1
|
Qiu Y, Yang J, Zhou J, Wu Z. Sulfhydryl-functionalized anisotropic photonic crystal hydrogels for visual Hg 2+ detection and adsorption in cinnabar mine water area. J Colloid Interface Sci 2025; 694:137689. [PMID: 40300376 DOI: 10.1016/j.jcis.2025.137689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Emissions of mercury ions from human activities during mining and smelting processes cannot be overlooked due to their potential for environmental pollution. Consequently, developing a material that offers both visual detection capability and efficient adsorption for Hg2+ is crucial. Inspired by cephalopod skin, we have prepared a sulfhydryl-functionalized anisotropic photonic crystal hydrogel (PDGI/PAAm-SH). The bilayer structure of polydodecyl glyceryl itaconate (PDGI) is immobilized and stabilized within the sulfhydryl-functionalized polyacrylamide network after polymerization. The porous structure of hydrogel facilitates the adsorption of Hg2+ in solution, resulting in a blue shift in structural color, which allows for visual detection. The PDGI/PAAm-SH effectively adsorbs and removes Hg2+ from water, with an impressive uptake capacity of 129.06 mmol kg-1. Additionally, this hydrogel exhibits good reproducibility, excellent mechanical properties, and remarkable selectivity for Hg2+. It can shield interference from other ions during detection and shows promising applications in environmental monitoring and purification.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jiaxin Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.
| |
Collapse
|
2
|
Geng Y, Li C, Xing Y, Qi A, Dai D, Zhang H, Zhao Y, Li T. Framework-Imprint Synthesis of Faceted Hierarchical Porous Organic Polymer Colloidal Particles. NANO LETTERS 2025; 25:7044-7052. [PMID: 40241238 DOI: 10.1021/acs.nanolett.5c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Amorphous porous organic polymers (POPs) are promising filler materials for mixed matrix membranes (MMMs). However, it is challenging to synthesize nanosized, monodispersed POP colloidal particles (CPs) suitable for membrane fabrication. Here, well-defined octahedral POP CPs with imine, ketone, or amine linkages were synthesized using octahedral MOF particles as sacrificial templates. In addition to shape replication, the MOF template also played a substantial role in spatially organizing polymer chains, resulting in highly porous POPs that are unattainable through bulk polymerization. For the first time, the mechanical properties of a single POP CP was examined by quantitative in situ compression testing under a scanning electron microscope. Introducing imine-linked POP CPs into a polyimide matrix led to a series of pure-organic defect-free MMMs exhibiting excellent homogeneity and flexibility. As a result, increasing the loading of POP in MMMs led to a stepwise increase in CO2 permeability with largely unchanged CO2/N2 and CO2/CH4 selectivity.
Collapse
Affiliation(s)
- Yuqing Geng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yurui Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anheng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dejun Dai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongti Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Tao Li
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Li D, Deng W, Wang Y, Tian Y, Wang D. Thiolated non-conjugated nano polymer network for advanced mercury removal from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136817. [PMID: 39667150 DOI: 10.1016/j.jhazmat.2024.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Developing advanced adsorbents for selectively deducing mercury (Hg) in water to one billionth level is of great significance for public health and ecological security, but achieving the balance among efficiency, cost and environmental friendliness of adsorbents still faces enormous challenges. Herein, we present a high thiol content non-conjugated nano polymer network (PVB-SH) through simple microemulsion polymerization for efficient Hg ion (Hg(II)) removal. The PVB-SH is prepared by conventional commercial reagents and does not consume toxic organic solutions. This nano network reveals uniformly distributed nano sizes, leading to good accessibility of adsorption sites. The long and flexible polymer chains in the network allow two thiol sites to coordinate with one Hg(II), displaying significantly stronger binding than 1:1 coordination. Therefore, PVB-SH shows high affinity toward Hg(II) (Kd = 3.04 × 107 mL/g) and can selectively reduce Hg(II) in water to extremely low level of 0.14 μg/L, well below the safe limit of 2 μg/L. PVB-SH possesses excellent renewability (removal efficiency = 99.58 % after 10 regenerations), good resistance to various environmental factors (pH, ions and organic matter) and long-term stability in acid, alkali, and salt solutions. Impressively, PVB-SH is further made into a membrane by simple phase-inversion and can effectively purify 1592.4 L/m2 Hg(II) polluted drinking water before the breakthrough point of 2 μg/L. These results demonstrate the good practical potential of PVB-SH for decontamination of Hg from aqueous media.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhong S, Wang T, Xu J, Su Y, Hoffman JR, Su B, Li A, Atassi A, Webber MJ, Guo R, Phillip WA. Designing Phenolphthalein-Based Adsorptive Membranes for the High-Affinity, High-Capacity Capture of Contaminants from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68262-68272. [PMID: 39588909 DOI: 10.1021/acsami.4c13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The selective removal of solutes is crucial for ensuring a sustainable water supply, recovering resources, and cost-effective biomanufacturing. Adsorptive membranes are promising in this regard due to their rapid mass transfer and low energy demands. However, state-of-the-art adsorptive membranes offer limited pore sizes and surface chemistries. This study reports the development of adsorptive membranes from reactive phenolphthalein-based (PPH-based) polymers. These polymers, which are molecularly engineered to possess a high density of reactive pendant groups, are transformed into porous membranes through a surface-segregation vapor-induced phase separation (SVIPS) method. Examining the thermodynamic characteristics of the polymer-solvent-nonsolvent system informs the SVIPS manufacturing process and facilitates the formation of diverse membrane morphologies with hydraulic permeabilities ranging from 3400 to 13,500 L m-2 h-1 bar-1. Copper ion binding experiments demonstrate a saturation capacity of 0.9 mmol Cu2+ g-1, indicating high accessibility of the pendant groups for postsynthetic modification. Functionalization with alkyne groups enables one-step click reactions, such as the thiol-yne and Cu(I)-catalyzed azide-alkyne cycloaddition, expanding the membrane functionality. The incorporation of cucurbit[7]uril-azide macrocycles demonstrates the affinity-mediated capture of methyl viologen from solution. The combination of PPH-based polymers and the SVIPS method provides a versatile adsorptive membrane platform with a dense presentation of reactive sites, facilitating customization through diverse and high-yielding reactions.
