1
|
Hardianto YP, Aziz MA, Mohamed MM, Yamani ZH. Identification of Suitable Mesh Size of Commercial Stainless-Steel for Electrochemical Oxygen Evolution Reaction. Chem Asian J 2024; 19:e202400118. [PMID: 38625161 DOI: 10.1002/asia.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
The study examines the oxygen evolution reaction (OER) electrocatalytic efficiency of various stainless-steel mesh (SSM) sizes in electrolytic cells. Stainless steel is chosen due to its widespread availability and stability, making it an economically viable option. The primary objective of this investigation is to determine the optimal stainless-steel mesh size among those currently widely available on the market. The classification of stainless-steel mesh sizes as SS304 is confirmed by the minimal compositional variations observed across all mesh sizes through electron dispersive X-ray (EDX) spectra and X-ray fluorescence (XRF) analyses. Remarkably, CV experiments carried out at different scan rates indicate that SSM 200 has the maximum specific electrochemical surface area (ECSA). As a result, SSM 200 demonstrates superior performance in terms of current density response and shows the lowest overpotential in the alkaline medium compared to other stainless-steel mesh sizes. Furthermore, the SSM 200 exhibits a low overpotential of 337 mV at a current density of 10 mA/cm2 and a Tafel slope of 62.2 mV/decade, surpassing the performance of several previously reported electrodes for the OER. Stability tests conducted under constant voltage further confirm the remarkable stability of SSM 200, making it an ideal anode for electrolytic cell applications. These findings emphasize the cost-effectiveness and high stability of SSM 200, presenting intriguing possibilities for future research and advancements in this field.
Collapse
Affiliation(s)
- Yuda Prima Hardianto
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mostafa M Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Li L, Sheng Z, Xiao Q, Hu Q. Co 9S 8 core-shell hollow spheres for enhanced oxygen evolution and methanol oxidation reactions by sulfur vacancy engineering. Dalton Trans 2023; 53:180-185. [PMID: 38018713 DOI: 10.1039/d3dt03477a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cobalt sulfides, especially Co9S8, have been widely studied as a potential earth-abundant electrocatalyst for many electrochemical reactions, such as oxygen evolution reaction (OER) and methanol oxidation reaction (MOR). However, the electrocatalytic performance of Co9S8 is not satisfactory because of its comparatively sluggish charge transport and reaction kinetics. Defect engineering and constructing hollow nanostructures are effective methods to improve their electrocatalytic performance, therefore, exploring an efficient route to obtain Co9S8 catalysts, simultaneously possessing sulfur vacancies and hollow nanostructure, is necessary. In this study, Co9S8-x core-shell hollow spheres with sulfur vacancies were prepared via a two-step solvothermal strategy, followed by thermal treatment under an H2/Ar atmosphere. The content of sulfur vacancies can be regulated by varying the temperature during the thermal treatment. The obtained Co9S8-x core-shell hollow spheres exhibited interesting sulfur vacancy defect-dependent activity, one of which showed outstanding electrocatalysis performance for OER with an overpotential (η) of 294 m V (at 10 mA cm-2) and MOR catalysis efficiency (164.9 mA cm-2 at 1.8 V vs. RHE) in an alkaline medium. This study provides a promising and feasible pathway for developing efficient trifunctional electrocatalysts for renewable energy technologies.
Collapse
Affiliation(s)
- Long Li
- Department of Chemistry, Lishui University, Lishui 323000, P. R. China
| | - Zhanpeng Sheng
- Department of Chemistry, Lishui University, Lishui 323000, P. R. China
| | - Qingqing Xiao
- Department of Chemistry, Lishui University, Lishui 323000, P. R. China
| | - Qiang Hu
- Department of Chemistry, Lishui University, Lishui 323000, P. R. China
- Zhejiang Zhentai Energy Technology Co. Ltd, Lishui, 323000, China.
