1
|
Yang D, Xu Z, Huang D, Luo Q, Zhang C, Guo J, Tan L, Ge L, Mu C, Li D. Immunomodulatory multifunctional janus collagen-based membrane for advanced bone regeneration. Nat Commun 2025; 16:4264. [PMID: 40335547 PMCID: PMC12059164 DOI: 10.1038/s41467-025-59651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Guided bone regeneration (GBR) is a standard therapy for treating bone defects, with collagen-based barrier membranes widely used clinically. However, these membranes face challenges like poor mechanical properties, early bacterial invasion and immunomodulation deficiency, potentially risking GBR failure. Orchestrating macrophage activation and controlling their M1 or M2 polarization are effective strategies for bone repair. Here, we present a Janus collagen-based barrier membrane with immunomodulation. The porous layer promotes direct osteogenic differentiation and inward growth of osteoblasts. The dense layer prevents invasion of soft tissue into bone defects and protects bone defects from bacterial infection. The membrane also enhances rat bone marrow-derived mesenchymal stem cell infiltration, proliferation, and osteogenic differentiation by regulating the immune microenvironment, demonstrating superior bone regeneration compared to the commercial Bio-Gide® membrane. Overall, the Janus collagen-based membrane reduces tissue inflammation and fosters an osteoimmune environment conducive to new bone formation, offering effective material design for advanced GBR technology.
Collapse
Affiliation(s)
- Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Dou Huang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qi Luo
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Chunli Zhang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jimin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P. R. China.
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, P. R. China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Lu Tan
- Department of Osteology, Wushan County Hospital of Traditional Chinese Medicine, Wushan, Chongqing, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
2
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
3
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
4
|
Park J, Kim D. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2025; 14:e2304496. [PMID: 38716543 PMCID: PMC11834384 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji‐Eun Park
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
5
|
Pan P, Wang J, Wang X, Yu X, Chen T, Jiang C, Liu W. Barrier Membrane with Janus Function and Structure for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47178-47191. [PMID: 39222394 DOI: 10.1021/acsami.4c08737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Guided bone regeneration (GBR) technology has been demonstrated to be an effective method for reconstructing bone defects. A membrane is used to cover the bone defect to stop soft tissue from growing into it. The biosurface design of the barrier membrane is key to the technology. In this work, an asymmetric functional gradient Janus membrane was designed to address the bidirectional environment of the bone and soft tissue during bone reconstruction. The Janus membrane was simply and efficiently prepared by the multilayer self-assembly technique, and it was divided into the polycaprolactone isolation layer (PCL layer, GBR-A) and the nanohydroxyapatite/polycaprolactone/polyethylene glycol osteogenic layer (HAn/PCL/PEG layer, GBR-B). The morphology, composition, roughness, hydrophilicity, biocompatibility, cell attachment, and osteogenic mineralization ability of the double surfaces of the Janus membrane were systematically evaluated. The GBR-A layer was smooth, dense, and hydrophobic, which could inhibit cell adhesion and resist soft tissue invasion. The GBR-B layer was rough, porous, hydrophilic, and bioactive, promoting cell adhesion, proliferation, matrix mineralization, and expression of alkaline phosphatase and RUNX2. In vitro and in vivo results showed that the membrane could bind tightly to bone, maintain long-term space stability, and significantly promote new bone formation. Moreover, the membrane could fix the bone filling material in the defect for a better healing effect. This work presents a straightforward and viable methodology for the fabrication of GBR membranes with Janus-based bioactive surfaces. This work may provide insights for the design of biomaterial surfaces and treatment of bone defects.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, P. R. China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chundong Jiang
- Chongqing Institute of Mesoscopic Medical Porous Materials, Chongqing 401120, P. R. China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Jin H, Zhu X, Liu H, Wang L, Liu S, Zhang H. Type-I Collagen Polypeptide-Based Composite Nanofiber Membranes for Fast and Efficient Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5632-5640. [PMID: 39150362 DOI: 10.1021/acsbiomaterials.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The clinical treatment of bone defects includes allogeneic bone transplantation and autologous bone transplantation. However, they all have their own limitations, and the scope of application is limited. In recent years, bone tissue engineering scaffolds based on a variety of materials have been well developed and achieved good bone regeneration ability. However, most scaffold materials always face problems such as high biotoxicity, leading to inflammation and poor bioactivity, which limits the bone regeneration effect and prolongs the bone regeneration time. In our work, we prepared hydroxyapatite, erythropoietin (EPO), and osteogenic growth peptide (OGP) codoped type-I collagen (Col I) polypeptide nanofiber membranes (NFMs) by electrostatic spinning. In cell experiments, the composite NFMs had low cytotoxicity and promoted osteogenic differentiation of rat bone marrow mesenchymal stem cells. Quantitative real-time polymerase chain reaction and alkaline phosphatase staining confirmed the high expression of osteogenic genes, and alizarin red S staining directly confirmed the appearance of calcium nodules. In animal experiments, the loaded hydroxyapatite formed multiple independent mineralization centers in the defect center. Under the promotion of Col I, EPO, and OGP, the bone continued to grow along the mineralization centers as well as inward the defect edge, and the bone defect completely regenerated in about two months. The hematological and histological analyses proved the safety of the experiments. This kind of design to promote bone regeneration by simulating bone composition, introducing mineralization center and signal molecules, can shorten repair time, improve repair effect, and has good practical prospects in the future.
Collapse
Affiliation(s)
- Hao Jin
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xuanqi Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Heng Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Lu Wang
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Shuwei Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Zhang M, Huang Z, Wang X, Liu X, He W, Li Y, Wu D, Wu S. Personalized PLGA/BCL Scaffold with Hierarchical Porous Structure Resembling Periosteum-Bone Complex Enables Efficient Repair of Bone Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401589. [PMID: 39018263 PMCID: PMC11425253 DOI: 10.1002/advs.202401589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/21/2024] [Indexed: 07/19/2024]
Abstract
Using bone regeneration scaffolds to repair craniomaxillofacial bone defects is a promising strategy. However, most bone regeneration scaffolds still exist some issues such as a lack of barrier structure, inability to precisely match bone defects, and necessity to incorporate biological components to enhance efficacy. Herein, inspired by a periosteum-bone complex, a class of multifunctional hierarchical porous poly(lactic-co-glycolic acid)/baicalein scaffolds is facilely prepared by the union of personalized negative mold technique and phase separation strategy and demonstrated to precisely fit intricate bone defect cavity. The dense up-surface of the scaffold can prevent soft tissue cell penetration, while the loose bottom-surface can promote protein adsorption, cell adhesion, and cell infiltration. The interior macropores of the scaffold and the loaded baicalein can synergistically promote cell differentiation, angiogenesis, and osteogenesis. These findings can open an appealing avenue for the development of personalized multifunctional hierarchical materials for bone repair.
