1
|
Li Y, Guan X, Zhao Y, Zhang Q, Chen X, Zhang S, Lu J, Wei Z. Modulation of Charge Transport Layer for Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410535. [PMID: 39443833 DOI: 10.1002/adma.202410535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Perovskite light-emitting diodes (Pero-LEDs) have garnered significant attention due to their exceptional emission characteristics, including narrow full width at half maximum, high color purity, and tunable emission colors. Recent efficiency and operational stability advancements have positioned Pero-LEDs as a promising next-generation display technology. Extensive research and review articles on the compositional engineering and defect passivation of perovskite layers have substantially contributed to the development of multi-color and high-efficiency Pero-LEDs. However, the crucial aspect of charge transport layer (CTL) modulation in Pero-LEDs remains relatively underexplored. CTL modulation not only impacts the charge carrier transport efficiency and injection balance but also plays a critical role in passivating the perovskite surface, blocking ion migration, enhancing perovskite crystallinity, and improving light extraction efficiency. Therefore, optimizing CTLs is pivotal for further enhancing Pero-LED performance. Herein, this review discusses the roles of CTLs in Pero-LEDs and categorizes both reported and potential CTL materials. Then, various CTL optimization strategies are presented, alongside an analysis of the selection criteria for CTLs in high-performance Pero-LEDs. Finally, a summary and outlook on the potential of CTL modulation to further advance Pero-LED performances are provided.
Collapse
Affiliation(s)
- Yuqing Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiang Guan
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Qin Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xi Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shaopeng Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Division of Physical Science and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
2
|
Kim BW, Im SH. Supersaturated Antisolvent-Assisted Crystallization for Highly Efficient Inorganic Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:28691-28699. [PMID: 39397542 DOI: 10.1021/acsnano.4c06465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We introduced a strategy to form nanocrystalline CsPbBr3 perovskite films with high luminescence and stability, inhibiting crystal growth using a CsBr supersaturated antisolvent during the antisolvent-assisted crystallization process. We devised this strategy because the supersaturated antisolvent has a higher CsBr concentration over its solubility limit in the saturated antisolvent and consequently will form the smaller perovskite nanocrystalline grains due to the quick precipitation of the CsBr. Here, the CsBr is chosen as a model inorganic antisolvent additive for a crystal growth inhibitor and a passivator. Consequently, we have achieved a nanocrystalline CsPbBr3 film with an average grain size of ∼39 nm by the CsBr supersaturated antisolvent-assisted crystallization process, which is about 41% smaller than the average grain size of the control sample. Hence, the perovskite thin film exhibited a much higher photoluminescence quantum yield than the control film. The maximum current efficiency (CEmax) and the maximum external quantum efficiency (EQEmax) of the corresponding CsPbBr3 perovskite light-emitting diodes (PeLEDs) were approximately twice higher (CEmax of 94.64 cd A-1 and EQEmax of 22.93%) than those of the control device. Simultaneously, the inclusion of CsBr additives played a multifunctional role in diminishing the leakage current of PeLEDs and enhancing their operational lifetime.
Collapse
Affiliation(s)
- Bong Woo Kim
- BK21 Four R&E Center, Department of Chemical and Biological Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Hyuk Im
- BK21 Four R&E Center, Department of Chemical and Biological Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Beegum KAB, Sasi S, Thomas C, Mathew A, Raman R. Bluish-white Light-emitting 2D Sheets of Lead-free Perovskite Cesium Titanium Bromide (CsTiBr 3) by a Two-stage Deposition Technique. J Fluoresc 2024; 34:2325-2333. [PMID: 37768464 DOI: 10.1007/s10895-023-03444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bluish-white light-emitting materials are commonly used in LED lighting because they produce natural-looking light. Here we report the photoluminescent emission (PL) of novel, two-dimensional lead-free CsTiBr3 perovskite prepared via a two-stage deposition process. The formation of two-dimensional nanosheets of CsTiBr3 perovskite is confirmed by XRD, EDAX, and FESEM analysis. The height of the cesium bromide thin film substrate from the titanium bromide vapor source plays an important role in the formation of two-dimensional CsTiBr3. The CsTiBr3 perovskite nanosheets exhibit unique exciton- luminescence at 440 nm and self-trapped exciton emission at 595 nm which are the characteristics of two-dimensional halide structure, along with the band-to-band emission at 400 nm at an excitation wavelength of 340 nm. The resulting bluish-white light PL emission makes two-dimensional CsTiBr3 perovskite an alternative material to the traditional lead-based perovskite in LEDs, display technology, solid-state lighting, and various optoelectronic devices, addressing environmental concerns.
Collapse
Affiliation(s)
- K A Benazeera Beegum
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Saranya Sasi
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Christeena Thomas
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Alex Mathew
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Reshmi Raman
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India.
| |
Collapse
|
4
|
Ou Z, Wang C, Tao ZG, Li Y, Li Z, Zeng Y, Li Y, Shi E, Chu W, Wang T, Xu H. Organic Ligand Engineering for Tailoring Electron-Phonon Coupling in 2D Hybrid Perovskites. NANO LETTERS 2024; 24:5975-5983. [PMID: 38726841 DOI: 10.1021/acs.nanolett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.
Collapse
Affiliation(s)
- Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Cheng Wang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Zhi-Guo Tao
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
5
|
Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul AB, Jiang Q. Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:391. [PMID: 38470722 PMCID: PMC10933891 DOI: 10.3390/nano14050391] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Halide perovskite materials have attracted worldwide attention in the photovoltaic area due to the rapid improvement in efficiency, from less than 4% in 2009 to 26.1% in 2023 with only a nanometer lever photo-active layer. Meanwhile, this nova star found applications in many other areas, such as light emitting, sensor, etc. This review started with the fundamentals of physics and chemistry behind the excellent performance of halide perovskite materials for photovoltaic/light emitting and the methods for preparing them. Then, it described the basic principles for solar cells and light emitting devices. It summarized the strategies including nanotechnology to improve the performance and the application of halide perovskite materials in these two areas: from structure-property relation to how each component in the devices affects the overall performance. Moreover, this review listed the challenges for the future applications of halide perovskite materials.
Collapse
Affiliation(s)
- Maoding Cheng
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Jingtian Jiang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chao Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Mansour Mortazavi
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Anupama B Kaul
- Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Qinglong Jiang
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| |
Collapse
|
6
|
Gao L, Cheng T, Gou L, Zhang Y, Liu Y, Yuan L, Zhang X, Wang Y, Meng F, Zhang J. Eliminating Nanocrystal Surface Light Loss and Ion Migration to Achieve Bright Mixed-Halide Blue Perovskite LEDs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18125-18133. [PMID: 37000642 DOI: 10.1021/acsami.3c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Blue light-emittin g diodes (LEDs) are important components for perovskite electroluminescence applications, which still suffer from insufficient luminescence efficiency and poor stability. In Cl/Br mixed perovskite NCs, surficial defects cause severe light failure and ion migration, the in-depth mechanism of which is also not clear. To gain insights into these issues, we employ the ligand post-addition approach for mixed Cl/Br NCs by using octylammonium hydrobromide (OctBr) ligands, which effectively decrease surficial light loss and block ion migration pathways. The passivated CsPbCl1.5Br1.5 NCs exhibit exceptional blue emission with 95% PLQY, and the electroluminescence spectra of LEDs are located at the initial positions at the initial states. The treated NC blue devices show a negligible color shift as the voltage increases, which proves that electric-field-driven ion migration is drastically suppressed. In addition, OctBr-treated CsPbCl1.5Br1.5 and CsPbClBr2 NC LEDs show high external quantum efficiencies of 2.42 and 3.05% for emission peaks at 456 and 480 nm, respectively. Our work identified the nature of NC surface defects and provided a surficial modification approach to develop high-performance and color-stable blue mixed-halide perovskite LEDs.
