1
|
Ma Y, Zhu Y, Yang Y, Liu Q, Hu S, Hu S, Chen L. Reversible fluorination of brownmillerite SrCoO 2.5 by MgF 2 annealing. Dalton Trans 2025; 54:8298-8305. [PMID: 40260619 DOI: 10.1039/d5dt00262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Two distinct oxyfluorides were synthesized by annealing a brownmillerite SrCoO2.5 (BM-SCO) thin film in MgF2 powder through soft-chemistry reduction. Throughout the annealing, BM-SCO undergoes two successive phase transitions, which are referred to as perovskite F-doped SrCoOx (P-SCOF) and brownmillerite F-doped SrCoOx (BM-SCOF). P-SCOF retains randomly distributed F-ions, while BM-SCOF forms an F-ordered structure characterized by alternative stacking of square-planar CoO2F2 and octahedral CoO4F2. These three phases could change into each other reversibly under moderate conditions, thereby providing a pathway to extract high-purity F2 with perovskite catalysts.
Collapse
Affiliation(s)
- Yongxiang Ma
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanmin Zhu
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yihao Yang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Qi Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Sixia Hu
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songbai Hu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
- School of Physical Science, Great Bay University, Dongguan, 523429, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Jang J, Jin Y, Nam YS, Park HS, Kim J, Kang KT, So Y, Choi J, Choi Y, Shim J, Sriboriboon P, Lee DK, Go KJ, Kim GY, Hong S, Lee JH, Lee D, Han MG, Son J, Kim Y, Taniguchi H, Kang S, Lee JS, Tian H, Yang CH, Zhu Y, Cheong SW, Choi WS, Lee J, Choi SY. Sub-unit-cell-segmented ferroelectricity in brownmillerite oxides by phonon decoupling. NATURE MATERIALS 2025:10.1038/s41563-025-02233-7. [PMID: 40394303 DOI: 10.1038/s41563-025-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/07/2025] [Indexed: 05/22/2025]
Abstract
The ultimate scaling limit in ferroelectric switching has been attracting broad attention in the fields of materials science and nanoelectronics. Despite immense efforts to scale down ferroelectric features, however, only few materials have been shown to exhibit ferroelectricity at the unit-cell level. Here we report a controllable unit-cell-scale domain in brownmillerite oxides consisting of alternating octahedral/tetrahedral layers. By combining atomic-scale imaging and in situ transmission electron microscopy, we directly probed sub-unit-cell-segmented ferroelectricity and investigated their switching characteristics. First-principles calculations confirm that the phonon modes related to oxygen octahedra are decoupled from those of the oxygen tetrahedra in brownmillerite oxides, and such localized oxygen tetrahedral phonons stabilize the sub-unit-cell-segmented ferroelectric domain. The unit-cell-wide ferroelectricity observed in our study could provide opportunities to design high-density memory devices using phonon decoupling.
Collapse
Affiliation(s)
- Jinhyuk Jang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Hwaseong, Republic of Korea
| | - Yeongrok Jin
- Department of Physics, Pusan National University, Busan, Republic of Korea
| | - Yeon-Seo Nam
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Heung-Sik Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaegyu Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Kyeong Tae Kang
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physics, Kyungpook National University, Daegu, Republic of Korea
| | - Yerin So
- Department of Physics, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwoung Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Youngchang Choi
- Department of Electrical Engineering, POSTECH, Pohang, Republic of Korea
| | - Jaechan Shim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Panithan Sriboriboon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Kyu Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gi-Yeop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jun Hee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Daesu Lee
- Department of Physics, POSTECH, Pohang, Republic of Korea
| | - Myung-Geun Han
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, USA
| | - Junwoo Son
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Seokhyeong Kang
- Department of Electrical Engineering, POSTECH, Pohang, Republic of Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - He Tian
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chan-Ho Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, USA
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
| | - Woo Seok Choi
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, Republic of Korea.
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Republic of Korea.
- Department of Semiconductor Engineering, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
3
|
Xing Y, Kim I, Kang KT, Byun J, Choi WS, Lee J, Oh SH. Monitoring the formation of infinite-layer transition metal oxides through in situ atomic-resolution electron microscopy. Nat Chem 2025; 17:66-73. [PMID: 39191854 PMCID: PMC11976294 DOI: 10.1038/s41557-024-01617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Infinite-layer transition metal oxides with two-dimensional oxygen coordination exhibit intriguing electronic and magnetic properties due to strong in-plane orbital hybridization. The synthesis of this distinctive structure has primarily relied on kinetically controlled reduction of oxygen-rich phases featuring three-dimensional polyhedral oxygen coordination. Here, using in situ atomic-resolution electron microscopy, we scrutinize the intricate atomic-scale mechanisms of oxygen conduction leading to the transformation of SrFeO2.5 to infinite-layer SrFeO2. The oxygen release is highly anisotropic and governed by the lattice reorientation aligning the fast diffusion channels towards the outlet, which is facilitated by cooperative yet shuffle displacements of iron and oxygen ions. Accompanied with the oxygen release, the three-dimensional to two-dimensional reconfiguration of oxygen is facilitated by the lattice flexibility of FeOx polyhedral layers, adopting multiple discrete transient states following the sequence determined by the least energy-costing pathways. Similar transformation mechanism may operate in cuprate and nickelate superconductors, which are isostructural with SrFeO2.
Collapse
Affiliation(s)
- Yaolong Xing
- Department of Energy Engineering, Korea Institute of Energy Technology, Naju, Korea
- Institute for Energy Materials and Devices, Korea Institute of Energy Technology, Naju, Korea
| | - Inhwan Kim
- Department of Physics, Pusan National University, Busan, Korea
| | - Kyeong Tae Kang
- Department of Physics, Sungkyunkwan University, Suwon, Korea
- Department of Physics, KNU G-LAMP Research Center, Kyungpook National University, Daegu, Korea
| | - Jinho Byun
- Department of Energy Engineering, Korea Institute of Energy Technology, Naju, Korea
- Institute for Energy Materials and Devices, Korea Institute of Energy Technology, Naju, Korea
| | - Woo Seok Choi
- Department of Physics, Sungkyunkwan University, Suwon, Korea.
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, Korea.
| | - Sang Ho Oh
- Department of Energy Engineering, Korea Institute of Energy Technology, Naju, Korea.
- Institute for Energy Materials and Devices, Korea Institute of Energy Technology, Naju, Korea.
| |
Collapse
|
4
|
Koirala KP, Hossain MD, Wang L, Zhuo Z, Yang W, Bowden ME, Spurgeon SR, Wang C, Sushko PV, Du Y. Layer Resolved Cr Oxidation State Modulation in Epitaxial SrFe 0.67Cr 0.33O 3-δ Thin Films. NANO LETTERS 2024; 24:14244-14251. [PMID: 39481117 DOI: 10.1021/acs.nanolett.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Understanding how doping influences physicochemical properties of ABO3 perovskite oxides is critical for tailoring their functionalities. In this study, SrFe0.67Cr0.33O3-δ epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface. Electron energy loss spectroscopy shows Fe remains Fe3+, while Cr varies from ∼Cr3+ (tetrahedral layers) to ∼Cr4+ (octahedral layers) within brownmillerite phases and becomes ∼Cr4.5+ in perovskite-like phases. Theoretical simulations indicate that Cr-O bond arrangements and the way oxygen vacancies interact with Cr and Fe drive Cr charge disproportionation. High-valent Cr cations introduce additional densities of states near the Fermi level, reducing the optical bandgap from ∼2.0 eV (SrFeO2.5) to ∼1.7 eV (SrFe0.67Cr0.33O3-δ). These findings offer insights into B-site cation doping in the perovskite oxide framework.