| |
Collapse
|
3
|
Wu TY, Lin KH, Li JY, Kuo CN, Lue CS, Chen CY. Delaminated MnPS 3 with Multiple Layers Coupled with Si Featuring Ultrahigh Detectivity and Environmental Stability for UV Photodetection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54643-54654. [PMID: 37963183 DOI: 10.1021/acsami.3c11893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Silicon (Si), the dominant semiconductor in microelectronics yet lacking optoelectronic functionalities in UV regions, has been researched extensively to make revolutionary changes. In this study, the inherent drawback of Si on optoelectronic functionalities in UV regions is potentially overcome through heterostructure coupling of delaminated p-type MnPS3, having bulk, multiple-layer, and few-layer features, with n-type Si. By artificially mimicking the architectures of shrubs with unique UV shading phenomena, the revolutionary multiple-layer MnPS3 structures with staggered stacking configurations trigger outstanding UV photosensing performances, displaying an average EQE value of 1.1 × 103%, average photoresponsivity of 3.1 × 102 A/W, average detectivity of 1.9 × 1014 cm Hz1/2W1-, and average on/off ratio of 1.8 × 103 under 365 nm light. To the best of our knowledge, this is the first attempt toward realizing gate-free MnPS3-based UV photodetectors, while all of the photodetection outcomes are better than those of more sophisticated field-effect transistor (FET) designs, which have remarkable impacts on the practicality and functionality of next-generation UV optoelectronics.
Collapse
Affiliation(s)
- Tsung-Yen Wu
- Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - Kuan-Han Lin
- Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - Jheng-Yi Li
- Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 10601, Taiwan
| | - Chin-Shan Lue
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 10601, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Yun Chen
- Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, No.1 University Road, Tainan 701, Taiwan
| |
Collapse
|
4
|
Gu Z, Zhang Y, Wei X, Duan Z, Gong Q, Luo K. Intermediates Regulation via Electron-Deficient Cu Sites for Selective Nitrate-to-Ammonia Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303107. [PMID: 37730433 DOI: 10.1002/adma.202303107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/23/2023] [Indexed: 09/22/2023]
Abstract
Ammonia (NH3 ), known as one of the fundamental raw materials for manufacturing commodities such as chemical fertilizers, dyes, ammunitions, pharmaceuticals, and textiles, exhibits a high hydrogen storage capacity of ≈17.75%. Electrochemical nitrate reduction (NO3 RR) to valuable ammonia at ambient conditions is a promising strategy to facilitate the artificial nitrogen cycle. Herein, copper-doped cobalt selenide nanosheets with selenium vacancies are reported as a robust and highly efficient electrocatalyst for the reduction of nitrate to ammonia, exhibiting a maximum Faradaic efficiency of ≈93.5% and an ammonia yield rate of 2360 µg h-1 cm-2 at -0.60 V versus reversible hydrogen electrode. The in situ spectroscopical and theoretical study demonstrates that the incorporation of Cu dopants and Se vacancies into cobalt selenide efficiently enhances the electron transfer from Cu to Co atoms via the bridging Se atoms, forming the electron-deficient structure at Cu sites to accelerate NO3 - dissociation and stabilize the *NO2 intermediates, eventually achieving selective catalysis in the entire NO3 RR process to produce ammonia efficiently.
Collapse
Affiliation(s)
- Zhengxiang Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yechuan Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuelian Wei
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Zhang H, Meng G, Wei T, Ding J, Liu Q, Luo J, Liu X. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe 3 nanosheets. Chem Commun (Camb) 2023; 59:12144-12147. [PMID: 37740354 DOI: 10.1039/d3cc03434h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Herein, two-dimensional cobalt-doped MnPSe3 nanosheets (CMPS) were constructed, which served as an outstanding bifunctional catalyst for alkaline seawater splitting, i.e., offering the current density of 10 mA cm-2 with applied overpotentials of 59 and 300 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. The assembled two-electrode system of CMPS//CMPS also demonstrated excellent catalytic activity (10 mA cm-2, 1.59 V) and can remain stable for more than 100 h. Moreover, the theoretical calculations showed that CMPS features a suitable H* adsorption beneficial for the HER, as well as a lower free energy barrier favorable for the OER.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| | - Junyang Ding
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Tang K, Shao JY, Zhong YW. Photoelectrochemical cells with a pyridine-anchored organic dye photoanode for efficient H 2 generation by water reduction. Chem Commun (Camb) 2023; 59:6072-6075. [PMID: 37114732 DOI: 10.1039/d3cc01017a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
TiO2 photoelectrodes modified with organic dyes with pyridine anchoring groups are prepared, which are used as photoanodes of dye-sensitized photoelectrochemical cells for efficient water reduction with high photocurrent density and stability in aqueous solutions. Vigorous H2 generation with a production rate of around 250 μmol h-1 is realized with a photoanode of an active area of 5 × 5 cm2.