Collapse
Affiliation(s)
- Long Gao
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| | - Tuo Cheng
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| | - Lijie Gou
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| | - Yilin Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| | - Yuping Liu
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| | - Long Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| | - Yinghui Wang
- College of Physics, Jilin University, Changchun 130012, China
| | - Fanxu Meng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jiaqi Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Liang FC, Jhuang FC, Fang YH, Benas JS, Chen WC, Yan ZL, Lin WC, Su CJ, Sato Y, Chiba T, Kido J, Kuo CC. Synergistic Effect of Cation Composition Engineering of Hybrid Cs 1-x FA x PbBr 3 Nanocrystals for Self-Healing Electronics Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207617. [PMID: 36353914 DOI: 10.1002/adma.202207617] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Mixed-cation hybrid perovskite nanocrystal (HPNC) with high crystallinity, color purity, and tunable optical bandgap offers a practical pathway toward next-generation displays. Herein, a two-step modified hot-injection combined with cation compositional engineering and surface treatment to synthesize high-purity cesium/formamidinium lead bromide HPNCs(Cs1-x FAx PbBr3 ) is presented. The optimized Cs0.5 FA0.5 PbBr3 light-emitting devices (LEDs) exhibit uniform luminescence of 3500 cd m-2 and a prominent current efficiency of 21.5 cd A-1 . As a proof of concept, a self-healing polymer (SHP) integrated with white LED backlight and laser prototypes exhibited 4 h autonomous self-healing through the synergistic effect of weak reversible imine bonds and stronger H-bonds. First, the SHP-HPNCs-initial and SHP-HPNCs-cut possess high long-term stability and dramatically suppressed lead leakage as low as 0.6 ppm along with a low leakage rate of 1.11 × 10-5 cm2 and 3.36 × 10-5 cm2 even over 6 months in water. Second, the Cs0.5 FA0.5 PbBr3 HPNCs and SHP-induced shattered-repaired perovskite glass substrate show the lowest lasing threshold values of 1.24 and 8.58 µJ cm-2 , respectively. This work provides an integrative and in-depth approach to exploiting SHP with intrinsic and entropic self-healing capabilities combined with HPNCs to develop robust and reliable soft-electronic backlight and laser applications.
Collapse
Affiliation(s)
- Fang-Cheng Liang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Fu-Cheng Jhuang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Yu-Han Fang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Wei-Cheng Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Zhen-Li Yan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Wei-Chun Lin
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yuki Sato
- Graduate School of Organic Materials Science, Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | - Takayuki Chiba
- Graduate School of Organic Materials Science, Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | - Junji Kido
- Graduate School of Organic Materials Science, Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan
| |
Collapse
|
8
|
Li H, Hu S, Wang H, Zhang X, Tong Y, Qi H, Guo P, Zhao G, Gao J, Liu P, Zang J, Hao H, Liu T, Bian H, Zhang Y, Wei Y, Guo Y, Zhang L, Fang Y, Wang H. Control of n-Phase Distribution in Quasi Two-Dimensional Perovskite for Efficient Blue Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9574-9583. [PMID: 36753052 DOI: 10.1021/acsami.2c19979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m-2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron-phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron-phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film.
Collapse
Affiliation(s)
- Huixin Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Siliang Hu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Hongyue Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Pengfei Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Guanguan Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Jialiang Gao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Peng Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Youqian Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Yang Wei
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Yangyang Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| |
Collapse
|
9
|
Bao Z, Guo X, Sun K, Ou J, Lv Y, Zou D, Li Y, Song L, Liu X. Morphology and Luminescence Regulation for CsPbBr 3 Perovskite Light-Emitting Diodes by Controlling Growth of Low-Dimensional Phases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56374-56383. [PMID: 36480696 DOI: 10.1021/acsami.2c17370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
At present, the high defect density and strong nonradiative recombination rate of all-inorganic cesium lead bromide (CsPbBr3) perovskite light-emitting diodes (PeLEDs) seriously inhibit the improvement of their quantum efficiency. In this paper, the addition of a short-chain additive, diethylammonium bromide (DEABr), aims to control the generation of a quasi-2D large n-phase to optimize the surface morphology and construct two-dimensional/three-dimensional (2D/3D) heterojunction perovskite structures to enhance the EL efficiency of PeLEDs. Through Kelvin probe force microscopy (KPFM) characterization, we confirmed that the 2D phase grains with a low potential are locally formed on the surface of the perovskite film under the action of DEABr. The existence of the 2D phase effectively improved the surface morphology and suppressed surface defects. In addition, the in situ constructed 2D/3D heterojunction perovskite structure further increases the exciton radiative recombination rate and significantly improves the electroluminescent performance. By optimizing its doping concentration, the optimal all-inorganic PeLED displays a current efficiency (CE) of 30.3 cd A-1, an external quantum efficiency (EQE) of 9.6%, and a maximum brightness of 32,500 cd m-2. According to our results, the formation of 2D structures on the surface of the CsPbBr3 film can improve surface morphology issues and optoelectronic properties of the film.
Collapse
Affiliation(s)
- Zhiqiang Bao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| | - Kai Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jianfeng Ou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| | - Deyue Zou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yantao Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| | - Li Song
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin300401, P. R. China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| |
Collapse
|
10
|
Pei Y, Tu D, Li C, Han S, Xie Z, Wen F, Wang L, Chen X. Boosting Near‐Infrared Luminescence of Lanthanide in Cs
2
AgBiCl
6
Double Perovskites via Breakdown of the Local Site Symmetry. Angew Chem Int Ed Engl 2022; 61:e202205276. [DOI: 10.1002/anie.202205276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Yifan Pei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350117 China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350117 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Chenliang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Siyuan Han
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhi Xie
- College of Mechanical and Electronic Engineering Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Fei Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350117 China
| | - Luping Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350117 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
11
|
Pei Y, Tu D, Li C, Han S, Xie Z, Wen F, Wang L, Chen X. Boosting Near‐Infrared Luminescence of Lanthanide in Cs2AgBiCl6 Double Perovskites via Breakdown of the Local Site Symmetry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yifan Pei
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures CHINA
| | - Datao Tu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures CHINA
| | - Chenliang Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures CHINA
| | - Siyuan Han
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures CHINA
| | - Zhi Xie
- Fujian Agricultural University: Fujian Agriculture and Forestry University College of Mechanical and Electronic Engineering CHINA
| | - Fei Wen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures CHINA
| | - Luping Wang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures CHINA
| | - Xueyuan Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 West Yangqiao Road Fuzhou CHINA
| |
Collapse
|
12
|
Li N, Jia Y, Guo Y, Zhao N. Ion Migration in Perovskite Light-Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108102. [PMID: 34847262 DOI: 10.1002/adma.202108102] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In recent years, perovskite light-emitting diodes (PeLEDs) have emerged as a promising new lighting technology with high external quantum efficiency, color purity, and wavelength tunability, as well as, low-temperature processability. However, the operational stability of PeLEDs is still insufficient for their commercialization. The generation and migration of ionic species in metal halide perovskites has been widely acknowledged as the primary factor causing the performance degradation of PeLEDs. Herein, this topic is systematically discussed by considering the fundamental and engineering aspects of ion-related issues in PeLEDs, including the material and processing origins of ion generation, the mechanisms driving ion migration, characterization approaches for probing ion distributions, the effects of ion migration on device performance and stability, and strategies for ion management in PeLEDs. Finally, perspectives on remaining challenges and future opportunities are highlighted.
Collapse
Affiliation(s)
- Nan Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Yongheng Jia
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Yuwei Guo
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| |
Collapse
|
13
|
Yuan F, Zhang M, Zhu C, Liu X, Zhao C, Dai J, Dong H, Jiao B, Lan X, Wu Z. Hole Transport Layer Free Perovskite Light-Emitting Diodes With High-Brightness and Air-Stability Based on Solution-Processed CsPbBr3-Cs4PbBr6 Composites Films. Front Chem 2022; 10:828322. [PMID: 35127638 PMCID: PMC8814343 DOI: 10.3389/fchem.2022.828322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, perovskite light-emitting diodes (PeLEDs) have drew widespread attention due to their high efficiencies. However, because of the sensitivity to moisture and oxygen, perovskite luminescent layers are usually prepared in high-purity nitrogen environment, which increases the cost and process complexity of device preparation and seriously hindrances its commercialization of PeLED in lighting and display application. Herein, dual-phase all-inorganic composite CsPbBr3-Cs4PbBr6 films are fabricated from CsBr-rich perovskite solutions by a simple one-step spin-coating method in the air with high humidity. Compared with the pure CsPbBr3 film, the composite CsPbBr3-Cs4PbBr6 film has much stronger photoluminescence emission and longer fluorescence lifetime, accompanied by increased photoluminescence quantum yield (33%). As a result, we obtained green PeLED devices without hole transport layer exhibiting a maximum brightness of 72,082 cd/m2 and a maximum external quantum efficiency of about 2.45%, respectively. More importantly, the champion device shows excellent stability with operational half-lifetime exceeding 1,000 min under continuous operation in the air. The dual-phase all-inorganic composite CsPbBr3-Cs4PbBr6 film shows attractive prospect for advanced light emission applications.