Collapse
Affiliation(s)
- Mengqi Zhang
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Zhike Huang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Xun Wang
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Xinyu Liu
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Wenyi He
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yan Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Dingcai Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Shuyi Wu
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| |
Collapse
|
8
|
Ma Z, Hu X, Li X, An Q, Zhang Y, Guo C, Zhao Y, Zhang Y. Shear Flow-Assembled Janus Membrane with Bifunctional Osteogenic and Antibacterial Effects for Guided Bone Regeneration. ACS Biomater Sci Eng 2024; 10:3984-3993. [PMID: 38728538 DOI: 10.1021/acsbiomaterials.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Guided bone regeneration (GBR) membranes that reside at the interface between the bone and soft tissues for bone repair attract increasing attention, but currently developed GBR membranes suffer from relatively poor osteogenic and antibacterial effects as well as limited mechanical property and biodegradability. We present here the design and fabrication of a bifunctional Janus GBR membrane based on a shear flow-driven layer by a layer self-assembly approach. The Janus GBR membrane comprises a calcium phosphate-collagen/polyethylene glycol (CaP@COL/PEG) layer and a chitosan/poly(acrylic acid) (CHI/PAA) layer on different sides of a collagen membrane to form a sandwich structure. The membrane exhibits good mechanical stability and tailored biodegradability. It is found that the CaP@COL/PEG layer and CHI/PAA layer contribute to the osteogenic differentiation and antibacterial function, respectively. In comparison with the control group, the Janus GBR membrane displays a 2.52-time and 1.84-time enhancement in respective volume and density of newly generated bone. The greatly improved bone repair ability of the Janus GBR membrane is further confirmed through histological analysis, and it has great potential for practical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Zequn Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, Jiangsu, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Xiantong Hu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| | - Xiangming Li
- Department of Functional Materials, School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, Jiangsu, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, Jiangsu, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
9
|
Sun H, Luan J, Dong S. Hydrogels promote periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1411494. [PMID: 38827033 PMCID: PMC11140061 DOI: 10.3389/fbioe.2024.1411494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Periodontal defects involve the damage and loss of periodontal tissue, primarily caused by periodontitis. This inflammatory disease, resulting from various factors, can lead to irreversible harm to the tissues supporting the teeth if not treated effectively, potentially resulting in tooth loss or loosening. Such outcomes significantly impact a patient's facial appearance and their ability to eat and speak. Current clinical treatments for periodontitis, including surgery, root planing, and various types of curettage, as well as local antibiotic injections, aim to mitigate symptoms and halt disease progression. However, these methods fall short of fully restoring the original structure and functionality of the affected tissue, due to the complex and deep structure of periodontal pockets and the intricate nature of the supporting tissue. To overcome these limitations, numerous biomaterials have been explored for periodontal tissue regeneration, with hydrogels being particularly noteworthy. Hydrogels are favored in research for their exceptional absorption capacity, biodegradability, and tunable mechanical properties. They have shown promise as barrier membranes, scaffolds, carriers for cell transplantation and drug delivery systems in periodontal regeneration therapy. The review concludes by discussing the ongoing challenges and future prospects for hydrogel applications in periodontal treatment.
Collapse
Affiliation(s)
- Huiying Sun
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiayi Luan
- Foshan Stomatology Hospital and School of Medicine, Foshan, Guangdong, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
11
|
Xiao JH, Zhang ZB, Li J, Chen SM, Gao HL, Liao Y, Chen L, Wang Z, Lu Y, Hou Y, Wu H, Zou D, Yu SH. Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. Natl Sci Rev 2024; 11:nwad333. [PMID: 38333231 PMCID: PMC10852990 DOI: 10.1093/nsr/nwad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
Polysaccharide-based membranes with excellent mechanical properties are highly desired. However, severe mechanical deterioration under wet conditions limits their biomedical applications. Here, inspired by the structural heterogeneity of strong yet hydrated biological materials, we propose a strategy based on heterogeneous crosslink-and-hydration (HCH) of a molecule/nano dual-scale network to fabricate polysaccharide-based nanocomposites with robust wet mechanical properties. The heterogeneity lies in that the crosslink-and-hydration occurs in the molecule-network while the stress-bearing nanofiber-network remains unaffected. As one demonstration, a membrane assembled by bacterial cellulose nanofiber-network and Ca2+-crosslinked and hydrated sodium alginate molecule-network is designed. Studies show that the crosslinked-and-hydrated molecule-network restricts water invasion and boosts stress transfer of the nanofiber-network by serving as interfibrous bridge. Overall, the molecule-network makes the membrane hydrated and flexible; the nanofiber-network as stress-bearing component provides strength and toughness. The HCH dual-scale network featuring a cooperative effect stimulates the design of advanced biomaterials applied under wet conditions such as guided bone regeneration membranes.
Collapse
Affiliation(s)
- Jian-Hong Xiao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhen-Bang Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - YinXiu Liao
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lu Chen
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - ZiShuo Wang
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - YiFan Lu
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - DuoHong Zou
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Lei M, Liao H, Wang S, Zhou H, Zhu J, Wan H, Payne GF, Liu C, Qu X. Electro-Sorting Create Heterogeneity: Constructing A Multifunctional Janus Film with Integrated Compositional and Microstructural Gradients for Guided Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307606. [PMID: 38225697 DOI: 10.1002/advs.202307606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Biology remains the envy of flexible soft matter fabrication because it can satisfy multiple functional needs by organizing a small set of proteins and polysaccharides into hierarchical systems with controlled heterogeneity in composition and microstructure. Here, it is reported that controlled, mild electronic inputs (<10 V; <20 min) induce a homogeneous gelatin-chitosan mixture to undergo sorting and bottom-up self-assembly into a Janus film with compositional gradient (i.e., from chitosan-enriched layer to chitosan/gelatin-contained layer) and tunable dense-porous gradient microstructures (e.g., porosity, pore size, and ratio of dense to porous layers). This Janus film performs is shown multiple functions for guided bone regeneration: the integration of compositional and microstructural features confers flexible mechanics, asymmetric properties for interfacial wettability, molecular transport (directional growth factor release), and cellular responses (prevents fibroblast infiltration but promotes osteoblast growth and differentiation). Overall, this work demonstrates the versatility of electrofabrication for the customized manufacturing of functional gradient soft matter.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haitao Liao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Li Y, Han Y, Li H, Niu X, Zhang D, Wang K. Antimicrobial Hydrogels: Potential Materials for Medical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304047. [PMID: 37752779 DOI: 10.1002/smll.202304047] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Microbial infections based on drug-resistant pathogenic organisms following surgery or trauma and uncontrolled bleeding are the main causes of increased mortality from trauma worldwide. The prevalence of drug-resistant pathogens has led to a significant increase in medical costs and poses a great threat to the normal life of people. This is an important issue in the field of biomedicine, and the emergence of new antimicrobial materials hydrogels holds great promise for solving this problem. Hydrogel is an important material with good biocompatibility, water absorption, oxygen permeability, adhesion, degradation, self-healing, corrosion resistance, and controlled release of drugs as well as structural diversity. Bacteria-disturbing hydrogels have important applications in the direction of surgical treatment, wound dressing, medical device coating, and tissue engineering. This paper reviews the classification of antimicrobial hydrogels, the current status of research, and the potential of antimicrobial hydrogels for one application in biomedicine, and analyzes the current research of hydrogels in biomedical applications from five aspects: metal-loaded hydrogels, drug-loaded hydrogels, carbon-material-loaded hydrogels, hydrogels with fixed antimicrobial activity and biological antimicrobial hydrogels, and provides an outlook on the high antimicrobial activity, biodegradability, biocompatibility, injectability, clinical applicability and future development prospects of hydrogels in this field.
