1
|
Ryu H, Kang SW. Gas-Driven Porosity Control in Cellulose Acetate Membranes: Comparing Nitrogen and Carbon Dioxide for Micropore Formation. Biomacromolecules 2025. [PMID: 40366185 DOI: 10.1021/acs.biomac.5c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cellulose acetate (CA) is a widely used porous material in various industrial applications, and its processing methods have evolved. This study presents a novel approach to enhancing pore formation efficiency by substituting nitrogen (N2) with carbon dioxide (CO2), a gas with a higher quadrupole moment. This method was employed to fabricate lactic acid-plasticized CA membranes coated on polypropylene substrates, enabling control over pore size and porosity. Surface morphology was analyzed using scanning electron microscopy to observe structural changes before and after gas permeation, with respect to the type of gas used. Fourier-transform infrared spectroscopy was used to assess molecular changes induced by lactic acid addition and to investigate gas-specific differences in pore formation. Thermal stability was evaluated via thermogravimetric analysis in relation to pore development. Additionally, the porosity, Gurley values, and gas permeance were measured to compare the effects of N2 and CO2 on the physical properties of the membranes.
Collapse
Affiliation(s)
- Haram Ryu
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
2
|
Tan R, Jia X, Li D, Liu J, Hu X, Mao J. Ce Salt-Assisted Construction of Bilayer Cu-Ce-O Nanostructure Arrays on Cu Foil Enhances Methanol Oxidation Performance. Inorg Chem 2025; 64:9268-9276. [PMID: 40300204 DOI: 10.1021/acs.inorgchem.5c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The construction of highly ordered nanostructures on copper offers significant advantages in energy conversion electrocatalysis, particularly as a potential alternative to platinum-based precious metal catalysts in the methanol oxidation process to prevent catalytic poisoning. However, the self-assembly and ordered growth of nanostructures on copper has been a research challenge. Herein, we report a Ce salt-assisted electrooxidation strategy for the first time to prepare bilayer Cu-Ce-O nanostructures on copper, containing Cu2O-Ce2O3 nanorods on the top and Cu2O nanoparticles next to the substrate. The incorporation of Ce salts into the electrolyte enables the controllable oriented growth of nanostructures from cubic nanoparticles to nanorods. Moreover, the high activity surface area of nanorods demonstrates enhanced catalytic activity and long-term stability (6 h) in methanol oxidation, exhibiting a current density of 71.5 mA cm-2 and 72 mV lower onset overpotential compared to blank Cu foil. Density functional theory calculations also demonstrate that Cu2O enhances the adsorption of CH3OH. This strategy provides new insights into the rational construction of sophisticated copper-based nanostructures, showing promising potential for applications in methanol catalysis.
Collapse
Affiliation(s)
- Runxiang Tan
- College of Material Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Xu Jia
- College of Material Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Dan Li
- College of Material Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jieqian Liu
- College of Material Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Xinyue Hu
- College of Material Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Mao
- College of Material Science and Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Cao Y, Wu M, Cao Y, Zhu W, Zhou Y. Recent Advances on Integrating Porous Nanomaterials with Chemiluminescence Assays. Chem Asian J 2025; 20:e202401282. [PMID: 39714390 DOI: 10.1002/asia.202401282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Advanced porous nanomaterials have recently been the subject of considerable interest due to their high surface areas, tunable pore structures, high porosity, and ease of modification. In the chemiluminescence (CL) domain, the incorporation of additional pores into nanostructures not only enhances the loading capacity for signal amplification but also allows the confinement effect in a nanoscale microreactor and the controlled release of reaction agents. In light of this, increasing efforts have been made to fabricate various porous nanomaterials and explore their potential applications in CL assays. This review therefore aims to highlight the recent advances in preparation strategies and basic attributes of the CL-related porous nanomaterials. Moreover, it offers a comprehensive summary of the emerging CL sensing applications based on these materials. The key challenges and future perspectives of porous nanomaterials in CL assays are finally discussed.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| | - Ming Wu
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| | - Yu Cao
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| | - Wenlei Zhu
- School of Environment, Nanjing University, 210023, Nanjing, P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| |
Collapse
|
4
|
Liu Y, Zhang Y, Zhou X, Wang Z, Yang Z, Meng J, Wang C, Sun X, Chen L, Chen P, Peng H. High-Performing Nanofiber Memristor via Field-Induced Ion Migration Concentration at Highly-Curved Interwoven Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409951. [PMID: 39955757 DOI: 10.1002/smll.202409951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Memristors with high computing capabilities hold significant potential as processing devices in the era of information explosion, but their applications are largely hindered by the trade-off between memristive performance and operation uniformity. Extensive efforts are devoted to designing or regulating memristive layers of memristors to improve device performance, while few studies focused on the interface structure at cross points of memristors. Herein, inspired by the tip effect, a nanofiber memristor with highly-curved interwoven interface is designed by assembling nanofiber electrodes using dielectrophoretic method. The nanofiber memristor shows high operation uniformity with an ultralow set voltage standard deviation of 0.014 V, which is even superior to that of state-of-the-art oxide-based planar memristors. Experimental and simulation analysis reveals that the highly-curved interface can efficiently concentrate electric field distribution and confine the switching region, thus facilitating the migration of silver ions and suppressing the formation of random conductive filaments. Nanofiber memristor arrays with good device reproducibility are further integrated for fundamental logic gate circuits like NOT, AND, and OR. This work offers a new insight for constructing high-performing nanoelectronics.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yuanhang Zhang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Zhuming Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Zhe Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jialin Meng
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Chen Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
- Shanghai Academy of Artificial Intelligence for Science, Shanghai, 200240, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Jiao Y, Wang Y, Xiao H, Li J, Mei C, Fu Q, Han J. All-solid-state wire-shaped micro-supercapacitors: A microfluidic approach to core-shell structured bacterial cellulose-GN/PPy fibers. Carbohydr Polym 2025; 349:122996. [PMID: 39638505 DOI: 10.1016/j.carbpol.2024.122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The one-dimensional (1D) wire-shaped micro-supercapacitors (micro-SCs) hold great structural advantages of low mass/volume with promising applications in wearable electronics. All-solid-state wire-shaped micro-SCs, characterized by their lightweight, high capacitance, flexibility, and robust mechanical stability, have been developing in a promising direction of energy storage devices. These 1D fiber-shaped supercapacitors can be independently operated or woven into various shapes, accommodating diverse applications. Despite their potential, the complexity of their preparation processes, especially the continuous fabrication process, remains a significant challenge. This study introduces a novel microfluidic technique for synthesizing core-shell structured fibers using bacterial cellulose (BC) and graphene (GN) with a polypyrrole (PPy) coating. Utilizing BC as a scaffold and GN for enhanced electrical properties, this method ensures uniformity in fiber structure and stability in the PPy shell. Employing a solid-state H3PO4/PVA gel as the electrolyte, the developed micro-SCs demonstrated exceptional electrochemical performance, evidenced by a high specific capacitance of 162 mF cm-2, an energy density of 96.5 mW h cm-2, and superior cycling stability with 95.11 % capacitance retention after 5000 cycles. This work contributes to the fabrication of filament electrodes inspired by the microfluidic strategy, which allows one to design the unique architecture of core-shell structured BC-GN/PPy fibers for the construction of micro-SCs in high performance wearable electronics.
Collapse
Affiliation(s)
- Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Dehua TB New Decoration Material Co., Ltd, Huzhou 313200, China
| | - Yao Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jian Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, PR China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Dehua TB New Decoration Material Co., Ltd, Huzhou 313200, China.
