1
|
Sagoe PNK, Velázquez EJM, Espiritusanto YM, Gilbert A, Orado T, Wang Q, Jain E. Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application. Molecules 2023; 28:6679. [PMID: 37764454 PMCID: PMC10534673 DOI: 10.3390/molecules28186679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Polymeric microparticles of polyethyleneglycol-polylactic acid-co-glycolic acid (PEG-PLGA) are widely used as drug carriers for a variety of applications due to their unique characteristics. Although existing techniques for producing polymeric drug carriers offer the possibility of achieving greater production yield across a wide range of sizes, these methods are improbable to precisely tune particle size while upholding uniformity of particle size and morphology, ensuring consistent production yield, maintaining batch-to-batch reproducibility, and improving drug loading capacity. Herein, we developed a novel scalable method for the synthesis of tunable-sized microparticles with improved monodispersity and batch-to-batch reproducibility via the coaxial flow-phase separation technique. The study evaluated the effect of various process parameters on microparticle size and polydispersity, including polymer concentration, stirring rate, surfactant concentration, and the organic/aqueous phase flow rate and volume ratio. The results demonstrated that stirring rate and polymer concentration had the most significant impact on the mean particle size and distribution, whereas surfactant concentration had the most substantial impact on the morphology of particles. In addition to synthesizing microparticles of spherical morphology yielding particle sizes in the range of 5-50 µm across different formulations, we were able to also synthesize several microparticles exhibiting different morphologies and particle concentrations as a demonstration of the tunability and scalability of this method. Notably, by adjusting key determining process parameters, it was possible to achieve microparticle sizes in a comparable range (5-7 µm) for different formulations despite varying the concentration of polymer and volume of polymer solution in the organic phase by an order of magnitude. Finally, by the incorporation of fluorescent dyes as model hydrophilic and hydrophobic drugs, we further demonstrated how polymer amount influences drug loading capacity, encapsulation efficiency, and release kinetics of these microparticles of comparable sizes. Our study provides a framework for fabricating both hydrophobic and hydrophilic drug-loaded microparticles and elucidates the interplay between fabrication parameters and the physicochemical properties of microparticles, thereby offering an itinerary for expanding the applicability of this method for producing polymeric microparticles with desirable characteristics for specific drug delivery applications.
Collapse
Affiliation(s)
- Paul Nana Kwame Sagoe
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | | | - Yohely Maria Espiritusanto
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Amelia Gilbert
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Thalma Orado
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Qiu Wang
- School of Education, Syracuse University, Syracuse, NY 13244, USA;
| | - Era Jain
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| |
Collapse
|
2
|
An C, Chen Y, Wu Y, Hu Z, Zhang H, Liu R, Zhou Y, Cen L. Manipulation of porous poly(l-lactide-co-ε-caprolactone) microcarriers via microfluidics for C2C12 expansion. Int J Biol Macromol 2023; 242:124625. [PMID: 37146858 DOI: 10.1016/j.ijbiomac.2023.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
The growth and repair of skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. In order to acquire enough cells for neoskeletal muscle regeneration, it is urgent to develop microcarriers for skeletal myoblasts proliferation with a considerable efficiency. The current study was thus proposed to develop a microfluidic technology to manufacture porous poly(l-lactide-co-ε-caprolactone) (PLCL) microcarriers of high uniformity, and porosity was manipulated via camphene to suit the proliferation of C2C12 cells. A co-flow capillary microfluidic device was first designed to obtain PLCL microcarriers with different porosity. The attachment and proliferation of C2C12 cells on these microcarriers were evaluated and the differentiation potential of expanded cells were verified. The obtained porous microcarriers were all uniform in size with a high mono-dispersity (CV < 5 %). The content of camphene rendered effects on the size, porosity, and pore size of microcarriers, and porous structure addition produced a softening of their mechanical properties. The one of 10 % camphene (PM-10) exhibited the superior expansion for C2C12 cells with the number of cells after 5 days of culture reached 9.53 times of the adherent cells on the first day. The expanded cells from PM-10 still retained excellent myogenic differentiation performance as the expressions of MYOD, Desmin and MYH2 were intensively enhanced. Hence, the current developed porous PLCL microcarriers could offer as a promising type of substrates not only for in vitro muscular precursor cells expansion without compromising any multipotency but also have the potential as injectable constructs to mediate muscle regeneration.