Collapse
Affiliation(s)
- Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Min Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Chunrong Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyun Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Chenjing Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xuguang Lan
- Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
- *Correspondence: Zhaoxin Wu,
| |
Collapse
|
14
|
Liang J, Wang K, Du Y, Zhang C, Yan Y, Zhao YS. Screen-Overprinted Perovskite RGB Microdisk Arrays Based on Wet-Solute-Chemical Dynamics for Full-Color Laser Displays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1774-1782. [PMID: 34968027 DOI: 10.1021/acsami.1c21248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to outstanding optoelectronic properties, halide perovskites are great candidates for novel laser display applications. However, the realization of their practical flat-panel display applications is challenging because of the incapacity to controllably assemble different halide perovskite microlaser arrays onto an identical substrate as pixelated full-color panels due to intrinsic fragile crystal lattices. Here, perovskite red-green-blue (RGB) microdisk arrays are reported, acting as flat-panels for full-color laser displays. A universal screen-overprinting technology is developed to integrate full-color perovskite microdisk arrays on a prepatterned template, which is on the basis of wet-solute-chemical dynamics involving a combination of surface tailoring and solvent selection. Via such an overprinting method, perovskite RGB microlaser matrices with precise localizations and well-defined dimensions were fabricated on an identical substrate, and each set of RGB microlaser served as a pixel for full-color display panels. On this basis, static and dynamic laser displays have been demonstrated with as-prepared full-color panels. These results will provide novel design concepts and device structures for future full-color laser display applications.
Collapse
Affiliation(s)
- Jie Liang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxiang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Ou J, Guo X, Lv Y, Fan Y, Li Y, Zou D, Bao Z, Song L, Liu X. Efficient Inorganic Perovskite Light-Emitting Diodes by Inducing Grain Arrangement via a Multifunctional Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60571-60580. [PMID: 34890207 DOI: 10.1021/acsami.1c15477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accumulating evidence shows that metal halide perovskite light-emitting diodes (PeLEDs) are well-described to show broad application prospects in lighting and display due to the wide color gamut and high color purity. However, it is still a great challenge to prepare high-quality all-inorganic PeLEDs by a solution method. For example, it is difficult to obtain all-inorganic perovskite films with good crystallinity and high grain orientation because of too fast and uncontrollable crystallization of all-inorganic perovskite films. Here, we demonstrated a multifunctional interface of formamide (FA)-doped PEDOT:PSS, which improved the crystallinity of all-inorganic perovskite films by inducing grain arrangement. As a result, a highly crystalline, ordered, and defect-passivated CsPbBr3 film was obtained by the multiple roles of FA, and the CsPbBr3-based PeLED treated with FA achieved both high brightness and high efficiency: the peak external quantum efficiency (EQE) reaches 9.61%, and the maximum brightness is 185,000 cd/m2. In addition, Tween 80, used as a passivator of perovskite films, reduced the defect states and suppressed ion migration. Under the synergistic effect of FA interface treatment and Tween 80 passivation treatment, efficient CsPbBr3-based PeLEDs were obtained with an EQE of 15.02% and an operation lifetime of 182.5 min at an initial brightness of 1000 cd/m2, which is among the best reported lifetimes under high brightness. Our study provides a simple and effective strategy for the realization of all-inorganic PeLEDs with high efficiency, high brightness, and ultralong operation lifetime.
Collapse
Affiliation(s)
- Jianfeng Ou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Yi Fan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Yantao Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Deyue Zou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Bao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Song
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
16
|
Zhu C, Yuan F, Liu X, Li J, Dong H, Zhao C, Yan L, Xu Y, Dai J, Si J, Jiao B, Wu Z. High Triplet Energy Level Molecule Enables Highly Efficient Sky-Blue Perovskite Light-Emitting Diodes. J Phys Chem Lett 2021; 12:11723-11729. [PMID: 34851112 DOI: 10.1021/acs.jpclett.1c03518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of triplet states in the interfacial energy transfer in perovskite light-emitting diodes (PeLEDs) has so far not been clarified because of the complex exciton recombination and decay dynamics. This work aims to study this issue and accordingly proposes a novel interfacial-engineering strategy for efficient sky-blue PeLEDs. To this end, bis[2-(diphenylphosphino)phenyl]ether oxide with a high triplet energy level is introduced into sky-blue PeLEDs. It effectively reduces undesirable exciton transfer from the perovskite emission layer to the electron-transport layer, largely suppresses exciton quenching at the interface, and simultaneously passivates defects at the perovskite surfaces. As a result of the multichannel energy-loss reduction, sky-blue PeLED that emits at 488 nm is achieved with a peak external quantum efficiency of 10.17% and a maximum brightness of 6728.41 cd m-2. This work thus provides indirect evidence for the triplet mechanism of blue emission of mixed-halide perovskites and sheds new light on a promising way of boosting the performance of blue PeLEDs.
Collapse
Affiliation(s)
- Chunrong Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoyun Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chenjing Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanmin Xu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
17
|
Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites. NANOMATERIALS 2021; 11:nano11123310. [PMID: 34947660 PMCID: PMC8706729 DOI: 10.3390/nano11123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78–500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78–500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material’s high photoluminescence efficiency and low electroluminescence efficiency.
Collapse
|
18
|
Chen W, Shi Y, Chen J, Ma P, Fang Z, Ye D, Lu Y, Yuan Y, Zhao J, Xiao Z. Polymerized Hybrid Perovskites with Enhanced Stability, Flexibility, and Lattice Rigidity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104842. [PMID: 34590357 DOI: 10.1002/adma.202104842] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The intrinsic soft lattice nature of organometal halide perovskites (OHPs) makes them very tolerant to defects and ideal candidates for solution-processed optoelectronic devices. However, the soft lattice results in low stability towards external stresses such as heating and humidity, high density of phonons and strong electron-phonon coupling (EPC). Here, it is demonstrated that the OHPs with unsaturated 4-vinylbenzylammonium (VBA) as organoammonium cations can be polymerized without damaging the perovskite structure and its tolerance to defects. The polymerized perovskites show enhanced stability and flexibility compared to regular three-dimensional and two-dimensional (2D) perovskites. Furthermore, the polymerized 4-vinylbenzylammonium group improves perovskite lattice rigidity substantially, resulting in a reduced non-radiative recombination rate because of suppressed electron-phonon coupling, and enhanced carrier mobility because of suppressed phonon scattering. 2D polymerized perovskite light-emitting diodes (PeLEDs) with strong electroluminescence at room temperature, and quasi-2D PeLEDs with an external quantum efficiency (EQE) of 23.2% and enhanced operation stability are demonstrated. The work has opened a new way of enhancing the intrinsic stability and optoelectronic properties of OHPs.
Collapse
Affiliation(s)
- Wenjing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongliang Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pingchuan Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhibin Fang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dan Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yiyang Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongbo Yuan
- Hunan Key Laboratory of Supermicrostructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengguo Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Ban X, Yu J, He X, Qiu S, Zhou T, Zhang K, Gao C. Highly Efficient Quasi-2D Perovskite Light-Emitting Diodes Incorporating a TADF Dendrimer as an Exciton-Retrieving Additive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44585-44595. [PMID: 34510897 DOI: 10.1021/acsami.1c14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although small organics or polymer additives have been introduced to enhance film formation and radiative recombination of perovskite light-emitting diodes (PeLEDs), the exciton utilization and quantum efficiency need further optimization. Here, we introduce a thermal-activated delayed fluorescence (TADF) dendrimer as an additive to enhance the surface coverage and reduce the trap state of the grain boundary. More importantly, the TADF nature of such an additive can retrieve the exciton dissociated from perovskite or trapped by the grain boundary and then transfer the energy back to emissive perovskite through the Förster energy transfer process. Since the triplets can be reused by reverse intersystem crossing in such a TADF additive, the theoretical exciton utilization is 100%. As a result, the optimized PeLEDs cooperating with a TADF additive achieved a high current efficiency of 39.0 cd A-1 and an ultrabright luminescence of 18,000 cd m-2, which are almost 5 times higher than those of the control device without an additive. Moreover, the device stability monitored by half-lifetime at 1000 cd m-2 enhanced 2 times after introducing the TADF dendrimer as an additive. The parent dendrimer without a TADF feature was also synthesized as an additive to explore the mechanism action, which found that 54% enhancement of device efficiency can be attributed to defect passivating, while 46% was assigned to retrieved energy. This research first demonstrates that the TADF dendrimer is a promising exciton-retrieving additive for enhancing the performance of PeLEDs by passivating defect, filling up grain boundary, and retrieving leakage exciton.