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Mei B, Hou Y, Song B, Li Y, Liu Z, Niu H. Design and Regulation of Anthraquinone's Electrochemical Properties in Aqueous Zinc-Ion Batteries via Benzothiadiazole and Its Dinitro Derivatives. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3393-3403. [PMID: 39741460 DOI: 10.1021/acsami.4c18861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Organic cathode materials are widely considered as highly promising for aqueous zinc-ion batteries (AZIBs) due to their tunable properties, low cost, and ease of processing and synthesis. Benzothiadiazoles have demonstrated significant potential as organic electrode materials in AZIBs, owing to their strong electron-accepting capabilities and the presence of multiple reversible redox sites in anthraquinone. In this study, we designed a polymer, poly(2-methyl-6-(7-methyl-5,6-dinitrobenzo[c][1,2,5]thiadiazol-4-yl)anthracene-9,10-dione) (PBDQ), with multielectron transfer capability through a copolymerization approach. Additionally, we synthesized another polymer, poly2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)anthracene-9,10-dione(PBDQ-N), by introducing two electron-withdrawing nitro groups on the aromatic ring of benzothiadiazole. The introduction of nitro groups, with their unique electronic properties, enhances electron delocalization and increases the number of electrochemically active sites, thereby promoting faster zinc-ion insertion/extraction reactions. Experimental results show that both PBDQ and PBDQ-N exhibit excellent electrochemical properties due to the abundance of active sites and extended π-conjugation. Among them, PBDQ-N demonstrates outstanding performance, including an ultrahigh specific capacity of 446.2 mAh g-1 at 0.1 A g-1 and excellent cycle life exceeding 20,000 cycles at 10 A g-1. Moreover, the lower lowest-unoccupied molecular orbital (LUMO) energy level and improved conductivity of PBDQ-N provide a fast electron transfer rate, resulting in a higher Zn2+ diffusion coefficient (3.47 × 10-11-2.6 × 10-8 cm2 s-1) and exceptional rate performance (234.6 mAh g-1 at 10 A g-1). Theoretical calculations and ex situ characterizations confirm that C═O, C═N, and N═O groups all participate as active sites in Zn2+ storage. This work highlights how molecular design and the introduction of functional groups, such as nitro groups, can effectively regulate the electrochemical properties of organic polymers in AZIBs. It also demonstrates the impact of these strategies on the electrochemical performances of these materials when they are used as cathodes in aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Binhua Mei
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High-Quality Technology Conversion, Heilongjiang Province, and School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| | - Yanjun Hou
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High-Quality Technology Conversion, Heilongjiang Province, and School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| | - Boxuan Song
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High-Quality Technology Conversion, Heilongjiang Province, and School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| | - Yan Li
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High-Quality Technology Conversion, Heilongjiang Province, and School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| | - Zixuan Liu
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High-Quality Technology Conversion, Heilongjiang Province, and School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| | - Haijun Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, and Department of Macromolecular Science and Engineering, School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
7
|
Jin Y, Qu X, Zhou Z, Liu R, Zhang M, Song L, Ma W, Zhang M. Sulfate Oxyanion Steered d-Orbital Electronic State of Nickel-Iron Nanoalloy for Boosting Electrocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408171. [PMID: 39544114 DOI: 10.1002/smll.202408171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Oxyanion groups recently offer an innovative avenue for improving the sluggish kinetics of electrochemical reactions benefitting from their particular polyanion configurations and large electronegativity. Nevertheless, the exact structure design and deep regulating mechanism of oxyanion species remain poorly understood. Herein, a fresh architecture of the sulfate oxyanion coordinated nickel-iron nanoalloy on nitrogen and sulfur co-doped carbon nanotube (SO4 2--NiFe/NSCT) is newly proposed to study the activity increment effect and mechanism. The SO4 2--NiFe/NSCT displays hierarchical nanostructure with robust-wrinkled surface and highly efficient active sites. Importantly, the SO4 2- group, as a significant manipulation factor, is first evidenced to promote the oxygen reduction reaction (ORR) activity for NiFe nanoalloy under the reductive condition, showcasing outstanding bifunctional properties toward ORR and oxygen evolution reaction (OER), as well as the exceptional performance in non-aqueous Li-O2 battery. Both experimental and theoretical results elucidate that, as an electron bridge, the introduction of SO4 2- downshifts the d-band center of SO4 2--NiFe/NSCT and gives the electron transfer passageway between the H atom in OH* intermediate and the O atom in SO4 2- group, greatly optimizing the metal-intermediate interaction with weaker bond energy. This work provides a deep insight into the activity enhancement mechanism by the sulfate oxyanion.
Collapse
Affiliation(s)
- Yachao Jin
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Xijun Qu
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Zihao Zhou
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Ruining Liu
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Mengxian Zhang
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Li Song
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Wenqiang Ma
- School of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, Henan, 471934, P. R. China
| | - Mingdao Zhang
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| |
Collapse
|
8
|
Dini VA, Kiebala DJ, Genovese D, Zaccheroni N, Calvino C, Contini E, Weder C, Schrettl S, Gualandi C. In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers. Macromol Rapid Commun 2024:e2400855. [PMID: 39714132 DOI: 10.1002/marc.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm. The influence of the additive concentration and fiber orientation on the mechanofluorescent response under tensile deformation is investigated. In situ fluorescence spectroscopy and microscopy imaging reveal a strain-dependent change of the fluorescence color from orange to yellow or green, with a more pronounced response in prealigned fibers. Stresses experienced by the nanofibers during elongation are mapped in real-time. The data reveal that forces initially concentrate in fibers that are aligned parallel to the applied strain, and only later redistribute as other fibers once they also align. These findings advance the understanding of force transfer within fibrous polymer mats and are expected to facilitate the development of self-reporting nanofibers for applications in load-bearing devices, wearable technologies, and mechanochromic textiles.
Collapse
Affiliation(s)
- Valentina A Dini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Derek J Kiebala
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- Department of Chemistry, Johannes Gutenberg University of Mainz, 55128, Mainz, Germany
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Céline Calvino
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Emma Contini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, Bologna, 40136, Italy
| |
Collapse
|
9
|
Mo T, Xu X, Fang T, Tao H, Wang H, Jin ML, Yu B, Qian L, Zhao ZJ. High Response and ppb-Level Detection toward Hydrogen Sensing by Palladium-Doped α-Fe 2O 3 Nanotubes. ACS Sens 2024; 9:5976-5984. [PMID: 39441720 DOI: 10.1021/acssensors.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Developing hydrogen sensors with parts per billion-level detection limits, high response, and high stability is crucial for ensuring safety across various industries (e.g., hydrogen fuel cells, chemical manufacturing, and aerospace). Despite extensive research on parts per billion-level detection, it still struggles to meet stringent requirements. Here, high performance and ppb-level H2 sensing have been developed with palladium-doped iron oxide nanotubes (Pd@Fe2O3 NTs), which have been prepared by FeCl3·6H2O, PdCl2, and PVP electrospinning and air calcination techniques. Various characterization techniques (FESEM, TEM, XRD, and so forth) were used to prove that the nanotube structure was successfully prepared, and the doping of Pd nanoparticles was realized. The experiments show that palladium doping can significantly improve the gas response of iron oxide nanotubes. Specifically, 0.59 wt % Pd@Fe2O3 NTs have high response (Ra/Rg = 41,000), high selectivity, and excellent repeatability for 200 ppm hydrogen at 300 °C. Notably, there was still a significant response at a low detection limit (LOD) of 50 ppb (Ra/Rg = 16.8). This excellent hydrogen sensing performance may be attributed to the high surface area of the nanotubes, the p-n heterojunction of PdO/Fe2O3, which allows more oxygen to be adsorbed on the surface, and the catalytic action of Pd nanoparticles, which promotes the reaction of hydrogen with surface-adsorbed oxygen.
Collapse
Affiliation(s)
- Tianyang Mo
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianwu Xu
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tiejun Fang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hongwei Tao
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, China
| | - Ming Liang Jin
- Ningbo Regen Biotech Co., Ltd., 828 West Yincheng Avenue, Ningbo 315157, People's Republic of China
| | - Bingjun Yu
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linmao Qian
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhi-Jun Zhao
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
10
|
Colón-Quintana G, Clarke TB, Ailawar SA, Dick JE. Single gold nanowires with ultrahigh (>10 4) aspect ratios by triphasic electrodeposition. NANOSCALE 2024; 16:20073-20081. [PMID: 39412473 DOI: 10.1039/d4nr00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Due to their superior optical and electrical properties, gold nanowires are used ubiquitously across industries. Current techniques for fabricating such structures are often expensive, involving multiple steps, cleanroom operation, and limited ability for a user to controllably place a nanowire at a desired location. Here, we introduce the concept of triphasic electrodeposition, where metal salts act as antagonistic salts at the liquid|liquid interface, leading to their increased concentration at this phase boundary. We show that the electrodeposition of ultra-high aspect ratio gold nanowires may be achieved in a one-step, one-pot method by submerging a conductor in contact with two phases: an organic phase containing HAuCl4 and a quaternary ammonium salt, and an aqueous phase containing potassium chloride. Changing electrodeposition parameters in the triphasic system allows tunability of important features of the nanowire, such as size and thickness. Furthermore, this new method provides an impressive ability to choose the geometry and precise positioning of deposited nanowires simply by changing where a liquid|liquid interface contacts the electrode surface.