Collapse
Affiliation(s)
- Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mohammad Delower Hossain
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Steven R Spurgeon
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Varela-Domínguez N, Claro MS, Carbó-Argibay E, Magén C, Rivadulla F. Exploring Topochemical Oxidation Reactions for Reversible Tuning of Thermal Conductivity in Perovskite Fe Oxides. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10249-10258. [PMID: 39464294 PMCID: PMC11500631 DOI: 10.1021/acs.chemmater.4c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
We present a study on the reversibility of thermal conductivity in iron oxides through topochemical oxygen exchange between brownmillerite (BM) (Ca,Sr)FeO2.5 and perovskite (PV) (Ca,Sr)FeO3.0. By using different oxidation methods, including gas phase (O2/O3), liquid phase (NaOCl in H2O), and solid electrolyte (Y2O3:ZrO2), we demonstrate that the oxidation pathway has a critical influence on the reversibility of the ionic-exchange process. Cyclic oxidation and reduction using O2/O3 or NaOCl lead to an important accumulation of structural defects, undermining the reversibility of thermal conductivity. In the case of wet oxidation, we demonstrate an inherent tendency of negative charge-transfer oxides toward amorphization and elucidate the origin of this effect. Conversely, the electrochemical injection of the O2- ions via a Y2O3:ZrO2 solid electrolyte reduces structural damage significantly, enhancing both reversibility and durability. This study underscores the importance of selecting appropriate topochemical oxygen exchange methods to maintain structural integrity and optimize functional performance in oxide-based tunable devices.
Collapse
Affiliation(s)
- Noa Varela-Domínguez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Marcel S. Claro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Enrique Carbó-Argibay
- International
Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - César Magén
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Francisco Rivadulla
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
6
|
Yadav P, Sarkar S, Phase DM, Raghunathan R. Emergence of exotic electronic and magnetic phases upon electron filling in Na 2BO 3 (B = Ta, Ir, Pt, and Tl): a first-principles study. Phys Chem Chem Phys 2024; 26:16782-16791. [PMID: 38819845 DOI: 10.1039/d4cp01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Competition between spin-orbit interaction and electron correlations can stabilize a variety of non-trivial electronic and magnetic ground states. Using density functional theory calculations, here we show that different exotic electronic and magnetic ground states can be obtained by electron filling of the B-site cation in the Na2BO3 family of compounds (B = Ta, Ir, Pt and Tl). Electron filling leads to a Peierls insulator state with a direct band gap to j = 1/2 spin-orbit assisted Mott-insulator to band insulator and then to negative charge-transfer half-metal transition. The magnetic ground state also undergoes a transition from a non-magnetic state to a zigzag antiferromagnetic state, a re-entrant non-magnetic state and finally to a ferromagnetic state. The electron localization function shows a ladder type dimerization or Peierls instability in Na2TaO3. Maximally localized Wannier function calculations reveal delocalization of electrons through the eg orbitals, which form a π bond, and localization of electrons through the t2g orbitals, which form a σ bond, between the neighbouring tantalum ions. Na2TlO3 shows Stoner or band ferromagnetism due to the localized moments with up-spin on oxygen ligands created by the negative charge-transfer character, interacting via the down-spin itinerant electrons of the Tl 5d-O 2p hybridized band. These findings are significant for practical applications; for instance the direct band gap insulator Na2TaO3 shows potential for utilisation in solar cells, while Na2TlO3, which exhibits ferromagnetic half metallicity, holds promise for spintronic device applications.
Collapse
Affiliation(s)
- Priyanka Yadav
- UGC-DAE Consortium for Scientific Research, D.A.V.V. campus, Khandwa Road, Indore 452001, Madhya Pradesh, India.
| | - Sumit Sarkar
- UGC-DAE Consortium for Scientific Research, D.A.V.V. campus, Khandwa Road, Indore 452001, Madhya Pradesh, India.
| | - Deodatta Moreshwar Phase
- UGC-DAE Consortium for Scientific Research, D.A.V.V. campus, Khandwa Road, Indore 452001, Madhya Pradesh, India.
| | - Rajamani Raghunathan
- UGC-DAE Consortium for Scientific Research, D.A.V.V. campus, Khandwa Road, Indore 452001, Madhya Pradesh, India.
| |
Collapse
|
7
|
Li K, Liu C, Lv J, Cao T, Zhang Y, Gong Y, Zheng L. Organic Species-Intercalated Vanadium Oxide for Sodium-Ion Battery: Mixed-Anion Coordination Effect, Enhanced d- p Orbital Hybridization, and Topotactic Phase Conversion Induced by N-Substitution. Inorg Chem 2023. [PMID: 37988671 DOI: 10.1021/acs.inorgchem.3c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Sodium-ion battery (SIB) is a reasonable alternative to lithium-ion battery (LIB) in the field of grid-scale energy storage systems. Unfortunately, the development of appropriate cathode material is a bottleneck in the field of SIB. In the present work, (p-TQ)-VO, formulated as (p-TQ)0.2V2O5·0.38H2O, was synthesized based on a facile hydrothermal reaction of V2O5 and methylhydroquinone (p-HTQ). And when V2O5 was replaced by VN, (p-TQ)-VN, formulated as (p-TQ)0.22V2(O/N)5, was prepared instead. The (p-TQ)-VO sample displays good electrochemical performance as the SIB cathode. And (p-TQ)-VN shows a much higher capacity at a small current density, and it can maintain structural integrity with partial topotactic phase transformation into NaxV2O5 during the discharge/charge process. A series of characterizations of (p-TQ)-VO and (p-TQ)-VN reveals the successful intercalation of p-TQ into the layered V2O5 with a (001) lattice spacing of 13.7 and 10.7 Å, respectively. In (p-TQ)-VN, partial terminal oxygen (Ot) atoms from the V-O-V layer have been substituted by N atoms, which can boost the orbital hybridization of V 3d and Ot 2p, shorten the V-Ot bonds in the c-axial direction, and elongate the V-O bonds in the ab plane with compressed {VO4N2} octahedra, giving rise to mixed-anion coordination effect. As a result, the enhanced electron densities around the Ot atoms of the V-O-V layer can facilitate the affinity toward the inserted Na+ ions, leading to partial phase conversion into NaNO2/NaNO3. Moreover, density functional density (DFT) calculations reveal that the N-incorporation can improve electron conductivity with richer molecular orbital energy levels, resulting in multistep redox reactions and enhanced capacity.
Collapse
Affiliation(s)
- Kai Li
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Changlin Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Jia Lv
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Tong Cao
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yunhuai Zhang
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Zhang R, Su R, Shen C, Xiao R, Cheng W, Miao X. Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8838. [PMID: 37960537 PMCID: PMC10650417 DOI: 10.3390/s23218838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Topological phase transition materials have strong coupling between their charge, spin orbitals, and lattice structure, which makes them have good electrical and magnetic properties, leading to promising applications in the fields of memristive devices. The smaller Gibbs free energy difference between the topological phases, the stable oxygen vacancy ordered structure, and the reversible topological phase transition promote the memristive effect, which is more conducive to its application in information storage, information processing, information calculation, and other related fields. In particular, extracting the current resistance or conductance of the two-terminal memristor to convert to the weight of the synapse in the neural network can simulate the behavior of biological synapses in their structure and function. In addition, in order to improve the performance of memristors and better apply them to neuromorphic computing, methods such as ion doping, electrode selection, interface modulation, and preparation process control have been demonstrated in memristors based on topological phase transition materials. At present, it is considered an effective method to obtain a unique resistive switching behavior by improving the process of preparing functional layers, regulating the crystal phase of topological phase transition materials, and constructing interface barrier-dependent devices. In this review, we systematically expound the resistance switching mechanism, resistance switching performance regulation, and neuromorphic computing of topological phase transition memristors, and provide some suggestions for the challenges faced by the development of the next generation of non-volatile memory and brain-like neuromorphic devices based on topological phase transition materials.