Collapse
Affiliation(s)
- Chenjing An
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Yawen Chen
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Yanfei Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Ruilai Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Shakibania S, Khakbiz M, Zahedi P. Investigation and multiscale modeling of PVA/SA coated poly lactic acid scaffold containing curcumin loaded layered double hydroxide nanohybrids. SOFT MATTER 2023; 19:3147-3161. [PMID: 37040198 DOI: 10.1039/d2sm01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Applying hydrophilic coatings on polymeric nanofibers combined with layered double hydroxide (LDH) not only enhances the efficiency of drug delivery systems but also increases cell adhesion. This work aimed to prepare poly(vinyl alcohol)/sodium alginate (PVA/SA) (2/1)-coated poly(lactic acid) (PLA) nanofibers containing curcumin-loaded layered double hydroxide (LDH) and to investigate their drug release and mechanical properties and their biocompatibility. The optimum PLA nanofibrous sample was considered to be that based on 3 wt% of curcumin-loaded LDH (PLA-3%LDH) with a drug encapsulation efficiency of ∼18% in which a minimum average nanofiber diameter of ∼476 nm along with a high tensile strength of 3.00 MPa were obtained. In the next step, a PVA/SA (2/1) layer was coated on the PLA-3%LDH; as a result, the hydrophilicity of the sample was improved and the elongation at break was decreased remarkably. In this regard the cell viability reached 80% for the coated PLA. Moreover, the formation of a layer of (PVA/SA) on the PLA nanofibers lowered the burst release and resulted in a more sustained drug release, which is a vital feature in dermal applications. A multiscale modeling method was applied for simulation of the mechanical properties of the composite scaffold and the results showed that this method can predict the data with 83% accuracy. The results of this study indicate that the formation of a layer of PVA/SA (2/1) has a significant effect on hydrophilicity and consequently improves cell adhesion and proliferation.
Collapse
Affiliation(s)
- Sara Shakibania
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395-1561, Iran.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | - Mehrdad Khakbiz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395-1561, Iran.
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| |
Collapse
|
4
|
A quantitative study of aggregation behaviour and integrity of spray-dried microcapsules using three deep convolutional neural networks with transfer learning. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Zhou J, Zhai Y, Xu J, Zhou T, Cen L. Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. Int J Pharm 2020; 593:120173. [PMID: 33321168 DOI: 10.1016/j.ijpharm.2020.120173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
The current study explored the feasibility of a microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles (MSNs) to finely manipulate the drug release behaviors of the microspheres. MSNs were synthesized via a hydrothermal method, and PLGA microspheres loaded with MSNs (PLGA-MSNs) were prepared using a capillary-based three-phase microfluidic device. Drug loading and release behaviors using rhodamine B (RB) as a water-soluble model drug were investigated and compared with those of PLGA microspheres. MSNs with an average particle size of 119 nm, a specific surface area of 902.5 cm2/g, and a pore size of approximately 5 nm were obtained. The mean diameter of PLGA-MSNs was 56 μm (CV = 4.91%). A sustained release duration of encapsulated RB from PLGA-MSNs for 4 months was achieved without any observable burst release. PLGA microspheres with monodispersion could also allow for a similar release duration of encapsulated RB but encountered a burst release in the mid-term of the studied duration. PLGA-MSNs had a denser outer PLGA layer and a more centralized hollow hole than PLGA microspheres without MSNs. Hence, the incorporation of MSNs into PLGA microspheres via microfluidics could be an efficient strategy to finely tune the drug release behavior of PLGA microspheres.
Collapse
Affiliation(s)
- Jiayu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Yishu Zhai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Jumei Xu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China.
| |
Collapse
|
6
|
Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105420] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Holley CK, Kang YJ, Kuo CF, Abidian MR, Majd S. Development and in vitro assessment of an anti-tumor nano-formulation. Colloids Surf B Biointerfaces 2019; 184:110481. [DOI: 10.1016/j.colsurfb.2019.110481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022]
|
8
|
Jiao Z, Fu C, Li L, Wang Z, Wang Y, Shi X, Zhang P. Microcarriers with Controllable Size via Electrified Liquid Jets and Phase Separation Technique Promote Cell Proliferation and Osteogenic Differentiation. ACS APPLIED BIO MATERIALS 2019; 2:4134-4141. [DOI: 10.1021/acsabm.9b00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Chuan Fu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun 130021, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xincui Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| |
Collapse
|
9
|