Collapse
Affiliation(s)
| | - Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Sakshi A Ailawar
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Wang T, Shi Z, Zhong Y, Ma Y, He J, Zhu Z, Cheng XB, Lu B, Wu Y. Biomass-Derived Materials for Advanced Rechargeable Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310907. [PMID: 39051510 DOI: 10.1002/smll.202310907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Indexed: 07/27/2024]
Abstract
Biomass-derived materials generally exhibit uniform and highly-stable hierarchical porous structures that can hardly be achieved by conventional chemical synthesis and artificial design. When used as electrodes for rechargeable batteries, these structural and compositional advantages often endow the batteries with superior electrochemical performances. This review systematically introduces the innate merits of biomass-derived materials and their applications as the electrode for advanced rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and metal-sulfur batteries. In addition, biomass-derived materials as catalyst supports for metal-air batteries, fuel cells, and redox-flow batteries are also included. The major challenges for specific batteries and the strategies for utilizing biomass-derived materials are detailly introduced. Finally, the future development of biomass-derived materials for advanced rechargeable batteries is prospected. This review aims to promote the development of biomass-derived materials in the field of energy storage and provides effective suggestions for building advanced rechargeable batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Zezhong Shi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yiren Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yuan Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
12
|
Muthukutty B, Sathish Kumar P, Lee D, Lee S. Multichannel Carbon Nanofibers: Pioneering the Future of Energy Storage. ACS NANO 2024; 18:27287-27316. [PMID: 39324479 DOI: 10.1021/acsnano.4c11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711873, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| |
Collapse
|
13
|
Ahmed KH, Mohamedi M. Microfibrous Carbon Paper Decorated with High-Density Manganese Dioxide Nanorods: An Electrochemical Nonenzymatic Platform of Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:5864. [PMID: 39338610 PMCID: PMC11435572 DOI: 10.3390/s24185864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Nanorod structures exhibit a high surface-to-volume ratio, enhancing the accessibility of electrolyte ions to the electrode surface and providing an abundance of active sites for improved electrochemical sensing performance. In this study, tetragonal α-MnO2 with a large K+-embedded tunnel structure, directly grown on microfibrous carbon paper to form densely packed nanorod arrays, is investigated as an electrocatalytic material for non-enzymatic glucose sensing. The MnO2 nanorods electrode demonstrates outstanding catalytic activity for glucose oxidation, showcasing a high sensitivity of 143.82 µA cm-2 mM-1 within the linear range from 0.01 to 15 mM, with a limit of detection (LOD) of 0.282 mM specifically for glucose molecules. Importantly, the MnO2 nanorods electrode exhibits excellent selectivity towards glucose over ascorbic acid and uric acid, which is crucial for accurate glucose detection in complex samples. For comparison, a gold electrode shows a lower sensitivity of 52.48 µA cm-2 mM-1 within a linear range from 1 to 10 mM. These findings underscore the superior performance of the MnO2 nanorods electrode in both sensitivity and selectivity, offering significant potential for advancing electrochemical sensors and bioanalytical techniques for glucose monitoring in physiological and clinical settings.
Collapse
Affiliation(s)
- Khawtar Hasan Ahmed
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Mohamed Mohamedi
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
14
|
Zhang M, Zhou B, Gong Y, Shang M, Xiao W, Wang J, Dai C, Zhang H, Wu Z, Wang L. Regulating Mo-based alloy-oxide active interfaces for efficient alkaline hydrogen evolution assisted by hydrazine oxidation. J Colloid Interface Sci 2024; 667:73-81. [PMID: 38621333 DOI: 10.1016/j.jcis.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Improving the efficiency of overall water splitting (OWS) is crucial due to the slow four-electron transfer process in the oxygen evolution reaction (OER). The coupling of the thermodynamically favorable hydrazine oxidation reaction (HzOR) with the hydrogen evolution reaction (HER) significantly boosts hydrogen production. A Ru-decorated MoNi/MoO2 micropillar (Ru-MoNi/MoO2) has been synthesized using a hydrothermal followed by reduction annealing. Benefiting from Ru moderating the active interface of Mo-based alloys/oxides and the unique one-dimensional micropillar morphology. The synthesized Ru-MoNi/MoO2 exhibits outstanding bifunctional activity for HER and HzOR, achieving 10 mA cm-2 at merely -13 mV and -34 mV in 1 M KOH and 1 M KOH + 0.5 M N2H4, respectively. Notably, with Ru-MoNi/MoO2 in a dual-electrode setup, only 0.57 V is needed to achieve 50 mA cm-2, demonstrating good stability and facilitating hydrazine-assisted water splitting (OHzS). This work offers insights into the modulation of alloy/metal oxide active interfaces, contributing to the development of efficient bifunctional catalysts for HER and HzOR.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bowen Zhou
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuecheng Gong
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengfan Shang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Jinsong Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chunlong Dai
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No.9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang City, Shandong Province, PR China
| | - Huadong Zhang
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No.9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang City, Shandong Province, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
15
|
Pradhan L, Kamila S, Padhy G, Das DP, Jena BK. Emerging Vanadium-Doped Cobalt Chloride Carbonate Hydroxide for Flexible Electrochromic Micro-Supercapacitor: Charged-State Prediction from RGB Input by ANN Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401238. [PMID: 38602230 DOI: 10.1002/smll.202401238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Multifunctional devices integrated with electrochromic and supercapacitance properties are fascinating because of their extensive usage in modern electronic applications. In this work, vanadium-doped cobalt chloride carbonate hydroxide hydrate nanostructures (V-C3H NSs) are successfully synthesized and show unique electrochromic and supercapacitor properties. The V-C3H NSs material exhibits a high specific capacitance of 1219.9 F g-1 at 1 mV s-1 with a capacitance retention of 100% over 30 000 CV cycles. The electrochromic performance of the V-C3H NSs material is confirmed through in situ spectroelectrochemical measurements, where the switching time, coloration efficiency (CE), and optical modulation (∆T) are found to be 15.7 and 18.8 s, 65.85 cm2 C-1 and 69%, respectively. A coupled multilayer artificial neural network (ANN) model is framed to predict potential and current from red (R), green (G), and blue (B) color values. The optimized V-C3H NSs are used as the active materials in the fabrication of flexible/wearable electrochromic micro-supercapacitor devices (FEMSDs) through a cost-effective mask-assisted vacuum filtration method. The fabricated FEMSD exhibits an areal capacitance of 47.15 mF cm-2 at 1 mV s-1 and offers a maximum areal energy and power density of 104.78 Wh cm-2 and 0.04 mW cm-2, respectively. This material's interesting energy storage and electrochromic properties are promising in multifunctional electrochromic energy storage applications.
Collapse
Affiliation(s)
- Lingaraj Pradhan
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swagatika Kamila
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Ganeswara Padhy
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Debi Prasad Das
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bikash Kumar Jena
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Latronico G, Asnaashari Eivari H, Mele P, Assadi MHN. Insights into One-Dimensional Thermoelectric Materials: A Concise Review of Nanowires and Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1272. [PMID: 39120377 PMCID: PMC11314080 DOI: 10.3390/nano14151272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This brief review covers the thermoelectric properties of one-dimensional materials, such as nanowires and nanotubes. The highly localised peaks of the electronic density of states near the Fermi levels of these nanostructured materials improve the Seebeck coefficient. Moreover, quantum confinement leads to discrete energy levels and a modified density of states, potentially enhancing electrical conductivity. These electronic effects, coupled with the dominance of Umklapp phonon scattering, which reduces thermal conductivity in one-dimensional materials, can achieve unprecedented thermoelectric efficiency not seen in two-dimensional or bulk materials. Notable advancements include carbon and silicon nanotubes and Bi3Te2, Bi, ZnO, SiC, and Si1-xGex nanowires with significantly reduced thermal conductivity and increased ZT. In all these nanowires and nanotubes, efficiency is explored as a function of the diameter. Among these nanomaterials, carbon nanotubes offer mechanical flexibility and improved thermoelectric performance. Although carbon nanotubes theoretically have high thermal conductivity, the improvement of their Seebeck coefficient due to their low-dimensional structure can compensate for it. Regarding flexibility, economic criteria, ease of fabrication, and weight, carbon nanotubes could be a promising candidate for thermoelectric power generation.