Collapse
Affiliation(s)
| | | | | | | | - Weiming Cheng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China; (R.Z.); (R.S.); (C.S.); (R.X.); (X.M.)
| | | |
Collapse
|
9
|
Yang Z, Wang L, Dhas JA, Engelhard MH, Bowden ME, Liu W, Zhu Z, Wang C, Chambers SA, Sushko PV, Du Y. Guided anisotropic oxygen transport in vacancy ordered oxides. Nat Commun 2023; 14:6068. [PMID: 37770428 PMCID: PMC10539514 DOI: 10.1038/s41467-023-40746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.
Collapse
Affiliation(s)
- Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeffrey A Dhas
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wen Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
10
|
Wang Q, Gu Y, Chen C, Qiao L, Pan F, Song C. Realizing Metastable Cobaltite Perovskite via Proton-Induced Filling of Oxygen Vacancy Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1574-1582. [PMID: 36537655 DOI: 10.1021/acsami.2c18311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction between transition-metal oxides (TMOs) and protons has become a key issue in magneto-ionics and proton-conducting fuel cells. Until now, most investigations on oxide-proton reactions rely on electrochemical tools, while the direct interplay between protons and oxides remains basically at simple dissolution of metal oxides by an acidic solution. In this work, we find classical TMO brownmillerite SrCoO2.5 (B-SCO) films with ordered oxygen vacancy channels experiencing an interesting transition to a metastable perovskite phase (M-SCO) in a weak acidic solution. M-SCO exhibits a strong ferromagnetism (1.01 μB/Co, Tc > 200 K) and a greatly elevated electrical conductivity (∼104 of pristine SrCoO2.5), which is similar to the prototypical perovskite SrCoO3. Besides, such M-SCO tends to transform back to B-SCO in a vacuum environment or heating at a relatively low temperature. Two possible mechanisms (H2O addition/active oxygen filling) have been proposed to explain the phenomenon, and the control experiments demonstrate that the latter mechanism is the dominant process. Our work finds a new way to realize cobaltite perovskite with enhanced magnetoelectric properties and may deepen the understanding of oxide-proton interaction in an aqueous solution.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Leilei Qiao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
11
|
Tang Y, Chiabrera F, Morata A, Cavallaro A, Liedke MO, Avireddy H, Maller M, Butterling M, Wagner A, Stchakovsky M, Baiutti F, Aguadero A, Tarancón A. Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18486-18497. [PMID: 35412787 DOI: 10.1021/acsami.2c01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion intercalation of perovskite oxides in liquid electrolytes is a very promising method for controlling their functional properties while storing charge, which opens up its potential application in different energy and information technologies. Although the role of defect chemistry in oxygen intercalation in a gaseous environment is well established, the mechanism of ion intercalation in liquid electrolytes at room temperature is poorly understood. In this study, the defect chemistry during ion intercalation of La0.5Sr0.5FeO3-δ thin films in alkaline electrolytes is studied. Oxygen and proton intercalation into the La1-xSrxFeO3-δ perovskite structure is observed at moderate electrochemical potentials (0.5 to -0.4 V), giving rise to a change in the oxidation state of Fe (as a charge compensation mechanism). The variation of the concentration of holes as a function of the intercalation potential is characterized by in situ ellipsometry, and the concentration of electron holes is indirectly quantified for different electrochemical potentials. Finally, a dilute defect chemistry model that describes the variation of defect species during ionic intercalation is developed.
Collapse
Affiliation(s)
- Yunqing Tang
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
| | - Francesco Chiabrera
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
- Department of Energy Conversion and Storage, Functional Oxides Group, Technical University of Denmark, Fysikvej 310, 233, 2800 Kongens Lyngby, Denmark
| | - Alex Morata
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
| | - Andrea Cavallaro
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Maciej O Liedke
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Hemesh Avireddy
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
| | - Mar Maller
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
| | - Maik Butterling
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Andreas Wagner
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michel Stchakovsky
- HORIBA Scientific, 14 Boulevard Thomas Gobert, Passage Jobin Yvon, CS 45002-91120 Palaiseau, France
| | - Federico Baiutti
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ainara Aguadero
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain
| | - Albert Tarancón
- Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Zhang W, Zhang J, Cheng S, Rouleau CM, Kisslinger K, Zhang L, Zhu Y, Ward TZ, Eres G. Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces. NANO-MICRO LETTERS 2021; 14:2. [PMID: 34859320 PMCID: PMC8639884 DOI: 10.1007/s40820-021-00752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice. Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite (BM) phase in a model oxide La0.7Sr0.3MnO3 (LSMO). Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO. Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO. Using the NiO nominal ratio as a single control parameter, we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase, which enables systematic tuning of magnetic and electrical transport properties. The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.
Collapse
Affiliation(s)
- Wenrui Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Jie Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shaobo Cheng
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Thomas Z Ward
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gyula Eres
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
13
|
Cao L, Petracic O, Wei XK, Zhang H, Duchoň T, Gunkel F, Koutsioubas A, Zhernenkov K, Rushchanskii KZ, Hartmann H, Wilhelm M, Li Z, Xie Y, He S, Weber ML, Veltruská K, Stellhorn A, Mayer J, Zhou S, Brückel T. Migration Kinetics of Surface Ions in Oxygen-Deficient Perovskite During Topotactic Transitions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104356. [PMID: 34791798 DOI: 10.1002/smll.202104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Oxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La0.7 Sr0.3 MnO3-δ epitaxial thin films, both at the surface and throughout the bulk. Using polarized neutron reflectometry, a quantitative depth profile of the oxygen content gradient is achieved, which, alongside atomic-resolution scanning transmission electron microscopy, uniquely reveals the formation of a novel structural phase near the surface. Surface-sensitive X-ray spectroscopies further confirm a significant change of the electronic structure accompanying the transition. The anisotropic features of this novel phase enable a distinct oxygen diffusion pathway in contrast to conventional observation of oxygen motion at moderate temperatures. The results provide insights furthering the design of solid oxygen ion conductors within the framework of topotactic phase transitions.