Collapse
Affiliation(s)
- Kun Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li S, Lv Y, Elam S, Zhang X, Yang Z, Wu X, Guo J. Rational Fabrication of Defect-Rich and Hierarchically Porous Fe-N-C Nanosheets as Highly Efficient Oxygen Reduction Electrocatalysts for Zinc-Air Battery. Molecules 2023; 28:molecules28072879. [PMID: 37049642 PMCID: PMC10095661 DOI: 10.3390/molecules28072879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The rational design of morphology and structure for oxygen reduction reaction (ORR) catalysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR activity with an excellent half-wave potential of up to 0.87 V, desirable durability, and robust methanol tolerance. Noteworthy, the Fe-N-CNSs based zinc-air battery shows significant performance with a peak power density of 128.20 mW cm-2 and open circuit voltage of 1.53 V, which reveals that the Fe-N-CNSs catalysts present promising practical application prospects. Therefore, we believe that this research will provide guidance for the optimization of Fe-N-C materials.
Collapse
Affiliation(s)
- Sensen Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Sawida Elam
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Xiuli Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
8
|
Zhang J, Li J, Huang H, Chen W, Cui Y, Li Y, Mao W, Zhu X, Li X. Spatial Relation Controllable Di-Defects Synergy Boosts Electrocatalytic Hydrogen Evolution Reaction over VSe 2 Nanoflakes in All pH Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204557. [PMID: 36216775 DOI: 10.1002/smll.202204557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Defect engineering of transition metal dichalcogenides (TMDCs) is important for improving electrocatalytic hydrogen evolution reaction (HER) performance. Herein, a facile and scalable atomic-level di-defect strategy over thermodynamically stable VSe2 nanoflakes, yielding attractive improvements in the electrocatalytic HER performance over a wide electrolyte pH range is reported. The di-defect configuration with controllable spatial relation between single-atom (SA) V defects and single Se vacancy defects effectively triggers the electrocatalytic HER activity of the inert VSe2 basal plane. When employed as a cathode, this di-defects decorated VSe2 electrocatalyst requires overpotentials of 67.2, 72.3, and 122.3 mV to reach a HER current density of 10 mA cm-2 under acidic, alkaline, and neutral conditions, respectively, which are superior to most previously reported non-noble metal HER electrocatalysts. Theoretical calculations reveal that the reactive microenvironment consists of two adjacent SA Mo atoms with two surrounding symmetric Se vacancies, yielding optimal water dissociation and hydrogen desorption kinetics. This study provides a scalable strategy for improving the electrocatalytic activity of other TMDCs with inert atoms in the basal plane.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Jiandong Li
- College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, P. R. China
| | - Wei Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province, 318000, P. R. China
| | - Yan Cui
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, 210003, P. R. China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Weiwei Mao
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Xinbao Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
9
|
Sharma MD, Basu M. Nanosheets of In 2S 3/S-C 3N 4-Dots for Solar Water-Splitting in Saline Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12981-12990. [PMID: 36218026 DOI: 10.1021/acs.langmuir.2c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen generation from splitting of water under the photoelectrochemical (PEC) pathway is considered as the most promising strategy for covering the upcoming fuel crisis by taking care of all environmental issues. In this context, In2S3 can be explored as it is a visible light-active semiconductor with an appropriate band alignment with the water redox potential. Herein, In2S3 nanosheets are developed by the chemical method. The nanosheets of In2S3 absorb high visible light due to the manifold inside scattering and reflection. The PEC activity of In2S3 is enhanced because of the increase in the light absorbance of the materials. In the present work, at 1.18 V versus RHE in 3.5 wt % NaCl, a maximum 2.07 mA/cm2 photocurrent density can be achieved by In2S3 nanosheets. However, In2S3 suffers strongly due to photo-corrosion. To improve the efficacy of the In2S3 nanosheets in saline water, the charge-carrier transportation ability of In2S3 is aimed to increase by decorating S-C3N4-dots on In2S3. The heterostructure of type-II is developed by sensitization of S-C3N4-dots on In2S3. It increases both the transportation of charge carriers as well as separation. In the heterostructure, the transient decay time (τ) increases, which indicates a decrease in photogenerated charge-carrier recombination. S-C3N4-dots also act as an optical antenna and increase the range of visible light absorbance of In2S3. The heterostructure can generate ∼2.38-fold higher photocurrent density of 1.18 V versus RHE in 3.5 wt % NaCl. The photoconversion efficiency of the heterostructure is 0.88% at 0.95 V versus RHE. The nanosheets of In2S3 and In2S3/S-C3N4-dots are stable, and photocurrent density is measured up to 2700 s under continuous back-illumination conditions.