Collapse
Affiliation(s)
- Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jianmin Yu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaoli He
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real Time Analysis, Southwest University, Chongqing 400715, China
| | - Suyu Qiu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Chunhong Gao
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real Time Analysis, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Zou Y, Cai L, Song T, Sun B. Recent Progress on Patterning Strategies for Perovskite Light-Emitting Diodes toward a Full-Color Display Prototype. SMALL SCIENCE 2021; 1:2000050. [PMID: 40213164 PMCID: PMC11935914 DOI: 10.1002/smsc.202000050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Indexed: 05/18/2025] Open
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted both academic and industrial interest because of their high efficiency, wide color gamut as well as low material and fabrication costs. However, most state-of-the-art PeLEDs are still fabricated with commonly used spin-coating methods, which are undesirable for large-scale commercial production. Achieving highly emissive perovskite microarrays at high spatial resolution with quick and large-scale growth is one of the critical steps to integrate state-of-the-art PeLEDs into full-color display panels. Here, the fabrication methods and crystallization processes of perovskite materials are first discussed because they are strongly relevant to the patterning process and the quality of the perovskite pixels. Then, the current strategies to realize perovskite patterns that can be likely integrated into display panels, through mask-free or mask-assisted methods, are explored. Self-emitting and down-conversion PeLED devices with a patterned perovskite matrix as the emissive layer are also reviewed. Finally, an outlook is provided on how to further improve the optical and electrical properties of the perovskite patterns and the performance of PeLEDs as well as to develop eco-friendly devices to accelerate the potential commercialization progress of this young technique.
Collapse
Affiliation(s)
- Yatao Zou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Lei Cai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Tao Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| |
Collapse
|
21
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 463] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
22
|
Song L, Huang L, Liu Y, Hu Y, Guo X, Chang Y, Geng C, Xu S, Zhang Z, Zhang Y, Luan N. Efficient and Stable Blue Perovskite Light-Emitting Devices Based on Inorganic Cs 4PbBr 6 Spaced Low-Dimensional CsPbBr 3 through Synergistic Control of Amino Alcohols and Polymer Additives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33199-33208. [PMID: 34233117 DOI: 10.1021/acsami.1c02555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskite light-emitting devices (PeLEDs) have drawn a great deal of attention because of their exceptional optical and electrical properties. However, as for the blue PeLEDs based on low-dimensional (LD) CsPbBr3, the low conductivity of the widely used organic spacers as well as the difficulty of forming pure and uniform LD CsPbBr3 phase have severely inhibited the device performance such as stability and efficiency. In this work, we report an effective strategy to obtain high-quality LD CsPbBr3 by using a novel spacer of inorganic Cs4PbBr6 instead of the common long-chain ammonium halides. We found that a 3-amino-1-propanol (3AP)-modified PEDOT:PSS was helpful to stimulate the formation of the LD blue emissive CsPbBr3:Cs4PbBr6 composite. We also revealed that an additive of poly(vinylpyrrolidone) (PVP) in the precursor can limit further growth of LD perovskite phase into 3D perovskite phase upon annealing, thus resulting in a uniformly distributed LD perovskite with high color stability. Consequently, efficient blue PeLEDs @ 485 nm with a brightness of 2192 cd/m2, current efficiency of 2.68 cd/A, and external quantum efficiency of 2.3% was successfully achieved. More importantly, the device showed much improved working stability compared to those with the spacer of organic ammonium halides. Our results provide some helpful insights into developing efficient and stable blue PeLEDs.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Lixin Huang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Yuan Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Yongsheng Hu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Chong Geng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Shu Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Zihui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Yonghui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Nannan Luan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment and Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| |
Collapse
|
23
|
Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bhaumik S, Kar MR, Thorat BN, Bruno A, Mhaisalkar SG. Vacuum-Processed Metal Halide Perovskite Light-Emitting Diodes: Prospects and Challenges. Chempluschem 2021; 86:558-573. [PMID: 33830661 DOI: 10.1002/cplu.202000795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Indexed: 11/09/2022]
Abstract
In less than a decade, organic-inorganic metal halide perovskites (MHPs) have shown tremendous progress in the field of light-emitting applications. Perovskite light-emitting diodes (PeLEDs) have reached external quantum efficiencies (EQE) exceeding 20 % and they have been recognized as a potential contender of the commercial display technologies. However, perovskite thin films in PeLEDs are generally deposited via a spin-coating process, which is not favourable for large area device fabrication. Despite the great success of solution-processed PeLEDs, very few articles have been reported on vacuum processed PeLEDs and the improvements in their optoelctronic performances are also progressing slowly. On the other hand, vacuum processing techniques are mostly used in organic LED technology as they can guarantee (i) the absence of solvent during thin-film growth, (ii) process scalability over large area substrates, and (iii) precise thin-film thickness control. This thin-film growth process is suitable for application in the advancement of a large variety of display technologies. In this Review, we present an overview of current research advances in the field of perovskite thin films grown via vacuum techniques, a study of their photophysical properties, and integration in PeLEDs for the generation of different colors. We also highlight the current challenges and future prospects for the further development of vacuum processed PeLEDs.
Collapse
Affiliation(s)
- Saikat Bhaumik
- Institute of Chemical Technology-IndianOil Odisha Campus, Mouza-Samantapuri, Bhubaneswar, Odisha, 751013, India
| | - Manav Raj Kar
- Institute of Chemical Technology-IndianOil Odisha Campus, Mouza-Samantapuri, Bhubaneswar, Odisha, 751013, India
| | - Bhaskar N Thorat
- Institute of Chemical Technology-IndianOil Odisha Campus, Mouza-Samantapuri, Bhubaneswar, Odisha, 751013, India
| | - Annalisa Bruno
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, X-Frontier Block, Level 5, Singapore, 637553, Singapore
| | - Subodh G Mhaisalkar
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, X-Frontier Block, Level 5, Singapore, 637553, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
25
|
Xiao P, Yu Y, Cheng J, Chen Y, Yuan S, Chen J, Yuan J, Liu B. Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E103. [PMID: 33406749 PMCID: PMC7823701 DOI: 10.3390/nano11010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Recently, perovskite light-emitting diodes (PeLEDs) are seeing an increasing academic and industrial interest with a potential for a broad range of technologies including display, lighting, and signaling. The maximum external quantum efficiency of PeLEDs can overtake 20% nowadays, however, the lifetime of PeLEDs is still far from the demand of practical applications. In this review, state-of-the-art concepts to improve the lifetime of PeLEDs are comprehensively summarized from the perspective of the design of perovskite emitting materials, the innovation of device engineering, the manipulation of optical effects, and the introduction of advanced encapsulations. First, the fundamental concepts determining the lifetime of PeLEDs are presented. Then, the strategies to improve the lifetime of both organic-inorganic hybrid and all-inorganic PeLEDs are highlighted. Particularly, the approaches to manage optical effects and encapsulations for the improved lifetime, which are negligibly studied in PeLEDs, are discussed based on the related concepts of organic LEDs and Cd-based quantum-dot LEDs, which is beneficial to insightfully understand the lifetime of PeLEDs. At last, the challenges and opportunities to further enhance the lifetime of PeLEDs are introduced.
Collapse
Affiliation(s)
- Peng Xiao
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Yicong Yu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Junyang Cheng
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Yonglong Chen
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Shengjin Yuan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Jianwen Chen
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Jian Yuan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Wu H, Qiu J, Wang J, Wen Y, Wang Q, Long Z, Zhou D, Yang Y, Wang D. The dual-defect passivation role of lithium bromide doping in reducing the nonradiative loss in CsPbX3 (X = Br and I) quantum dots. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01262a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium bromide as a new duel-defect passivation agent can effectively enhance luminescence properties by reducing the non-radiative loss.
Collapse
Affiliation(s)
- Hao Wu
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Jianbei Qiu
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
- Key Lab of Advanced Materials of Yunnan Province
| | - Jing Wang
- Sun Yat Sen Univ
- Sch Chem
- Sch Mat Sci & Engn
- Guangzhou 510275
- People's Republic of China
| | - Yugeng Wen
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
- Key Lab of Advanced Materials of Yunnan Province
| | - Qi Wang
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
- Key Lab of Advanced Materials of Yunnan Province
| | - Zhangwen Long
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Dacheng Zhou
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
- Key Lab of Advanced Materials of Yunnan Province
| | - Yong Yang
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
- Key Lab of Advanced Materials of Yunnan Province
| | - Dazhao Wang
- Faculty of Material Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| |
Collapse
|
27
|
Liu M, Pasanen H, Ali‐Löytty H, Hiltunen A, Lahtonen K, Qudsia S, Smått J, Valden M, Tkachenko NV, Vivo P. B-Site Co-Alloying with Germanium Improves the Efficiency and Stability of All-Inorganic Tin-Based Perovskite Nanocrystal Solar Cells. Angew Chem Int Ed Engl 2020; 59:22117-22125. [PMID: 32816348 PMCID: PMC7756719 DOI: 10.1002/anie.202008724] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/21/2022]
Abstract
Colloidal lead-free perovskite nanocrystals have recently received extensive attention because of their facile synthesis, the outstanding size-tunable optoelectronic properties, and less or no toxicity in their commercial applications. Tin (Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions. Here, we propose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals, demonstrating the role of Ge2+ in stabilizing Sn2+ cation while enhancing the optical and photophysical properties. The partial replacement of Sn atoms by Ge atoms in the nanostructures effectively fills the high density of Sn vacancies, reducing the surface traps and leading to a longer excitonic lifetime and increased photoluminescence quantum yield. The resultant Sn-Ge nanocrystals-based devices show the highest efficiency of 4.9 %, enhanced by nearly 60 % compared to that of pure Sn nanocrystals-based devices.