Collapse
Affiliation(s)
- Lei Cao
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Oleg Petracic
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Xian-Kui Wei
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Hengbo Zhang
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tomáš Duchoň
- Peter Grünberg Institut (PGI-6), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Felix Gunkel
- Peter Grünberg Institut (PGI-7), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748, Garching, Germany
| | - Kirill Zhernenkov
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748, Garching, Germany
| | - Konstantin Z Rushchanskii
- Peter Grünberg Institute (PGI-1) and Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Heinrich Hartmann
- Central Institute for Engineering, Electronics and Analytics (ZEA-3), 52425, Jülich, Germany
| | - Marek Wilhelm
- Peter Grünberg Institut (PGI-6), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Zichao Li
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Yufang Xie
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Suqin He
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Peter Grünberg Institut (PGI-7), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Moritz L Weber
- Peter Grünberg Institut (PGI-7), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Kateřina Veltruská
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, 18000, Czech Republic
| | - Annika Stellhorn
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Thomas Brückel
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748, Garching, Germany
| |
Collapse
|
14
|
Hu S, Zhu Y, Han W, Li X, Ji Y, Ye M, Jin C, Liu Q, Hu S, Wang J, Wang J, He J, Cazorla C, Chen L. High-Conductive Protonated Layered Oxides from H 2 O Vapor-Annealed Brownmillerites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104623. [PMID: 34590356 DOI: 10.1002/adma.202104623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Protonated 3d transition-metal oxides often display low electronic conduction, which hampers their application in electric, magnetic, thermoelectric, and catalytic fields. Electronic conduction can be enhanced by co-inserting oxygen acceptors simultaneously. However, the currently used redox approaches hinder protons and oxygen ions co-insertion due to the selective switching issues. Here, a thermal hydration strategy for systematically exploring the synthesis of conductive protonated oxides from 3d transition-metal oxides is introduced. This strategy is illustrated by synthesizing a novel layered-oxide SrCoO3 H from the brownmillerite SrCoO2.5 . Compared to the insulating SrCoO2.5 , SrCoO3 H exhibits an unprecedented high electronic conductivity above room temperature, water uptake at 250 °C, and a thermoelectric power factor of up to 1.2 mW K-2 m-1 at 300 K. These findings open up opportunities for creating high-conductive protonated layered oxides by protons and oxygen ions co-doping.
Collapse
Affiliation(s)
- Songbai Hu
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanmin Zhu
- School of Material Science and Engineering, Dongguan University of Technology, Dongguan, 523000, China
| | - Wenqiao Han
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaowen Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanjiang Ji
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mao Ye
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cai Jin
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sixia Hu
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaou Wang
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100039, China
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Claudio Cazorla
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, E-08034, Spain
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
15
|
Zhao J, Chen K, Li SE, Zhang Q, Wang JO, Guo EJ, Qian H, Gu L, Qian T, Ibrahim K, Fan Z, Guo H. Electronic-structure evolution of SrFeO 3-xduring topotactic phase transformation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:064001. [PMID: 34740209 DOI: 10.1088/1361-648x/ac36fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Oxygen-vacancy-induced topotactic phase transformation between the ABO2.5brownmillerite structure and the ABO3perovskite structure attracts ever-increasing attention due to the perspective applications in catalysis, clean energy field, and memristors. However, a detailed investigation of the electronic-structure evolution during the topotactic phase transformation for understanding the underlying mechanism is highly desired. In this work, multiple analytical methods were used to explore evolution of the electronic structure of SrFeO3-xthin films during the topotactic phase transformation. The results indicate that the increase in oxygen content induces a new unoccupied state of O 2pcharacter near the Fermi energy, inducing the insulator-to-metal transition. More importantly, the hole states are more likely constrained to thedx2-y2orbital than to thed3z2-r2orbital. Our results reveal an unambiguous evolution of the electronic structure of SrFeO3-xfilms during topotactic phase transformation, which is crucial not only for fundamental understanding but also for perspective applications such as solid-state oxide fuel cells, catalysts, and memristor devices.
Collapse
Affiliation(s)
- Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaihui Chen
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shi-En Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Haijie Qian
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Tian Qian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Kurash Ibrahim
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, People's Republic of China
| |
Collapse
|
16
|
Wang Q, Gu Y, Yin S, Sun Y, Liu W, Zhang Z, Pan F, Song C. Facilitating room-temperature oxygen ion migration via Co-O bond activation in cobaltite films. NANOSCALE 2021; 13:18256-18266. [PMID: 34713881 DOI: 10.1039/d1nr03801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen ion migration in strongly correlated oxides can cause dramatic changes in the crystal structure, chemical and magnetoelectric properties, which holds promising for a wide variety of applications in catalysis, energy conversion, and electronics. However, the high strength and stability of metal-oxygen (M-O) bonds cause a large thermodynamic barrier for oxygen migration. Here, we designed Co-O bond activation in cobaltite (SrCoOx) films by Au-nanodot-decoration. Charge transfer from Au to SrCoOx effectively weakens the Co-O bond, meanwhile Co-O-Au synergistic bonding remarkably decreases the migration barrier of oxygen ions. Fast oxygen evolution occurs at the perimeter of the Au/SrCoOx interface, and the chemical potential gradient of O2- drives inner ion diffusion to the surface. Consequently, bias-free topotactic phase reduction from perovskite SrCoO3-δ to brownmillerite SrCoO2.5 has been achieved at room temperature. Our finding explores a new dimension to accelerate oxygen ion kinetics in transition-metal oxides from the aspect of interfacial bond activation, which is significant for developing oxide/noble-metal interfaces for high-efficiency ion migration and redox catalysis at low temperature.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Youdi Gu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Siqi Yin
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yiming Sun
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Wei Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Pate CM, Hart JL, Taheri ML. RapidEELS: machine learning for denoising and classification in rapid acquisition electron energy loss spectroscopy. Sci Rep 2021; 11:19515. [PMID: 34593833 PMCID: PMC8484590 DOI: 10.1038/s41598-021-97668-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
Recent advances in detectors for imaging and spectroscopy have afforded in situ, rapid acquisition of hyperspectral data. While electron energy loss spectroscopy (EELS) data acquisition speeds with electron counting are regularly reaching 400 frames per second with near-zero read noise, signal to noise ratio (SNR) remains a challenge owing to fundamental counting statistics. In order to advance understanding of transient materials phenomena during rapid acquisition EELS, trustworthy analysis of noisy spectra must be demonstrated. In this study, we applied machine learning techniques to denoise high frame rate spectra, benchmarking with slower frame rate "ground truths". The results provide a foundation for reliable use of low SNR data acquired in rapid, in-situ spectroscopy experiments. Such a tool-set is a first step toward both automation in microscopy as well as use of these methods to interrogate otherwise poorly understood transformations.
Collapse
Affiliation(s)
- Cassandra M Pate
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - James L Hart
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Currently at Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Mitra L Taheri
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
18
|
Xu K, Gu Y, Song C, Zhong X, Zhu J. Atomic insight into spin, charge and lattice modulations at SrFeO 3-x/SrTiO 3 interfaces. NANOSCALE 2021; 13:6066-6075. [PMID: 33616142 DOI: 10.1039/d0nr07697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel phenomena and functionalities at interfaces of oxide heterostructures are currently of great interest in a wide range of applications. At such interfaces, charge, spin, orbital and lattice ordering coexist and correlate closely, contributing to rich functional responses. By using atomically resolved imaging and spectroscopy techniques, we investigated magnetic behaviors and structural modulation at the SrFeO3-x/SrTiO3 interface. Fe/Ti element intermixing and oxygen vacancies occurred across a few unit cells at the interface. Furthermore, antiferromagnetic spin ordering of Fe with different valence states in the interface of SrFeO3-x/SrTiO3 induced uncompensated magnetic moments. Compared to the SrFeO3-x/La0.3Sr0.7Al0.65Ta0.35O3 heterojunction, the variations of charge and lattice order parameters at the SrFeO3-x/SrTiO3 interfaces were also determined by advanced electron microscopy, which provided a good understanding of the physical origin of disparate macroscopic magnetic properties, further investigated by magnetometer measurements and X-ray magnetic circular dichroism (XMCD) spectra. These studies provide comprehensive insight into the interfacial modulation of ferrite oxide, which may be useful for designing future devices in oxide electronics.