Collapse
Affiliation(s)
- Giovanna Latronico
- National Research Council of Italy Institute of Condensed Matter Chemistry and Technologies for Energy (CNR-ICMATE), Via G. Previati 1/E, 23900 Lecco, Italy
| | | | - Paolo Mele
- College of Engineering, Shibaura Institute of Technology, Omiya Campus, 307 Fukasaku, Minuma-ku, Saitama City 337-8570, Japan
| | - Mohammad Hussein Naseef Assadi
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sarıyer, Istanbul 34396, Türkiye
| |
Collapse
|
17
|
Wang TJ, Sun LB, Ai X, Chen P, Chen Y, Wang X. Boosting Formate Electrooxidation by Heterostructured PtPd Alloy and Oxides Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403664. [PMID: 38625813 DOI: 10.1002/adma.202403664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Indexed: 04/18/2024]
Abstract
Direct formate fuel cells (DFFCs) receive increasing attention as promising technologies for the future energy mix and environmental sustainability, as formate can be made from carbon dioxide utilization and is carbon neutral. Herein, heterostructured platinum-palladium alloy and oxides nanowires (PtPd-ox NWs) with abundant defect sites are synthesized through a facile self-template method and demonstrated high activity toward formate electrooxidation reaction (FOR). The electronic tuning arising from the heterojunction between alloy and oxides influence the work function of PtPd-ox NWs. The sample with optimal work function reveals the favorable adsorption behavior for intermediates and strong interaction in the d-p orbital hybridization between Pt site and oxygen in formate, favoring the FOR direct pathway with a low energy barrier. Besides the thermodynamic regulation, the heterostructure can also provide sufficient hydroxyl species to facilitate the formation of carbon dioxide due to the ability of combining absorbed hydrogen and carbon monoxide at adjacent active sites, which contributes to the improvement of FOR kinetics on PtPd-ox NWs. Thus, heterostructured PtPd-ox NWs achieve dual regulation of FOR thermodynamics and kinetics, exhibiting remarkable performance and demonstrating potential in practical systems.
Collapse
Affiliation(s)
- Tian-Jiao Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- School of Chemical, Chemistry Engineering and Biotechnology, Nanyang Technological University, Singapore, 639798, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Li-Bo Sun
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xuan Ai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pei Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
18
|
Feng S, Liu H. Recent advances and understanding of high-entropy materials for lithium-ion batteries. NANOTECHNOLOGY 2024; 35:302001. [PMID: 38640910 DOI: 10.1088/1361-6528/ad40b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Lithium-ion batteries (LIBs) has extensively utilized in electric vehicles and portable electronics due to their high energy density and prolonged lifespan. However, the current commercial LIBs are plagued by relatively low energy density. High-entropy materials with multiple components have emerged as an efficient strategic approach for developing novel materials that effectively improve the overall performance of LIBs. This article provides a comprehensive review the recent advancements in rational design of innovative high-entropy materials for LIBs, as well as the exceptional lithium ion storage mechanism for high-entropy electrodes and considerable ionic conductivity for high-entropy electrolytes. This review also analyses the prominent effects of individual components on the high-entropy materials' exceptional capacity, considerable structural stability, rapid lithium ion diffusion, and excellent ionic conductivity. Furthermore, this review presents the synthesis methods and their influence on the morphology and properties of high-entropy materials. Ultimately, the remaining challenges and future research directions are outlined, aimed at developing more effective high-entropy materials and improving the overall electrochemical performance of LIBs.
Collapse
Affiliation(s)
- Songjun Feng
- School of Information Engineering, Henan Mechanical and Electrical Vocational College, Zhengzhou, People's Republic of China
| | - Hui Liu
- School of Internet, Henan Mechanical and Electrical Vocational College, Zhengzhou, People's Republic of China
| |
Collapse
|
19
|
Gao Y, Liu L, Jiang Y, Yu D, Zheng X, Wang J, Liu J, Luo D, Zhang Y, Shi Z, Wang X, Deng YP, Chen Z. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. NANO-MICRO LETTERS 2024; 16:162. [PMID: 38530476 PMCID: PMC11250732 DOI: 10.1007/s40820-024-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/26/2024] [Indexed: 03/28/2024]
Abstract
Zinc-air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Yunnan Gao
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Dexin Yu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaomei Zheng
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Jingwei Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Zhenjia Shi
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
20
|
Ling X, Wei W, Shan C, Qin X, Song M, Liu Z, Mi L. Ball-in-ball NiS 2@CoS 2 heterojunction driven by Kirkendall effect for high-performance Mg 2+/Li + hybrid batteries. J Colloid Interface Sci 2024; 658:688-698. [PMID: 38134677 DOI: 10.1016/j.jcis.2023.12.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Mg2+/Li+ hybrid batteries (MLHBs), which support the rapid insertion and removal of Mg2+/Li+ bimetallic ions, are promising energy storage systems. Inspired by the Kirkendall effect, ball-in-ball bimetallic sulfides with heterostructures were prepared as cathode materials for the MLHBs. First, a nickel-cobalt precursor (NiCo-X precursor) with three-dimensional (3D) nanosheets on its surface was prepared using a solvothermal method based on the association reaction between alkoxide molecules. Subsequently, the NiCo-X precursor was vulcanized at high temperature using the potential energy difference as the driving force to successfully prepare NiS2@CoS2 core-shell hollow spheres. When used as the positive electrode material for the MLHBs, the NiS2@CoS2 hollow spheres exhibited excellent Mg2+/Li+ ion storage capacity, high specific capacity, good rate performance, and stable cyclic stability owing to their tough hierarchical structure. At a current density of 500 mA g-1, a specific capacity of 536 mAh g-1 was maintained after 200 cycles. By explaining the transformation mechanism of Mg2+/Li+ in bimetallic sulfides, it was proven that Mg2+ and Li+ worked cooperatively. This study provides a new approach for developing MLHBs with good electrochemical properties.
Collapse
Affiliation(s)
- Ximin Ling
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China
| | - Wutao Wei
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China.
| | - Changwei Shan
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China
| | - Xuyan Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China
| | - Mingjie Song
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China
| | - Zhao Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, Henan, PR China; School of Chemical & Environmental Engineering, Pingdingshan University, Pingdingshan 467000, Henan, PR China.
| |
Collapse
|
21
|
Wang G, Hu G, Lan J, Miao F, Zhang P, Shao G. Rational design of one-dimensional skin-core multilayer structure for electrospun carbon nanofibers with bicontinuous electron/ion transport toward high-performance supercapacitors. J Colloid Interface Sci 2024; 653:148-158. [PMID: 37713913 DOI: 10.1016/j.jcis.2023.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The fast transport of electrons and ions within electrodes is crucial to the final electrochemical properties. Herein, we have developed a unique ultra-long one-dimensional (1D) skin-core multilayer structure based on electrospun carbon nanofibers mainly through a facile Stöber method combined with resorcinol-formaldehyde resin, which not only achieves bicontinuous electron/ion transport during the charge/discharge process, but also provides large surface area for ion adsorption. Particularly, controlling the number of active layers as well as regulating the active sites in layer both can obviously improve capacitive properties. Benefiting from the synergistic effects of the desirable architecture, such the rational-designed skin-core structural carbon nanofibers as supercapacitor electrode can deliver a high specific capacitance up to 255 F g-1 at 0.5 A g-1, favorable rate capability with 89% capacitance retention of initial capacitance at 8 A g-1, and excellent cycling stability with nearly 93% capacity retention after 10,000 cycles at 2 A g-1. Furthermore, the as-assembled symmetric supercapacitor devices also present a maximum energy density of 8.77 Wh kg-1 at 0.25 kW kg-1 and a maximum power density of 3.70 kW kg-1 at 6.74 Wh kg-1. Such skin-core carbon nanofibers provide an effective strategy to design high-performance supercapacitor electrode for the next-generation energy storage devices.
Collapse
Affiliation(s)
- Guangpei Wang
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, PR China
| | - Guodong Hu
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, PR China
| | - Jing Lan
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, PR China
| | - Fujun Miao
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, PR China.