Collapse
Affiliation(s)
- Mamta Devi Sharma
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Mrinmoyee Basu
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
10
|
Chen W, Qin Z, Wang ZM. Heterometal doping on nickel selenide corrugations for solar-assisted electrocatalytic hydrogen evolution. Dalton Trans 2022; 51:15507-15514. [PMID: 36165211 DOI: 10.1039/d2dt02617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since nickel exhibits good binding energy and is inexpensive, it is widely applied as a hydrogen evolution reaction (HER) electrocatalyst. Among all Ni-based materials, nickel selenide (NiSe) shows a unique electronic structure as a semiconductor with good electrocatalytic activity. Herein, we prepare Co-doped NiSe (Ni1-xCoxSe) with a structure of uniform corrugations by one-step chemical vapor deposition. For comparison, Fe-doped NiSe (Ni1-xFexSe) and NiSe are also prepared using the same method. In alkaline electrolyte, Ni1-xCoxSe shows great HER performance in terms of low overpotential (93 mV@10 mA cm-2 and 140 mV@50 mA cm-2) and long-term stability. Moreover, with the assistance of solar energy, the overpotential needed for Ni1-xCoxSe is reduced, making Ni1-xCoxSe better than most reported NiSe-based HER catalysts. On the other hand, the current density of Ni1-xCoxSe is 13 mA cm-2@93 mV and 63 mA cm-2@140 mV with illumination, which is 30% and 26% higher than that without solar illumination assistance, respectively. Therefore, we believe that inducing sunlight to electrocatalytic hydrogen evolution in water splitting could be a supplementary footprint toward the utilization of solar energy.
Collapse
Affiliation(s)
- Weiwu Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhaojun Qin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhiming M Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China. .,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
11
|
Shankar A, Maduraiveeran G. Hierarchical Bimetallic Iron-Cobalt Phosphides Nano-Island Nanostructures for Improved Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
The High Electrocatalytic Performance of NiFeSe/CFP for Hydrogen Evolution Reaction Derived from a Prussian Blue Analogue. Catalysts 2022. [DOI: 10.3390/catal12070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Non-noble-metal-based chalcogenides are promising candidates for hydrogen evolution reaction (HER) by harnessing the architectural design and the synergistic effect between the elements. Herein, a porous bimetallic selenide (NiFeSe) nanocube deposited on carbon fiber paper (NiFeSe/CFP) was synthesized through a facile selenization reaction based on Prussian blue analogues (PBAs) as precursors. The NiFeSe/CFP exhibited excellent HER activity with an overpotential of just 186 mV for a current density of 10 mA cm−2 in 1.0 M KOH at ambient temperature, similar to most of the state-of-the-art transition metal chalcogenides. The corresponding Tafel slope was calculated to be 52 mV dec−1, indicating fast discharge of the proton during the HER. Furthermore, the catalyst could endure long-term catalytic tests and showed remarkable durability. The enhanced electrocatalytic performance of NiFeSe/CFP is attributed to the unique 3D porous configuration inherited from the PBA templates, enhanced charge transfer occurring at the heterogeneous interface due to the synergistic effect between the bimetallic phases, and the high conductivity improved by the formation of amorphous carbon shells during the selenization. These findings prove that the combination of inexpensive metal–organic framework precursors and hybrid metallic compounds is a feasible way to realize the performance enhancement of non-noble-metal-based chalcogenides towards alkaline HER.