Collapse
Affiliation(s)
- Shukun Zhong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Tao Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yiwei Su
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - John R Hoffman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bo Su
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Annabelle Li
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Abdulrahman Atassi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ruilan Guo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William A Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Wang ZX, Liu KQ, Jiang ZT, Meng XY, Li F, Wu KC, Li HY, Wang W. A MELET- and IFE-based UV-visible luminescent ratiometric probe for quantization of mercury(II) and nitrofurantoin in environmental sewage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124805. [PMID: 39003827 DOI: 10.1016/j.saa.2024.124805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
A novel fluorimetric ratiometric probe of green and eco-friendily nitrogen-enriched, oxygen-doped carbon nanodots (Cnanodots) was prepared for the quantitative analysis of mercury(II) (HgII) and nitrofurantoin (Nit) in the environmental sewage. The Cnanodots exhibits dual-emission peaks respectively at 345 and 445 nm under 285 nm excitation, with excitation-independent properties. Unexpectedly, this Cnanodots displays two obvious ratiometric responses to HgII and Nit through decreasing the signal at 345 nm and remaining invariable at 445 nm. Experimental results confirm that the highly sensitive analysis of HgII and Nit are achieved respectively based on matching energy-level electron transfer and inner filter effect mechanisms. The fluorescence (FL) ratiometric intensity of [FL345nm/FL445nm] expresses a good linear relationship with the concentration of HgII in the scope of 0.01-20 μM, while the logarithm of [Log(FL0345nm-FL345nm)] on the quenching degree of the probe by Nit also shows a good linear correlation within the range of 0.01-100 μM. The detection limits were calculated to be 4.14 nM for HgII, and 7.84 nM for Nit. Moreover, recovery experiments of Cnanodots for HgII and Nit sensing in real sewage samples obtained satisfactory results, comfirming the feasibility of practical application.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Kai-Qi Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhen-Tao Jiang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiang-Ying Meng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Ke-Chen Wu
- Fujian Key Laboratory of Advanced Marine Materials, Minjiang University, Fuzhou, Fujian 350108, China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
6
|
Mei L, Sun M, Yang R, Zhang Y, Zhang Y, Zhang Z, Zheng L, Chen Y, Zhang Q, Zhou J, Zhu Y, Leung KMY, Zhang W, Fan J, Huang B, Zeng XC, Shin HS, Tang CY, Gu L, Voiry D, Zeng Z. Metallic 1T/1T' phase TMD nanosheets with enhanced chemisorption sites for ultrahigh-efficiency lead removal. Nat Commun 2024; 15:7770. [PMID: 39349434 PMCID: PMC11442624 DOI: 10.1038/s41467-024-52078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
Two-dimensional (2D) materials, as adsorbents, have garnered great attention in removing heavy metal ions (HMIs) from drinking water due to their extensive exposed adsorption sites. Nevertheless, there remains a paucity of experimental research to remarkably unlock their adsorption capabilities and fully elucidate their adsorption mechanisms. In this work, exceptional lead ion (Pb2+) (a common HMI) removal capacity (up to 758 mg g-1) is achieved using our synthesized metallic 1T/1T' phase 2D transition metal dichalcogenide (TMD, including MoS2, WS2, TaS2, and TiS2) nanosheets, which hold tremendous activated S chemisorption sites. The residual Pb2+ concentration can be reduced from 2 mg L-1 to 2 μg L-1 within 0.5 min, meeting the drinking water standards following World Health Organization guideline (Pb2+ concentrations <10 μg L-1). Atomic-scale characterizations and calculations based on density functional theory unveil that Pb2+ bond to the top positions of transition metal atoms in a single-atom form through the formation of S-Pb bonds. Point-of-use (POU) devices fabricated by our reported metallic phase MoS2 nanosheets exhibit treatment capacity of 55 L-water g-1-adsorbent for feed Pb2+ concentration of 1 mg L-1, which is 1-3 orders of magnitude higher than other 2D materials and commercial activated carbon.
Collapse
Affiliation(s)
- Liang Mei
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Yaqin Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Zhen Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, Hunan, PR China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Jun Fan
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000, Montpellier, France
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Chaurasia A, Kumar A. Removal of mercury and lead ions from water using bioinspired N 3Se 3 type small sized moieties. Chem Commun (Camb) 2024; 60:9841-9844. [PMID: 39171504 DOI: 10.1039/d4cc03587a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mercury and lead toxicity in water has serious repercussions on human health. There is an urgent need to develop effective and efficient small moieties for their removal. The convenient one-pot synthesis of a few N3Se3 type small sized moieties is reported herein. The highest metal ion uptake capacity of Hg(II) and Pb(II) ions was found to be 314.3 mg g-1 and 93.5 mg g-1, respectively, by ICP-MS analysis. These ion uptake values are the highest for small sized moieties known in the literature to date.
Collapse
Affiliation(s)
- Avinash Chaurasia
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Abhishek Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
8
|
Liu J, Zhao Z, Xu R, Wang Y, Wang X, Tan F. Sulfhydryl functionalized two-dimensional Ti 3C 2T x MXene for efficient removal of Hg 2+ in water samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135205. [PMID: 39018599 DOI: 10.1016/j.jhazmat.2024.135205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
This study describes an adsorption method for the removal of Hg2+ from aquatic environments using sulfhydryl-functionalized Ti3C2Tx (SH-Ti3C2Tx). SH-Ti3C2Tx materials were synthesized through covalent interactions between dithiothreitol and two-dimensional Ti3C2Tx. The insertion of -SH groups increased the interlayer spacing of Ti3C2Tx, resulting in a 3-fold increase in the specific surface area of SH-Ti3C2Tx compared with the original Ti3C2Tx. The maximum Hg2+ adsorption capacity of SH-Ti3C2Tx was 3042 mg/g, which was 2.3-fold greater than that of Ti3C2Tx. After Hg2+ adsorption, SH-Ti3C2Tx was regenerated for repeated used by rinsing with HCl-thiourea. Next, SH-Ti3C2Tx was loaded onto a melamine sponge to construct SH-Ti3C2Tx adsorption columns suitable for continuous flow Hg2+ removal with extremely low flow resistance. Hg2+ removal rates exceeded 95 % when treating both high and low-concentration solutions (20 mg/L Hg2+ and 10 μg/L Hg2+). This study demonstrates the excellent adsorption-regeneration performance of SH-Ti3C2Tx, which has broad application prospects for the in-situ treatment of water contaminated with Hg2+.
Collapse
Affiliation(s)
- Jinghua Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhanyi Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Rulin Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochun Wang
- College of Chemistry and Life Science, Anshan Normal University, Anshan 114016, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Georgin J, Franco DSP, Dehmani Y, Nguyen-Tri P, El Messaoudi N. Current status of advancement in remediation technologies for the toxic metal mercury in the environment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174501. [PMID: 38971239 DOI: 10.1016/j.scitotenv.2024.174501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Currently, pollution due to heavy metals, in particular dissolved mercury, is a major concern for society and the environment. This work aims to evaluate the current scenario regarding the removal/elimination of mercury. Mercury removal through adsorption is mainly done through artificial resins and metallic-organic frameworks. In the case of the zinc organic framework, it was able to adsorb Hg2+, reaching an adsorption capacity of 802 mg g-1. As for the Hg(0) the coconut husk was found to have the lowest equilibrium time, 30 min, and the highest adsorption capacity of 956.2 mg g-1. Experimental reports and molecular simulation indicate that the adsorption of mercury and other chemical forms occurs due to electrostatic interactions, ion exchange, precipitation, complexation, chelation, and covalent bonds, according to the material nature. The reported thermodynamic results show that, in most cases, the mercury adsorption has an endothermic nature with enthalpy levels below 40 kJ mol-1. Thermal and chemical regeneration methods lead to a similar number of 5 cycles for different materials. The presence of other ions, in particular cadmium, lead, and copper, generates an antagonistic effect for mercury adsorption. Regarding the other current technologies, it was found that mercury removal is feasible through precipitation, phytoremediation, and marine microalgae; all these methods require constant chemicals or a slow rate of removal according to the conditions. Advanced oxidative processes have noteworthy removal of Hg(0); however, Fenton processes lead to mineralization, which leads to Fe2+ and Fe3+ in solution; sonochemical processes are impossible to scale up at the current technology level; and electrochemical processes consume more energy and require constant changes of the anode and cathode. Overall, it is possible to conclude that the adsorption process remains a more friendly, economical, and greener process in comparison with other processes.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Younes Dehmani
- Laboratory of Chemistry/Biology Applied to the Environment, Faculty of Sciences, Moulay Ismaïl University, BP 11201-Zitoune, Meknes 50070, Morocco
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
10
|
Rozyyev V, Gao F, Liu Y, Shevate R, Pathak R, Mane AU, Darling SB, Elam JW. Thiol-Functionalized Adsorbents through Atomic Layer Deposition and Vapor-Phase Silanization for Heavy Metal Ion Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34030-34041. [PMID: 38913653 DOI: 10.1021/acsami.4c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The removal of toxic heavy metal ions from water resources is crucial for environmental protection and public health. In this study, we address this challenge by developing a surface functionalization technique for the selective adsorption of these contaminants. Our approach involves atomic layer deposition (ALD) followed by vapor-phase silanization of porous substrates. We utilized porous silica gel powder (∼100 μm particles, 89 m2/g surface area, ∼30 nm pores) as an initial substrate. This powder was first coated with ∼0.5 nm ALD Al2O3, followed by vapor-phase grafting of a thiol-functional silane. The modified powder, particularly in acidic conditions (pH = 4), showed high selectivity in adsorbing Cd(II), As(V), Pb(II), Hg(II), and Cu(II) heavy metal ions in mixed ion solutions over common benign ions (e.g., Na, K, Ca, and Mg). Langmuir adsorption isotherms and breakthrough adsorption studies were conducted to assess heavy metal binding affinity and revealed the order of Cd(II) < Pb(II) < Cu(II) < As(V) < Hg(II), with a significantly higher affinity for As(V) and Hg(II) ions. Time-dependent uptake studies demonstrated rapid removal of heavy metal ions from aqueous environments, with Hg(II) exhibiting the fastest adsorption kinetics on thiol-modified surfaces. These findings highlight the potential of ALD and vapor-phase silanization to create effective adsorbents for the targeted removal of hazardous contaminants from water.