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, PR China.
| | - Guosheng Shao
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, PR China.
| |
Collapse
|
22
|
Wang L, Song J, Yu C. Metal-organic framework-derived metal oxides for resistive gas sensing: a review. Phys Chem Chem Phys 2023. [PMID: 38047729 DOI: 10.1039/d3cp04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gas sensors with exceptional sensitivity and selectivity are vital in the real-time surveillance of noxious and harmful gases. Despite this, traditional gas sensing materials still face a number of challenges, such as poor selectivity, insufficient detection limits, and short lifespan. Metal oxides, which are derived from metal-organic framework materials (MOFs), have been widely used in the field of gas sensors because they have a high surface area and large pore volume. Incorporating metal oxides derived from MOFs into gas sensors can improve their sensitivity and selectivity, thus opening up new possibilities for the development of innovative, high-performance gas sensors. This article examines the gas sensing process of metal oxide semiconductors (MOS), evaluates the advances made in the research of different structures of MOF-derived metal oxides in resistive gas sensors, and provides information on their potential applications and future advancements.
Collapse
Affiliation(s)
- Luyu Wang
- College of Artificial Intelligence and E-Commerce, Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou, 311599, China.
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Song
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- Design-AI Laboratory, China Academy of Art, Hangzhou 310009, China
| |
Collapse
|
23
|
Ye P, Zhang Y, Tong T, Ao L, Chen Z, Huang H, Hussain A, Ramiere A, Cai X, Liu D, Shen J. 3D Lithiophilic CuZrAg Metallic Glass Based-Current Collector for High-Performance Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304373. [PMID: 37649179 DOI: 10.1002/smll.202304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Lithium metal anodes face several challenges in practical applications, such as dendrite growth, poor cycle efficiency, and volume variation. 3D hosts with lithiophilic surfaces have emerged as a promising design strategy for anodes. In this study, inspiration from the intrinsic isotropy, chemical heterogeneity, and wide tunability of metallic glass (MG) is drew to develop a 3D mesoporous host with a lithiophilic surface. The CuZrAg MG is prepared using the scalable melt-spinning technique and subsequently treated with a simple one-step chemical dealloying method. This resultes in the creation of a host with a homogeneously distributed abundance of lithium affinity sites on the surface. The excellent lithiophilic property and capability for uniform lithium deposition of the 3D CuZrAg electrode have been confirmed through theoretical calculations. Therefore, the 3D CuZrAg electrode displays excellent cyclic stability for over 400 cycles with 96% coulomb efficiency, and ultra-low overpotentials of 5 mV for over 2000 h at 1.0 mA cm-2 and 1.0 mAh cm-2 . Additionally, the full cells partied with either LiFePO4 or LiNi0.8 Co0.1 Mn0.1 O2 cathode deliver exceptional long-term cyclability and rate capability. This work demonstrates the great potential of metallic glass in lithium metal anode application.
Collapse
Affiliation(s)
- Pengfei Ye
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanhui Zhang
- State Key Lab of Metastable Materials Science and Technology, and, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China
| | - Tong Tong
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lihong Ao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhe Chen
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Huayu Huang
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Arshad Hussain
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Aymeric Ramiere
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Shen
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
24
|
Yang S, Zhao S, Chen S. Recent advances in electrospinning nanofiber materials for aqueous zinc ion batteries. Chem Sci 2023; 14:13346-13366. [PMID: 38033908 PMCID: PMC10685289 DOI: 10.1039/d3sc05283d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Aqueous zinc ion batteries (AZIBs) are regarded as one of the most promising large-scale energy storage systems because of their considerable energy density and intrinsic safety. Nonetheless, the severe dendrite growth of the Zn anode, the serious degradation of the cathode, and the boundedness of separators restrict the application of AZIBs. Fortunately, electrospinning nanofibers demonstrate huge potential and bright prospects in constructing AZIBs with excellent electrochemical performance due to their controllable nanostructure, high conductivity, and large specific surface area (SSA). In this review, we first briefly introduce the principles and processing of the electrospinning technique and the structure design of electrospun fibers in AZIBs. Then, we summarize the recent advances of electrospinning nanofibers in AZIBs, including the cathodes, anodes, and separators, highlighting the nanofibers' working mechanism and the correlations between electrode structure and performance. Finally, based on insightful understanding, the prospects of electrospun fibers for high-performance AZIBs are also presented.
Collapse
Affiliation(s)
- Sinian Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology Beijing 10029 China
| | - Shunshun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology Beijing 10029 China
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology Beijing 10029 China
| |
Collapse
|
25
|
Zhu H, Li M, Cheng C, Han Y, Fu S, Li R, Cao G, Liu M, Cui C, Liu J, Yang X. Recent Advances in and Applications of Electrochemical Sensors Based on Covalent Organic Frameworks for Food Safety Analysis. Foods 2023; 12:4274. [PMID: 38231710 DOI: 10.3390/foods12234274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The international community has been paying close attention to the issue of food safety as a matter of public health. The presence of a wide range of contaminants in food poses a significant threat to human health, making it vital to develop detection methods for monitoring these chemical contaminants. Electrochemical sensors using emerging materials have been widely employed to detect food-derived contaminants. Covalent organic frameworks (COFs) have the potential for extensive applications due to their unique structure, high surface area, and tunable pore sizes. The review summarizes and explores recent advances in electrochemical sensors modified with COFs for detecting pesticides, antibiotics, heavy metal ions, and other food contaminants. Furthermore, future challenges and possible solutions will be discussed regarding food safety analysis using COFs.
Collapse
Affiliation(s)
- Hongwei Zhu
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Minjie Li
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- Internal Trade Food Science Research Institute Co., Ltd., Beijing 102209, China
| | - Cuilin Cheng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | | | | | - Can Cui
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
| | - Jia Liu
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- Internal Trade Food Science Research Institute Co., Ltd., Beijing 102209, China
- COFCO Corporation, Beijing 100020, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
26
|
Payattikul L, Chen CY, Chen YS, Raja Pugalenthi M, Punyawudho K. Recent Advances and Synergistic Effects of Non-Precious Carbon-Based Nanomaterials as ORR Electrocatalysts: A Review. Molecules 2023; 28:7751. [PMID: 38067478 PMCID: PMC10708244 DOI: 10.3390/molecules28237751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2025] Open
Abstract
The use of platinum-free (Pt) cathode electrocatalysts for oxygen reduction reactions (ORRs) has been significantly studied over the past decade, improving slow reaction mechanisms. For many significant energy conversion and storage technologies, including fuel cells and metal-air batteries, the ORR is a crucial process. These have motivated the development of highly active and long-lasting platinum-free electrocatalysts, which cost less than proton exchange membrane fuel cells (PEMFCs). Researchers have identified a novel, non-precious carbon-based electrocatalyst material as the most effective substitute for platinum (Pt) electrocatalysts. Rich sources, outstanding electrical conductivity, adaptable molecular structures, and environmental compatibility are just a few of its benefits. Additionally, the increased surface area and the simplicity of regulating its structure can significantly improve the electrocatalyst's reactive sites and mass transport. Other benefits include the use of heteroatoms and single or multiple metal atoms, which are capable of acting as extremely effective ORR electrocatalysts. The rapid innovations in non-precious carbon-based nanomaterials in the ORR electrocatalyst field are the main topics of this review. As a result, this review provides an overview of the basic ORR reaction and the mechanism of the active sites in non-precious carbon-based electrocatalysts. Further analysis of the development, performance, and evaluation of these systems is provided in more detail. Furthermore, the significance of doping is highlighted and discussed, which shows how researchers can enhance the properties of electrocatalysts. Finally, this review discusses the existing challenges and expectations for the development of highly efficient and inexpensive electrocatalysts that are linked to crucial technologies in this expanding field.