Collapse
Affiliation(s)
- Maning Liu
- Chemistry and Advanced Materials GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Hannu Pasanen
- Chemistry and Advanced Materials GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Harri Ali‐Löytty
- Surface Science GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Arto Hiltunen
- Chemistry and Advanced Materials GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Kimmo Lahtonen
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Syeda Qudsia
- Laboratory of Molecular Science and EngineeringÅbo Akademi UniversityPorthansgatan 3–520500TurkuFinland
| | - Jan‐Henrik Smått
- Laboratory of Molecular Science and EngineeringÅbo Akademi UniversityPorthansgatan 3–520500TurkuFinland
| | - Mika Valden
- Surface Science GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Nikolai V. Tkachenko
- Chemistry and Advanced Materials GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| | - Paola Vivo
- Chemistry and Advanced Materials GroupFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 69233014TampereFinland
| |
Collapse
|
28
|
Wang H, Yuan H, Yu J, Zhang C, Li K, You M, Li W, Shao J, Wei J, Zhang X, Chen R, Yang X, Zhao W. Boosting the Efficiency of NiO x-Based Perovskite Light-Emitting Diodes by Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53528-53536. [PMID: 33179493 DOI: 10.1021/acsami.0c16139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nickel oxide (NiOx) is a promising hole-transporting material for perovskite light-emitting diodes (PeLEDs) because of its low cost, excellent stability, and simple fabrication process. However, the electroluminescence efficiencies of NiOx-based PeLEDs are greatly limited by inefficient hole injection and exciton quenching at the NiOx-perovskite interfaces. Here, a novel interfacial engineering method with sodium dodecyl sulfate-oxygen plasma (SDS-OP) is demonstrated to simultaneously overcome the aforementioned issues. Experimental results reveal that a short OP treatment on the top of the SDS-coated NiOx significantly deepens the NiOx work function (from 4.23 to 4.85 eV) because of the formation of a large surface dipole, allowing for efficient hole injection. Moreover, the SDS-OP layer passivates the electronic surface trap states of perovskite films and suppresses the exciton quenching by NiOx. These improvements inhibit the nonradiative decays at the NiOx-perovskite interface. As a result, the external quantum efficiency of CsPbBr3 LEDs is increased from 0.052 to 2.5%; that of FAPbBr3 nanocrystals LEDs is increased from 5.6 to 7.6%.
Collapse
Affiliation(s)
- Haoran Wang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao Yuan
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Jiahao Yu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Zhang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Kang Li
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Mengqing You
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Wenqiang Li
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Jian Shao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Weiwei Zhao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Liu M, Pasanen H, Ali‐Löytty H, Hiltunen A, Lahtonen K, Qudsia S, Smått J, Valden M, Tkachenko NV, Vivo P. B‐Site Co‐Alloying with Germanium Improves the Efficiency and Stability of All‐Inorganic Tin‐Based Perovskite Nanocrystal Solar Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maning Liu
- Chemistry and Advanced Materials Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Hannu Pasanen
- Chemistry and Advanced Materials Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Harri Ali‐Löytty
- Surface Science Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Arto Hiltunen
- Chemistry and Advanced Materials Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Kimmo Lahtonen
- Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Syeda Qudsia
- Laboratory of Molecular Science and Engineering Åbo Akademi University Porthansgatan 3–5 20500 Turku Finland
| | - Jan‐Henrik Smått
- Laboratory of Molecular Science and Engineering Åbo Akademi University Porthansgatan 3–5 20500 Turku Finland
| | - Mika Valden
- Surface Science Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Nikolai V. Tkachenko
- Chemistry and Advanced Materials Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| | - Paola Vivo
- Chemistry and Advanced Materials Group Faculty of Engineering and Natural Sciences Tampere University P.O. Box 692 33014 Tampere Finland
| |
Collapse
|
30
|
Fan R, Song L, Hu Y, Guo X, Liu X, Wang L, Geng C, Xu S, Zhang Y, Zhang Z, Luan N, Bi W. Boosting the Efficiency and Stability of Perovskite Light-Emitting Devices by a 3-Amino-1-propanol-Tailored PEDOT:PSS Hole Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43331-43338. [PMID: 32838522 DOI: 10.1021/acsami.0c13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Properties of the underlying hole transport layer (HTL) in perovskite light-emitting devices (PeLEDs) play a critical role in determining the optoelectronic performance through influencing both the charge transport and the quality of the active perovskite emission layer (EML). This work focuses on manipulating the carrier transport behavior and obtaining a high-quality EML film by tailoring the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL with previously unused amino alcohol 3-amino-1-propanol (3AP). The modified PEDOT:PSS rendered a deeper work function that is more suitable for the hole injection from the HTL to EML. More importantly, the 3AP-modified PEDOT:PSS film can induce a low-dimensional perovskite phase that can passivate the defects in the EML, resulting in a significantly improved light emission. Such ameliorations consequently result in a dramatical enhancement in performance of PeLED with a low turn-on voltage of 2.54 V, a maximum luminance of 23033 cd/m2, a highest current efficiency of 29.38 cd/A, a corresponding maximum external quantum efficiency of 9.4%, and a prolonged lifetime of 6.1 h at a proper Cs/Pb ratio.
Collapse
Affiliation(s)
- Ruiting Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Li Song
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Yongsheng Hu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Lishuang Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Nano and Energy Research Center, School of Physics Science and Technology; Key Lab of Featured Metal Resources Utilization and Advanced Materials Development, Guangxi University, Nanning 530004, China
| | - Chong Geng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Shu Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Yonghui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Zihui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Nannan Luan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Wengang Bi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| |
Collapse
|
31
|
Liang WQ, Li Y, Ma JL, Wang Y, Yan JJ, Chen X, Wu D, Tian YT, Li XJ, Shi ZF. A solution-processed ternary copper halide thin films for air-stable and deep-ultraviolet-sensitive photodetector. NANOSCALE 2020; 12:17213-17221. [PMID: 32804990 DOI: 10.1039/d0nr03630g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, the newly emerging lead-halide perovskites have received tremendous attention in the photodetection field because of their intrinsic large light absorption and high well-balanced carrier transport characteristics. Unfortunately, the issue of instability and the existence of toxic lead cations have greatly restricted their practical applications and future commercialization. Furthermore, the previous studies on perovskite photodetectors mainly operate in visible and near-infrared light region, and there are practically no relevant reports aimed at the deep-ultraviolet (DUV) region. In this study, an air-stable and DUV-sensitive photoconductive detector was demonstrated with a solution-processed ternary copper halides Cs3Cu2I5 thin films as the light absorber. The proposed photodetector is very sensitive to wavelengths of light below 320 nm and unresponsive to the visible light. Because of the high material integrity and large surface coverage of the Cs3Cu2I5 thin films, the detector presents an outstanding photodetection performance with a photoresponsivity of ∼17.8 A W-1, specific detectivity of 1.12 × 1012 Jones, and fast response speed of 465/897 μs, superior to previously reported DUV photodetectors based on other material systems. Unlike traditional lead-halide perovskites, the lead-free Cs3Cu2I5 shows remarkable stability against heat, UV light, and environmental oxygen/moisture. Thus, the unsealed photodetector demonstrates good operation stability for 11 h of continuous running in open air. Even after 80-day storage in ambient air, its photodetection capability can nearly be maintained. The results suggest that non-toxic Cs3Cu2I5 could be a potential candidate for stable and environment friendly DUV detectors, enabling an assembly of optoelectronic systems in the future.
