivity by simply changing temperature.
Collapse
Affiliation(s)
| | | | | | | | - Sota Yamada
- Faculty of Pharmacy
- Keio University
- Minato
- Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo
- Japan
| | | | | |
Collapse
|
39
|
Wang T, Li Y, Wang J, Xu Y, Chen Y, Lu Z, Wang W, Xue B, Li Y, Cao Y. Smart Adhesive Peptide Nanofibers for Cell Capture and Release. ACS Biomater Sci Eng 2020; 6:6800-6807. [DOI: 10.1021/acsbiomaterials.0c01485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tiankuo Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Juan Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ying Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yifang Chen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zilin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
40
|
Jiang W, Han L, Yang L, Xu T, He J, Peng R, Liu Z, Zhang C, Yu X, Jia L. Natural Fish Trap-Like Nanocage for Label-Free Capture of Circulating Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002259. [PMID: 33240774 PMCID: PMC7675191 DOI: 10.1002/advs.202002259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials have achieved several breakthroughs in the capture of circulating tumor cells (CTCs) over the past decades. However, artificial fabrication of label-free nanomaterials used for high-efficiency CTC capture is still a challenge. Through billions of years of evolution and natural selection, various complicated and precise hierarchical structures are developed. Here, a novel fish trap-like "nanocage" structure derived from the natural Chrysanthemum pollen is reported and a nanocage-featured film for the label-free capture of CTCs and CTC clusters is constructed. The nanocage-featured film effectively captures 92% rare cancer cells with a broad spectrum of cancer types, due to the synergistic effect of nanocage-CTC filopodia matching, high contact area, and strong adhesion force between the cancer cells and the nanocage. Furthermore, the nanocage-featured film successfully detects CTCs and CTC clusters in 2 or 4 mL blood taken from 21 cancer patients (stages I-IV) suffering from various types of cancers. This novel, abundant, and economical fish trap-like "nanocage" may provide new perspectives for the application of natural nanomaterials in clinical CTC capture and analysis.
Collapse
Affiliation(s)
- Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Liwei Yang
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Jiabei He
- Department of OncologyThe Dalian Municipal Central Hospital Affiliated of Dalian Medical UniversityDalian116033P. R. China
| | - Ruilian Peng
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Ziyu Liu
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| | - Xiaomin Yu
- Department of OncologyThe Dalian Municipal Central Hospital Affiliated of Dalian Medical UniversityDalian116033P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and ImagingSchool of BioengineeringDalian University of TechnologyDalian116023P. R. China
| |
Collapse
|
41
|
Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001668. [PMID: 32844502 PMCID: PMC7461044 DOI: 10.1002/adma.202001668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Indexed: 05/07/2023]
Abstract
Engineered nano-bio cellular interfaces driven by 1D vertical nanostructures (1D-VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell-VNS interfacial interactions are probed and assessed, highlighting the use of 1D-VNS in immunomodulation, and intracellular delivery into immune cells-both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D-VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell-VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard-to-transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS-mediated intracellular delivery are discussed. By identifying up-to-date progress and fundamental challenges of current 1D-VNS technology in immune-cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D-VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- INM‐Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Roey Elnathan
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
| |
Collapse
|
42
|
Cheng J, Liu Y, Zhao Y, Zhang L, Zhang L, Mao H, Huang C. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES 2020; 11:E774. [PMID: 32823926 PMCID: PMC7465711 DOI: 10.3390/mi11080774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China;
| | - Lingqian Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020; 11:E40. [PMID: 32531950 PMCID: PMC7353490 DOI: 10.3390/jfb11020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| | - Yana Aleeva
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma, Italy;
| | - Clara Chiappara
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| |
Collapse
|
44
|
Role of molecular architecture in the modulation of hydrophobic interactions. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Interfacial ion specificity modulates hydrophobic interaction. J Colloid Interface Sci 2020; 578:135-145. [PMID: 32521353 DOI: 10.1016/j.jcis.2020.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Ion specificity is crucial in assembly and aggregation of polymers in water driven by hydrophobic interaction. An increasing number of studies have suggested that specific ion adsorption and consequent impact on interfacial water molecules should play an important role in modulating hydrophobic interaction. EXPERIMENTS Here, bubble probe atomic force microscopy (AFM) combined with theoretical modeling analysis was applied to quantify hydrophobic interactions involving three model polymers in solutions containing different ions. FINDINGS For polystyrene, the hydrophobic interaction's decay length D0 was reduced from 0.75 nm to 0.60 nm by introducing weakly hydrated cations (e.g., K+ and NH4+), while varying anion type had little effect. For poly(methyl methacrylate) and polydimethylsiloxane, anion specificity was demonstrated more evident in shortening the hydrophobic interaction range, with D0 decreasing from 0.63 nm to 0.50 nm and from 0.72 nm to 0.58 nm respectively when strongly hydrated F- or Cl- was replaced by weakly hydrated I-. Such results could arise from specific ion adsorption at water/polymer interface which disrupts the water structuring effect. From the nanomechanical perspective, this work has revealed the importance of interfacial ion specificity in modulating hydrophobic interaction, which offers novel implications for tuning assembly behavior of macromolecules in relevant engineering applications such as micelle formation and foam stabilization.