Collapse
Affiliation(s)
- Laksamee Payattikul
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chen-Yu Chen
- Department of Mechanical Engineering, National Central University, Taoyuan 320317, Taiwan;
| | - Yong-Song Chen
- Advanced Institute of Manufacturing with High-Tech Innovations, Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Mariyappan Raja Pugalenthi
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Konlayutt Punyawudho
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
27
|
Zhang Y, Zhu C, Xiong Y, Gao Z, Hu W, Shi J, Chen J, Tian W, Wu J, Huang M, Wang H. Multi-Channel Hollow Carbon Nanofibers with Graphene-Like Shell-Structure and Ultrahigh Surface Area for High-Performance Zn-Ion Hybrid Capacitors. SMALL METHODS 2023; 7:e2300714. [PMID: 37541666 DOI: 10.1002/smtd.202300714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Porous carbon is the most promising cathode material for Zn-ion hybrid capacitors (ZIHCs), but is limited by insufficient active adsorption sites and slow ion diffusion kinetics during charge storage. Herein, a pore construction-pore expansion strategy for synthesizing multi-channel hollow carbon nanofibers (MCHCNF) is proposed, in which the sacrificial template-induced multi-channel structure eliminates the diffusion barrier for enhancing ion diffusion kinetics, and the generated ultrahigh surface area and high-density defective structures effectively increase the quantity of active sites for charge storage. Additionally, a graphene-like shell structure formed on the carbon nanofiber surface facilitates fast electron transport, and the highly matchable pore size of MCHCNF with electrolyte-ions favors the accommodation of charge carriers. These advantages lead to the optimized ZIHCs exhibit high capacity (191.4 mAh g-1 ), high energy (133.1 Wh kg-1 ), along with outstanding cycling stability (93.0% capacity retention over 15000 cycles). Systematic ex situ characterizations reveal that the dual-adsorption of anions and cations synergistically ensures the outstanding electrochemical performance, highlighting the importance of the highly-developed porous structure of MCHCNF. This work not only provides a promising strategy for improving the capacitive capability of porous materials but also sheds light on charge storage mechanisms and rational design for advanced energy storage devices.
Collapse
Affiliation(s)
- YaFei Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chunliu Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yan Xiong
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Zongying Gao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Jinan, 250353, China
| | - Jing Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Weiqian Tian
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
28
|
Jia J, Lan Y. Synthesis, Characterization, and Applications of Nanomaterials for Energy Conversion and Storage. Molecules 2023; 28:7383. [PMID: 37959802 PMCID: PMC10647492 DOI: 10.3390/molecules28217383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Ever since the commencement of the Industrial Revolution in Great Britain in the mid-18th century, the annual global energy consumption from various fossil fuels, encompassing wood, coal, natural gas, and petroleum, has demonstrated an exponential surge over the past four centuries [...].
Collapse
Affiliation(s)
- Jin Jia
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
29
|
Gao J, Wang K, Cao J, Zhang M, Lin F, Ling M, Wang M, Liang C, Chen J. Recent Progress of Self-Supported Metal Oxide Nano-Porous Arrays in Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302786. [PMID: 37415542 DOI: 10.1002/smll.202302786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Indexed: 07/08/2023]
Abstract
The demand for high-performance and cost-effective energy storage solutions for mobile electronic devices and electric vehicles has been a driving force for technological advancements. Among the various options available, transitional metal oxides (TMOs) have emerged as a promising candidates due to their exceptional energy storage capabilities and affordability. In particular, TMO nanoporous arrays fabricated by electrochemical anodization technique demonstrate unrivaled advantages including large specific surface area, short ion transport paths, hollow structures that reduce bulk expansion of materials, and so on, which have garnered significant research attention in recent decades. However, there is a lack of comprehensive reviews that discuss the progress of anodized TMO nanoporous arrays and their applications in energy storage. Therefore, this review aims to provide a systematic detailed overview of recent advancements in understanding the ion storage mechanisms and behavior of self-organized anodic TMO nanoporous arrays in various energy storage devices, including alkali metal ion batteries, Mg/Al-ion batteries, Li/Na metal batteries, and supercapacitors. This review also explores modification strategies, redox mechanisms, and outlines future prospects for TMO nanoporous arrays in energy storage.
Collapse
Affiliation(s)
- Jianhong Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Cao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ming Zhang
- Quzhou Jingzhou Technology Development Co., Ltd., Quzhou, 324000, China
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Min Ling
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| | - Minjun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| | - Chengdu Liang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| | - Jun Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| |
Collapse
|
30
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
31
|
Huang T, Cheng M, Yuan Y, Kong L, Chang Z, Bu XH. Fabrication of N-doped carbon-coated MnO/ZnMn 2O 4 cathode materials for high-capacity aqueous zinc-ion batteries. Dalton Trans 2023; 52:13737-13744. [PMID: 37712291 DOI: 10.1039/d3dt01867a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Rechargeable aqueous zinc-ion batteries (ZIBs) are highly promising energy storage devices due to their advantages of high energy density, low cost, environmental friendliness, and excellent safety. Investigation of advanced cathode materials featuring high capacity is desired for their applications in high-capacity ZIBs. In this study, a porous N-doped carbon-coated manganese oxide/zinc manganate (MZM@N-C) composite was successfully prepared as an advanced cathode material for aqueous ZIBs. The MZM@N-C cathode demonstrated a superior specific capacity of 772.8 mA h g-1 at 50 mA g-1 and maintained a high specific capacity of 205 mA h g-1 after 300 cycles at a high current density of 500 mA g-1. As compared to the unmodified MnOx cathode, MZM@N-C has a higher reversible capacity and cycling stability which could be assigned to the robust one-dimensional (1D) structure and the synergistic effect of MZM@N-C, providing instructive insight into the design of high-capacity manganese-based cathodes for rechargeable aqueous ZIBs. Furthermore, a soft-pack battery was assembled using the MZM@N-C cathode, demonstrating its potential applications in various devices.
Collapse
Affiliation(s)
- Tianhao Huang
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Mingren Cheng
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Yuechao Yuan
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Lingjun Kong
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China.
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China.
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
33
|
Hou Q, Hu A, Ni H, Sun Z, Duan J, Xu X, Fan J, Yuan R, Zheng M, Dong Q. Ultrafast and Ultralarge Lithium-Ion Storage Enabled by Fluorine-Nitrogen Co-Implanted Carbon Tubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300663. [PMID: 37186219 DOI: 10.1002/smll.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Indexed: 05/17/2023]
Abstract
As a holy grail in electrochemistry, both high-power and high-energy electrochemical energy storage system (EES) has always been a pursued dream. To simultaneously achieve the "both-high" EES, a rational design of structure and composition for storage materials with characteristics of battery-type and capacitor-type storage is crucial. Herein, fluorine-nitrogen co-implanted carbon tubes (FNCT) have been designed, in which plentiful active sites and expanded interlayer space have been created benefiting from the heteroatom engineering and the fluorine-nitrogen synergistic effect, thus the above two-type storage mechanism can get an optimal balance in the FNCT. The implanted fluorine heteroatoms can not only amplify interlayer spacing, but also induce the transformation of nitrogen configuration from pyrrole nitrogen to pyridine nitrogen, further promoting the activity of the carbon matrix. The extraordinary electrochemical performance as results can be witnessed for FNCT, which exhibit fast lithium-ion storage capability with a high energy density of 119.4 Wh kg-1 at an ultrahigh power density of 107.5 kW kg-1 .
Collapse
Affiliation(s)
- Qing Hou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Ajuan Hu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongbin Ni
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Zongqiang Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianing Duan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoming Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Jingmin Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Ruming Yuan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Mingsen Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| | - Quanfeng Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
34
|
Zhou M, Tan S, Wang J, Wu Y, Liang L, Ji G. "Three-in-One" Multi-Scale Structural Design of Carbon Fiber-Based Composites for Personal Electromagnetic Protection and Thermal Management. NANO-MICRO LETTERS 2023; 15:176. [PMID: 37428269 PMCID: PMC10333170 DOI: 10.1007/s40820-023-01144-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Wearable devices with efficient thermal management and electromagnetic interference (EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers (CF) @ polyaniline (PANI) / silver nanowires (Ag NWs) composites with a "branch-trunk" interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional (1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of AgNWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI (branch) was firmly attached to the CF (trunk) through polydopamine (PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.