Collapse
Affiliation(s)
- Wen-Qing Liang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li M, Wang J, Mai C, Cun Y, Zhang B, Huang G, Yu D, Li J, Mu L, Cao L, Li D, Wang J, Wang J, Peng J. Bifacial passivation towards efficient FAPbBr 3-based inverted perovskite light-emitting diodes. NANOSCALE 2020; 12:14724-14732. [PMID: 32618977 DOI: 10.1039/d0nr02323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A unique technique to passivate both bottom and top sides of perovskite has been successfully developed to achieve highly efficient inverted perovskite light-emitting diodes (PeLEDs). For the bottom passivation, an organic/inorganic hybrid electron transporting layer (ETL) replaces the widely adopted inorganic ETL to overcome the disadvantages of the pure inorganic ETL. The ZPM (ZnO-in-polymer matrix) ETL, which consists of ZnO nanoparticles blended into polyvinylpyrrolidone, not only passivates the surface defects of ZnO nanoparticles, but also improves the morphology and stability of FAPbBr3 film. For the top passivation, smaller grains and a FAPbBr3/PEA2PbBr4 3D/2D hybrid structure are obtained by applying a small amount of PEABr solution. The synergetic interplay of organic/inorganic hybrid ETL and organic halide salt surface modification substantially shrinks the grain size to facilitate radiative recombination, and suppresses non-radiative recombination both at the interface of ETL/perovskite and HTL/perovskite, and in the perovskite layer. As a result, the highly efficient green PeLED sets a new record of device performance for FAPbBr3-based inverted PeLEDs, with current efficiency of 39.7 cd A-1, external quantum efficiency of 9.0%, power efficiency of 46.4 lm W-1, maximum luminance of 6.03 × 104 cd m-2, and half-lifetime of 297 minutes at an initial brightness of ∼100 cd m-2.
Collapse
Affiliation(s)
- Miaozi Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lao X, Bao Y, Xu S. Impact of excitation energy on the excitonic luminescence of cesium lead bromide perovskite nanosheets. OPTICS LETTERS 2020; 45:3881-3884. [PMID: 32667309 DOI: 10.1364/ol.395119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
An excitation-energy-dependent luminescence phenomenon is reported in cesium lead bromide (CsPbBr3) perovskite nanosheets. At 10 K, the relative integrated luminescence intensity between the trapped exciton (TX) emission and the free exciton (FX) emission shows an interesting tendency with increasing the optical excitation energy from 2.431 eV (510 nm) to 3.758 eV (330 nm). To interpret such phenomenon, we develop a quantitative model on the basis of the biological population growth theory. A good agreement between experiment and theory is obtained. It is thus revealed that the lower capture coefficient of the TX level to the excited excitons via multiphonon emission relative to the FX level shall be the major cause of the observed phenomenon. These findings may help to deepen the current understanding of the complex luminescence mechanisms of these emerging light-emitting materials.
Collapse
|
34
|
Luo D, Wang L, Qiu Y, Huang R, Liu B. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1226. [PMID: 32599722 PMCID: PMC7353084 DOI: 10.3390/nano10061226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
In recent years, impurity-doped nanocrystal light-emitting diodes (LEDs) have aroused both academic and industrial interest since they are highly promising to satisfy the increasing demand of display, lighting, and signaling technologies. Compared with undoped counterparts, impurity-doped nanocrystal LEDs have been demonstrated to possess many extraordinary characteristics including enhanced efficiency, increased luminance, reduced voltage, and prolonged stability. In this review, recent state-of-the-art concepts to achieve high-performance impurity-doped nanocrystal LEDs are summarized. Firstly, the fundamental concepts of impurity-doped nanocrystal LEDs are presented. Then, the strategies to enhance the performance of impurity-doped nanocrystal LEDs via both material design and device engineering are introduced. In particular, the emergence of three types of impurity-doped nanocrystal LEDs is comprehensively highlighted, namely impurity-doped colloidal quantum dot LEDs, impurity-doped perovskite LEDs, and impurity-doped colloidal quantum well LEDs. At last, the challenges and the opportunities to further improve the performance of impurity-doped nanocrystal LEDs are described.
Collapse
Affiliation(s)
- Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China;
| | - Lin Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
| | - Ying Qiu
- Guangdong R&D Center for Technological Economy, Guangzhou 510000, China
| | - Runda Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
| | - Baiquan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Chen C, Han TH, Tan S, Xue J, Zhao Y, Liu Y, Wang H, Hu W, Bao C, Mazzeo M, Wang R, Duan Y, Yang Y. Efficient Flexible Inorganic Perovskite Light-Emitting Diodes Fabricated with CsPbBr 3 Emitters Prepared via Low-Temperature in Situ Dynamic Thermal Crystallization. NANO LETTERS 2020; 20:4673-4680. [PMID: 32437162 DOI: 10.1021/acs.nanolett.0c01550] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The present study systematically investigates the morphology and crystallization process of inorganic CsPbBr3 perovskite layer films fabricated by thermal coevaporation in conjunction with continuous low-temperature thermal annealing to promote in situ dynamic thermal crystallization. The results confirm for the first time that both the crystal grain size and the compactness of the CsPbBr3 films can be tuned during the thermal coevaporation fabrication process via in situ dynamic thermal crystallization. The performance of the PeLEDs employing the CsPbBr3 films as the emitter layer is investigated in detail with respect to the substrate temperature and deposition rate employed during deposition of the CsPbBr3 film. This study provides guidelines for developing suitable film production processes and highlights future challenges that must be addressed to facilitate the commercial development of large-area, uniform, and flexible perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tae-Hee Han
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Shaun Tan
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Jingjing Xue
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Yepin Zhao
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Yunfei Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Haoran Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wei Hu
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Cong Bao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Marco Mazzeo
- Istituto di Nanotecnologia-CNR-Nanotec, Via Monteroni, 73100 Lecce, Italy
| | - Rui Wang
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu Duan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Yang Yang
- Department of Materials Science and Engineering, and California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Shen Y, Li MN, Li Y, Xie FM, Wu HY, Zhang GH, Chen L, Lee ST, Tang JX. Rational Interface Engineering for Efficient Flexible Perovskite Light-Emitting Diodes. ACS NANO 2020; 14:6107-6116. [PMID: 32223190 DOI: 10.1021/acsnano.0c01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although perovskite light-emitting diodes (PeLEDs) are promising for next-generation displays and lighting, their efficiency is still considerably below that of conventional inorganic and organic counterparts. Significant efforts in various aspects of the electroluminescence process are required to achieve high-performance PeLEDs. Here, we present an improved flexible PeLED structure based on the rational interface engineering for energy-efficient photon generation and enhanced light outcoupling. The interface-stimulated crystallization and defect passivation of the perovskite emitter are synergistically realized by tuning the underlying interlayer, leading to the suppression of trap-mediated nonradiative recombination losses. Besides approaching highly emissive perovskite layers, the outcoupling of trapped light is also enhanced by combining the silver nanowires-based electrode with quasi-random nanopatterns on flexible plastic substrate. Upon the collective optimization of the device structure, a record external quantum efficiency of 24.5% is achieved for flexible PeLEDs based on green-emitting CsPbBr3 perovskite.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Meng-Ni Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanqing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
- School of Physics and Electronics Science, Ministry of Education Nanophotonics and Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200062, China
| | - Feng-Ming Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hai-Yan Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guang-Hui Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Li Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shuit-Tong Lee
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou 215215, Jiangsu, China
| | - Jian-Xin Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou 215215, Jiangsu, China
| |
Collapse
|
37
|
Nasi L, Calestani D, Mezzadri F, Mariano F, Listorti A, Ferro P, Mazzeo M, Mosca R. All-Inorganic CsPbBr 3 Perovskite Films Prepared by Single Source Thermal Ablation. Front Chem 2020; 8:313. [PMID: 32373592 PMCID: PMC7186377 DOI: 10.3389/fchem.2020.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Hybrid organo-lead halide perovskites are becoming the benchmark material for next generation photovoltaics and a very important player for other applications such as photodetectors and light emitting diodes. Nevertheless, the most important issue hindering the large-scale application of these materials remains their intrinsic instability due to the organic cation. Although the substitution with inorganic cesium (Cs) enhances stability, in most cases solution deposition methods of fully inorganic perovskites result in high surface roughness and poor surface coverage. This work reports on the evaporation of the CsPbBr3 precursor by Single Source Thermal Ablation, showing that just after deposition films consist of a mixture of CsPbBr3, CsPb2Br5, and Cs4PbBr6 due to a vertical composition gradient. We point out that mild post deposition treatments lead to the conversion of CsPb2Br5 and Cs4PbBr6 into CsPbBr3 due to its higher thermodynamic stability. Conversion results into smooth and pinhole-free CsPbBr3 films with good light absorption and emission properties. We demonstrate the suitability of obtained films for planar devices by preparing perovskite-based pure-green light emitting diodes, thus promoting Single Source Thermal Ablation as a promising alternative deposition technique for all-inorganic perovskite-based devices.