Collapse
Affiliation(s)
- Yanni Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
14
|
Wu S, Luo S, Cen Z, Li Q, Li L, Li W, Huang Z, He W, Liang G, Wu D, Zhou M, Li Y. All-in-one porous membrane enables full protection in guided bone regeneration. Nat Commun 2024; 15:119. [PMID: 38168072 PMCID: PMC10762214 DOI: 10.1038/s41467-023-43476-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
The sophisticated hierarchical structure that precisely combines contradictory mechanical and biological characteristics is ideal for biomaterials, but it is challenging to achieve. Herein, we engineer a spatiotemporally hierarchical guided bone regeneration (GBR) membrane by rational bilayer integration of densely porous N-halamine functionalized bacterial cellulose nanonetwork facing the gingiva and loosely porous chitosan-hydroxyapatite composite micronetwork facing the alveolar bone. Our GBR membrane asymmetrically combine stiffness and flexibility, ingrowth barrier and ingrowth guiding, as well as anti-bacteria and cell-activation. The dense layer has a mechanically matched space maintenance capacity toward gingiva, continuously blocks fibroblasts, and prevents bacterial invasion with multiple mechanisms including release-killing, contact-killing, anti-adhesion, and nanopore-blocking; the loose layer is ultra-soft to conformally cover bone surfaces and defect cavity edges, enables ingrowth of osteogenesis-associated cells, and creates a favorable osteogenic microenvironment. As a result, our all-in-one porous membrane possesses full protective abilities in GBR.
Collapse
Affiliation(s)
- Shuyi Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China
| | - Shulu Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China
| | - Zongheng Cen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, 510006, Guangzhou, P.R. China
| | - Qianqian Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China
| | - Luwei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China
| | - Weiran Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China
| | - Zhike Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, P. R. China
| | - Wenyi He
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, 510006, Guangzhou, P.R. China
| | - Guobin Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China
| | - Dingcai Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, 510006, Guangzhou, P.R. China.
| | - Minghong Zhou
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, P. R. China.
| | - Yan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 510055, Guangzhou, P. R. China.
| |
Collapse
|
15
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
17
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Jin P, Xia M, Hasany M, Feng P, Bai J, Gao J, Zhang W, Mehrali M, Wang R. A tough injectable self‐setting cement‐based hydrogel for noninvasive bone augmentation. INTERDISCIPLINARY MATERIALS 2023; 2:771-788. [DOI: 10.1002/idm2.12119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 03/06/2025]
Abstract
AbstractComposite hydrogels with excellent properties can open new opportunities to terminate the need for auto/allografts in bone augmentations. However, their clinical application has been limited by their insufficient mechanical strength and lack of osteoinductivity. Here we report a new strategy to design an injectable bioactive double network hydrogel reinforced by inorganic calcium/magnesium phosphate cement (CMPC) hydrates to meet the mechanical performance requirements for bone regeneration. The engineered CMPC hydration endows the composite hydrogel with an appropriate gelation time and temperature for injection, which shows no harm in the defect site. CMPC hydrates could also provide a lower swelling ratio and higher biodegradation rate fitting the in vivo bone regeneration needs. In vitro and in vivo experiments prove that the ions released from inorganic particles endow biocompatibility, cell migration, adhesion, differentiation, and significantly higher bone regeneration capacity. Taken together, the simple addition of CMPC particles imparts in‐demand features that bring us closer to the clinical utilization of hydrogel‐based materials for bone regeneration.
Collapse
Affiliation(s)
- Peng Jin
- School of Materials Science and Engineering Nanjing China
- Jiangsu Key Laboratory of Construction Materials Southeast University Nanjing China
- Department of Civil and Mechanical Engineering Technical University of Denmark Kgs Lyngby Denmark
| | - Mingjie Xia
- Department of Orthopedics, Nanjing First Hospital Nanjing Medical University Nanjing China
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering Technical University of Denmark Kgs Lyngby Denmark
| | - Pan Feng
- School of Materials Science and Engineering Nanjing China
- Jiangsu Key Laboratory of Construction Materials Southeast University Nanjing China
| | - Jing Bai
- School of Materials Science and Engineering Nanjing China
- Institution of Medical Devices (Suzhou) Southeast University Nanjing China
| | - Jian Gao
- School of Materials Science and Engineering Nanjing China
- Jiangsu Key Laboratory of Construction Materials Southeast University Nanjing China
| | - Wei Zhang
- School of Materials Science and Engineering Nanjing China
- Jiangsu Key Laboratory of Advanced Metallic Materials Southeast University Nanjing China
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering Technical University of Denmark Kgs Lyngby Denmark
| | - Ruixing Wang
- School of Materials Science and Engineering Nanjing China
- Jiangsu Key Laboratory of Construction Materials Southeast University Nanjing China
| |
Collapse
|
19
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
20
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
21
|
Lv S, Yuan X, Xiao J, Jiang X. Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair. Carbohydr Polym 2023; 313:120888. [PMID: 37182974 DOI: 10.1016/j.carbpol.2023.120888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Barrier membranes with osteogenesis are desirable for promoting bone repair. Janus membrane, which has a bilayered structure with different properties on each side, could meet the osteogenesis/barrier dual functions of guided bone regeneration. In this work, new biodegradable Janus carboxymethyl chitin membrane with asymmetric pore structure was prepared based on thermosensitive carboxymethyl chitin without using any crosslinkers. Nano-hydroxyapatites were cast on single-sided membrane. The obtained carboxymethyl chitin/nano-hydroxyapatite Janus membrane showed dual biofunctions: the dense layer of the Janus membrane could act as a barrier to prevent connective tissue cells from invading the bone defects, while the porous layer (with pore size 100-200 μm) containing nano-hydroxyapatite could guide bone regeneration. After implanted on the rat critical-sized calvarial defect 8 weeks, carboxymethyl chitin/nano-hydroxyapatite membrane showed the most newly formed bone tissue with the highest bone volume/total volume ratio (10.03 ± 1.81 %, analyzed by micro CT), which was significantly better than the commercial collagen membrane GTR® (5.05 ± 0.76 %). Meanwhile, this Janus membrane possessed good hemostatic ability. These results suggest a facile strategy to construct hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite membrane for guided bone regeneration.
Collapse
Affiliation(s)
- Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264005, PR China.
| | - Xi Yuan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
22
|
Li Q, He W, Li W, Luo S, Zhou M, Wu D, Li Y, Wu S. Band-Aid-Like Self-Fixed Barrier Membranes Enable Superior Bone Augmentation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206981. [PMID: 37029705 PMCID: PMC10238180 DOI: 10.1002/advs.202206981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Indexed: 06/04/2023]
Abstract
In guided bone regeneration surgery, a barrier membrane is usually used to inhibit soft tissue from interfering with osteogenesis. However, current barrier membranes usually fail to resist the impact of external forces on bone-augmented region, thus causing severe displacement of membranes and their underlying bone graft materials, eventually leading to unsatisfied bone augmentation. Herein, a new class of local double-layered adhesive barrier membranes (ABMs) is developed to successfully immobilize bone graft materials. The air-dried adhesive hydrogel layers with suction-adhesion properties enable ABMs to firmly adhere to the wet bone surface through a "stick-and-use" band-aid-like strategy and effectively prevent the displacement of membranes and the leakage of bone grafts in uncontained bone defect treatment. Furthermore, the strategy is versatile for preparing diverse adhesive barrier membranes and immobilizing different bone graft materials for various surgical regions. By establishing such a continuous barrier for the bone graft material, this strategy may open a novel avenue for designing the next-generation barrier membranes.