Liu Y, Wu C, Lu H, Yang Y, Li W, Shen Y. Programmable higher-order biofabrication of self-locking microencapsulation. Biofabrication 2019; 11:035019. [DOI: 10.1088/1758-5090/aafd14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Zhu C, Yang H, Shen L, Zheng Z, Zhao S, Li Q, Yu F, Cen L. Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:737-755. [DOI: 10.1080/09205063.2019.1602930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chengcheng Zhu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Yang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Liang Shen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuoyuan Zheng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Shicheng Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Yu
- Department of Orthopaedic Surgery, No. 98 Hospital of PLA, Huzhou, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Schaefer N, Janzen D, Bakirci E, Hrynevich A, Dalton PD, Villmann C. 3D Electrophysiological Measurements on Cells Embedded within Fiber-Reinforced Matrigel. Adv Healthc Mater 2019; 8:e1801226. [PMID: 30637979 DOI: 10.1002/adhm.201801226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/23/2018] [Indexed: 12/12/2022]
Abstract
2D electrophysiology is often used to determine the electrical properties of neurons. In the brain however, neurons form extensive 3D networks. Thus, performing electrophysiology in a 3D environment provides a closer situation to the physiological condition and serves as a useful tool for various applications in the field of neuroscience. In this study, 3D electrophysiology is established within a fiber-reinforced matrix to enable fast readouts from transfected cells, which are often used as model systems for 2D electrophysiology. Using melt electrowriting (MEW) of scaffolds to reinforce Matrigel, 3D electrophysiology is performed on a glycine receptor-transfected Ltk-11 mouse fibroblast cell line. The glycine receptor is an inhibitory ion channel associated when mutated with impaired neuromotor behavior. The average thickness of the MEW scaffold is 141.4 ± 5.7 µm, using 9.7 ± 0.2 µm diameter fibers, and square pore spacings of 100, 200, and 400 µm. For the first time, the electrophysiological characterization of glycine receptor-transfected cells is demonstrated with respect to agonist efficacy and potency in a 3D matrix. With the MEW scaffold reinforcement not interfering with the electrophysiological measurement, this approach can now be further adapted and developed for different kinds of neuronal cultures to study and understand pathological mechanisms under disease conditions.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology; University Hospital Würzburg; Versbacherstr. 5 97078 Würzburg Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology; University Hospital Würzburg; Versbacherstr. 5 97078 Würzburg Germany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute; University Hospital Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Andrei Hrynevich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute; University Hospital Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute; University Hospital Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology; University Hospital Würzburg; Versbacherstr. 5 97078 Würzburg Germany
| |
Collapse
|
12
|
Xu X, Chong Y, Liu X, Fu H, Yu C, Huang J, Zhang Z. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomater 2019; 84:328-338. [PMID: 30500447 DOI: 10.1016/j.actbio.2018.11.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
In this work, we developed a novel multifunctional nanoplatform based on hyaluronic acid modified Au nanocages (AuNCs-HA). The rational design of AuNCs-HA renders the nanoplatform three functionalities: (1) AuNCs-HA with excellent LSPR peak in the NIR region act as contrast agent for enhanced photoacoustic (PA) imaging and photothermal therapy (PTT); (2) the nanoplatform with high-energy rays (X-ray) absorption and auger electrons generation acts as a radiosensitizer for radiotherapy; (3) good photocatalytic property and large surface area make AuNCs-HA a photosensitive agent for photodynamic therapy (PDT). In vivo results demonstrated that AuNCs-HA presented excellent PA imaging performance after intravenous injection, which provided contour, size, and location information of the tumor. Moreover, because AuNCs-HA could combine radiotherapy and phototherapy together, the tumors treated with AuNCs-HA showed complete growth inhibition, comparing to that with each therapy alone. Taken together, our present study demonstrates that AuNCs-HA is of great potential as a multifunctional nanoplatform for PA imaging-guided radio- and photo-therapy of tumor. STATEMENT OF SIGNIFICANCE: In this study, a commendable theranostic nanoplatform based on hyaluronic acid modified AuNCs (AuNCs-HA) was developed. In our approach, the dilute solution of Gold(III) chloride is slowly dripped into Ag nanocubes solution, then the Au nanocages were obtained by redox reaction, and followed by HA modification. We explored them, simultaneously, as radiosensitizers for RT, photosensitizers for PDT, and therapeutic agents for PTT. Compared to that of each therapies alone, the combination of radio-therapy and photo-therapy results in a considerably improved tumor eliminating effect and efficiently inhibited tumor growth. In addition, AuNCs-HA exhibited remarkably strong PA signals for precise identification of the location, size, and boundary of the tumor, thereby facilitating imaging-guided therapy. In brief, our design of AuNCs-HA represents a general and versatile strategy for building up cancer-targeted nanotheranostics with desired synergistic imaging and therapy functionalities.