Collapse
|
13
|
Das C, Sinha N, Roy P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202033. [PMID: 35703063 DOI: 10.1002/smll.202202033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
Collapse
Affiliation(s)
- Chandni Das
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nibedita Sinha
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Jiang L, Guo Y, Pan J, Zhao J, Ling Y, Xie Y, Zhou Y, Zhao J. N, P, O co-doped carbon filling into carbon nitride microtubes to promote photocatalytic hydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151114. [PMID: 34688745 DOI: 10.1016/j.scitotenv.2021.151114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon nitride (CN) as the photocatalytic hydrogen production catalyst has attracted great attentions but suffering from a poor performance due to the unsatisfied energy band gap and the low separation efficiency of photogenerated carriers. Herein, we create a simple method to construct a novel CN-based photocatalyst, i.e., the N, P, O co-doped carbon filled CN microtube, which presents a narrow band gap, a high separation efficiency of photogenerated carriers, and a good stability. In this novel structure, the tubular morphology of CN ensures a narrow band gap, and the N, P, O co-doped carbon facilitates the transfer of photogenerated electrons. Coupling these two further reduces the energy band gap and improves the separation efficiency. For the photocatalytic hydrogen evolution under the visible light, the optimal sample presents an ultrahigh hydrogen evolution rate of 1149.71 μmol g-1 h-1 ranking at the top level, which is 112.60 times that of traditional bulk CN. In addition, it also has a high reusability and good stability after four cycle experiments. This study has provided a new viewpoint to design or develop the high-efficient photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfei Pan
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jie Zhao
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yun Ling
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu Xie
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yipeng Zhou
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
15
|
Xu X, Liu X, Zhao J, Wu D, Du Y, Yan T, Zhang N, Ren X, Wei Q. Interface engineering of MoS 2@Fe(OH) 3 nanoarray heterostucture: Electrodeposition of MoS 2@Fe(OH) 3 as N 2 and H + channels for artificial NH 3 synthesis under mild conditions. J Colloid Interface Sci 2022; 606:1374-1379. [PMID: 34492473 DOI: 10.1016/j.jcis.2021.08.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023]
Abstract
The electrocatalytic reduction of nitrogen (N2) to ammonia (NH3) has broad prospects for green and sustainable NH3 production. Due to the electrocatalytic nitrogen reduction reaction (eNRR) performance of transition metal compound may be restricted with low yield rate, we develop transition metal interface engineering to improve the eNRR performance. Although the edge of MoS2 catalyst is active, the MoS2(001) surface is inert for N2 electroreduction. Through the hydrothermal and electrodeposition methods, Fe(OH)3 as N2 and H+ channels coated on MoS2 nanosheets array (MoS2@Fe(OH)3/CC) is synthesized. Such catalyst exhibits excellent eNRR performance in 0.1 M Na2SO4 with high Faradaic efficiency (2.76%) and NH3 yield rate (4.23 × 10-10 mol s-1 cm-2) at - 0.45 V (vs. RHE). This work may provide a new electrocatalyst synthesis pathway for artificial N2 fixation. Density functional theory calculations show that electrodeposition Fe(OH)3 can accelerate eNRR process rate of MoS2.