Collapse
Affiliation(s)
- Kun Xu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | | | | | |
Collapse
|
19
|
Lim JS, Lee J, Lee BJ, Kim YJ, Park HS, Suh J, Nahm HH, Kim SW, Cho BG, Koo TY, Choi E, Kim YH, Yang CH. Harnessing the topotactic transition in oxide heterostructures for fast and high-efficiency electrochromic applications. SCIENCE ADVANCES 2020; 6:6/41/eabb8553. [PMID: 33036971 PMCID: PMC7546704 DOI: 10.1126/sciadv.abb8553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Mobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm2 C-1, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching. By tracking the color propagation, oxygen vacancy mobility can be estimated to be 10-8 cm2 s-1 V-1 near 300°C, which is a giant value attained due to the mosaic pseudomonoclinic film stabilized on LaAlO3 substrate. First-principles calculations reveal that the defect density modulation associated with hole charge injection causes a prominent change in electron correlation, resulting in the light absorption modulation. Our findings will pave the pathway for practical topotactic electrochromic applications.
Collapse
Affiliation(s)
- Ji Soo Lim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jounghee Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeoung Ju Lee
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Yong-Jin Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Heung-Sik Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeonghun Suh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ho-Hyun Nahm
- Graduate School of Nanoscience and Technology, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Woo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Byeong-Gwan Cho
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Yeong Koo
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunjip Choi
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Yong-Hyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
- Graduate School of Nanoscience and Technology, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan-Ho Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Nallagatla VR, Kim J, Lee K, Chae SC, Hwang CS, Jung CU. Complementary Resistive Switching and Synaptic-Like Memory Behavior in an Epitaxial SrFeO 2.5 Thin Film through Oriented Oxygen-Vacancy Channels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41740-41748. [PMID: 32799524 DOI: 10.1021/acsami.0c10910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen-vacancy-ordered brownmillerite oxides offer a reversible topotactic phase transition by significantly varying the oxygen stoichiometry of the material without losing its lattice framework. This phase transition leads to substantial changes in the physical and chemical properties of brownmillerite oxides, including electrical and ion conductivity, magnetic state, and oxygen diffusivity. In this study, the variations in the resistive switching mode of the epitaxial brownmillerite SrFeO2.5 thin film in the device were studied by systematically controlling the oxygen concentration, which could be varied by changing the compliance current during the first electroforming step. Depending on the compliance current, the SrFeO2.5 devices exhibited either low-power bipolar resistive switching or complementary resistive switching behaviors. A physical model based on the internal redistribution of oxygen ions between the interfaces with the top and the bottom electrodes was developed to explain the complementary resistive switching behavior. This model was experimentally validated using impedance spectroscopy. Finally, the gradual conductance variation in the brownmillerite SrFeO2.5 thin films was exploited to realize synaptic learning.
Collapse
Affiliation(s)
- Venkata Raveendra Nallagatla
- Department of Physics and Memory and Catalyst Research Center, Hankuk University of Foreign Studies, Yongin 17035, Korea
| | - Jihun Kim
- Department of Material Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea
| | - Kyoungjun Lee
- Department of Physics Education, Seoul National University, Seoul 08826, Korea
| | - Seung Chul Chae
- Department of Physics Education, Seoul National University, Seoul 08826, Korea
| | - Cheol Seong Hwang
- Department of Material Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea
| | - Chang Uk Jung
- Department of Physics and Memory and Catalyst Research Center, Hankuk University of Foreign Studies, Yongin 17035, Korea
| |
Collapse
|
21
|
Tian J, Zhang Y, Fan Z, Wu H, Zhao L, Rao J, Chen Z, Guo H, Lu X, Zhou G, Pennycook SJ, Gao X, Liu JM. Nanoscale Phase Mixture and Multifield-Induced Topotactic Phase Transformation in SrFeO x. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21883-21893. [PMID: 32314574 DOI: 10.1021/acsami.0c03684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoscale phase mixtures in transition-metal oxides (TMOs) often render these materials susceptible to external stimuli (electric field, mechanical stress, etc.), which can lead to rich functional properties and device applications. Here, direct observation and multifield manipulation of a nanoscale mixture of brownmillerite SrFeO2.5 (BM-SFO) and perovskite SrFeO3 (PV-SFO) phases in SrFeOx (SFO) epitaxial thin films are reported. The mixed-phase SFO film in its pristine state exhibits a nanoscaffold structure consisting of PV-SFO nanodomains embedded in the BM-SFO matrix. This nanoscaffold structure produces gridlike patterns in the current and electrochemical strain maps, owing to the strikingly different electrical and electrochemical properties of BM-SFO and PV-SFO. Moreover, electric field control of reversible topotactic phase transformation between BM-SFO and PV-SFO is demonstrated by electric-field-induced reversible changes in surface height, conductance, and electrochemical strain response. In addition, it is also shown that the BM-SFO → PV-SFO phase transformation can be enabled by applying mechanical stress. This study therefore not only identifies a strong nanometric structure-property correlation in the mixed-phase SFO but also offers a new paradigm for the multifield control of topotactic phase transformation.
Collapse
Affiliation(s)
- Junjiang Tian
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yang Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haijun Wu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jingjing Rao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zuhuang Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haizhong Guo
- School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xubing Lu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xingsen Gao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Krzystowczyk E, Wang X, Dou J, Haribal V, Li F. Substituted SrFeO 3 as robust oxygen sorbents for thermochemical air separation: correlating redox performance with compositional and structural properties. Phys Chem Chem Phys 2020; 22:8924-8932. [PMID: 32292966 DOI: 10.1039/d0cp00275e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thermochemical air separation via cyclic redox reactions of oxide-based oxygen sorbents has the potential to achieve high energy efficiency. Although a number of promising sorbents have been investigated, further improvements in sorbent performance through a fundamental understanding of the structure-performance relationships are highly desirable. In this study, we systematically investigated the effects of A and B site dopants on the oxygen uptake/release properties (i.e., vacancy formation energy, reduction enthalpy, oxygen release temperature, and oxygen capacity) of the SrFeO3 family of perovskites as oxygen sorbents. A monotonic correlation between DFT calculated oxygen vacancy formation energy and oxygen release temperature demonstrates the effectiveness of DFT for guiding sorbent selection. Combining vacancy formation energy with stability analysis, dopants such as Ba and Mn have been identified for tuning the redox property of SrFeO3 sorbents, and increasing the oxygen capacity for temperature and pressure swings when compared to undoped SrFeO3. The Mn doped sample proved to be highly stable, with less than a 3% decrease in capacity over 1000 cycles. Although the dynamic nature of the redox process makes it difficult to use a single vacancy formation energy as the descriptor, a systematic approach was developed to correlate the oxygen storage capacities with the sorbents' compositional properties and vacancy formation energies. The combination of DFT calculations with experimental studies from this study provides a potentially effective strategy for developing improved sorbents for thermochemical air separation.