Collapse
|
46
|
Facile synthesis of 3D hierarchical micro-/nanostructures in capillaries for efficient capture of circulating tumor cells. J Colloid Interface Sci 2020; 575:108-118. [PMID: 32361043 DOI: 10.1016/j.jcis.2020.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023]
Abstract
The efficient capture of rare circulating tumor cells (CTCs) with high viability is of great importance in cancer diagnosis. The integration of three-dimensional (3D) nanobiointerfaces with capillary flow channel platforms can efficiently improve CTC capture performance by providing abundant binding sites and increasing the likelihood of contact as samples flow through the microchannels. However, due to the complex preparation processes, facile synthesis of nanostructures for use as substrates in flow channels for biomedical applications is still challenging. To reduce the encapsulation steps in the fabricating of nanostructured flow channel devices, we chose the enclosed glass capillaries as flow channels and accomplished all the experiments in the microchannels, including 3D nanostructure synthesis, surface modification and capture/release of CTCs. In this work, we constructed a novel 3D Zn(OH)F/ZnO nanoforest array in capillaries for CTC isolation via a facile microfluidic wet chemistry method. Because of the abundant binding sites of the 3D Zn(OH)F/ZnO nanoforest array, the capture efficiency was remarkably enhanced compared with that of vertical nanowires (90.3% vs 69.1%). In addition, a high release efficiency and cell viability of released cells were achieved by grafting poly(N-isopropylacrylamide) (PNIPPAm). These results may provide evidence for a novel method to fabricate hierarchical 3D substrates with a combination of biomolecule recognition and topographical interaction for biomedical applications.
Collapse
|
47
|
Xie L, Cui X, Gong L, Chen J, Zeng H. Recent Advances in the Quantification and Modulation of Hydrophobic Interactions for Interfacial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2985-3003. [PMID: 32023067 DOI: 10.1021/acs.langmuir.9b03573] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hydrophobic interaction is responsible for a variety of colloidal phenomena, which also plays a key role in achieving the desired characteristics and functionalities for a wide range of interfacial applications. In this feature article, our recent advances in the quantification and modulation of hydrophobic interactions at both solid/water and air/water interfaces in different material systems have been reviewed. On the basis of surface forces apparatus (SFA) measurements of hydrophobic polymers (e.g., polystyrene), a three-regime hydrophobic interaction model that could satisfactorily encompass the hydrophobic interaction with different ranges was proposed. In addition, the atomic force microscope (AFM) coupled with various techniques such as the colloidal probe, the electrochemical process, and force mapping were employed to quantify the hydrophobic interaction from different perspectives. For the hydrophobic interactions involving deformable bubbles, the bubble probe AFM combined with reflection interference contrast microscopy (RICM) was used to simultaneously measure the interaction force and spatiotemporal evolution of the thin film drainage process between air bubbles and hydrophobized mica surfaces in an aqueous medium. The studies on the interactions of air bubbles with self-assembled monolayers (SAMs) demonstrated that the range of hydrophobic interactions does not always increase monotonically with the hydrophobicity of interacting surfaces as characterized by the static water contact angle; viz., surfaces with similar hydrophobicity can exhibit different ranges of hydrophobic interaction, while surfaces with different hydrophobicities can exhibit a similar range of hydrophobic interactions. It is found that the hydrophobic interaction can be modulated by tuning the surface nanoscale structure and chemistry. Moreover, the long-range "hydrophilic" attraction that resembles the hydrophobic interaction was discovered between water droplets and polyelectrolyte surfaces in an oil medium, on the basis of which polyelectrolyte coating materials were designed for oil cleaning, oil/water separation, and demulsification. The interfacial applications, remaining challenges, and future perspectives of hydrophobic interactions are discussed.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
48
|
Zhang J, Xiang L, Yan B, Zeng H. Nanomechanics of Anion−π Interaction in Aqueous Solution. J Am Chem Soc 2020; 142:1710-1714. [DOI: 10.1021/jacs.9b11552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bin Yan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
49
|
Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D. Double Rolling Circle Amplification Generates Physically Cross-Linked DNA Network for Stem Cell Fishing. J Am Chem Soc 2020; 142:3422-3429. [PMID: 31893497 DOI: 10.1021/jacs.9b11001] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have been widely studied in cell biology and utilized in cell-based therapies, and fishing stem cells from marrow is highly challenging due to the ultralow content. Herein, a physically cross-linked DNA network-based cell fishing strategy is reported, achieving efficient capture, 3D envelop, and enzyme-triggered release of bone marrow mesenchymal stem cells (BMSCs). DNA network is constructed via a double rolling circle amplification method and through the intertwining and self-assembly of two strands of ultralong DNA chains. DNA-chain-1 containing aptamer sequences ensures specific anchor with BMSCs from marrow. Hybridization between DNA-chain-1 and DNA-chain-2 enables the cross-link of cell-anchored DNA chains to form a 3D network, thus realizing cell envelop and separation. DNA network creates a favorable microenvironment for 3D cell culture, and remarkably the physically cross-linked DNA network shows no damage to cells. DNA network is digested by nuclease, realizing the deconstruction from DNA network to fragments, and achieving enzyme-triggered cell release; after release, the activity of cells is well maintained. The strategy provides a powerful and effective method for fishing stem cells from tens of thousands of nontarget cells.
Collapse
Affiliation(s)
- Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Han Tang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Weijian Wu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Jianpu Tang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300071 , People's Republic of China
| | - Dan Luo
- Department of Biological & Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
50
|
Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 2020; 49:2481-2503. [DOI: 10.1039/d0cs00093k] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is ubiquitous in nature and plays mysterious and essential roles in maintaining key biological and physiological processes.
Collapse
Affiliation(s)
- Xueli Zhao
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|