Collapse
Affiliation(s)
- Qianqian Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Wenyi He
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Weiran Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Shulu Luo
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Minghong Zhou
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yan Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Shuyi Wu
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| |
Collapse
|
23
|
Wang Y, Fang X, Li S, Pan H, Sun J. Complexation of Sulfonate-Containing Polyurethane and Polyacrylic Acid Enables Fabrication of Self-Healing Hydrogel Membranes with High Mechanical Strength and Excellent Elasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25082-25090. [PMID: 34935339 DOI: 10.1021/acsami.1c21002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Artificial hydrogel membranes with good biocompatibility are strongly needed in biological fields. The preparation of biocompatible hydrogel membranes simultaneously possessing high mechanical strength, excellent elasticity, and satisfactory self-healing properties remains a challenge. Herein, we demonstrate the preparation of such hydrogel membranes by complexation of sulfonate-containing polyurethane (SPU) and poly(acrylic acid) (PAA) in the presence of Zn2+ ions followed by swelling in water (denoted as SPU-PAA/Zn). Originating from the synergy of the coordination and hydrogen-bonding interactions and the reinforcement effect of the in situ formed hydrophobic domains, the SPU-PAA/Zn hydrogel membrane exhibits a high tensile strength of ∼7.1 MPa and a toughness of ∼30.4 MJ m-3. Moreover, the hydrogel membrane is highly elastic, which can restore to its initial state from an ∼500% strain within 40 min rest at room temperature without any external assistance. The dynamic noncovalent interactions and hydrophobic domains allow the fractured hydrogel membrane to heal and completely regain its original integrity and mechanical properties at room temperature. Both in vitro and in vivo tests confirm that the hydrogel membrane exhibits satisfactory biocompatibility and could be potentially used as a biological barrier membrane in surgical operations or artificial organs.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Siheng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Stabilization of lysozyme in aqueous dispersion of graphene oxide sheets. Colloids Surf B Biointerfaces 2023; 225:113250. [PMID: 36905833 DOI: 10.1016/j.colsurfb.2023.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
This study examines the effect of surface oxygen groups upon ability of graphene oxide (GO) sheets in suppressing the fibrillation of lysozyme (LYZ). Graphite was oxidized using 6 and 8 wt equivalents of KMnO4, and as produced sheets were abbreviated as GO-06 and GO-08, respectively. Particulate characteristics of sheets were characterized by light scattering and electron microscopic techniques, and their interaction with LYZ was analysed by circular dichroism (CD) spectroscopy. After ascertaining acid-driven conversion of LYZ to fibrillary form, we have shown that the fibrillation of dispersed protein can be prevented by adding GO sheets. Inhibitory effect could be attributed to binding of LYZ over the sheets via noncovalent forces. A comparison between GO-06 and GO-08 samples showed superior binding affinity of the latter. Higher aqueous dispersibility and density of oxygenated groups in GO-08 sheets would have facilitated the adsorption of protein molecules, thus making them unavailable for aggregation. Pre-treatment of GO sheets with Pluronic 103 (P103, a nonionic triblock copolymer), caused reduction in the adsorption of LYZ. P103 aggregates would have rendered the sheet surface unavailable for the adsorption of LYZ. Based on these observations, we conclude that fibrillation of LYZ can be prevented in association with graphene oxide sheets.
Collapse
|
25
|
Li H, Fan R, Zou B, Yan J, Shi Q, Guo G. Roles of MXenes in biomedical applications: recent developments and prospects. J Nanobiotechnology 2023; 21:73. [PMID: 36859311 PMCID: PMC9979438 DOI: 10.1186/s12951-023-01809-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
....With the development of nanomedical technology, the application of various novel nanomaterials in the biomedical field has been greatly developed in recent years. MXenes, which are new inorganic nanomaterials with ultrathin atomic thickness, consist of layered transition metal carbides and nitrides or carbonitrides and have the general structural formula Mn+1XnTx (n = 1-3). Based on the unique structural features of MXenes, such as ultrathin atomic thickness and high specific surface area, and their excellent physicochemical properties, such as high photothermal conversion efficiency and antibacterial properties, MXenes have been widely applied in the biomedical field. This review systematically summarizes the application of MXene-based materials in biomedicine. The first section is a brief summary of their synthesis methods and surface modification strategies, which is followed by a focused overview and analysis of MXenes applications in biosensors, diagnosis, therapy, antibacterial agents, and implants, among other areas. We also review two popular research areas: wearable devices and immunotherapy. Finally, the difficulties and research progress in the clinical translation of MXene-based materials in biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Yang X, Huang J, Chen C, Zhou L, Ren H, Sun D. Biomimetic Design of Double-Sided Functionalized Silver Nanoparticle/Bacterial Cellulose/Hydroxyapatite Hydrogel Mesh for Temporary Cranioplasty. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10506-10519. [PMID: 36800308 DOI: 10.1021/acsami.2c22771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A structurally stable and antibacterial biomaterial used for temporary cranioplasty with guided bone regeneration (GBR) effects is an urgent clinical requirement. Herein, we reported the design of a biomimetic Ag/bacterial cellulose/hydroxyapatite (Ag/BC@HAp) hydrogel mesh with a double-sided functionalized structure, in which one layer was dense and covered with Ag nanoparticles and the other layer was porous and anchored with hydroxyapatite (HAp) via mineralization for different durations. Such a double-sided functionalized design endowed the hydrogel with distinguished antibacterial activities for inhibiting potential infections and GBR effects that could prevent endothelial cells and fibroblasts from migrating to a defected area and meanwhile show biocompatibility to MC3T3-E1 preosteoblasts. Furthermore, it was found from in vivo experimental results that the Ag/BC@HAp hydrogel with 7-day mineralization achieved optimal GBR effects by improving barrier functions toward these undesired cells. Moreover, this BC-based hydrogel mesh showed an extremely low swelling ratio and strong mechanical strength, which facilitated the protection of soft brain tissues without gaining the risk of intracranial pressure increase. In a word, this study offers a new approach to double-sided functionalized hydrogels and provides effective and safe biomaterials used for temporary cranioplasty with antibacterial abilities and GBR effects.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Jinjian Huang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Lu Zhou
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Huajian Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| |
Collapse
|
27
|
Lyu C, Cheng C, He Y, Qiu L, He Z, Zou D, Li D, Lu J. Graphene Hydrogel as a Porous Scaffold for Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54431-54438. [PMID: 36445947 DOI: 10.1021/acsami.2c11307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Porous scaffolds have widely been exploited in cartilage tissue regeneration. However, it is often difficult to understand how the delicate hierarchical structure of the scaffold material affects the regeneration process. Graphene materials are versatile building blocks for robust and biocompatible porous structures, enabling investigation of structural cues on tissue regeneration otherwise challenging to ascertain. Here, we utilize a graphene hydrogel with stable and tunable structure as a model scaffold to examine the effect of porous structure on matrix remodeling associated with ingrowth of chondrocytes on scaffolds. We observe much-accelerated yet balanced cartilage remodeling correlating the ingrowth of chondrocytes into the graphene scaffold with an open pore structure on the surface. Importantly, such an enhanced remodeling selectively promotes the expression of collagen type II fibrils over proteoglycan aggrecan, hence clearly illustrating that chondrocytes maintain a stable phenotype when they migrate into the scaffold while offering new insights into scaffold design for cartilage repair.