Collapse
Affiliation(s)
- Emily Krzystowczyk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27606, USA.
| | - Xijun Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27606, USA.
| | - Jian Dou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27606, USA.
| | - Vasudev Haribal
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27606, USA.
| | - Fanxing Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27606, USA.
| |
Collapse
|
23
|
Tian J, Wu H, Fan Z, Zhang Y, Pennycook SJ, Zheng D, Tan Z, Guo H, Yu P, Lu X, Zhou G, Gao X, Liu JM. Nanoscale Topotactic Phase Transformation in SrFeO x Epitaxial Thin Films for High-Density Resistive Switching Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903679. [PMID: 31639262 DOI: 10.1002/adma.201903679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Resistive switching (RS) memory has stayed at the forefront of next-generation nonvolatile memory technologies. Recently, a novel class of transition metal oxides (TMOs), which exhibit reversible topotactic phase transformation between insulating brownmillerite (BM) phase and conducting perovskite (PV) phase, has emerged as promising candidate materials for RS memories. Nevertheless, the microscopic mechanism of RS in these TMOs is still unclear. Furthermore, RS devices with simultaneously high density and superior memory performance are yet to be reported. Here, using SrFeOx as a model system, it is directly observed that PV SrFeO3 nanofilaments are formed and extend almost through the BM SrFeO2.5 matrix in the ON state and are ruptured in the OFF state, unambiguously revealing a filamentary RS mechanism. The nanofilaments are ≈10 nm in diameter, enabling to downscale Au/SrFeOx /SrRuO3 RS devices to the 100 nm range for the first time. These nanodevices exhibit good performance including ON/OFF ratio as high as ≈104 , retention time over 105 s, and endurance up to 107 cycles. This study significantly advances the understanding of the RS mechanism in TMOs exhibiting topotactic phase transformation, and it also demonstrates the potential of these materials for use in high-density RS memories.
Collapse
Affiliation(s)
- Junjiang Tian
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Haijun Wu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yang Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Dongfeng Zheng
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhengwei Tan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Haizhong Guo
- School of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Xubing Lu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xingsen Gao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
24
|
Abstract
Point defects, such as oxygen vacancies, control the physical properties of complex oxides, relevant in active areas of research from superconductivity to resistive memory to catalysis. In most oxide semiconductors, electrons that are associated with oxygen vacancies occupy the conduction band, leading to an increase in the electrical conductivity. Here we demonstrate, in contrast, that in the correlated-electron perovskite rare-earth nickelates, RNiO3 (R is a rare-earth element such as Sm or Nd), electrons associated with oxygen vacancies strongly localize, leading to a dramatic decrease in the electrical conductivity by several orders of magnitude. This unusual behavior is found to stem from the combination of crystal field splitting and filling-controlled Mott-Hubbard electron-electron correlations in the Ni 3d orbitals. Furthermore, we show the distribution of oxygen vacancies in NdNiO3 can be controlled via an electric field, leading to analog resistance switching behavior. This study demonstrates the potential of nickelates as testbeds to better understand emergent physics in oxide heterostructures as well as candidate systems in the emerging fields of artificial intelligence.
Collapse
|
25
|
Zhu L, Chen S, Zhang H, Zhang J, Sun Y, Li X, Xu Z, Wang L, Sun J, Gao P, Wang W, Bai X. Strain-Inhibited Electromigration of Oxygen Vacancies in LaCoO 3. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36800-36806. [PMID: 31539219 DOI: 10.1021/acsami.9b08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The oxygen vacancy profile in LaCoO3 exhibits rich phases with distinct structures, symmetries, and magnetic properties. Exploration of the lattice degree of freedom of LaCoO3 in the transition between these different structural phases may provide a route to enable new functionality in oxide materials with potential applications. To date, the oxygen vacancy profile transition in LaCoO3 has mainly been induced by transition-metal doping or thermal treatment. Epitaxial strain was proposed to compete with the lattice degree of freedom but has not yet been rationalized. Here, the experimental findings of strain-inhibited structural transition from perovskite to brownmillerite during the electromigration of oxygen vacancies in epitaxial LaCoO3 thin films are demonstrated. The results indicate that the oxygen vacancy ordering phase induced by the electric field is suppressed locally by both epitaxial strain field and external loads shown by in situ aberration-corrected (scanning)/ transmission electron microscopy. The demonstrated complex interplay between the electric and strain fields in the structural transitions of LaCoO3 opens up prospects for manipulating new physical properties by external excitations and/or strain engineering of a substrate.
Collapse
Affiliation(s)
- Liang Zhu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Shulin Chen
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Harbin 150001 , China
| | - Hui Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Jine Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Yuanwei Sun
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Xiaomin Li
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Zhi Xu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100871 , China
| | - Wenlong Wang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| |
Collapse
|
26
|
Nallagatla VR, Heisig T, Baeumer C, Feyer V, Jugovac M, Zamborlini G, Schneider CM, Waser R, Kim M, Jung CU, Dittmann R. Topotactic Phase Transition Driving Memristive Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903391. [PMID: 31441160 DOI: 10.1002/adma.201903391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Redox-based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen-ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen-ion transport properties for resistive-switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X-ray absorption spectromicroscopy, it is demonstrated that the reversible redox-based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5 , and the conductive perovskite phase, SrFeO3 , gives rise to the resistive-switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric-field-induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in-plane direction of the device. In contrast, (111)-grown SrFeO2.5 devices with out-of-plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive-switching mechanism in SrFeOx -based memristive devices within the framework of metal-insulator topotactic phase transitions.
Collapse
Affiliation(s)
- Venkata R Nallagatla
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Department of Physics and Oxide Research Centre, Hankuk University of Foreign Studies, Yongin, 17035, South Korea
| | - Thomas Heisig
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Institute of Electronic Materials, IWE2, RWTH Aachen University, 52056, Aachen, Germany
| | - Christoph Baeumer
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Institute of Electronic Materials, IWE2, RWTH Aachen University, 52056, Aachen, Germany
| | - Vitaliy Feyer
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitat Duisburg-Essen, 47048, Duisburg, Germany
| | - Matteo Jugovac
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
| | - Giovanni Zamborlini
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Technische Universitaet Dortmund, Experimentelle Physik VI, 44227, Dortmund, Germany
| | - Claus M Schneider
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitat Duisburg-Essen, 47048, Duisburg, Germany
- Department of Physics, University of California, Davis, CA, 95616, USA
| | - Rainer Waser
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Institute of Electronic Materials, IWE2, RWTH Aachen University, 52056, Aachen, Germany
| | - Miyoung Kim
- Department of Material Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, South Korea
| | - Chang Uk Jung
- Department of Physics and Oxide Research Centre, Hankuk University of Foreign Studies, Yongin, 17035, South Korea
| | - Regina Dittmann
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
| |
Collapse
|
27
|
Eres G, Rouleau CM, Lu Q, Zhang Z, Benda E, Lee HN, Tischler JZ, Fong DD. Experimental setup combining in situ hard X-ray photoelectron spectroscopy and real-time surface X-ray diffraction for characterizing atomic and electronic structure evolution during complex oxide heterostructure growth. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:093902. [PMID: 31575256 DOI: 10.1063/1.5116135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
We describe the next-generation system for in situ characterization of a complex oxide thin film and heterostructure growth by pulsed laser deposition (PLD) using synchrotron hard X-rays. The system consists of a PLD chamber mounted on a diffractometer allowing both real-time surface X-ray diffraction (SXRD) and in situ hard X-ray photoelectron spectroscopy (HAXPES). HAXPES is performed in the incident X-ray energy range from 4 to 12 keV using a Scienta EW4000 electron energy analyzer mounted on the PLD chamber fixed parallel with the surface normal. In addition to the standard application mode of HAXPES for disentangling surface from bulk properties, the increased penetration depth of high energy photoelectrons is used for investigation of the electronic structure changes through thin films grown deliberately as variable thickness capping layers. Such heterostructures represent model systems for investigating a variety of critical thickness and dead layer phenomena observed at complex oxide interfaces. In this new mode of operation, in situ HAXPES is used to determine the electronic structure associated with unique structural features identified by real-time SXRD during thin film growth. The system is configured for using both laboratory excitation sources off-line and on-line operation at beamline 33-ID-D at the Advanced Photon Source. We illustrate the performance of the system by preliminary scattering and spectroscopic data on oxygen vacancy ordering induced perovskite-to-brownmillerite reversible phase transformation in La2/3Sr1/3MnO3 films capped with oxygen deficient SrTiO3-δ (100) layers of varying thickness.