Collapse
Affiliation(s)
- Vepa Rozyyev
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Feng Gao
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yining Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rahul Shevate
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rajesh Pathak
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anil U Mane
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Seth B Darling
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
11
|
Song Y, Verma G, Tan K, Oyekan KA, Liu J, Strzelecki A, Guo X, Al-Enizi AM, Nafady A, Ma S. Tailoring the Coordination Micro-Environment in Nanotraps for Efficient Platinum/Palladium Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313747. [PMID: 38685565 DOI: 10.1002/adma.202313747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Kui Tan
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Kolade A Oyekan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Juejing Liu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Andrew Strzelecki
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
12
|
Wang Z, Zhang A, Hua T, Chen X, Zhu M, Guo Z, Song Y, Yang G, Li S, Feng J, Li M, Yan W. Revealing the interaction forms between Hg(II) and group types (-Cl, -CN, -NH 2, -OH, -COOH) in functionalized Poly(pyrrole methane)s for efficient mercury removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124049. [PMID: 38692386 DOI: 10.1016/j.envpol.2024.124049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
To explore the impact of different functional groups on Hg(II) adsorption, a range of poly(pyrrole methane)s functionalized by -Cl, -CN, -NH2, -OH and -COOH were synthesized and applied to reveal the interaction between different functional groups and mercury ions in water, and the adsorption mechanism was revealed through combined FT-IR, XPS, and DFT calculations. The adsorption performance can be improved to varying degrees by the incorporation of functional groups. Among them, the oxygen-containing functional groups (-OH and -COOH) exhibit stronger affinity for Hg(II) and can increase the adsorption capacity from 180 mg g-1 to more than 1400 mg g-1 at 318 K, with distribution coefficient (Kd) exceeding 105 mL g-1. The variations in the capture and immobilization capabilities of functionalized poly(pyrrole methane)s predominantly stem from the unique interactions between their functional groups and mercury ions. In particular, oxygen-containing -OH and -COOH effectively capture Hg(OH)2 through hydrogen bonding, and further deprotonate to form the -O-Hg-OH and -COO-Hg-OH complexes which are more stable than those obtained from other functionalized groups. Finally, the ecological safety has been fully demonstrated through bactericidal and bacteriostatic experiments to prove the functionalized poly(pyrrole methane)s can be as an environmentally friendly adsorbent for purifying contaminated water.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aijing Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tingyu Hua
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Chen
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyuan Zhu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ziyu Guo
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanna Song
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Li
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Zhang R, Yang J, Cao Y, Zhang Q, Xie C, Xiong W, Luo X, He Y. Efficient 2D MOFs nanozyme combining with magnetic SERS substrate for ultrasensitive detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124062. [PMID: 38401506 DOI: 10.1016/j.saa.2024.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Biomimetic inorganic nanoenzyme is a kind of nanomaterial with long-term stability, easy preparation and low cost, which could instead of natural biological enzyme. Metal-organic framework (MOFs) as effectively nanoenzyme was attracted more attention for the adjustability and large specific surface area. This design is based on the catalase-like catalytic activity of 2D metal-organic frameworks (MOFs) and the high sensitivity of surface enhanced Raman spectroscopy (SERS) biosensors to construct a novel SERS biosensor capable of efficiently detecting mercury (Hg2+). In this study, 2D MOFs nanozyme was instead of 3D structure with more effecient catalytic site, which can catalyze o-Phenylenediamine (OPD) to OPDox with the assistance of H2O2. Besides, a magnetic composite nanomaterial Fe3O4@Ag@OPD was prepared as a signal carrier. In the presence of Hg2+, T-Hg2+-T base pairs were used to connect the two materials to realize Raman signal change. Based on this principle, the SERS sensor can realize the sensitive detection of Hg2+, the detection range is 1.0 × 10-12 ∼ 1.0 × 10-2 mol‧L-1, and the detection limit is 1.36 × 10-13 mol‧L-1. This method greatly improves the reliability of SERS sensor for detecting the target, and provides a new idea for detecting metal ions in the environment.
Collapse
Affiliation(s)
- Runzi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Jia Yang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Yongguo Cao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Qianyan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Chenfeng Xie
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Wanyi Xiong
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| |
Collapse
|
14
|
Algieri V, Tursi A, Costanzo P, Maiuolo L, De Nino A, Nucera A, Castriota M, De Luca O, Papagno M, Caruso T, Ciurciù S, Corrente GA, Beneduci A. Thiol-functionalized cellulose for mercury polluted water remediation: Synthesis and study of the adsorption properties. CHEMOSPHERE 2024; 355:141891. [PMID: 38575086 DOI: 10.1016/j.chemosphere.2024.141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Mercury pollution poses a global health threat due to its high toxicity, especially in seafood where it accumulates through various pathways. Developing effective and affordable technologies for mercury removal from water is crucial. Adsorption stands out as a promising method, but creating low-cost materials with high selectivity and capacity for mercury adsorption is challenging. Here we show a sustainable method to synthesize low-cost sulfhydrylated cellulose with ethylene sulfide functionalities bonded glucose units. Thiol-functionalized cellulose exhibits exceptional adsorption capacity (1325 mg g-1) and selectivity for Hg(II) over other heavy metals (Co, Cu, Zn, Pb) and common cations (Ca++, Mg++) found in natural waters. It performs efficiently across a wide pH range and different aqueous matrices, including wastewater, and can be regenerated and reused multiple times without significant loss of performance. This approach offers a promising solution for addressing mercury contamination in water sources.