Collapse
Affiliation(s)
- Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| | - Chi Cheng
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - YuShi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ling Qiu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zijun He
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| |
Collapse
|
28
|
Li C, Xiong Z, Zhou L, Huang W, He Y, Li L, Shi H, Lu J, Wang J, Li D, Yin S. Interfacing Perforated Eardrums with Graphene-Based Membranes for Broadband Hearing Recovery. Adv Healthc Mater 2022; 11:e2201471. [PMID: 35899802 PMCID: PMC11469052 DOI: 10.1002/adhm.202201471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/28/2023]
Abstract
Eardrum perforation and associated hearing loss is a global health problem. Grafting perforated eardrum with autologous tissues in clinic can restore low-frequency hearing but often leaves poor recovery of high-frequency hearing. In this study, the potential of incorporating a thin multilayered graphene membrane (MGM) into the eardrum for broadband hearing recovery in rats is examined. The MGM shows good biocompatibility and biostability to promote the growth of eardrum cells in a regulated manner with little sign of tissue rejection and inflammatory response. After three weeks of implantation, the MGM is found to be encapsulated by a thin layer of newly grown tissue on both sides without a significant folded overgrowth that is often seen in natural healing. The perforation is well sealed, and broadband hearing recovery (1-32 kHz) is enabled and maintained for at least 2 months. Mechanical simulations show that the high elastic modulus of MGM and thin thickness of the reconstructed eardrum play a critical role in the recovery of high-frequency hearing. This work demonstrates the promise of the use of MGM as a functional graft for perforated eardrum to recover hearing in the broadband frequency region and suggests a new acoustics-related medical application for graphene-related 2D materials.
Collapse
Affiliation(s)
- Chunyan Li
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Zhiyuan Xiong
- Department of Chemical EngineeringThe University of MelbourneMelbourneVictoria3010Australia
| | - Lei Zhou
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan Hospital affiliated to Fudan UniversityShanghai200032China
| | | | - Yushi He
- Shanghai Electrochemical Energy Devices Research CenterSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Linpeng Li
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Haibo Shi
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jiayu Lu
- Department of StomatologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jian Wang
- School of Communication Science and DisordersDalhousie UniversityHalifaxB3J 1Y6Canada
| | - Dan Li
- Department of Chemical EngineeringThe University of MelbourneMelbourneVictoria3010Australia
| | - Shankai Yin
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
29
|
Zhu Y, Dai B, Li X, Liu W, Wang J, Xu J, Xu S, He X, Zhang S, Li Q, Qin L, Ngai T. Periosteum-Inspired Membranes Integrated with Bioactive Magnesium Oxychloride Ceramic Nanoneedles for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39830-39842. [PMID: 36026585 DOI: 10.1021/acsami.2c10615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Guided bone regeneration (GBR) technique using a barrier membrane holds great potential to allow the single-stage reconstruction of critical-sized bone defects. Here, bioactive nanoneedle-like magnesium oxychloride ceramics (MOCs) are synthesized and recruited as an osteoinductive factor within a polycaprolactone-gelatin A (PCL-GelA) membranous matrix to generate a periosteum-mimicking biphasic GBR membrane (PCL-GelA/MOC) to accelerate calvarial defect repair. The PCL-GelA/MOC membrane acts as a shield for defect areas and a reservoir of osteoinductive molecules, which provides a favorable microenvironment for supporting cell proliferation, infiltration, and differentiation. This membrane leads to accelerated osteogenesis and angiogenesis, effectual defect bridging, and significantly enhanced bone regeneration when applied to a 5 mm sized rat calvarial defect. This makes this innovative and multifunctional GBR membrane a suitable candidate for clinical applications with promising curative efficacy.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Wei Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Jiangpeng Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| |
Collapse
|
30
|
Zhu Y, Zhou J, Dai B, Liu W, Wang J, Li Q, Wang J, Zhao L, Ngai T. A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration. Adv Healthc Mater 2022; 11:e2201679. [PMID: 36026579 DOI: 10.1002/adhm.202201679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Guided bone regeneration (GBR) therapy demonstrates a prominent curative effect on the management of craniomaxillofacial (CMF) bone defects. In this study, a GBR membrane consisting of a microporous layer and a struvite-nanowire-doped fibrous layer is constructed via non-solvent induced phase separation, followed by an electrospinning procedure to treat critical-sized calvarial defects. The microporous layer shows selective permeability for excluding the rapid-growing non-osteogenic tissues and potential wound stabilization. The nanowire-like struvite is synthesized as the deliverable therapeutic agent within the fibrous layer to facilitate bone regeneration. Such a membrane displays a well-developed heterogeneous architecture, satisfactory mechanical performance, and long-lasting characteristics. The in vitro biological evaluation reveals that apart from being a strong barrier, the bilayer struvite-laden membrane can actively promote cellular adhesion, proliferation, and osteogenic differentiation. Consequently, the multifunctional struvite-doped membranes are applied to treat 5 mm-sized bilateral calvarial defects in rats, resulting in overall improved healing outcomes compared with the untreated or the struvite-free membrane-treated group, which is characterized by enhanced osteogenesis and significantly increased new bone formation. The encouraging preclinical results reveal the great potential of the bilayer struvite-doped membrane as a clinical GBR device for augmenting large-area CMF bone reconstruction.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Jianpeng Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Wei Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Jiangpeng Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| |
Collapse
|
31
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Xiong Z, Huang W, Liang Q, Cao Y, Liu S, He Z, Zhang R, Zhang B, Green R, Zhang S, Li D. Harnessing the 2D Structure-Enabled Viscoelasticity of Graphene-Based Hydrogel Membranes for Chronic Neural Interfacing. SMALL METHODS 2022; 6:e2200022. [PMID: 35261208 DOI: 10.1002/smtd.202200022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Stiffness and viscoelasticity of neural implants regulate the foreign body response. Recent studies have suggested the use of elastic or viscoelastic materials with tissue-like stiffness for long-term neural electrical interfacing. Herein, the authors find that a viscoelastic multilayered graphene hydrogel (MGH) membrane, despite exhibiting a much higher Young's modulus than nerve tissues, shows little inflammatory response after 8-week implantation in rat sciatic nerves. The MGH membrane shows significant viscoelasticity due to the slippage between graphene nanosheets, facilitating its seamless yet minimally compressive interfacing with nerves to reduce the inflammation caused by the stiffness mismatch. When used as neural stimulation electrodes, the MGH membrane can offer abundant ion-accessible surfaces to bring a charge injection capacity 1-2 orders of magnitude higher than its traditional Pt counterpart, and further demonstrates chronic neural therapy potential in low-voltage modulation of rat blood pressure. This work suggests that the emergence of 2D nanomaterials and particularly their unique structural attributes can be harnessed to enable new bio-interfacing design strategies.
Collapse
Affiliation(s)
- Zhiyuan Xiong
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Wenhui Huang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Yang Cao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Shuyi Liu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rylie Green
- Department of Bioengineering, Imperial College, London, SW7 2AZ, UK
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
33
|
Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2022; 14:polym14050871. [PMID: 35267700 PMCID: PMC8912280 DOI: 10.3390/polym14050871] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.