Collapse
Affiliation(s)
- Lucia Nasi
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Davide Calestani
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Francesco Mezzadri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Fabrizio Mariano
- CNR NANOTEC, Institute of Nanotechnology, Lecce, Italy.,Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy
| | - Andrea Listorti
- CNR NANOTEC, Institute of Nanotechnology, Lecce, Italy.,Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | - Patrizia Ferro
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Marco Mazzeo
- CNR NANOTEC, Institute of Nanotechnology, Lecce, Italy.,Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy
| | - Roberto Mosca
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parma, Italy
| |
Collapse
|
38
|
Lao X, Zhou W, Bao Y, Wang X, Yang Z, Wang M, Xu S. Photoluminescence signatures of thermal expansion, electron-phonon coupling and phase transitions in cesium lead bromide perovskite nanosheets. NANOSCALE 2020; 12:7315-7320. [PMID: 32202288 DOI: 10.1039/d0nr00025f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, photoluminescence (PL) behaviors of inorganic cesium lead bromide (CsPbBr3) nanosheets are investigated in a broad temperature range from 5 to 500 K. As can be seen from the temperature evolution of the PL peak position, the bandgap blueshift induced by thermal lattice expansion is found to be gradually compensated by the bandgap redshift caused by electron-phonon coupling for the temperature variation from 5 K to 360 K. As the temperature is further increased, the nearly completely compensated PL peak position turns to exhibit a rapid blueshift, again at ∼360 K. Such turning behavior is consistent with an orthorhombic-tetragonal (γ-β) phase transition at this critical temperature. For the PL linewidth, it shows a continuous broadening at temperatures beyond 40 K, suggesting the dominant role of phonon scattering, especially at high temperatures. These findings of temperature dependent photophysical properties of CsPbBr3 nanosheets may provide useful information of their further applications in the emerging nano photo-electronic devices.
Collapse
Affiliation(s)
- Xiangzhou Lao
- Department of Physics, and Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ambient-Processed, Additive-Assisted CsPbBr3 Perovskite Light-Emitting Diodes with Colloidal NiOx Nanoparticles for Efficient Hole Transporting. COATINGS 2020. [DOI: 10.3390/coatings10040336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the electrically driven perovskite light-emitting diodes (PeLEDs) were investigated by hybridizing the organic polyethylene oxide, 1,3,5-tris (N-phenylbenzimiazole-2-yl) benzene (TPBi), and bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) with CsPbBr3 in the emission layer and adopting the colloidal NiOx nanoparticle (NP) hole transport layer. The synthesized NiOx NPs, having an average size of ~5 nm, can be spin-coated to become a smooth and close-packed film on the indium–tin–oxide anode. The NiOx NP layer possesses an overall transmittance of ~80% at 520 nm, which is about the peak position of electroluminescence (EL) spectra of CsPbBr3 emission layer. The coating procedures of NiOx NP and CsPbBr3 layers were carried out in ambient air. The novel PeLED turned on at 2.4 V and emitted bright EL of 4456 cd/m2 at 7 V, indicating the remarkable nonradiative-related defect elimination by organic additive addition and significant charge balance achieved by the NiOx NP layer.
Collapse
|
40
|
Gu Z, Zhou Z, Huang Z, Wang K, Cai Z, Hu X, Li L, Li M, Zhao YS, Song Y. Controllable Growth of High-Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908006. [PMID: 32166844 DOI: 10.1002/adma.201908006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 05/28/2023]
Abstract
Inorganic perovskite single crystals have emerged as promising vapor-phase processable structures for optoelectronic devices. However, because of material lattice mismatch and uncontrolled nucleation, vapor-phase methods have been restricted to random distribution of single crystals that are difficult to perform for integrated device arrays. Herein, an effective strategy to control the vapor-phase growth of high-quality cesium lead bromide perovskite (CsPbBr3 ) microplate arrays with uniform morphology as well as controlled location and size is reported. By introducing perovskite seeds on substrates, intractable lattice mismatches and random nucleation barriers are surpassed, and the epitaxial growth of perovskite crystals is accurately controlled. It is further demonstrated that CsPbBr3 microplate arrays can be monolithically integrated on substrates for the fabrication of high-performance lasers and photodetectors. This strategy provides a facile approach to fabricate high-quality CsPbBr3 microplates with controllable size and location, which offers new opportunities for the scalable production of integrated optoelectronic devices.
Collapse
Affiliation(s)
- Zhenkun Gu
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhonghao Zhou
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhandong Huang
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Wang
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheren Cai
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaotian Hu
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lihong Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Mingzhu Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yong Sheng Zhao
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yanlin Song
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
41
|
Wang Z, Xu X, Gao L, Yan X, Li L, Yu J. High-Performance Quasi-2D Perovskite Light-Emitting Diodes Via Poly(vinylpyrrolidone) Treatment. NANOSCALE RESEARCH LETTERS 2020; 15:34. [PMID: 32020339 PMCID: PMC7000616 DOI: 10.1186/s11671-020-3260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
In this work, we fabricate poly(vinylpyrrolidone) (PVP)-treated Ruddlesden-Popper two-dimensional (quasi-2D) PPA2(CsPbBr3)2PbBr4 perovskite light-emitting diodes (PeLEDs) and achieved a peak brightness of 10,700 cd m-2 and peak current efficiency of 11.68 cd A-1, threefold and tenfold higher than that of the pristine device (without PVP), respectively. It can be attributed that the additive of PVP can suppress the pinholes of perovskite films owing to the excellent film-forming property, inhibiting the leakage current. Besides, PVP treatment facilitates the formation of compact perovskite films with defect reduction. Our work paves a novel way for the morphology modulation of quasi-2D perovskite films.
Collapse
Affiliation(s)
- Zijun Wang
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Xiaoqiang Xu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Lin Gao
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Xingwu Yan
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China.
| | - Lu Li
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China.
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| |
Collapse
|
42
|
Futscher MH, Gangishetty MK, Congreve DN, Ehrler B. Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: Frequency vs time domain. J Chem Phys 2020; 152:044202. [DOI: 10.1063/1.5132754] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Moritz H. Futscher
- AMOLF, Center for Nanophotonics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Mahesh K. Gangishetty
- Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, Massachusetts 02142, USA
| | - Daniel N. Congreve
- Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, Massachusetts 02142, USA
| | - Bruno Ehrler
- AMOLF, Center for Nanophotonics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
43
|
Gao A, Yan J, Wang Z, Liu P, Wu D, Tang X, Fang F, Ding S, Li X, Sun J, Cao M, Wang L, Li L, Wang K, Sun XW. Printable CsPbBr 3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. NANOSCALE 2020; 12:2569-2577. [PMID: 31934714 DOI: 10.1039/c9nr09651e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Printable perovskite quantum dot (QD) ink is very important for achieving high quality coffee ring-free fluorescent microarrays for different kinds of emerging perovskite optoelectronic applications using inkjet printing. In this work, we prepared a printable CsPbBr3 perovskite QD ink by mixing high-boiling point dodecane with low-boiling point toluene as a solvent. The evaporation rate, viscosity and surface tension of the ink were carefully optimized by tuning the volume ratio of these two solvents for forming appropriate Marangoni flow, so as to balance the capillary flow and eliminate the coffee ring effect further. Successfully, CsPbBr3 perovskite microarrays with uniform surface, low roughness and no coffee rings were achieved by inkjet printing the optimized perovskite QD ink on a PVK (poly-(9-vinylcarbazole)) layer. Furthermore, we patterned the CsPbBr3 perovskite QD ink, and the printed patterns were only visible under ultraviolet (UV) light, which can be applied in invisible anti-counterfeiting labels and encryption in the future.
Collapse
Affiliation(s)
- Aijing Gao
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, China102600. and Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Jia Yan
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, China102600.
| | - Zhaojin Wang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Pai Liu
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Dan Wu
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055. and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China518055
| | - Xiaobing Tang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Fan Fang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Shihao Ding
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Xiang Li
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Jiayun Sun
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Meijuan Cao
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, China102600.
| | - Liduo Wang
- Department of Chemistry, Tsinghua University, Beijing, China1000846
| | - Luhai Li
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, China102600.
| | - Kai Wang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| | - Xiao Wei Sun
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China518055.
| |
Collapse
|
44
|
Solanki A, Guerrero A, Zhang Q, Bisquert J, Sum TC. Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden-Popper Perovskites for Non-volatile Memories. J Phys Chem Lett 2020; 11:463-470. [PMID: 31873017 DOI: 10.1021/acs.jpclett.9b03181] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ion migration, one origin of current-voltage hysteresis, is the bane of halide perovskite optoelectronics. Herein, we leverage this unwelcome trait to unlock new opportunities for resistive switching using layered Ruddlesdsen-Popper perovskites (RPPs) and explicate the underlying mechanisms. The ON/OFF ratio of RPP-based devices is strongly dependent on the layers and peaks at n̅ = 5, demonstrating the highest ON/OFF ratio of ∼104 and minimal operation voltage in 1.0 mm2 devices. Long data retention even in 60% relative humidity and stable write/erase capabilities exemplify their potential for memory applications. Impedance spectroscopy reveals a chemical reaction between migrating ions and the external contacts to modify the charge transfer barrier at the interface to control the resistive states. Our findings explore a new family of facile materials and the necessity of ionic population, migration, and their reactivity with external contacts in devices for switching and memory applications.