Collapse
Affiliation(s)
- Ming Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China.
| | - Jingwen Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Yue Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| |
Collapse
|
35
|
Shirzad Choubari M, Rahmani S, Mazloom J. Boosted electrochemical performance of magnetic caterpillar-like Mg 0.5Ni 0.5Fe 2O 4 nanospinels as a novel pseudocapacitive electrode material. Sci Rep 2023; 13:7822. [PMID: 37188956 DOI: 10.1038/s41598-023-35014-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Ni-incorporated MgFe2O4 (Mg0.5Ni0.5Fe2O4) porous nanofibers were synthesized using the sol-gel electrospinning method. The optical bandgap, magnetic parameters, and electrochemical capacitive behaviors of the prepared sample were compared with pristine electrospun MgFe2O4 and NiFe2O4 based on structural and morphological properties. XRD analysis affirmed the cubic spinel structure of samples and their crystallite size is evaluated to be less than 25 nm using the Williamson-Hall equation. FESEM images demonstrated interesting nanobelts, nanotubes, and caterpillar-like fibers for electrospun MgFe2O4, NiFe2O4, and Mg0.5Ni0.5Fe2O4, respectively. Diffuse reflectance spectroscopy revealed that Mg0.5Ni0.5Fe2O4 porous nanofibers possess the band gap (1.85 eV) between the calculated value for MgFe2O4 nanobelts and NiFe2O4 nanotubes due to alloying effects. The VSM analysis revealed that the saturation magnetization and coercivity of MgFe2O4 nanobelts were enhanced by Ni2+ incorporation. The electrochemical properties of samples coated on nickel foam (NF) were tested by CV, GCD, and EIS analysis in a 3 M KOH electrolyte. The Mg0.5Ni0.5Fe2O4@Ni electrode disclosed the highest specific capacitance of 647 F g-1 at 1 A g-1 owing to the synergistic effects of multiple valence states, exceptional porous morphology, and lowest charge transfer resistance. The Mg0.5Ni0.5Fe2O4 porous fibers showed superior capacitance retention of 91% after 3000 cycles at 10 A g-1 and notable Coulombic efficiency of 97%. Moreover, the Mg0.5Ni0.5Fe2O4//Activated carbon asymmetric supercapacitor divulged a good energy density of 83 W h Kg-1 at a power density of 700 W Kg-1.
Collapse
Affiliation(s)
- Matin Shirzad Choubari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Soghra Rahmani
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran.
| |
Collapse
|
36
|
Khan F, Zaidi SJA, Tariq S, Khan TF, Rehman N, Basit MA. Structural, thermal and cytotoxic evaluation of ZnS-sensitized ZnO nanorods developed by single cyclic SILAR process. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/27/2023] [Indexed: 09/01/2023]
|
37
|
Chen G, Chen J, Zhao S, He G, Miller TS. Pseudohexagonal Nb 2O 5 Anodes for Fast-Charging Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16664-16672. [PMID: 36943902 PMCID: PMC10080539 DOI: 10.1021/acsami.2c21490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
High-rate batteries will play a vital role in future energy storage systems, yet while good progress is being made in the development of high-rate lithium-ion batteries, there is less progress with post-lithium-ion chemistry. In this study, we demonstrate that pseudohexagonal Nb2O5(TT-Nb2O5) can offer a high specific capacity (179 mAh g-1 ∼ 0.3C), good lifetime, and an excellent rate performance (72 mAh g-1 at ∼15C) in potassium-ion batteries (KIBs), when it is composited with a highly conductive carbon framework; this is the first reported investigation of TT-Nb2O5 for KIBs. Specifically, multiwalled carbon nanotubes are strongly tethered to Nb2O5 via glucose-derived carbon (Nb2O5@CNT) by a one-step hydrothermal method, which results in highly conductive and porous needle-like structures. This work therefore offers a route for the scalable production of a viable KIB anode material and hence improves the feasibility of fast-charging KIBs for future applications.
Collapse
|
38
|
Kong LY, Liu HX, Zhu YF, Li JY, Su Y, Li HW, Hu HY, Liu YF, Yang MJ, Jian ZC, Jia XB, Chou SL, Xiao Y. Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
39
|
Zhou J, Wang Y, Feng B, Sun Y, Wang J. Mesoporous polyvalent Ni-Mn-Co-O composite nanowire arrays towards integrated anodes boosting high-properties lithium storage. Dalton Trans 2023; 52:3526-3536. [PMID: 36847189 DOI: 10.1039/d3dt00211j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Ternary transition metal oxides (TMOs) are potentially promising anode materials for lithium storage with high power and energy density. Designing appropriate electrode structures is an effective strategy to sufficiently exhibit the advantages of TMOs for lithium storage. Here, we present the synthetic process and electrochemical properties of carbon-coated mesoporous Ni-Mn-Co-O (NMCO) nanowire arrays (NWAs) grown on Ni foam as an integrated electrode for lithium-ion batteries (LIBs). The electrochemical measurements show that the carbon-coated NMCO integrated electrode exhibits high capacity and cycling properties. In addition, we have also developed an all one-dimensional (1D) structural full cell using an LiMn2O4 nanorod cathode and an NMCO/Ni NWAs@C-550 anode, which exhibits relatively outstanding cycling properties.
Collapse
Affiliation(s)
- Junxiang Zhou
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Yudeng Wang
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Bo Feng
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Yong Sun
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Jiafu Wang
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| |
Collapse
|
40
|
Liu F, Wu X, Guo R, Miao H, Wang F, Yang C, Yuan J. Suppressing the Surface Amorphization of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3-δ Perovskite toward Oxygen Catalytic Reactions by Introducing the Compressive Stress. Inorg Chem 2023; 62:4373-4384. [PMID: 36862561 DOI: 10.1021/acs.inorgchem.3c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite has been recognized as a promising oxygen evolution reaction (OER) catalyst due to its superior intrinsic catalytic activity. However, BSCF suffers from serious degradation during the OER process due to its surface amorphization caused by the segregation of A-site ions (Ba2+ and Sr2+). Herein, we construct a novel BSCF composite catalyst (BSCF-GDC-NR) by anchoring the gadolinium-doped ceria oxide (GDC) nanoparticles on the surface of a BSCF nanorod by a concentration-difference electrospinning method. Our BSCF-GDC-NR has greatly improved bifunctional oxygen catalytic activity and stability toward both oxygen reduction reaction (ORR) and OER compared with the pristine BSCF. The improvement of the stability can be related to that anchoring GDC on BSCF effectively suppresses the segregation and dissolution of A-site elements in BSCF during the preparation and catalytic processes. The suppression effects are ascribed to the introduction of compressive stress between BSCF and GDC, which greatly inhibits the diffusions of Ba and Sr ions. This work can give a guidance for developing the perovskite oxygen catalysts with high activity and stability.
Collapse
Affiliation(s)
- Fuyue Liu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Xuyang Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ran Guo
- Shanghai Frontiers Science Center of "Full Penetration" Far-reaching Offshore Ocean Energy and Power, Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Fu Wang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Chao Yang
- Shanghai Frontiers Science Center of "Full Penetration" Far-reaching Offshore Ocean Energy and Power, Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
41
|
Zhou Y, Chen L, Wang Y, Zhu J, Guo Z, Liu C, Guo Z, Wang C, Zhang H, Wang Y, Liao K, Song Y, Wang JO, Chen D, Ma J, Hu J, Wang G. ANi 5Bi 5.6+δ (A = K, Rb, and Cs): Quasi-One-Dimensional Metals Featuring [Ni 5Bi 5.6+δ] - Double-Walled Column with Strong Diamagnetism. Inorg Chem 2023; 62:3788-3798. [PMID: 36814133 DOI: 10.1021/acs.inorgchem.2c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A new series of compounds, ANi5Bi5.6+δ (where A = K, Rb, and Cs) are discovered with a quasi-one-dimensional (Q1D) [Ni5Bi5.6+δ]- double-walled column and a coaxial inner one-dimensional Bi atomic chain. The columns are linked to each other by intercolumn Bi-Bi bonds and separated by an A+ cation. Typical metallic behaviors with strong correlation of itinerant electrons and the Sommerfeld coefficient enhanced with the increasing cationic radius were experimentally observed and supported by first-principles calculations. Compared to AMn6Bi5 (where A = K, Rb, and Cs), the enhanced intercolumn distances and the substitution of Ni for Mn give rise to strong diamagnetic susceptibilities in ANi5Bi5.6+δ. First-principles calculations reveal possible uncharged Ni atoms with even number of electrons in ANi5Bi5.6+δ, which may explain the emergence of diamagnetism. ANi5Bi5.6+δ, as Q1D diamagnetic metals with strong electron correlation, provide a unique platform to understand exotic magnetism and explore novel quantum effects.