Collapse
|
13
|
Eslamian M, Khorrami M, Yi N, Majd S, Abidian MR. Electrospinning of Highly Aligned Fibers for Drug Delivery Applications. J Mater Chem B 2018; 7:224-232. [PMID: 31372224 DOI: 10.1039/c8tb01258j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrospinning is a straightforward, cost-effective, and versatile technique for fabrication of polymeric micro/nanofibers with tunable structural properties. Controlling the size, shape, and spatial orientation of the electrospun fibers is crucial for utilization in drug delivery and tissue engineering applications. In this study, for the first time, we systematically investigate the effect of processing parameters, including voltage, syringe needle gauge, angular velocity of rotating wheel, syringe-collector distance, and flow rate on the size and alignment of electrospun PLGA fibers. Optimizing these parameters enabled us to produce highly aligned and monodisperse PLGA fibers (spatial orientation> 99% and coefficient of variation< 0.5). To assess the effect of fiber alignment on the release of encapsulated drugs from these fibers, we incorporated dexamethasone, an anti-inflammatory drug, within highly-aligned and randomly-oriented fibers with comparable diameters (~0.87 μm) and compared their release profiles. In-vitro release studies revealed that the aligned fibers had less burst release (~10.8% in 24 hr) and more sustained release (~8.8% average rate of change for 24 days) compared to the random fibers. Finally, the degradation modes of the aligned and random fibers after 25 days incubation were characterized and compared. The findings of this study can be applied for the development of 3D degradable aligned fibers for controlled drug release and tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadjavad Eslamian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Milad Khorrami
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Ning Yi
- Department of Materials Science and Engineering, Pennsylvania State University State College, PA 16802, USA
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| |
Collapse
|
14
|
Shpigel T, Cohen Taguri G, Lewitus DY. Controlling drug delivery from polymer microspheres by exploiting the complex interrelationship of excipient and drug crystallization. J Appl Polym Sci 2018. [DOI: 10.1002/app.47227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tal Shpigel
- Plastics and Polymer Engineering Department; Shenkar College; Ramat-Gan 6262528 Israel
| | - Gili Cohen Taguri
- Center for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat Gan 5290002 Israel
| | - Dan Y. Lewitus
- Plastics and Polymer Engineering Department; Shenkar College; Ramat-Gan 6262528 Israel
| |
Collapse
|
15
|
Wang H, Li W, Li Z. Preparation of fluorinated PCL porous microspheres and a super-hydrophobic coating on fabrics via electrospraying. NANOSCALE 2018; 10:18857-18868. [PMID: 30277254 DOI: 10.1039/c8nr05793a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, fluorinated polycaprolactone (PCL) block polymers with different fluorine contents were synthesized via atom transfer radical polymerization (ATRP). An electrospraying technique was used to prepare fluorinated PCL microspheres with different microstructures. In contrast to the golf ball shape of unmodified PCL microspheres displaying porous pits on the surface, block polymer PCL-PTFOA(2 h) and PCL-PTFOA(6 h) microsphere surfaces displayed regular honeycomb-like pore structures. Thermally induced and evaporation-induced phase separations are proposed as the main mechanisms involved in the formation of the porous microstructures. The micro-phase separation between the two blocks of the fluorinated PCL copolymer is another factor that promoted the uniform collapse on the microsphere surface and the formation of its rugged wall. The surface roughness of the porous microspheres significantly improved their hydrophobicity, generating coating contact angles on aluminium foil substrates that measured as high as 162.4 ± 1.5°, which revealed that the surfaces were super-hydrophobic. Lastly, cotton fabric was directly coated with the fluorinated polymer microspheres via electrospraying, resulting in super-hydrophobic surfaces and CAs reaching 160.0 ± 1.3°. The results demonstrate that electrospraying is a simple, innovative and cost-effective method for preparing polymer microspheres with controllable microstructures for fabric coating applications.
Collapse
Affiliation(s)
- Haipeng Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | | | | |
Collapse
|
16
|
Lin Z, Wu J, Qiao W, Zhao Y, Wong KH, Chu PK, Bian L, Wu S, Zheng Y, Cheung KM, Leung F, Yeung KW. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018; 174:1-16. [DOI: 10.1016/j.biomaterials.2018.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
|
17
|
Li M, Sun X, Zhang N, Wang W, Yang Y, Jia H, Liu W. NIR-Activated Polydopamine-Coated Carrier-Free "Nanobomb" for In Situ On-Demand Drug Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800155. [PMID: 30027047 PMCID: PMC6051140 DOI: 10.1002/advs.201800155] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/03/2018] [Indexed: 05/20/2023]
Abstract
Carrier-free nanoparticles with high drug loading have attracted increasing attention; however, in situ on-demand drug release remains a challenge. Here, a novel near-infrared (NIR) laser-induced blasting carrier-free nanodrug delivery system is designed and fabricated by coating doxorubicin (DOX) nanoparticles (DNPs) with a polydopamine film (PDA) that would prolong the blood circulation time of DNPs and avoid the preleakage of the DOX during blood circulation. Meanwhile, the NH4HCO3 is introduced to trigger in situ "bomb-like" release of DOX for the production of carbon dioxide (CO2) and ammonia (NH3) gases driven by NIR irradiated photothermal effect of PDA. Both in vitro and in vivo studies demonstrate that the carrier-free nanovectors with high drug loading efficiency (85.8%) prolong tumor accumulation, enhance chemotherapy, achieve the synergistic treatment of chemotherapy and photothermal treatment, and do not induce any foreign-body reaction over a three-week implantation. Hence, the delicate design opens a self-assembly path to develop PDA-based NIR-responsive multifunctional carrier-free nanoparticles for tumor therapy.