Collapse
|
34
|
Qin W, Li C, Liu C, Wu S, Liu J, Ma J, Chen W, Zhao H, Zhao X. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. J Biomater Appl 2022; 36:1838-1851. [PMID: 35196910 DOI: 10.1177/08853282211067646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue-engineered bone material is one of the effective methods to repair bone defects, but the application is restricted in clinical because of the lack of excellent scaffolds that can induce bone regeneration as well as the difficulty in making scaffolds with personalized structures. 3D printing is an emerging technology that can fabricate bespoke 3D scaffolds with precise structure. However, it is challenging to develop the scaffold materials with excellent printability, osteogenesis ability, and mechanical strength. In this study, graphene oxide (GO), attapulgite (ATP), type I collagen (Col I) and polyvinyl alcohol were used as raw materials to prepare composite scaffolds via 3D bioprinting. The composite materials showed excellent printability. The microcosmic architecture and properties was characterized by scanning electron microscopy, Fourier transform infrared and thermal gravimetric analyzer, respectively. To verify the biocompatibility of the scaffolds, the viability, proliferation and osteogenic differentiation of Bone Marrow Stromal Cells (BMSCs) on the scaffolds were assessed by CCK-8, Live/Dead staining and Real-time PCR in vitro. The composited scaffolds were then implanted into the skull defects on rat for bone regeneration. Hematoxylin-eosin staining, Masson staining and immunohistochemistry staining were carried out in vivo to evaluate the regeneration of bone tissue.The results showed that GO/ATP/COL scaffolds have been demonstrated to possess controlled porosity, water absorption, biodegradability and good apatite-mineralization ability. The scaffold consisting of 0.5% GO/ATP/COL have excellent biocompatibility and was able to promote the growth, proliferation and osteogenic differentiation of mouse BMSCs in vitro. Furthermore, the 0.5% GO/ATP/COL scaffolds were also able to promote bone regeneration of in rat skull defects. Our results illustrated that the 3D printed GO/ATP/COL composite scaffolds have good mechanical properties, excellent cytocompatibility for enhanced mouse BMSCs adhesion, proliferation, and osteogenic differentiation. All these advantages made it potential as a promising biomaterial for osteogenic reconstruction.
Collapse
Affiliation(s)
- Wen Qin
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Chenkai Li
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Siyu Wu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiayi Ma
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenyang Chen
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou, China.,Department of Chemical and Biological Engineering, 7315University of Sheffield, Sheffield, UK
| |
Collapse
|
35
|
Huang B, Chen M, Tian J, Zhang Y, Dai Z, Li J, Zhang W. Oxygen-Carrying and Antibacterial Fluorinated Nano-Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Adv Healthc Mater 2022; 11:e2102540. [PMID: 35166460 DOI: 10.1002/adhm.202102540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Insufficient oxygen availability in tissue engineering is one of the major factors for the failure of clinical transplantation. One potential strategy to conquer this limitation is the fabrication of spontaneous and continuous oxygen supplying scaffolds for in situ tissue regeneration. In this work, a versatile fluorine-incorporating hydrogel is designed which can not only timely and continuously supply oxygen for mesenchymal stem cells (MSCs) to overcome deficient oxygen before vascularization in scaffolds, but can present a higher antibacterial capability to avoid bacterial infections. The HAp@PDA-F nanoparticles are first prepared and then incorporated with the quaternized and methacrylated chitosan forming CS/HAp@PDA-F by photo-crosslinking. In vitro results indicate that CS/HAp@PDA-F hydrogel has outstanding mechanical performance, moreover, it also has the oxygen-carrying ability to prolong survival ability, enhance proliferation activity, and preserve osteogenic differentiation potency and promote osteogenic-related genes expression of rat bone mesenchymal stem cells (rBMSCs) under hypoxic environment. Furthermore, the CS/HAp@PDA-F hydrogel can inhibit the growth of Staphylococcus aureus and Escherichia coli, providing a good antibacterial activity. Additionally, in vivo experiments demonstrate higher bone volume and bone mineral density, and more new bone tissue generation in CS/HAp@PDA-F group than in CS/HAp@PDA group. These results indicate that the rational design of fluorinated hydrogel possesses a good clinical application prospect for bone regeneration.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| |
Collapse
|
36
|
Lu YC, Chang TK, Yeh ST, Lin TC, Lin HS, Chen CH, Huang CH, Huang CH. Evaluation of graphene-derived bone scaffold exposure to the calvarial bone_ in-vitro and in-vivo studies. Nanotoxicology 2022; 16:1-15. [PMID: 35085045 DOI: 10.1080/17435390.2022.2027036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene is a novel material which has recently been gaining great interest in the biomedical fields. Our previous study observed that graphene-derived particles help induce bone formation in a murine calvarial model. Here, we further developed a blended graphene-contained polycaprolactone (PCL/G) filament for application in a 3D-printed bone scaffold. Since implants are expected to be for long-term usage, in vitro cell culture and in vivo scaffold implants were evaluated in a critical-size bone defect calvarial model for over 60 weeks. Graphene greatly improved the mechanical strength by 30.2% compared to pure PCL. The fabricated PCL/G scaffolds also showed fine cell viability. In animal model, an abnormal electroencephalogram power spectrum and early signs of aging, such as hair graying and hair loss, were found in the group with a PCL/G scaffold compared to pure PCL scaffold. Neither of the abnormal symptoms caused death of all animals in both groups. The long-term use of graphene-derived biomaterials for in-vivo implants seems to be safe. But the comprehensive biosafety still needs further evaluation.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medicine, MacKay Medical College, Taipei, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, MacKay Medical College, Taipei, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Ting Yeh
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Shih Lin
- Department of Neurosurgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Hung Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Hsiung Huang
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Orthopaedic Surgery, Changhau Christian Hospital, Changhau, Taiwan
| | - Chang-Hung Huang
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
37
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
38
|
Liu S, Li Z, Wang Q, Han J, Wang W, Li S, Liu H, Guo S, Zhang J, Ge K, Zhou G. Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:8049-8059. [PMID: 35006786 DOI: 10.1021/acsabm.1c00967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional materials provide a secluded space for bone formation and preserve the growth of surrounding tissues, thus playing a crucial role in guided bone regeneration (GBR). Graphene oxide (GO) has been widely employed in GBR due to its good mechanical and hydrophilic properties. A single GO membrane, however, does not provide a friendly environment for osteogenic cell adhesion. With their adjustable mechanical properties and excellent biocompatibility, composite membranes can simulate the multicomponent structure of an extracellular matrix for cell adhesion. To obtain two-dimensional membranes with appropriate mechanical strength and sufficient biocompatibility, GO-based composite membranes simultaneously containing chitosan (CS) and hydroxyapatite (HAP) were first prepared using one-step vacuum filtration and a biomimetic mineralization method. CS and HAP improved the mechanical strength and surface hydrophilicity of the membranes. In addition, moderate addition of HAP enhanced the adhesion, differentiation, and mineralization of osteoblasts. The prepared composite membranes were then implanted into a calvarial defect model to evaluate their osteogenic induction effects in vivo. Microcomputed tomography observation and histological analysis indicate that GO/CS/HAP composite membranes can accelerate bone regeneration without the contribution of endogenous cytokines. GO/CS/HAP composite membranes with unique biomimetic porous structures, superior mechanical properties, and excellent bone regeneration capacity are potential materials for application in GBR.