Collapse
Affiliation(s)
- Ankur Solanki
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- Department of Science, School of Technology , Pandit Deendayal Petroleum University , Gandhinagar 382007 , India
| | - Antonio Guerrero
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Juan Bisquert
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| |
Collapse
|
45
|
Study of Metal-Semiconductor-Metal CH 3NH 3PbBr 3 Perovskite Photodetectors Prepared by Inverse Temperature Crystallization Method. SENSORS 2020; 20:s20010297. [PMID: 31948055 PMCID: PMC6982973 DOI: 10.3390/s20010297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022]
Abstract
Numerous studies have addressed the use of perovskite materials for fabricating a wide range of optoelectronic devices. This study employs the deposition of an electron transport layer of C60 and an Ag electrode on CH3NH3PbBr3 perovskite crystals to complete a photodetector structure, which exhibits a metal–semiconductor–metal (MSM) type structure. First, CH3NH3PbBr3 perovskite crystals were grown by inverse temperature crystallization (ITC) in a pre-heated circulator oven. This oven was able to supply uniform heat for facilitating the growth of high-quality and large-area crystals. Second, the different growth temperatures for CH3NH3PbBr3 perovskite crystals were investigated. The electrical, optical, and morphological characteristics of the perovskite crystals were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy, and photoluminescence (PL). Finally, the CH3NH3PbBr3 perovskite crystals were observed to form a contact with the Ag/C60 as the photodetector, which revealed a responsivity of 24.5 A/W.
Collapse
|
46
|
Su Y, Jing Q, Xu Y, Xing X, Lu Z. Preventing Anion Exchange between Perovskite Nanocrystals by Confinement in Porous SiO 2 Nanobeads. ACS OMEGA 2019; 4:22209-22213. [PMID: 31891104 PMCID: PMC6933789 DOI: 10.1021/acsomega.9b03524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
All-inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are highly attractive due to their outstanding optical and electrical properties. However, poor stability and easy anion exchanges between CsPbX3 nanocrystals with different halides limit their applications in light-emitting diodes (LEDs). To solve the problems, we developed an approach to in situ synthesize CsPbX3 NCs into porous silica colloidal spheres, which can effectively prevent anion exchange and increase photo stability. Based on our results, we first proved that the anion exchange between CsPbX3 nanocrystals is mainly driven by physical collision of the nanocrystals, not requiring a bridge such as a solvent. We subsequently used an optimized ratio of green, red, and blue SiO2/CsPbX3 composites as solid-state luminescent materials to fabricate single-layer white light-emitting diodes (WLEDs). No anion exchanges have been observed in the LED fabrication and lighting process.
Collapse
|
47
|
Ye F, Zhang H, Wang P, Li W, Li D, Du B, Liu D, Wang T. Methylammonium-Mediated Crystallization of Cesium-Based 2D/3D Perovskites toward High-Efficiency Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43452-43459. [PMID: 31659892 DOI: 10.1021/acsami.9b16376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D)/three-dimensional (3D) perovskites have been successfully applied in high-efficiency light-emitting diodes (LEDs) because of their large exciton binding energy (Eb) caused by the quantum and dielectric confinements. Thermal annealing and antisolvent treatments are usually executed in order to promote the crystallization and film quality of perovskites, which add complexity to the device fabrication process. Here, the cesium-based 2D/3D perovskite was prepared by introducing ammonium halide benzamidine hydrochloride (BMCl) as the additive. By further introducing an appropriate amount of MABr and PbBr2, BM2(Cs1-xMAxPbBr3)n-1PbBr4 crystals can be formed rapidly without any additional treatments, while inhibiting the formation of the unfavorable Cs4PbBr6 phase. The optimized 2D/3D perovskite-based LEDs achieved a maximum luminance of 12 367 Cd/m2, a current efficiency of 17.4 Cd/A, and an external quantum efficiency of 5.2%. Our results suggest that appropriate perovskite crystallization can be achieved at room temperature by the regulation of precursor solution, making the perovskite crystallization process easier to control with reduced processing complexity.
Collapse
|
48
|
Han TH, Tan S, Xue J, Meng L, Lee JW, Yang Y. Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803515. [PMID: 30761623 DOI: 10.1002/adma.201803515] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/27/2018] [Indexed: 05/08/2023]
Abstract
Metal halide perovskites have been in the limelight in recent years due to their enormous potential for use in optoelectronic devices, owing to their unique combination of properties, such as high absorption coefficient, long charge-carrier diffusion lengths, and high defect tolerance. Perovskite-based solar cells and light-emitting diodes (LEDs) have achieved remarkable breakthroughs in a comparatively short amount of time. As of writing, a certified power conversion efficiency of 22.7% and an external quantum efficiency of over 10% have been achieved for perovskite solar cells and LEDs, respectively. Interfaces and defects have a critical influence on the properties and operational stability of metal halide perovskite optoelectronic devices. Therefore, interface and defect engineering are crucial to control the behavior of the charge carriers and to grow high quality, defect-free perovskite crystals. Herein, a comprehensive review of various strategies that attempt to modify the interfacial characteristics, control the crystal growth, and understand the defect physics in metal halide perovskites, for both solar cell and LED applications, is presented. Lastly, based on the latest advances and breakthroughs, perspectives and possible directions forward in a bid to transcend what has already been achieved in this vast field of metal halide perovskite optoelectronic devices are discussed.
Collapse
Affiliation(s)
- Tae-Hee Han
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shaun Tan
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jingjing Xue
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lei Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jin-Wook Lee
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
49
|
Kim YH, Kim JS, Lee TW. Strategies to Improve Luminescence Efficiency of Metal-Halide Perovskites and Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804595. [PMID: 30556297 DOI: 10.1002/adma.201804595] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Indexed: 05/21/2023]
Abstract
Metal-halide perovskites (MHPs) are well suited to be vivid natural color emitters due to their superior optical and electrical properties, such as narrow emission linewidths, easily and widely tunable emission wavelengths, low material cost, and high charge carrier mobility. Since the first development of MHP light-emitting diodes (PeLEDs) in 2014, many researchers have tried to understand the properties of MHP emitters and the limitations to luminescence efficiency (LE) of PeLEDs, and have devoted efforts to increase the LE of MHP emitters and PeLEDs. Within three and half years, PeLEDs have shown rapidly increased LE from external quantum efficiency ≈0.1% to ≈14.36%. Herein, the factors that limit the LE of PeLEDs are reviewed; the factors are characterized into the following groups: i) photophysical properties of MHP crystals, ii) morphological factors of MHP layers, and iii) problems caused by device architectures. Then, the strategies to overcome those luminescence-limiting factors in MHP emitters and PeLEDs are critically evaluated. Finally, research directions to further increase the LE of MHP emitters and the potential of MHPs as a core component in next-generation displays and solid-state lightings are suggested.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Department of Materials Science and Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joo Sung Kim
- Department of Materials Science and Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
50
|
Lin H, Mao J, Qin M, Song Z, Yin W, Lu X, Choy WCH. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. NANOSCALE 2019; 11:16907-16918. [PMID: 31490477 DOI: 10.1039/c9nr02706h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While red is one of the primary colors for display applications, the investigation of visible red emitting perovskites, particularly 2D perovskites, is relatively limited. In this work, we demonstrate a single-phase Ruddlesden-Popper quasi-2D (C3H7NH3)2CsPb2I7 perovskite for red color LEDs. Through increasing the annealing temperature of (C3H7NH3)2CsPb2I7 perovskite thin films, we have successfully achieved tunable emission wavelengths from 654 to 691 nm. Equally important, for all the quasi-2D perovskite LEDs, once the annealing temperature is fixed, the emission spectrum is independent of bias voltages, which is very important for their use in lighting and displays. With the analysis of the crystallinity, morphology, and thermodynamic stability of the quasi-2D perovskite, we find that the obtained (C3H7NH3)2CsPb2I7 perovskite is a single-phase quasi-2D perovskite with only n = 2 phase. Besides, we found that the red shifting of emission wavelength is caused by the increase of perovskite crystal size while increasing the annealing temperature. Our results also show that the temperature-induced color tunability can be applied to a series of quasi-2D perovskites with different alkylammonium cations. Importantly, we find that short alkylammonium spacers offer better electrical properties for efficient current transport and high performance in LED applications. This work contributes to controlling the optoelectronic properties of quasi-2D perovskites via controlling their crystal growth as well as paves the way to realize practical lighting and display applications of perovskite LEDs.
Collapse
Affiliation(s)
- Hong Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|