Collapse
Affiliation(s)
- Vincenzo Algieri
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy.
| | - Antonio Tursi
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy
| | - Paola Costanzo
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy
| | - Loredana Maiuolo
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy
| | - Antonio De Nino
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy
| | - Antonello Nucera
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; CNR-Nanotec C/o Department of Physics, University of Calabria, Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy
| | - Marco Castriota
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; CNR-Nanotec C/o Department of Physics, University of Calabria, Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy
| | - Oreste De Luca
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; CNR-Nanotec C/o Department of Physics, University of Calabria, Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; Laboratorio di Spettroscopia Avanzata dei Materiali, STAR IR, Via Tito Flavio, Università della Calabria, Italy
| | - Marco Papagno
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; Laboratorio di Spettroscopia Avanzata dei Materiali, STAR IR, Via Tito Flavio, Università della Calabria, Italy
| | - Tommaso Caruso
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; Laboratorio di Spettroscopia Avanzata dei Materiali, STAR IR, Via Tito Flavio, Università della Calabria, Italy
| | - Simona Ciurciù
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy; Laboratory of Chemistry for Environment, Polo Tecnologico SILA, University of Calabria, Via Tito Flavio, 87036, Rende, Cosenza, Italy
| | - Giuseppina Anna Corrente
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy; Laboratory of Chemistry for Environment, Polo Tecnologico SILA, University of Calabria, Via Tito Flavio, 87036, Rende, Cosenza, Italy
| | - Amerigo Beneduci
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy; Laboratory of Chemistry for Environment, Polo Tecnologico SILA, University of Calabria, Via Tito Flavio, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
15
|
Kung HC, Wu CH, Huang BW, Chang-Chien GP, Mutuku JK, Lin WC. Mercury abatement in the environment: Insights from industrial emissions and fates in the environment. Heliyon 2024; 10:e28253. [PMID: 38571637 PMCID: PMC10987932 DOI: 10.1016/j.heliyon.2024.e28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Mercury's neurotoxic effects have prompted the development of advanced control and remediation methods to meet stringent measures for industries with high-mercury feedstocks. Industries with significant Hg emissions, including artisanal and small-scale gold mining (ASGM)-789.2 Mg year-1, coal combustion-564.1 Mg year-1, waste combustion-316.1 Mg year-1, cement production-224.5 Mg year-1, and non-ferrous metals smelting-204.1 Mg year-1, use oxidants and adsorbents capture Hg from waste streams. Oxidizing agents such as O3, Cl2, HCl, CaBr2, CaCl2, and NH4Cl oxidize Hg0 to Hg2+ for easier adsorption. To functionalize adsorbents, carbonaceous ones use S, SO2, and Na2S, metal-based adsorbents use dimercaprol, and polymer-based adsorbents are grafted with acrylonitrile and hydroxylamine hydrochloride. Adsorption capacities span 0.2-85.6 mg g-1 for carbonaceous, 0.5-14.8 mg g-1 for metal-based, and 168.1-1216 mg g-1 for polymer-based adsorbents. Assessing Hg contamination in soils and sediments uses bioindicators and stable isotopes. Remediation approaches include heat treatment, chemical stabilization and immobilization, and phytoremediation techniques when contamination exceeds thresholds. Achieving a substantially Hg-free ecosystem remains a formidable challenge, chiefly due to the ASGM industry, policy gaps, and Hg persistence. Nevertheless, improvements in adsorbent technologies hold potential.
Collapse
Affiliation(s)
- Hsin-Chieh Kung
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical and Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung City, 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Super micro mass research and technology center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Justus Kavita Mutuku
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Super micro mass research and technology center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Wan-Ching Lin
- Department of Neuroradiology, E-Da Hospital, I-Shou University, Kaohsiung, 84001, Taiwan
- Department of Neurosurgery, E-Da Hospital/I-Shou University, Kaohsiung, 84001, Taiwan
| |
Collapse
|
16
|
Li D, Wang Y, Deng W, Wang D. Efficient and selective capture of various mercury species from water using an exfoliated thiocellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171063. [PMID: 38373452 DOI: 10.1016/j.scitotenv.2024.171063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The primary challenge in mercury (Hg) adsorbents for large-scale practical applications is to achieve the balance between performance and economy. This work attempts to address this issue by synthesizing an exfoliated thiocellulose (CU-SH) with high thiol density and hierarchical porosity using in-situ ligands grafting combined with chemical stripping. The prepared CU-SH shows remarkable physical stability and chemical resistance, and the micron sized fiber is conducive to separation from water. Hg(II) adsorption tests in water demonstrate that CU-SH has broad working pH range (1-12), fast kinetics (0.64 g/(mg‧min)), high adsorption capacity (652.9 mg/g), outstanding selectivity (Kd = 6.2 × 106 mg/L), and excellent reusability (R > 95 % after 20 cycles). Importantly, CU-SH exhibits good resistance to various coexisting ions and organic matter, and can efficiently remove Hg(II) from different real water. CU-SH can be made into a Point of Use (POU) device for continuous and efficient removal of Hg(II) from drinking water. 0.1 g CU-SH filled device can purify 3.2 L of Hg(II) (0.5 ppm) contaminated tap water before the breakthrough point of 2 ppb. Moreover, CU-SH also reveals good adsorption affinity for Hg-dissolved organic matter complexes (Hg(II)-DOM) in water, chloro(phenyl)mercury (PMC) in organic media and Hg0 vapor in air, suggesting the great practical potential of CU-SH.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Bie W, Zhang S, Zhang L, Li H, Sun X, Cai T, Wang Z, Kong F, Wang W. Thioether-functionalized porous β-cyclodextrin polymer for efficient removal of heavy metal ions and organic micropollutants from water. Carbohydr Polym 2024; 324:121509. [PMID: 37985051 DOI: 10.1016/j.carbpol.2023.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Herein, a thioether-functionalized porous β-cyclodextrin polymer (P(Bn-S-CD)) was prepared for efficient removal of heavy metal ions and organic micropollutants (OMPs) from water. P(Bn-S-CD) showed a surface area of 763 m2/g and a sulfur content 5.83 wt%. Based on screening studies, Hg2+ and diclofenac sodium (DS) were selected as model pollutants. P(Bn-S-CD) could adsorb Hg2+ and DS simultaneously, while the adsorbed Hg2+ afforded positive charges to the primary rims of CDs, greatly enhancing the adsorption rate and adsorption capacity of DS. Although the adsorbed DS showed no obvious effect on Hg2+ adsorption, it improved the affinity of Hg2+ upon P(Bn-S-CD). Adsorption mechanism studies confirmed the essential role of electrostatic interactions for these results. P(Bn-S-CD) also showed good selectivity towards heavy metal ions, excellent adsorption performance in real water at environmental levels and good reusability, implying great promise for water treatment.