Collapse
Affiliation(s)
- Sudan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zirui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Qiuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,College of Basic Medical Science, Hebei University, Baoding 071000, P. R. China
| | - Jing Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Wenying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Shenghui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Huifang Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, P. R. China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,College of Basic Medical Science, Hebei University, Baoding 071000, P. R. China
| |
Collapse
|
39
|
Cheng J, Liu J, Wu B, Liu Z, Li M, Wang X, Tang P, Wang Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front Bioeng Biotechnol 2021; 9:734688. [PMID: 34660555 PMCID: PMC8511325 DOI: 10.3389/fbioe.2021.734688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023] Open
Abstract
Bone regeneration or replacement has been proved to be one of the most effective methods available for the treatment of bone defects caused by different musculoskeletal disorders. However, the great contradiction between the large demand for clinical therapies and the insufficiency and deficiency of natural bone grafts has led to an urgent need for the development of synthetic bone graft substitutes. Bone tissue engineering has shown great potential in the construction of desired bone grafts, despite the many challenges that remain to be faced before safe and reliable clinical applications can be achieved. Graphene, with outstanding physical, chemical and biological properties, is considered a highly promising material for ideal bone regeneration and has attracted broad attention. In this review, we provide an introduction to the properties of graphene and its derivatives. In addition, based on the analysis of bone regeneration processes, interesting findings of graphene-based materials in bone regenerative medicine are analyzed, with special emphasis on their applications as scaffolds, membranes, and coatings in bone tissue engineering. Finally, the advantages, challenges, and future prospects of their application in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Bing Wu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Geng B, Li P, Fang F, Shi W, Glowacki J, Pan D, Shen L. Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria. CARBON 2021; 184:375-385. [DOI: 10.1016/j.carbon.2021.08.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
41
|
Ul Hassan S, Bilal B, Nazir MS, Naqvi SAR, Ali Z, Nadeem S, Muhammad N, Palvasha BA, Mohyuddin A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem Biol Drug Des 2021; 98:1007-1024. [PMID: 34581497 DOI: 10.1111/cbdd.13959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Chronic periodontal is a very common infection that instigates the destruction of oral tissue, and for its treatment, it is necessary to minimize the infection and the defects regeneration. Periodontium consists of four types of tissues: (a) cementum, (b) periodontal ligament, (c) gingiva, and 4) alveolar bone. In separated cavities, regenerative process also allows various cell proliferations. Guided tissue regeneration (GTR) is a potential procedure that favors periodontal regrowth; however, some limitations (such as ineffective hemostatic property, poor mechanical property, and improper biodegradation) are also associated with it. This review mainly emphasizes on the following areas: (a) a summarized overview of the periodontium and its immunological situations, (b) recently utilized treatments for regeneration of distinctive periodontal tissues; (c) an overview of GTR membranes available commercially, and the latest developments on the characterization and processing of GTR membrane material; and 4) the function of the different non-polymeric/polymeric materials, which are acting as drug carriers, antibacterial agents, nanoparticles, and periodontal barrier membranes to prevent periodontal inflammation and to improve the strength of the GTR membrane.
Collapse
Affiliation(s)
- Sadaf Ul Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan.,Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zufiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aysha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
42
|
Li Z, Xiang S, Lin Z, Li EN, Yagi H, Cao G, Yocum L, Li L, Hao T, Bruce KK, Fritch MR, Hu H, Wang B, Alexander PG, Khor KA, Tuan RS, Lin H. Graphene oxide-functionalized nanocomposites promote osteogenesis of human mesenchymal stem cells via enhancement of BMP-SMAD1/5 signaling pathway. Biomaterials 2021; 277:121082. [PMID: 34464823 DOI: 10.1016/j.biomaterials.2021.121082] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022]
Abstract
Biomaterials that can harness the intrinsic osteogenic potential of stem cells offer a promising strategy to accelerate bone regeneration and repair. Previously, we had used methacrylated gelatin (GelMA)-based scaffolds to achieve bone formation from human mesenchymal stem cells (hMSCs). In this study, we aimed to further enhance hMSC osteogenesis by incorporating graphene oxide (GO)-based nanosheets into GelMA. In vitro results showed high viability and metabolic activities in hMSCs encapsulated in the newly developed nanocomposites. Incorporation of GO markedly increased mineralization within hMSC-laden constructs, which was further increased by replacing GO with silica-coated graphene oxide (SiGO). Mechanistic analysis revealed that the nanosheet enhanced the production, retention, and biological activity of endogenous bone morphogenetic proteins (BMPs), resulting in robust osteogenesis in the absence of exogenous osteoinductive growth factors. Specifically, the osteoinductive effect of the nanosheets was abolished by inhibiting the BMP signaling pathway with LDN-193189 treatment. The bone formation potential of the technology was further tested in vivo using a mouse subcutaneous implantation model, where hMSCs-laden GO/GelMA and SiGO/GelMA samples resulted in bone volumes 108 and 385 times larger, respectively, than the GelMA control group. Taken together, these results demonstrate the biological activity and mechanism of action of GO-based nanosheets in augmenting the osteogenic capability of hMSCs, and highlights the potential of leveraging nanomaterials such as GO and SiGO for bone tissue engineering applications.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zixuan Lin
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Haruyo Yagi
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guorui Cao
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Yocum
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - La Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tingjun Hao
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine K Bruce
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Huanlong Hu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bing Wang
- Molecular Therapeutics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Khiam Aik Khor
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rocky S Tuan
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Hang Lin
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Li X, Yang Z, Fang L, Ma C, Zhao Y, Liu H, Che S, Zvyagin AV, Yang B, Lin Q. Hydrogel Composites with Different Dimensional Nanoparticles for Bone Regeneration. Macromol Rapid Commun 2021; 42:e2100362. [PMID: 34435714 DOI: 10.1002/marc.202100362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Indexed: 12/14/2022]
Abstract
The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Linan Fang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, 130000, China
| | - Chengyuan Ma
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hou Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, 130022, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
44
|
Chen Q, Xia C, Shi B, Chen C, Yang C, Mao G, Shi F. Extracorporeal Shock Wave Combined with Teriparatide-Loaded Hydrogel Injection Promotes Segmental Bone Defects Healing in Osteoporosis. Tissue Eng Regen Med 2021; 18:1021-1033. [PMID: 34427911 DOI: 10.1007/s13770-021-00381-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Osteoporosis is a systemic bone disease characterized by decreased bone density and deterioration of bone microstructure, leading to an increased probability of fragility fractures. Once segmental bone defect occurs, it is easy to cause delayed union and nonunion. METHODS The aim of this study is to investigate the efficacy of extracorporeal shock wave (ESW) and teriparatide-loaded hydrogel (T-Gel) combined strategy on the cell activity and differentiation of osteoporosis derived bone marrow mesenchymal stem cells (OP-BMSCs) in vitro and bone regeneration in osteoporotic segmental bone defects in vivo. RESULTS In vitro, the strategy of combining ESW and T-Gel significantly enhanced OP-BMSCs proliferation, survival, migration, and osteogenic differentiation by up-regulating the alkaline phosphatase activity, mineralization, and expression of runt-related transcription factor-2, type I collagen, osteocalcin, and osteopontin. In the segmental bone defect models of osteoporotic rabbits, Micro-CT evaluation and histological observation demonstrated this ESW-combined with T-Gel injection significantly induced bone healing by enhancing the osteogenic activity of the local microenvironment in osteoporotic defects. CONCLUSION In conclusion, ESW-combined with T-Gel injection could regulate the poor osteogenic microenvironment in osteoporotic defects and show potential for enhancing fragility fractures healing.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Binbin Shi
- Department of Orthopedic Surgery, Tongxiang First People's Hospital, Tongxiang, 314500, People's Republic of China
| | - Chuyong Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Chen Yang
- Department of Orthopedic Surgery, No 1 People's Hospital of AkeSu, AkeSu, 843000, Xinjiang, People's Republic of China
| | - Guangfeng Mao
- Department of Orthopedic Surgery, The Third People Hospital of Zhuji, Shaoxing, 310014, People's Republic of China
| | - Fangfang Shi
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
45
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Pan P, Chen X, Xing H, Deng Y, Chen J, Alharthi FA, Alghamdi AA, Su J. A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Liu X, Chen W, Shao B, Zhang X, Wang Y, Zhang S, Wu W. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone. Biomaterials 2021; 276:120998. [PMID: 34237507 DOI: 10.1016/j.biomaterials.2021.120998] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk between bone marrow mesenchymal stem cells (BMSCs) and macrophages plays vital role in bone healing. By investigating the mechanism of collagen membrane-guided bone regeneration, we found compact structure and rapid membrane degradation compromised the duration of M2 macrophages influx, which restricts the recruitment of BMSCs that is essential for bone healing. To tackle this issue, a biodegrading elastomeric compound consisting of poly(glycerol sebacate) (PGS) and polycaprolactone (PCL) was fabricated into hierarchically porous membrane. The rational design of 3D microstructure enabled sufficient polydopamine (PDA) coating. Without any addition of growth factors, the 3D-patterned PDA membrane enables early and durable influx of M2 macrophages, which in turn promotes BMSCs recruitment and osteogenic differentiation. Furthermore, 4D-morphing of the membrane fully regenerates the dome shaped calvarial bone as well as arc-shape bone in peri-implant alveolar defect without filling xenogenous substitute. This study revealed the superiority of 3D printed microstructures in immunomodulatory materials. The availability of 4D-morphing for PGS/PCL construct expanded their advantages in reconstructing craniofacial bone.