Collapse
Affiliation(s)
- Gyula Eres
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - C M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Q Lu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Z Zhang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - E Benda
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J Z Tischler
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - D D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
28
|
Zhang J, Zhou G, Yan Z, Ji H, Li X, Quan Z, Bai Y, Xu X. Interfacial Ferromagnetic Coupling and Positive Spontaneous Exchange Bias in SrFeO 3-x/La 0.7Sr 0.3MnO 3 Bilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26460-26466. [PMID: 31267730 DOI: 10.1021/acsami.9b07639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Negative exchange bias is usually discovered in ferromagnetic (FM)/antiferromagnetic (AFM) heterostructures after a field-cooling (FC) process. Relatively, positive exchange bias (PEB) is a rarely observed phenomenon. So far, almost all of the models for PEB whether undergoing FC or zero-field-cooling (ZFC) treatment have been explained by an interaction of strong AFM coupling at the interface. In this work, by selecting a special material of SrFeO3-x as the AFM layer, coupled with FM-La0.7Sr0.3MnO3 (LSMO), we obtain a novel PEB effect of the bilayer after ZFC measurement, of which the shift directions are unfixable and dependent on the initial magnetization direction. Based on a transient magnetic field to control the remanence (Mr) direction of LSMO at room temperature and then cooling below the TN of SrFeO3-x without any magnetic field disturbance, the shift direction can be locked only toward the transient magnetic field. Combined with experimental results and first-principles calculations, we propose that the above phenomena are explained as the field-induced AFM phase of SrFeO3-x transforming into the FM phase at an FM coupling bilayer interface. Thus, our finding may provide a new approach to realize and tune the zero-field-cooling PEB with FM coupling heterostructures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
- Department of Chemistry & Chemical Engineering , Lvliang University , Lishi 033001 , China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen 041004 , China
| | - Guowei Zhou
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen 041004 , China
| | - Zhi Yan
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
| | - Huihui Ji
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
| | - Xiaoli Li
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen 041004 , China
| | - Zhiyong Quan
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen 041004 , China
| | - Yuhao Bai
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen 041004 , China
| | - Xiaohong Xu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004 , China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen 041004 , China
| |
Collapse
|
29
|
Gu Y, Xu K, Song C, Zhong X, Zhang H, Mao H, Saleem MS, Sun J, Liu W, Zhang Z, Pan F, Zhu J. Oxygen-Valve Formed in Cobaltite-Based Heterostructures by Ionic Liquid and Ferroelectric Dual-Gating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19584-19595. [PMID: 31056893 DOI: 10.1021/acsami.9b02442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manipulation of oxygen vacancies via electric-field-controlled ionic liquid gating has been reported in many model systems within the emergent fields of oxide electronics and iontronics. It is then significant to investigate the oxygen vacancy formation/annihilation and migration across an additional ferroelectric layer with ionic liquid gating. Here, we report that via a combination of ionic liquid and ferroelectric gating, the remote control of oxygen vacancies and magnetic phase transition can be achieved in SrCoO2.5 films capped with an ultrathin ferroelectric BaTiO3 layer at room temperature. The ultrathin BaTiO3 layer acts as an atomic oxygen valve and is semitransparent to oxygen-ion transport due to the competing interaction between vertical electron tunneling and ferroelectric polarization plus surface electrochemical changes in itself, thus resulting in the striking emergence of new mixed-phase SrCoO x. The lateral coexistence of brownmillerite phase SrCoO2.5 and perovskite phase SrCoO3-δ was directly observed by transmission electron microscopy. Besides the fundamental significance of long-range interaction in ionic liquid gating, the ability to control the flow of oxygen ions across the heterointerface by the oxygen valve provides a new approach on the atomic scale for designing multistate memories, sensors, and solid-oxide fuel cells.
Collapse
Affiliation(s)
- Youdi Gu
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shenyang 110016 , China
| | | | | | | | - Hongrui Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, University of Chinese Academy of Science, Chinese Academy of Sciences , Beijing 100190 , China
| | - Haijun Mao
- College of Aerospace Science and Engineering , National University of Defense Technology , Changsha 410073 , China
| | | | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, University of Chinese Academy of Science, Chinese Academy of Sciences , Beijing 100190 , China
| | - Wei Liu
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shenyang 110016 , China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shenyang 110016 , China
| | | | | |
Collapse
|
30
|
Ge C, Liu CX, Zhou QL, Zhang QH, Du JY, Li JK, Wang C, Gu L, Yang GZ, Jin KJ. A Ferrite Synaptic Transistor with Topotactic Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900379. [PMID: 30924206 DOI: 10.1002/adma.201900379] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Hardware implementation of artificial synaptic devices that emulate the functions of biological synapses is inspired by the biological neuromorphic system and has drawn considerable interest. Here, a three-terminal ferrite synaptic device based on a topotactic phase transition between crystalline phases is presented. The electrolyte-gating-controlled topotactic phase transformation between brownmillerite SrFeO2.5 and perovskite SrFeO3- δ is confirmed from the examination of the crystal and electronic structure. A synaptic transistor with electrolyte-gated ferrite films by harnessing gate-controllable multilevel conduction states, which originate from many distinct oxygen-deficient perovskite structures of SrFeOx induced by topotactic phase transformation, is successfully constructed. This three-terminal artificial synapse can mimic important synaptic functions, such as synaptic plasticity and spike-timing-dependent plasticity. Simulations of a neural network consisting of ferrite synaptic transistors indicate that the system offers high classification accuracy. These results provide insight into the potential application of advanced topotactic phase transformation materials for designing artificial synapses with high performance.
Collapse
Affiliation(s)
- Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chang-Xiang Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Qing-Li Zhou
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Qing-Hua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian-Yu Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian-Kun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guo-Zhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kui-Juan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
31
|
Saleem MS, Cui B, Song C, Sun Y, Gu Y, Zhang R, Fayaz MU, Zhou X, Werner P, Parkin SSP, Pan F. Electric Field Control of Phase Transition and Tunable Resistive Switching in SrFeO 2.5. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6581-6588. [PMID: 30663876 DOI: 10.1021/acsami.8b18251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
SrFeO x (SFO x) compounds exhibit ionic conduction and oxygen-related phase transformation, having potential applications in solid oxide fuel cells, smart windows, and memristive devices. The phase transformation in SFO x typically requires a thermal annealing process under various pressure conditions, hindering their practical applications. Here, we have achieved a reversible phase transition from brownmillerite (BM) to perovskite (PV) in SrFeO2.5 (SFO2.5) films through ionic liquid (IL) gating. The real-time phase transformation is imaged using in situ high-resolution transmission electron microscopy. The magnetic transition in SFO2.5 is identified by fabricating an assisted La0.7Sr0.3MnO3 (LSMO) bottom layer. The IL-gating-converted PV phase of a SrFeO3-δ (SFO3-δ) layer shows a ferromagnetic-like behavior but applies a huge pinning effect on LSMO magnetic moments, which consequently leads to a prominent exchange bias phenomenon, suggesting an uncompensated helical magnetic structure of SFO3-δ. On the other hand, the suppression of both magnetic and exchange coupling signals for a BM-phased SFO2.5 layer elucidates its fully compensated G-type antiferromagnetic nature. We also demonstrated that the phase transition by IL gating is an effective pathway to tune the resistive switching parameters, such as set, reset, and high/low-resistance ratio in SFO2.5-based resistive random-access memory devices.