Collapse
Affiliation(s)
- Wenwen Bie
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Shuzhao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Lin Zhang
- Comprehensive Testing Center, Yancheng Customs, Yancheng 224002, PR China
| | - Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China.
| | - Xiaoyu Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Tianpei Cai
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Zhongxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
18
|
Wang L, Liu J, Wang J, Zhang D, Huang J. Thiophene-based porphyrin polymers for Mercury (II) efficient removal in aqueous solution. J Colloid Interface Sci 2024; 653:405-412. [PMID: 37722169 DOI: 10.1016/j.jcis.2023.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Development of novel sulf-functionalized porous organic polymers (POPs) for Mercury (II) (Hg2+) removal is of great significant, but the adsorbents always suffered by the low adsorption capacity, stability, and efficiency for the reason that the common construction of functionalized POPs from the functionalized monomers or post-functionalization of the POPs always sacrifice the porosity. In this paper, porphyrin-based POPs with different heteroatoms were constructed through the aldehyde monomer (benzene, 2,5-thiophenedicarboxaldehyde and thieno[3,2-b]thiophene-2,5-dicarboxaldehyde) and pyrrole according to the Adler-Longo method. In this way, nitrogen (N) in pyrrole and sulfur (S) in thiophene structures were embed into the backbone structure of the polymers. The functional structures not only act as the linking building block into the stable cross-linking structure, but also offer abundant uncovered functional sites for Hg2+ adsorption, resulting the porphyrin-based POPs high Hg2+ capacity (1049 mg/g), removal efficiency (more than 99.9%), good reusability and selectivity for its highest heteroatoms contents. The adsorption mechanism confirmed the cooperative coordination of N in porphyrin and S in thiophene with Hg2+. This work confirmed the functional groups play more important role in heavy metal adsorption, and the embedded functional sites into backbone also promotes the stability and the adsorption performance.
Collapse
Affiliation(s)
- Lizhi Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Junlong Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Du Zhang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Li Q, Zhu Y, Li Y, Yang J, Bao Z, Tian S, Wang X, Zhang L. Reusable Zwitterionic Porous Organic Polymers for Bilirubin Removal in Serum. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048490 DOI: 10.1021/acsami.3c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we report a straightforward strategy to construct reusable, hemocompatible, and highly efficient bilirubin adsorbents by installing zwitterionic modules into a porous organic polymer (POP) for hemoperfusion application. Three types of zwitterions with different amounts are used to evaluate their impacts on the characteristics of POPs, including carboxybetaine methacrylate (CB), sulfobetaine methacrylate (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC). Results show that zwitterions can improve hemocompatibility, hydrophilicity, and bilirubin uptake of the POP. Among all zwitterionic POPs, POP-CB-40% exhibits the best bilirubin uptake, ∼46.5 times enhancement compared with the non-zwitterionic POP in 100% serum. This enhancement can be attributed to the improved hydrophilicity and protein resistance ability in biological solutions. More importantly, the reusability test shows that POP-CB-40% maintains ∼99% of bilirubin uptake capacity at fifth recycling in 100% serum. Findings in this work provide a guideline for the design of biocompatible and efficient POP-based bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjian Li
- Cardiovascular Department, Tianjin Nankai Hospital, No. 122, Sanwei Road, Nankai District, Tianjin 300102, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Zhun Bao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiaodong Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
20
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
21
|
Li S, Ouyang T, Guo X, Dong W, Ma Z, Fei T. Tetraphenylethene-Based Cross-Linked Conjugated Polymer Nanoparticles for Efficient Detection of 2,4,6-Trinitrophenol in Aqueous Phase. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6458. [PMID: 37834593 PMCID: PMC10573890 DOI: 10.3390/ma16196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The cross-linked conjugated polymer poly(tetraphenylethene-co-biphenyl) (PTPEBP) nanoparticles were prepared by Suzuki-miniemulsion polymerization. The structure, morphology, and pore characteristics of PTPEBP nanoparticles were characterized by FTIR, NMR, SEM, and nitrogen adsorption and desorption measurements. PTPEBP presents a spherical nanoparticle morphology with a particle size of 56 nm; the specific surface area is 69.1 m2/g, and the distribution of the pore size is centered at about 2.5 nm. Due to the introduction of the tetraphenylethene unit, the fluorescence quantum yield of the PTPEBP nanoparticles reaches 8.14% in aqueous dispersion. Combining the porosity and nanoparticle morphology, the fluorescence sensing detection toward nitroaromatic explosives in the pure aqueous phase has been realized. The Stern-Volmer quenching constant for 2,4,6-trinitrophenol (TNP) detection is 2.50 × 104 M-1, the limit of detection is 1.07 μM, and the limit of quantification is 3.57 μM. Importantly, the detection effect of PTPEBP nanoparticles toward TNP did not change significantly after adding other nitroaromatic compounds, indicating that the anti-interference and selectivity for TNP detection in aqueous media is remarkable. In addition, the spike recovery test demonstrates the potential of PTPEBP nanoparticles for detecting TNP in natural environmental water samples.
Collapse
Affiliation(s)
- Shengjie Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianwen Ouyang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xue Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, China
| | - Zhihua Ma
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
22
|
Zhu L, Yang F, Lou C, Zhang X, Yang Y. Hollow porphyrin-based porous organic polymer with dual enzyme-like activities for ultra-fast colorimetric detection of Cr (VI) in wastewater. Mikrochim Acta 2023; 190:339. [PMID: 37524992 DOI: 10.1007/s00604-023-05916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
A hollow porphyrin-based porous organic polymer (H-Fe-POP) was prepared for rapid and sensitive colorimetric determination of Cr(VI), which exhibited excellent dual enzyme-like activities, including oxidase-like and peroxidase-like activities. Due to the specific binding of 8-hydroxyquinoline (8-HQ) to Cr(VI), 3,3',5,5'-tetramethylbenzidine (TMB) was liberated, and TMB was oxidized to blue ox-TMB catalyzed by H-Fe-POP. Based on the excellent oxidase-like activity of H-Fe-POP, an ultra-fast colorimetric platform for the detection of Cr(VI) was constructed, allowing the quantification of Cr(VI) in the range 2-130 μM within 30 s with a detection limit of 0.23 μM. Importantly, the sensor can accurately determine Cr(VI) in industrial wastewater, indicating its high potential for environmental monitoring.
Collapse
Affiliation(s)
- Liqin Zhu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Congcong Lou
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Xiaomei Zhang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
23
|
He X, Xia J, He J, Qi K, Peng A, Liu Y. Highly Efficient Capture of Heavy Metal Ions on Amine-Functionalized Porous Polymer Gels. Gels 2023; 9:gels9040297. [PMID: 37102909 PMCID: PMC10137378 DOI: 10.3390/gels9040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Porous polymer gels (PPGs) are characterized by inherent porosity, a predictable structure, and tunable functionality, which makes them promising for the heavy metal ion trap in environmental remediation. However, their real-world application is obstructed by the balance between performance and economy in material preparation. Development of an efficient and cost-effective approach to produce PPGs with task-specific functionality remains a significant challenge. Here, a two-step strategy to fabricate amine-enriched PPGs, NUT-21-TETA (NUT means Nanjing Tech University, TETA indicates triethylenetetramine), is reported for the first time. The NUT-21-TETA was synthesized through a simple nucleophilic substitution using two readily available and low-cost monomers, mesitylene and α, α′-dichloro-p-xylene, followed by the successful post-synthetic amine functionalization. The obtained NUT-21-TETA demonstrates an extremely high Pb2+ capacity from aqueous solution. The maximum Pb2+ capacity, qm, assessed by the Langmuir model was as high as 1211 mg/g, which is much higher than most benchmark adsorbents including ZIF-8 (1120 mg/g), FGO (842 mg/g), 732-CR resin (397 mg/g), Zeolite 13X (541 mg/g), and AC (58 mg/g). The NUT-21-TETA can be regenerated easily and recycled five times without a noticeable decrease of adsorption capacity. The excellent Pb2+ uptake and perfect reusability, in combination with a low synthesis cost, gives the NUT-21-TETA a strong potential for heavy metal ion removal.