Collapse
Affiliation(s)
- Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China; Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Bo Shao
- Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
48
|
Oshiro-Junior JA, Barros RM, da Silva CG, de Souza CC, Scardueli CR, Marcantonio CC, da Silva Saches PR, Mendes L, Cilli EM, Marcantonio RAC, Chiavacci LA. In vivo effectiveness of hybrid membranes with osteogenic growth peptide for bone regeneration. J Tissue Eng Regen Med 2021; 15:722-731. [PMID: 34038031 DOI: 10.1002/term.3226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
Guided bone regeneration (GBR) technique helps to restore bone tissue through cellular selectivity principle. Currently no osteoinductive membrane exists on the market. Osteogenic growth peptide (OGP) acts as a hematopoietic stimulator. This association could improve the quality of bone formation, benefiting more than 2.2 million patients annually. The objective of this work was to develop membranes from ureasil-polyether materials containing OGP. The membranes were characterized by differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS). OGP was synthesized by the solid phase method. Sterilization results using gamma radiation at 24 kGy did not change the structure of the material, as confirmed by DSC. The SAXS technique revealed the structural homogeneity of the matrix. OGP was incorporated in 66.25 × 10-10 mol and release results showed that the ureasil-PPO400/PEO500 and ureasil-PPO400/PEO1900 membranes released 7% and 21%, respectively, after 48 h. In vivo results demonstrated that the amount and quality of bone tissue formed in the bone defects in the presence of ureasil-polyether membranes with OGP were similar to commercial collagen material with BMP. The results allow us to conclude that membranes with OGP have characteristics that make them potential candidates for the GBR.
Collapse
Affiliation(s)
- João Augusto Oshiro-Junior
- Graduation Program in Pharmaceutical Sciences, State University of Paraíba, Bairro Universitário, Campina Grande, Paraíba, Brazil.,Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Rafaela Moreno Barros
- Graduation Program in Pharmaceutical Sciences, State University of Paraíba, Bairro Universitário, Campina Grande, Paraíba, Brazil
| | - Camila Garcia da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Cássio Rocha Scardueli
- Graduation Program in Pharmaceutical Sciences, State University of Paraíba, Bairro Universitário, Campina Grande, Paraíba, Brazil.,Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Paulo Ricardo da Silva Saches
- Department of Biochemistry and Chemical Technology, Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Larissa Mendes
- Department of Biochemistry and Chemical Technology, Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Chemical Technology, Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Leila Aparecida Chiavacci
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
49
|
Wang X, Guo W, Li L, Yu F, Li J, Liu L, Fang B, Xia L. Photothermally triggered biomimetic drug delivery of Teriparatide via reduced graphene oxide loaded chitosan hydrogel for osteoporotic bone regeneration. CHEMICAL ENGINEERING JOURNAL 2021; 413:127413. [DOI: 10.1016/j.cej.2020.127413] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Xu Y, Patino Gaillez M, Rothe R, Hauser S, Voigt D, Pietzsch J, Zhang Y. Conductive Hydrogels with Dynamic Reversible Networks for Biomedical Applications. Adv Healthc Mater 2021; 10:e2100012. [PMID: 33930246 PMCID: PMC11468162 DOI: 10.1002/adhm.202100012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Conductive hydrogels (CHs) are emerging as a promising and well-utilized platform for 3D cell culture and tissue engineering to incorporate electron signals as biorelevant physical cues. In conventional covalently crosslinked conductive hydrogels, the network dynamics (e.g., stress relaxation, shear shining, and self-healing) required for complex cellular functions and many biomedical utilities (e.g., injection) cannot be easily realized. In contrast, dynamic conductive hydrogels (DCHs) are fabricated by dynamic and reversible crosslinks. By allowing for the breaking and reforming of the reversible linkages, DCHs can provide dynamic environments for cellular functions while maintaining matrix integrity. These dynamic materials can mimic some properties of native tissues, making them well-suited for several biotechnological and medical applications. An overview of the design, synthesis, and engineering of DCHs is presented in this review, focusing on the different dynamic crosslinking mechanisms of DCHs and their biomedical applications.
Collapse
Affiliation(s)
- Yong Xu
- Technische Universität DresdenB CUBE Center for Molecular BioengineeringDresden01307Germany
| | | | - Rebecca Rothe
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR)Institute of Radiopharmaceutical Cancer ResearchDepartment of Radiopharmaceutical and Chemical BiologyDresden01328Germany
- Technische Universität DresdenSchool of ScienceFaculty of Chemistry and Food ChemistryDresden01062Germany
| | - Sandra Hauser
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR)Institute of Radiopharmaceutical Cancer ResearchDepartment of Radiopharmaceutical and Chemical BiologyDresden01328Germany
| | - Dagmar Voigt
- Technische Universität Dresden, School of ScienceFaculty of BiologyInstitute of BotanyDresden01062Germany
| | - Jens Pietzsch
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR)Institute of Radiopharmaceutical Cancer ResearchDepartment of Radiopharmaceutical and Chemical BiologyDresden01328Germany
- Technische Universität DresdenSchool of ScienceFaculty of Chemistry and Food ChemistryDresden01062Germany
| | - Yixin Zhang
- Technische Universität DresdenB CUBE Center for Molecular BioengineeringDresden01307Germany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresden01062Germany
| |
Collapse
|