Collapse
Affiliation(s)
- Ying Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Zhu
- Key Laboratory of Artificial Structures and Quantum Control, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chen Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - ChinWei Wang
- Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2232, Australia
| | - Han Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youting Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Ou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- Key Laboratory of Artificial Structures and Quantum Control, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Gang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
42
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
43
|
Diko CS, Abitonze M, Liu Y, Zhu Y, Yang Y. Synthesis and Applications of Dimensional SnS 2 and SnS 2/Carbon Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4497. [PMID: 36558350 PMCID: PMC9786647 DOI: 10.3390/nano12244497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Dimensional nanomaterials can offer enhanced application properties benefiting from their sizes and morphological orientations. Tin disulfide (SnS2) and carbon are typical sources of dimensional nanomaterials. SnS2 is a semiconductor with visible light adsorption properties and has shown high energy density and long cycle life in energy storage processes. The integration of SnS2 and carbon materials has shown enhanced visible light absorption and electron transmission efficiency. This helps to alleviate the volume expansion of SnS2 which is a limitation during energy storage processes and provides a favorable bandgap in photocatalytic degradation. Several innovative approaches have been geared toward controlling the size, shape, and hybridization of SnS2/Carbon composite nanostructures. However, dimensional nanomaterials of SnS2 and SnS2/Carbon have rarely been discussed. This review summarizes the synthesis methods of zero-, one-, two-, and three-dimensional SnS2 and SnS2/Carbon composite nanomaterials through wet and solid-state synthesis strategies. Moreover, the unique properties that promote their advances in photocatalysis and energy conversion and storage are discussed. Finally, some remarks and perspectives on the challenges and opportunities for exploring advanced SnS2/Carbon nanomaterials are presented.
Collapse
Affiliation(s)
| | - Maurice Abitonze
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yining Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yimin Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yan Yang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, China
| |
Collapse
|
44
|
Liu Y, Zhao J, Song Y, Li X, Gao L, Liu Y, Chen W. Preparation of N-doped porous carbon nanofibers derived from their phenolic-resin-based analogues for high performance supercapacitor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Hui Z, An J, Zhou J, Huang W, Sun G. Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage. EXPLORATION (BEIJING, CHINA) 2022; 2:20210237. [PMID: 37325505 PMCID: PMC10190938 DOI: 10.1002/exp.20210237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
The ever-growing demand in modern power systems calls for the innovation in electrochemical energy storage devices so as to achieve both supercapacitor-like high power density and battery-like high energy density. Rational design of the micro/nanostructures of energy storage materials offers a pathway to finely tailor their electrochemical properties thereby enabling significant improvements in device performances and enormous strategies have been developed for synthesizing hierarchically structured active materials. Among all strategies, the direct conversion of precursor templates into target micro/nanostructures through physical and/or chemical processes is facile, controllable, and scalable. Yet the mechanistic understanding of the self-templating method is lacking and the synthetic versatility for constructing complex architectures is inadequately demonstrated. This review starts with the introduction of five main self-templating synthetic mechanisms and the corresponding constructed hierarchical micro/nanostructures. Subsequently, the structural merits provided by the well-defined architectures for energy storage are elaborately discussed. At last, a summary of current challenges and future development of the self-templating method for synthesizing high-performance electrode materials is also presented.
Collapse
Affiliation(s)
- Zengyu Hui
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical University (NPU)Xi'anP. R. China
| | - Jianing An
- Institute of Photonics TechnologyJinan UniversityGuangzhouP. R. China
| | - Jinyuan Zhou
- School of Physical Science and TechnologyLanzhou UniversityLanzhouP. R. China
| | - Wei Huang
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical University (NPU)Xi'anP. R. China
- Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingP. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingP. R. China
| |
Collapse
|
46
|
Mao B, Xu D, Meng T, Cao M. Advances and challenges in metal selenides enabled by nanostructures for electrochemical energy storage applications. NANOSCALE 2022; 14:10690-10716. [PMID: 35861338 DOI: 10.1039/d2nr02304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials and their related electrochemical energy storage (EES) devices can provide solutions for improving the performance and development of existing EES systems owing to their high electronic conductivity and ion transport and abundant embeddable sites. Recent progress has demonstrated that metal selenides are attracting increasing attention in the field of EES because of their unique structures, high theoretical capacities, rich element resources, and high conductivity. However, there are still many challenges in their application in EES, and thus the use of nanoscale metal selenide materials in commercial devices is limited. In this review, we summarize recent advances in the nanostructured design of metal selenides (e.g., zero-, one-, two-, and three-dimensional, and self-supported structures) and present their advantages in terms of EES performance. Moreover, some remarks on the potential challenges and research prospects of nanostructured metal selenides in the field of EES are presented.
Collapse
Affiliation(s)
- Baoguang Mao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dan Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
47
|
Yao K, Wu M, Chen D, Liu C, Xu C, Yang D, Yao H, Liu L, Zheng Y, Rui X. Vanadium Tetrasulfide for Next-Generation Rechargeable Batteries: Advances and Challenges. CHEM REC 2022; 22:e202200117. [PMID: 35789529 DOI: 10.1002/tcr.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Alkali metal-ion batteries (SIBs and PIBs) and multivalent metal-ion batteries (ZIBs, MIBs, and AIBs), among the next-generation rechargeable batteries, are deemed appealing alternatives to lithium-ion batteries (LIBs) because of their cost competitiveness. Improving the electrochemical properties of electrode materials can greatly accelerate the pace of development in battery systems to cover the increasing demands of realistic applications. Vanadium tetrasulfide (VS4 ) is known as a prospective electrode material due to its unique one-dimensional atomic chain structure with a large chain spacing, weak interactions between adjacent chains, and high sulfur content. This review summarizes the synthetic strategies and recent advances of VS4 as cathodes/anodes for rechargeable batteries. Meanwhile, we describe the structural characteristics and electrochemical properties of VS4 . And we describe in detail its specific applications in batteries such as SIBs, PIBs, ZIBs, MIBs, and AIBs as well as modification strategies. Finally, the opportunities and challenges of VS4 in the domain of energy research are described.
Collapse
Affiliation(s)
- Kaitong Yao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meng Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chuanbang Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Donghua Yang
- School of Mechanical and Electrical Engineering, Shandong Polytechnic College, Jining, 272067, China
| | - Honghu Yao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
48
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
49
|
Jiang Y, Wang H, Dong J, Zhang Q, Tan S, Xiong F, Yang W, Zhu S, Shen Y, Wei Q, An Q, Mai L. Mo 2 C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables High-Energy and High-Power Sodium Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200805. [PMID: 35585667 DOI: 10.1002/smll.202200805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical sodium-ion storage technologies have become an indispensable part in the field of large-scale energy storage systems owing to the widespread and low-cost sodium resources. Molybdenum carbides with high electron conductivity are regarded as potential sodium storage anode materials, but the comprehensive sodium storage mechanism has not been studied in depth. Herein, Mo2 C nanowires (MC-NWs) in which Mo2 C nanoparticles are embedded in carbon substrate are synthesized. The sodium-ion storage mechanism is further systematically studied by in/ex situ experimental characterizations and diffusion kinetics analysis. Briefly, it is discovered that a faradaic redox reaction occurs in the surface amorphous molybdenum oxides on Mo2 C nanoparticles, while the inner Mo2 C is unreactive. Thus, the as-synthesized MC-NWs with surface pseudocapacitance display excellent rate capability (a high specific capacity of 76.5 mAh g-1 at 20 A g-1 ) and long cycling stability (a high specific capacity of 331.2 mAh g-1 at 1 A g-1 over 1500 cycles). The assembled original sodium ion capacitor displays remarkable power density and energy density. This work provides a comprehensive understanding of the sodium storage mechanism of Mo2 C materials, and constructing pseudocapacitive materials is an effective way to achieve sodium-ion storage devices with high power and energy density.
Collapse
Affiliation(s)
- Yalong Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Dong
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Qingxun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shuangshuang Tan
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Fangyu Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shaohua Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuanhao Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Qinyou An
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, P. R. China
| | - Liqiang Mai
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
50
|
Fan D, Guo K, Zhang Y, Hao Q, Hanx M, Xu D. Engineering High-entropy Alloy Nanowires Network for alcohol Electrooxidation. J Colloid Interface Sci 2022; 625:1012-1021. [DOI: 10.1016/j.jcis.2022.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
|