Collapse
Affiliation(s)
- Minghui Li
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
| | - Xuetan Sun
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
| | - Ning Zhang
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
| | - Wei Wang
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
| | - Yang Yang
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
| | - Huizhen Jia
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433P. R. China
| | - Wenguang Liu
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350P. R. China
| |
Collapse
|
18
|
Liu Y, Shao C, Bian F, Yu Y, Wang H, Zhao Y. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17058-17064. [PMID: 29701943 DOI: 10.1021/acsami.8b03483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.
Collapse
Affiliation(s)
- Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
19
|
Safari H, Adili R, Holinstat M, Eniola-Adefeso O. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range. J Colloid Interface Sci 2018; 518:174-183. [PMID: 29454188 DOI: 10.1016/j.jcis.2018.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 11/15/2022]
Abstract
HYPOTHESIS Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. EXPERIMENTS A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. FINDINGS The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Reheman Adili
- Department of pharmacology, University of Michigan, Ann Arbor, MI 48019, United States
| | - Michael Holinstat
- Department of pharmacology, University of Michigan, Ann Arbor, MI 48019, United States; Department of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, United States
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Xue J, Zhu C, Li J, Li H, Xia Y. Integration of Phase-Change Materials with Electrospun Fibers for Promoting Neurite Outgrowth under Controlled Release. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1705563. [PMID: 31354399 PMCID: PMC6660177 DOI: 10.1002/adfm.201705563] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a temperature-regulated system for the controlled release of nerve growth factor (NGF) to promote neurite outgrowth. The system is based upon microparticles fabricated using coaxial electrospray, with the outer solution containing a phase-change material (PCM) and the inner solution encompassing payload(s). When the temperature is kept below the melting point of the PCM, there is no release due to the extremely slow diffusion through a solid matrix. Upon increasing the temperature to slightly pass the melting point, the encapsulated payload(s) can be readily released from the melted PCM. By leveraging the reversibility of the phase transition, the payload(s) can be released in a pulsatile mode through on/off heating cycles. The controlled release system is evaluated for potential use in neural tissue engineering by sandwiching the microparticles, co-loaded with NGF and a near-infrared dye, between two layers of electrospun fibers to form a tri-layer construct. Upon photothermal heating with a near-infrared laser, the NGF is released with well-preserved bioactivity to promote neurite outgrowth. By choosing different combinations of PCM, biological effector, and scaffolding material, this controlled release system can be applied to a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jianhua Li
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Haoxuan Li
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Kyzioł A, Michna J, Moreno I, Gamez E, Irusta S. Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Antensteiner M, Khorrami M, Fallahianbijan F, Borhan A, Abidian MR. Conducting Polymer Microcups for Organic Bioelectronics and Drug Delivery Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201702576. [PMID: 28833611 PMCID: PMC5798879 DOI: 10.1002/adma.201702576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Indexed: 05/13/2023]
Abstract
An ideal neural device enables long-term, sensitive, and selective communication with the nervous system. To accomplish this task, the material interface should mimic the biophysical and the biochemical properties of neural tissue. By contrast, microfabricated neural probes utilize hard metallic conductors, which hinder their long-term performance because these materials are not intrinsically similar to soft neural tissue. This study reports a method for the fabrication of monodisperse conducting polymer microcups. It is demonstrated that the physical surface properties of conducting polymer microcups can be precisely modulated to control electrical properties and drug-loading/release characteristics.
Collapse
Affiliation(s)
- Martin Antensteiner
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX, 77204, USA
| | - Milad Khorrami
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX, 77204, USA
| | - Fatemeh Fallahianbijan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Borhan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX, 77204, USA
| |
Collapse
|
23
|
Kim D, Kim SM, Lee S, Yoon MH. Investigation of neuronal pathfinding and construction of artificial neuronal networks on 3D-arranged porous fibrillar scaffolds with controlled geometry. Sci Rep 2017; 7:7716. [PMID: 28798490 PMCID: PMC5552865 DOI: 10.1038/s41598-017-08231-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Herein, we investigated the neurite pathfinding on electrospun microfibers with various fiber densities, diameters, and microbead islands, and demonstrated the development of 3D connected artificial neuronal network within a nanofiber-microbead-based porous scaffold. The primary culture of rat hippocampal embryonic neurons was deposited on geometry-controlled polystyrene (PS) fiber scaffolds while growth cone morphology, neurite outgrowth patterns, and focal adhesion protein expression were cautiously examined by microscopic imaging of immunostained and live neuronal cells derived from actin-GFP transgenic mice. It was demonstrated that the neurite outgrowth was guided by the overall microfiber orientation, but the increase in fiber density induced the neurite path alteration, thus, the reduction in neurite linearity. Indeed, we experimentally confirmed that growth cone could migrate to a neighboring, but, spatially disconnected microfiber by spontaneous filopodium extrusion, which is possibly responsible for the observed neurite steering. Furthermore, thinner microfiber scaffolds showed more pronounced expression of focal adhesion proteins than thicker ones, suggesting that the neuron-microfiber interaction can be delicately modulated by the underlying microfiber geometry. Finally, 3D connected functional neuronal networks were successfully constructed using PS nanofiber-microbead scaffolds where enhanced porosity and vertical fiber orientation permitted cell body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.