Collapse
Affiliation(s)
- Muhammad Shahrukh Saleem
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Bin Cui
- Max Planck Institute for Microstructure Physics , 06120 Halle , Germany
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Yiming Sun
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Ruiqi Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Muhammad Umer Fayaz
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Xiaofeng Zhou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Peter Werner
- Max Planck Institute for Microstructure Physics , 06120 Halle , Germany
| | - Stuart S P Parkin
- Max Planck Institute for Microstructure Physics , 06120 Halle , Germany
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
32
|
Cao L, Petracic O, Zakalek P, Weber A, Rücker U, Schubert J, Koutsioubas A, Mattauch S, Brückel T. Reversible Control of Physical Properties via an Oxygen-Vacancy-Driven Topotactic Transition in Epitaxial La 0.7 Sr 0.3 MnO 3- δ Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806183. [PMID: 30570780 DOI: 10.1002/adma.201806183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The vacancy distribution of oxygen and its dynamics directly affect the functional response of complex oxides and their potential applications. Dynamic control of the oxygen composition may provide the possibility to deterministically tune the physical properties and establish a comprehensive understanding of the structure-property relationship in such systems. Here, an oxygen-vacancy-induced topotactic transition from perovskite to brownmillerite and vice versa in epitaxial La0.7 Sr0.3 MnO3- δ thin films is identified by real-time X-ray diffraction. A novel intermediate phase with a noncentered crystal structure is observed for the first time during the topotactic phase conversion which indicates a distinctive transition route. Polarized neutron reflectometry confirms an oxygen-deficient interfacial layer with drastically reduced nuclear scattering length density, further enabling a quantitative determination of the oxygen stoichiometry (La0.7 Sr0.3 MnO2.65 ) for the intermediate state. Associated physical properties of distinct topotactic phases (i.e., ferromagnetic metal and antiferromagnetic insulator) can be reversibly switched by an oxygen desorption/absorption cycling process. Importantly, a significant lowering of necessary conditions (temperatures below 100 °C and conversion time less than 30 min) for the oxygen reloading process is found. These results demonstrate the potential applications of defect engineering in the design of perovskite-based functional materials.
Collapse
Affiliation(s)
- Lei Cao
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Oleg Petracic
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paul Zakalek
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Alexander Weber
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, 85748, Germany
| | - Ulrich Rücker
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Jürgen Schubert
- Peter Grünberg Institute (PGI9-IT), JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, 85748, Germany
| | - Stefan Mattauch
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, 85748, Germany
| | - Thomas Brückel
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, 85748, Germany
| |
Collapse
|
33
|
Sun S, Yu X, Yang Q, Yang Z, Liang S. Mesocrystals for photocatalysis: a comprehensive review on synthesis engineering and functional modifications. NANOSCALE ADVANCES 2019; 1:34-63. [PMID: 36132462 PMCID: PMC9473194 DOI: 10.1039/c8na00196k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 05/10/2023]
Abstract
Mesocrystals are a new class of superstructures that are generally made of crystallographically highly ordered nanoparticles and could function as intermediates in a non-classical particle-mediated aggregation process. In the past decades, extensive research interest has been focused on the structural and morphogenetic aspects, as well as the growth mechanisms, of mesocrystals. Unique physicochemical properties including high surface area and ordered porosity provide new opportunities for potential applications. In particular, the oriented interfaces in mesocrystals are considered to be beneficial for effective photogenerated charge transfer, which is a promising photocatalytic candidate for promoting charge carrier separation. Only recently, remarkable advances have been reported with a special focus on TiO2 mesocrystal photocatalysts. However, there is still no comprehensive overview on various mesocrystal photocatalysts and their functional modifications. In this review, different kinds of mesocrystal photocatalysts, such as TiO2 (anatase), TiO2 (rutile), ZnO, CuO, Ta2O5, BiVO4, BaZrO3, SrTiO3, NaTaO3, Nb3O7(OH), In2O3-x (OH) y , and AgIn(WO4)2, are highlighted based on the synthesis engineering, functional modifications (including hybridization and doping), and typical structure-related photocatalytic mechanisms. Several current challenges and crucial issues of mesocrystal-based photocatalysts that need to be addressed in future studies are also given.
Collapse
Affiliation(s)
- Shaodong Sun
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China
| | - Xiaojing Yu
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China
| | - Qing Yang
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China
| | - Zhimao Yang
- School of Science, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 Shaanxi People's Republic of China
| | - Shuhua Liang
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China
| |
Collapse
|
34
|
Khare A, Lee J, Park J, Kim GY, Choi SY, Katase T, Roh S, Yoo TS, Hwang J, Ohta H, Son J, Choi WS. Directing Oxygen Vacancy Channels in SrFeO 2.5 Epitaxial Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4831-4837. [PMID: 29327588 DOI: 10.1021/acsami.7b17377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transition-metal oxides (TMOs) with brownmillerite (BM) structures possess one-dimensional oxygen vacancy channels (OVCs), which play a key role in realizing high ionic conduction at low temperatures. The controllability of the vacancy channel orientation, thus, possesses a great potential for practical applications and would provide a better visualization of the diffusion pathways of ions in TMOs. In this study, the orientations of the OVCs in BM-SrFeO2.5 are stabilized along two crystallographic directions of the epitaxial thin films. The distinctively orientated phases are found to be highly stable and exhibit a considerable difference in their electronic structures and optical properties, which could be understood in terms of orbital anisotropy. The control of the OVC orientation further leads to modifications in the hydrogenation of the BM-SrFeO2.5 thin films. The results demonstrate a strong correlation between crystallographic orientations, electronic structures, and ionic motion in the BM structure.
Collapse
Affiliation(s)
- Amit Khare
- Department of Physics, Indian Institute of Science Education of Research (IISER) , Bhopal 462 066, India
| | - Jaekwang Lee
- Department of Physics, Pusan National University , Pusan 46241, Republic of Korea
| | - Jaeseoung Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology , Pohang 37673, Republic of Korea
| | - Gi-Yeop Kim
- Materials Modeling and Characterization Department, Korea Institute of Materials Science , Changwon 51508, Republic of Korea
| | - Si-Young Choi
- Materials Modeling and Characterization Department, Korea Institute of Materials Science , Changwon 51508, Republic of Korea
| | - Takayoshi Katase
- Research Institute for Electronic Science, Hokkaido University , Sapporo 001-0020, Japan
| | | | | | | | - Hiromichi Ohta
- Research Institute for Electronic Science, Hokkaido University , Sapporo 001-0020, Japan
| | - Junwoo Son
- Department of Materials Science and Engineering, Pohang University of Science and Technology , Pohang 37673, Republic of Korea
| | | |
Collapse
|