Collapse
Affiliation(s)
- Xue He
- College of Pharmacy, Dali University, Dali 671003, China
| | - Jumu Xia
- College of Pharmacy, Dali University, Dali 671003, China
| | - Jieli He
- College of Pharmacy, Dali University, Dali 671003, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671003, China
| | - Anzhong Peng
- College of Pharmacy, Dali University, Dali 671003, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali 671003, China
| |
Collapse
|
24
|
Song Y, Phipps J, Zhu C, Ma S. Porous Materials for Water Purification. Angew Chem Int Ed Engl 2023; 62:e202216724. [PMID: 36538551 DOI: 10.1002/anie.202216724] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task-specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| |
Collapse
|
25
|
Liu Y, Zhou H, Zhou X, Jin C, Liu G, Huo S, Chu F, Kong Z. Natural phenol-inspired porous polymers for efficient removal of tetracycline: Experimental and engineering analysis. CHEMOSPHERE 2023; 316:137798. [PMID: 36634714 DOI: 10.1016/j.chemosphere.2023.137798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/13/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Efficient and feasible removal of trace antibiotics from wastewater is extremely important due to its environmental persistence, bioaccumulation, and toxicity, but still remains a huge challenge. Herein, three natural phenol-inspired porous organic polymers were fabricated from natural phenolic-derived monomers (p-hydroxy benzaldehyde, 2,4-dihydroxy benzaldehyde and 2,4,6-trihydroxy benzaldehyde) and melamine via polycondensation reaction. Characterization highlighted that the increasing contents of hydroxyl groups in monomers induced an increase of the polymer total porosity and promoted the formation of a highly microporous structure. With mesopore-dominated pore (average pore diameter 9.6 nm) and large pore volume (1.78 cm3/g), p-hydroxy benzaldehyde-based porous polymer (1-HBPP) exhibited ultra-high maximum adsorption capacity (qmax) of 697.6 mg/g for tetracycline (TC) antibiotic. Meanwhile, the porous networks and plentiful active sites of 1-HBPP enabled fast adsorption kinetics (within 10 min) for TC removal, which could be well described by the pseudo-second-order model. Dynamic adsorption studies showed that 1-HBPP could be used in fixed-bed adsorption column (FBAC) with high removal efficiency (breakthrough volume per unit mass, 13.2 L/g) and dynamic adsorption capacity (201.6 mg/g), which were much higher than other reported adsorbents. The breakthrough curves both well matched with Thomas and Yoon-Nelson models in FBAC treatment. Moreover, removal mechanism analysis affirmed that pore-filling, hydrogen bonding, electrostatic interactions and π-π stacking interactions were main driving forces for TC adsorption. The prepared natural phenol-inspired porous adsorbents show great potential in antibiotics removal from wastewater, and this strategy would promote the sustainable and high-value utilization of natural phenolic compounds.
Collapse
Affiliation(s)
- Yunlong Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyan Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| |
Collapse
|
26
|
Huang J, Cai H, Zhao Q, Zhou Y, Liu HB, Wang J. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Shao L, Wan H, Wang L, Wang J, Liu Z, Wu Z, Zhan P, Zhang L, Ma X, Huang J. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Wang Z, Liu Y, Zhang W, Wang Y, Xu H, Yang L, Feng J, Hou B, Li M, Yan W. Selective mercury adsorption and enrichment enabled by phenylic carboxyl functionalized poly(pyrrole methane)s chelating polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159870. [PMID: 36328257 DOI: 10.1016/j.scitotenv.2022.159870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Mercury decontamination from water requires highly effective and efficient methods for maintaining public health and environmental protection. Herein, based on the coordination theory between functional groups and metal ions, we proposed phenylic carboxyl group-based poly(pyrrole methane)s (PPDCBAs) as highly efficient mercury removal materials for environmental remediation applications. It was found that PPDCBAs can efficiently adsorb and remove mercury(II) from aqueous solutions by functionalizing the molecular structure with phenylic carboxyl groups. Among the as-prepared PPDCBAs, poly[pyrrole-2, 5-diyl (4-carboxybenzylidane)] (PPD4CBA) with the carboxyl group at the para position can not only adsorb mercury over 1400 mg⋅g-1 but also achieve a 92.5 % mercury(II) uptake within 100 min by a very low dosage of 0.1 g⋅L-1. In addition, PPDCBAs exhibited excellent adsorption selectivity for mercury(II) compared with copper(II), cadmium(II), zinc(II) and lead(II). Furthermore, as determined by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and the density functional theory (DFT) calculation, the mercury removal was found to be mainly dependent on the high density of chelating sites, the phenylic carboxyl moieties, which helped us to realize an ultra-trace amount mercury removal (from 10.8 μg⋅L-1 to 0.6-0.8 μg⋅L-1) for meeting drinking water standard requirements (1.0 μg⋅L-1).
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunpeng Liu
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenlong Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yubing Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liu Yang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Jiangsu Engineering Laboratory of New Materials for Sewage Treatment and Recycling, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
29
|
Lu L, Xie Y, Yang Z, Chen B. Sustainable decontamination of heavy metal in wastewater and soil with novel rectangular wave asymmetrical alternative current electrochemistry. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130021. [PMID: 36152548 DOI: 10.1016/j.jhazmat.2022.130021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
A new concept of removal and recovery of heavy metals and simultaneous regeneration and reuse of ethylenediamine-tetraacetic acid (EDTA) in soil washing effluent containing metal-EDTA complexes is proposed, which is used to remediate heavy metal contaminated soil. To achieve this goal, soil washing approach coupled with rectangular wave asymmetrical alternative current electrochemistry (RW-ACE) equipped with amidoxime-functionalized electrodes (Ami-CF) is employed. With high hydrophilicity and strong binding affinity, Ami-CF could specifically compete for heavy metals over EDTA under electric field. RW-ACE system is found successfully to achieve the non-destructive decomplexation of heavy metal-EDTA, and then regenerate EDTA for highly recycling, which saves as high as 98.9 % EDTA consumption compared with conventional washing method. Moreover, more than 90% of heavy metals are recovered and deposited on the electrode with a majority of them existed as zero-valence state as evidenced by XPS. The RW-ACE method is universal for various heavy metals such as Cu2+, Zn2+, Cd2+, and Pb2+ in an authentic contaminated soil, and the loss of soil nutrient is very limited. Along with long-term assessment and operation cost estimation, the RW-ACE method is a sustainable remediation approach for the heavy metal polluted wastewater and soils, and easily scaled up for field practice.
Collapse
Affiliation(s)
- Lun Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunhao Xie
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
30
|
Wongwilawan S, Kim D, Nguyen TS, Lim W, Li S, Yavuz CT. Systematic Modulation of Thiol Functionalities in Inexpensive Porous Polymers for Effective Mercury Removal. Chemistry 2022; 28:e202202340. [PMID: 36169493 DOI: 10.1002/chem.202202340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 12/30/2022]
Abstract
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g-1 , with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.