Collapse
Affiliation(s)
- Dongyoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seyeong Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
24
|
Liu Z, Zhu Y, Liu X, Yeung K, Wu S. Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids Surf B Biointerfaces 2017; 151:165-177. [DOI: 10.1016/j.colsurfb.2016.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/11/2023]
|
25
|
Pu W, Fu D, Xia H, Wang Z. Preparation of hollow polyurethane microspheres with tunable surface structures via electrospraying technology. RSC Adv 2017. [DOI: 10.1039/c7ra09831f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For the first time, electrospraying was employed to fabricate hollow polyurethane microspheres with controlled size and tunable surface morphology.
Collapse
Affiliation(s)
- Wuli Pu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute
- Sichuan University
- Chengdu 610065
- China
| | - Daihua Fu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute
- Sichuan University
- Chengdu 610065
- China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute
- Sichuan University
- Chengdu 610065
- China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
26
|
Chen Y, Gu Q, Yue Z, Crook JM, Moulton SE, Cook MJ, Wallace GG. Development of drug-loaded polymer microcapsules for treatment of epilepsy. Biomater Sci 2017; 5:2159-2168. [DOI: 10.1039/c7bm00623c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibre- and sphere-based microcapsules have been developed, exhibiting controllable uniform morphologies, predictable drug release profiles, and neuro-cytocompatibility.
Collapse
Affiliation(s)
- Yu Chen
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Qi Gu
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Jeremy M. Crook
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn
| | - Mark J. Cook
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| |
Collapse
|
27
|
Li S, Xiao L, Deng H, Shi X, Cao Q. Remote controlled drug release from multi-functional Fe 3O 4/GO/Chitosan microspheres fabricated by an electrospray method. Colloids Surf B Biointerfaces 2016; 151:354-362. [PMID: 28043052 DOI: 10.1016/j.colsurfb.2016.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
The construction of multifunctional microspheres for remote controlled drug release requires the exquisite selection of composite materials and preparation approaches. In this study, chitosan, an amino polysaccharide, was blended with inorganic nanocomponents, Fe3O4 and graphene oxide (GO) and electrosprayed to fabricate uniform microspheres with the diameters ranging from 100μm to 1100μm. An anti-cancer drug, doxorubicin (DOX), was loaded to the microspheres by an adsorption or embedding method. The microsphere is responsive to magnetic fields due to the presence of Fe3O4, and the incorporation of GO enhanced the drug loading capacity. The fast stimuli-responsive release of DOX can be facilely controlled by using NIR irradiation due to the strong photo-thermal conversion of Fe3O4 and GO. In addition, ultrasound was used as another external stimulus for DOX release. The results suggest the Fe3O4/GO/Chitosan microspheres fabricated by the electrospray method provide an efficient platform for remote controlled drug release, which may have potential applications in drug eluting microspheres.
Collapse
Affiliation(s)
- Sheng Li
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072, PR China.
| | - Ling Xiao
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072, PR China.
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072, PR China.
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072, PR China.
| | - Qihua Cao
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
28
|
Lei H, Gao X, Wu WD, Wu Z, Chen XD. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release. Polymers (Basel) 2016; 8:E195. [PMID: 30979289 PMCID: PMC6432404 DOI: 10.3390/polym8050195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP)-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric) delivery of orally-administered drugs.
Collapse
Affiliation(s)
- Hong Lei
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xingmin Gao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Winston Duo Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhangxiong Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
AN in vitro evaluation of a carmustine-loaded Nano-co-Plex for potential magnetic-targeted intranasal delivery to the brain. Int J Pharm 2016; 500:196-209. [PMID: 26806465 DOI: 10.1016/j.ijpharm.2016.01.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/02/2023]
Abstract
Targeted delivery of carmustine (BCNU), an efficient brain tumor therapeutic, has been challenged with bioavailability issues due to the Blood Brain Barrier (BBB). The currently effective delivery approach is by implants at the site of the tumor, but this is highly invasive. The intranasal route, which is non-invasive and bypasses the BBB, may be alternative route for delivering BCNU to the brain. In this work, polyvinyl alcohol/polyethyleneimine/fIuorecein isothiocyanate complex (Polyplex) coated iron-oxide nanoparticles (Magnetite) were synthesized employing co-precipitation, epoxidation and EDC/NHS coupling reactions. The Polyplex coated magnetite (Nano-co-Plex) was loaded with BCNU for potential magnetically targeted delivery to the brain following intranasal administration. The Nano-co-Plex was characterized employing Thermogravimetric analysis (TGA), Superconducting Quantum Interference Device (SQUID) magnetometry, Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Zetasize analysis. Results revealed superparamagnetic hexagonally shaped "core-shell" nanoparticles with cell labeling attributes, of size ranging between 30-50 nm, and a zeta potential value of + 32 ± 2 mV. The Nano-co-Plex synthesized was found to possess high degree of crystallinity with 32% Polyplex coating. The loading and release studies indicated a time-dependent loading with maximum loading capacity of 176.82 μg BCNU/mg of the carrier and maximum release of 75.8% of the loaded BCNU. Cytotoxicity of the BCNU-loaded Nano-co-Plex displayed superiority over the conventional BCNU towards human glioblastoma (HG) cells. Cell studies revealed enhanced uptake and internalization of BCNU-loaded Nano-co-plex in HG cells in the presence of an external magnetic field. These Nano-co-Plexes may be ideal as an intranasal magnetic drug targeting device for BCNU delivery.
Collapse
|
30
|
Mundargi RC, Potroz MG, Park JH, Seo J, Lee JH, Cho NJ. Extraction of sporopollenin exine capsules from sunflower pollen grains. RSC Adv 2016. [DOI: 10.1039/c5ra27207f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A simple extraction process was developed to isolate sunflower sporopollenin exine capsules (SECs). The sunflower SECs holds significant potential as biomaterial for applications in drug delivery, cosmetics, and food technology.
Collapse
Affiliation(s)
- Raghavendra C. Mundargi
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Michael G. Potroz
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Jae Hyeon Park
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Jeongeun Seo
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Jae Ho Lee
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
31
|
Hu Y, Liu C, Li D, Long Y, Song K, Tung CH. Magnetic Compression of Polyelectrolyte Microcapsules for Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11195-11199. [PMID: 26402037 DOI: 10.1021/acs.langmuir.5b02229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, microcapsules with a magnetic particle as the core and polyelectrolyte multilayers as the shell were fabricated. The cavity of the microcapsules was created by etching the SiO2 layer, which was first coated on the magnetic core particle, and the size of the cavity can be adjusted by the thickness of the SiO2 layer. This magnetically responsive microcapsule deforms upon application of a constant magnetic field and results in the release of the core content, and the release velocity could be controlled by the strength of the magnetic field. This release mechanism is proactive and repeatable, combined with its localized and remote controllability; it can be a powerful tool for delivering medical agents on site.
Collapse
Affiliation(s)
| | - Chuanyong Liu
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | - Dongzhi Li
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | |
Collapse
|
32
|
Chen Y, Yue Z, Moulton SE, Hayes P, Cook MJ, Wallace GG. A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy. J Mater Chem B 2015; 3:7255-7261. [PMID: 32262833 DOI: 10.1039/c5tb00675a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nearly 30% of epilepsy cases cannot be adequately controlled with current medical treatments. The reasons for this are still not well understood, but there is a significant body of evidence pointing to the blood-brain barrier. Resective surgery can provide an alternative method of epilepsy control; however this treatment option is not suitable for most epilepsy sufferers. Local drug delivery through micro-injection to or implantation into the brain provides an innovative approach to bypass the blood-brain barrier for epilepsy treatment. In order to develop effective local delivery systems for anti-epilepsy drug (AED), we have prepared a variety of core-shell microcapsules via electrojetting, where a more hydrophobic polymer shell acts as a physical barrier to control the rate of drug release from the drug-loaded polymeric core. The resulting microcapsules demonstrate highly drug encapsulation efficiency, narrow size distribution and uniform morphology. Moreover, the release rate of AED can be modulated by controlling the morphologies of the core-shell microcapsules.
Collapse
Affiliation(s)
- Yu Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Innovation Campus, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Parker RM, Zhang J, Zheng Y, Coulston RJ, Smith CA, Salmon AR, Yu Z, Scherman OA, Abell C. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules. ADVANCED FUNCTIONAL MATERIALS 2015; 25:4091-4100. [PMID: 26213532 PMCID: PMC4511391 DOI: 10.1002/adfm.201501079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/27/2015] [Indexed: 05/26/2023]
Abstract
Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules-where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core-shell microcapsules, gives access to a new generation of innovative self-assembled constructs.