Collapse
Affiliation(s)
- Sirinapa Wongwilawan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea.,PTT Global Chemical Public Company Ltd., Bangkok, 10900, Thailand
| | - Doyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea
| | - Thien S Nguyen
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea.,Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Advanced Membranes & Porous Materials Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,KAUST Catalysis Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Wonki Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea.,Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Advanced Membranes & Porous Materials Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,KAUST Catalysis Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
31
|
Efficient adsorption of BPA and Pb2+ by sulfhydryl-rich β-cyclodextrin polymers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Guo Z, Wang Z, Liu J, Sun Y, Yang L, Feng J, Hou B, Yan W. Efficient Mercury(II) Capture by Functionalized Poly(pyrrole methane)s: the Role of Chloro and Imino Groups. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Ghosh S, Othmani A, Malloum A, Ke Christ O, Onyeaka H, AlKafaas SS, Nnaji ND, Bornman C, Al-Sharify ZT, Ahmadi S, Dehghani MH, Mubarak NM, Tyagi I, Karri RR, Koduru JR, Suhas. Removal of mercury from industrial effluents by adsorption and advanced oxidation processes: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Das J, Rawat S, Maiti A, Singh L, Pradhan D, Mohanty P. Adsorption of Hg2+ on Cyclophosphazene and Triazine Moieties based Inorganic-organic Hybrid Nanoporous Materials Synthesized by Microwave Assisted Method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Xiong J, Chen J, Han Y, Ge Y, Liu S, Ma J, Liu S, Luo J, Xu Z, Tong X. Thiophene-functionalized heteronuclear uranium organic framework for selective detection and adsorption towards Mercury (II). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Fu SQ, Zhu MZ, Xue B, Liu PN. Synergy between Ionic Capacity and Intrinsic Porosity in Imidazolium-Based Cationic Organic Polymers and Its Effect on Anionic Dye Adsorption. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Qing Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Zhi Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Boxin Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
38
|
Li Z, Yang Z, Zhang Y, Yang B, Yang Y. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022; 61:e202206144. [DOI: 10.1002/anie.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yinan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
39
|
Li P, Huang J, Gao C, Xu G, Wang G, Zhang B, Duan C. Effective and reusable 3D Cu xS nanocluster structured magnetic adsorbent for mercury extraction from wastewater. CHEMOSPHERE 2022; 301:134818. [PMID: 35513077 DOI: 10.1016/j.chemosphere.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The elimination of mercury from polluted water using an effective, cost-economic, and sustainable method was investigated in this work. A modulated multilayer magnetic Hg2+ extractor was prepared with a self-assembly engineering that permitting robust anchoring and uniform distribution of the negatively charged 3D CuxS nanocluster onto a polydopamine (PDA) covered positively strengthened Fe3O4 surface. The developed PAD@Fe3O4 supported copper sulfide composite (CuxS/PAD@Fe3O4) presented an unparalleled Hg2+ uptake performance with adsorption capacity of 1394.61 mg/g (without saturation), and extraordinary selectivity with distribution coefficient value Kd of 17419.2 mL/g. A complexation reaction during Hg2+ affinity was taken place on CuxS/PAD@Fe3O4 surface, and almost no components losses occurring during the adsorption. Furthermore, the as-prepared CuxS/PAD@Fe3O4 micron-adsorbent can be easily magnetic recovery and recycled with hydrochloric acid elution. The purification of 50 L Hg2+ containing wastewater, initial concentration of 20 μg/L can be achieved with CuxS/PAD@Fe3O4 dosage of 0.1 g and treatment cost of 0.077 US $. The outlet Hg2+ concentration met drinking water standard of the United States Environmental Protection Agency. The CuxS/PAD@Fe3O4 magnetic adsorbent can be fabricated cheaply and holds promise for scale-up applications.
Collapse
Affiliation(s)
- Peng Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou City, Jiangsu, 221008, PR China.
| | - Jiu Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou City, Jiangsu, 221008, PR China
| | - Chen Gao
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi, 330013, PR China
| | - Guiyin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Guanghui Wang
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi, 330013, PR China
| | - Bo Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou City, Jiangsu, 221008, PR China
| | - Chenglong Duan
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou City, Jiangsu, 221008, PR China
| |
Collapse
|
40
|
Liu Y, Wang ZK, Gao ZZ, Zong Y, Sun JD, Zhou W, Wang H, Ma D, Li ZT, Zhang DW. Porous organic polymer overcomes the post-treatment phototoxicity of photodynamic agents and maintains their antitumor efficiency. Acta Biomater 2022; 150:254-264. [DOI: 10.1016/j.actbio.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/01/2022]
|
41
|
High-Performance Hydrogel Based on Modified Chitosan for Removal of Heavy Metal Ions in Borehole: A Case Study from the Bahariya Oasis, Egypt. Catalysts 2022. [DOI: 10.3390/catal12070721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Globally, there is a rising demand for water purification. This demand is driven by numerous factors, including economic growth, increasing population, water shortage, and deterioration of water quality. The current work highlights the manufacturing of environmentally friendly and highly efficient sorbent based on chitosan nanoparticles after successive crosslinking (using glutaraldehyde) and modification through grafting of 4-aminoazobenzene-3,4′-disulfonic acid (AZDS) as a source of sulfonic groups. First, the produced sorbent was thoroughly specified using FTIR, TGA, SEM, SEM-EDX, pHpzc, BET (nitrogen sorption desorption isotherms), and elemental analyses (EA). The sorbent was tested for the sorption of Fe(III) before application to highly contaminated iron water well samples. Next, the sorption was improved as the sulfonation process was conducted under the selected experimental conditions within 25 and 20 min with a maximum capacity of 2.7 and 3.0 mmol Fe g−1 in visible light and under UV, respectively. Then, the uptake kinetics for both techniques were fitted by the pseudo-first-order rate equation (PFORE), in which the effect of the resistance to intraparticle diffusion has remained an unneglected factor, while the Langmuir equation has fitted the sorption isotherms. After that, the efficient desorption was achieved by using 0.2 M hydrochloric acid solution, and the desorption process was as fast as the sorption process; 15 min was sufficient for complete desorption. The sorbent shows high selectivity for heavy metal ions compared to the representative elements. Finally, the sorbent was used for the removal of heavy metal ions from a highly contaminated water well in the Bahariya Oasis and appeared to be highly efficient for heavy metal removal even in a diluted solution. Accordingly, it can be implemented in the task of water treatment.
Collapse
|
42
|
Wang M, Li HS, Ding X, Jiang L, Wu P, Zheng R, Bao G, Liu G, Wang J. Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(VI) in water. Dalton Trans 2022; 51:10351-10356. [PMID: 35762382 DOI: 10.1039/d2dt01046a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an imine-linked luminescent porous organic network (PON) has been successfully synthesized by the Schiff-base condensation reaction between 1,2-diphenylethylenediamine and tris(4-formylphenyl)amine. It exhibits strong fluorescence in an aqueous dispersion and can be applied as a luminescent probe for Cr(VI) (CrO42- and Cr2O72-) with high selectivity and sensitivity (LOD for Cr2O72- and CrO42- were below 0.35 μM and 0.4 μM, respectively) in a turn-off manner. The possible luminescence sensing mechanism and the adsorption capacity of Cr(VI) are also discussed in detail.