Collapse
Affiliation(s)
- Richard M Parker
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Jing Zhang
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Yu Zheng
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Roger J Coulston
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Clive A Smith
- Sphere Fluidics Limited, The Jonas Webb Building, Babraham Research Campus Babraham Cambridge, CB22 3AT, UK
| | - Andrew R Salmon
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Ziyi Yu
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| |
Collapse
|
34
|
Wei B, Tao Y, Wang X, Tang R, Wang J, Wang R, Qiu L. Surface-Eroding Poly(ortho ester amides) for Highly Efficient Oral Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10436-10445. [PMID: 25921065 DOI: 10.1021/acsami.5b01687] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two new poly(ortho ester amide) copolymers (POEA-4 and POEA-5) were synthesized via polycondensation of a new ortho ester diamine monomer with active esters of different aliphatic diacids. The kinetics of POEA mass loss and release of 5-FU were both nearly zero-order, suggesting predominantly surface-restricted polymer erosion and drug release. In vitro cytotoxicity tests demonstrated that both copolymers have excellent biocompatibility. In vivo acute toxicity tests suggested that oral administration of POEA-4 and POEA-5 did not cause any adverse effects on mice even at a very high dose (2000 mg/kg). In vivo antitumor efficacy against H22 transplanted tumors of 5-FU-loaded POEA tablets were fully examined. We envision that, with further optimization, POEA-based materials could have great potential as drug carriers for oral chemotherapy.
Collapse
Affiliation(s)
- Bing Wei
- ‡Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, P. R. China
| | - Yangyang Tao
- §School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Xin Wang
- ‡Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, P. R. China
| | - Rupei Tang
- ‡Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, P. R. China
- §School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Jun Wang
- ‡Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, P. R. China
| | - Rui Wang
- §School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Liying Qiu
- §School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| |
Collapse
|
35
|
Wang X, Li Z, Yang Y, Gong X, Liao Y, Xie X. Photomechanically Controlled Encapsulation and Release from pH-Responsive and Photoresponsive Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5456-5463. [PMID: 25924083 DOI: 10.1021/acs.langmuir.5b01180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly(acrylic acid)/azobenzene microcapsules were obtained through distillation precipitation polymerization and the selective removal of silica templates by hydrofluoric acid etching. The uniform, robust, and monodisperse microcapsules, confirmed by transmission electron microscopy and scanning electron microscopy, had reversible photoisomerization under ultraviolet (UV) and visible light. Under UV irradiation, azobenzene cross-linking sites in the main chain transformed from the trans to cis isomer, which induced the shrinkage of microcapsules. These photomechanical effects of azobenzene moieties were applied to the encapsulation and release of model molecules. After loading with rhodamine B (RhB), the release behaviors were completely distinct. Under steady UV irradiation, the shrinkage adjusted the permeability of the capsule, providing a novel way to encapsulate RhB molecules. Under alternate UV/visible light irradiation, a maximal release amount was reached due to the continual movement of shell networks by cyclic trans-cis photoisomerization. Also, microcapsules had absolute pH responsiveness. The diffusion rate and the final release percentage of RhB both increased with pH. The release behaviors under different irradiation modes and pH values were in excellent agreement with the Baker-Lonsdale model, indicating a diffusion-controlled release behavior. Important applications are expected in the development of photocontrolled encapsulation and release systems as well as in pH-sensitive materials and membranes.
Collapse
Affiliation(s)
- Xiaotao Wang
- †Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- ‡Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhenhua Li
- ‡Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yingkui Yang
- §Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xinghou Gong
- ‡Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yonggui Liao
- †Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- †Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
36
|
Fish MB, Thompson AJ, Fromen CA, Eniola-Adefeso O. Emergence and Utility of Nonspherical Particles in Biomedicine. Ind Eng Chem Res 2015; 54:4043-4059. [PMID: 27182109 PMCID: PMC4864008 DOI: 10.1021/ie504452j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system's targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers.
Collapse
Affiliation(s)
- Margaret B. Fish
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, NCRC B28-G102E, Ann Arbor, MI 48109, USA
| | - Alex J. Thompson
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, NCRC B28-G102E, Ann Arbor, MI 48109, USA
| | - Catherine A. Fromen
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, NCRC B28-G102E, Ann Arbor, MI 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, NCRC B28-G102E, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Wang Z, Chen Z, Liu Z, Shi P, Dong K, Ju E, Ren J, Qu X. A multi-stimuli responsive gold nanocage–hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014; 35:9678-88. [DOI: 10.1016/j.biomaterials.2014.08.013] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
38
|
Natarajan JV, Nugraha C, Ng XW, Venkatraman S. Sustained-release from nanocarriers: a review. J Control Release 2014; 193:122-38. [DOI: 10.1016/j.jconrel.2014.05.029] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/10/2014] [Accepted: 05/17/2014] [Indexed: 12/18/2022]
|