Collapse
Affiliation(s)
- Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xin Ding
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lizan Jiang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ruiting Zheng
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Guoyue Bao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Guoliang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
43
|
Li Z, Yang Z, Zhang Y, Yang B, Yang YW. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheng Li
- Jilin University College of Chemistry CHINA
| | | | | | - Bing Yang
- Jilin University College of Chemistry CHINA
| | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
44
|
Wang L, Wang J, Wang Y, Zhou F, Huang J. Thioether-functionalized porphyrin-based polymers for Hg 2+ efficient removal in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128303. [PMID: 35101759 DOI: 10.1016/j.jhazmat.2022.128303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In this paper, thioether-functionalized porphyrin-based polymers (TPPs) were constructed according to two different "bottom-up" and "top-down" strategies and they were applied for Hg2+ capture in aqueous solution. TPP1, which was constructed by one-step polycondensation of 2,5-bis(methylthio) terephthalaldehyde (BMTA) with pyrrole according to the "bottom-up" strategy, owned high Brunauer-Emmett-Teller (BET) surface area (SBET, 554 m2/g), pore volume (Vtotal, 0.32 cm3/g), and S content (16.8%), resulting in high Hg2+ capture (913 mg/g) with high removal efficiency (> 99%). The adsorption mechanism clarified that the strong coordination between the S species and Hg2+ was the main driving force. In comparison, TPP2 and TPP3 were fabricated by the thioether functionalization of the porphyrin-based polymers according to the "top-down" strategy. They showed much lower SBET, Vtotal, and S content for the reason that the post-functionalization process greatly blocked the pores and the functional sites were hardly fully post-functionalized, resulting in much lower Hg2+ capture (555 mg/g and 609 mg/g, respectively). This work reveals the advantage of the "bottom-up" strategy for the construction of the thioether-functionalized polymers and it offers the guidance for the construction of some other thioether-functionalized polymers.
Collapse
Affiliation(s)
- Lizhi Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Fa Zhou
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China.
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China.
| |
Collapse
|
45
|
Wang RD, He L, Zhu RR, Jia M, Zhou S, Tang J, Zhang WQ, Du L, Zhao QH. Highly efficient and selective capture Pb(II) through a novel metal-organic framework containing bifunctional groups. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127852. [PMID: 34838355 DOI: 10.1016/j.jhazmat.2021.127852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
The design and development of materials with a selective adsorption capacity for Pb(II) are very important for environmental governance and ecological safety. In this work, a novel 3D metal-organic framework ([Cd2H4L4Cl2SO4]·4H2O, Cd-MOF) is constructed using a multiple pyrazole heterocycles tetraphenylethylene-based ligand (H4L4) and CdSO4 which containing Pb(II) adsorption sites (SO42-). Studies have shown that the Cd-MOF has outstanding stability, and its maximum adsorption value of Pb(II) can be as high as 845.55 mg/g, which is higher than that of most MOFs or MOFs modified materials. It is worth emphasizing that the Cd-MOF have excellent recyclability due to the unique adsorption mechanism of the Cd-MOF. Thermodynamic studies have shown that Pb(II) adsorption of the Cd-MOF is a spontaneous endothermic process. Specific selective adsorption, exceptional stability and remarkable recyclability make the Cd-MOF a potential material for industrial capture and recovery of Pb(II) from water.
Collapse
Affiliation(s)
- Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Liancheng He
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Rong-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Mingxuan Jia
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Sihan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jinsheng Tang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Wen-Qian Zhang
- College of Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Henan 464000, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
46
|
Tang Y, Zheng M, Xue W, Huang H, Zhang G. Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Shahzad A, Rasool K, Iqbal J, Jang J, Lim Y, Kim B, Oh JM, Lee DS. MXsorption of mercury: Exceptional reductive behavior of titanium carbide/carbonitride MXenes. ENVIRONMENTAL RESEARCH 2022; 205:112532. [PMID: 34896083 DOI: 10.1016/j.envres.2021.112532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have drawn considerable attention for application in the field of environmental remediation. In this study, we report the simultaneous reductive-adsorption behavior of Ti3CNTx for toxic metal ion Hg2+ ion in the aqueous phase. 2D Ti3CNTx and Ti3C2Tx MXene nanosheets were synthesized by exfoliation of Ti3AlCN and Ti3AlC2 MAX phases, respectively. Various characteristics analysis confirmed the successful fabrication of MAX phases and their exfoliation into MXenes. The fabricated MXene nanosheets were used to investigate their Hg2+ removal, Hg2+ intercalation, and surface interaction mechanism efficiencies. Both MXenes were found to adsorb and reduce a large amount of Hg2+. Analytical techniques such as X-ray powder diffraction, field emission transmission electron microscopy, zeta-potential analyses, and X-ray photoelectron spectroscopy were used to investigate the material characteristics and structural changes after uptake of Hg2+. The quantitative investigation confirmed the interaction of bimetal and hydroxyl groups with Hg2+ using electrostatic interactions and adsorption-coupled reduction. In addition, both MXenes exhibited extraordinary Hg ion removal capabilities in terms of fast kinetics with an excellent distribution coefficient (KdHg) up to 1.36 × 10+9. Based on batch adsorption results, Ti3C2Tx and Ti3CNTx exhibited removal capacities of 5473.13 and 4606.04 mg/g, respectively, for Hg2+, which are higher than those of previous Hg adsorbents.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5824, Doha, Qatar
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Youngsu Lim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
48
|
Sharma R, Lee HI. Recent advances in polymeric chemosensors for the detection and removal of mercury ions in complex aqueous media. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2054348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rini Sharma
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
49
|
Gorginpour F, Moradinia S, Daneshi M, Zali-Boeini H. Novel Sulfur-Containing Porous Organic Polymer as a Nanotrap for Rapid Removal of Mercury(II) from Environmental Waters. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Forough Gorginpour
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Somayeh Moradinia
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Marzieh Daneshi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Hassan Zali-Boeini
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
50
|
Yang Y, Zhang Y, Zheng H, Zhang B, Zuo Q, Fan K. Functionalized dual modification of covalent organic framework for efficient and rapid trace heavy metals removal from drinking water. CHEMOSPHERE 2022; 290:133215. [PMID: 34919913 DOI: 10.1016/j.chemosphere.2021.133215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 05/27/2023]
Abstract
A key challenge in trace heavy metals removal from drinking water by adsorption technology is to achieve high adsorption capacity and rapid uptake speed of adsorbent. Herein, we report a functionalized double modified covalent organic framework (DMTD-COF-SH) bearing high-density sulfur and nitrogen chelating groups provided simultaneously by 2,5-dimercapto-1,3,4-thiadiazole (DMTD) and 1,2-ethanedithiol, which was prepared via a facile one-pot thiol-ene "click" reaction. PXRD, FTIR, XPS, SEM, BET and 13C MAS NMR confirmed their successful graft, and DMTD was found to be more easily grafted on the COF surface layer than 1,2-ethanedithiol. The as-prepared DMTD-COF-SH showed remarkable adsorption capacity and ultrafast uptake dynamics to trace heavy metals owing to the synergistic effects resulting from densely populated sulfur and nitrogen chelating groups within ordered COF mesopores and at the COF surface. On the basis of the drinking water treatment units standard NSF/ANSI 53-2020, when the adsorbent dosage was 10 mg/30 mL and 20 mg L-1 calcium ions coexisted, the lead concentration decreased from initial 150 μg L-1 to 2.89 μg L-1 within 10 s, far below the allowable limit of world health organization (WHO) drinking water standard (10 μg L-1), and the maximum adsorption capacity meeting the standard attained 14.22 mg g-1. The adsorbent also exhibited excellent stability, wide applicable pH range and outstanding adsorption performance for coexisting trace lead, mercury, cadmium, chromium (VI) and copper in tap water, indicating that the DMTD-COF-SH material has excellent application prospect for trace heavy metals removal from drinking water.
Collapse
Affiliation(s)
- Yanan Yang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Yu Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Hong Zheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Baichao Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Qi Zuo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Kaiyue Fan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|