Collapse
Affiliation(s)
- Xiaolong Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jinxiu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China.
| |
Collapse
|
16
|
Liu Y, Vijayakumar P, Liu Q, Sakthivel T, Chen F, Dai Z. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. NANO-MICRO LETTERS 2022; 14:43. [PMID: 34981288 PMCID: PMC8724338 DOI: 10.1007/s40820-021-00785-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail. The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure-activity relationship. Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Paranthaman Vijayakumar
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Qianyi Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
17
|
Wang J, Zheng X, Wang G, Cao Y, Ding W, Zhang J, Wu H, Ding J, Hu H, Han X, Ma T, Deng Y, Hu W. Defective Bimetallic Selenides for Selective CO 2 Electroreduction to CO. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106354. [PMID: 34699632 DOI: 10.1002/adma.202106354] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Indexed: 06/13/2023]
Abstract
CO2 electroreduction (CO2 RR) to CO is promising for the carbon cycle but still remains challenging. Au is regarded as the most selective catalyst for CO2 RR, but its high cost significantly hinders its industrial application. Herein, the bimetallic CuInSe2 is found to exhibit an Au-like catalytic feature: i) the interaction of Cu and In orbitals induces a moderate adsorption strength of CO2 RR intermediates and favors the reaction pathway; and ii) the hydrogen evolution is energetically unfavorable on CuInSe2 , as a surface reconstruction along with high energy change will occur after hydrogen adsorption. Furthermore, the Se vacancy is found to induce an electron redistribution, slightly tune the band structure, and optimize the CO2 RR route of bimetallic selenide. Consequently, the Se-defective CuInSe2 (V-CuInSe2 ) achieves a highly selective CO production ability that is comparable to noble metals in aqueous electrolyte, and the V-CuInSe2 cathode shows a satisfactory performance in an aqueous Zn-CO2 cell. This work demonstrates that designing cost-effective catalysts with noble-metal-like properties is an ideal strategy for developing efficient electrocatalysts. Moreover, the class of transition bimetallic selenides has shown promising prospects as active and cost-effective electrocatalysts owing to their unique structural, electronic, and catalytic properties.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Guangjin Wang
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Yanhui Cao
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenlong Ding
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Han Wu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Ding
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Huilin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Yida Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
18
|
Zhao E, Du K, Yin P, Ran J, Mao J, Ling T, Qiao S. Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104363. [PMID: 34850603 PMCID: PMC8728826 DOI: 10.1002/advs.202104363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Indexed: 05/08/2023]
Abstract
Powered by inexhaustible solar energy, photoelectrochemical (PEC) hydrogen/ammonia production and reduction of carbon dioxide to high added-value chemicals in eco-friendly and mild conditions provide a highly attractive solution to carbon neutrality. Recently, substantial advances have been achieved in PEC systems by improving light absorption and charge separation/transfer in PEC devices. However, less attention is given to the atomic design of photoelectrocatalysts to facilitate the final catalytic reactions occurring at photoelectrode surface, which largely limits the overall photo-to-energy conversion of PEC system. Fundamental catalytic mechanisms and recent progress in atomic design of PEC materials are comprehensively reviewed by engineering of defect, dopant, facet, strain, and single atom to enhance the activity and selectivity. Finally, the emerging challenges and research directions in design of PEC systems for future photo-to-energy conversions are proposed.
Collapse
Affiliation(s)
- Erling Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Kun Du
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Peng‐Fei Yin
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jingrun Ran
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
19
|
Liu Y, Yang Y, Chen B, Li X, Guo M, Yang Y, Xu K, Yuan C. Highly Mesoporous Cobalt-Hybridized 2D Cu 3P Nanosheet Arrays as Boosting Janus Electrocatalysts for Water Splitting. Inorg Chem 2021; 60:18325-18336. [PMID: 34802232 DOI: 10.1021/acs.inorgchem.1c02954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, developing economical electrocatalysts with high performance in water decomposition has become a research hotspot. Herein, two kinds of cobalt-hybridized Cu3P nanostructure array electrocatalysts (including highly mesoporous 2D nanosheets and sugar gourd-like 1D nanowires) were controllably grown on a nickel foam substrate through a simple hydrothermal method combined with a subsequent phosphating treatment method. An electrocatalytic test indicated that the as-prepared 2D nanosheet array exhibited excellent activity and stability toward hydrogen evolution reaction under alkaline conditions, which offered a low overpotential of 99 mV at 10 mA/cm2 and a small Tafel slope of 70.4 mV/dec, whereas a competitive overpotential of 272 mV was required for oxygen evolution reaction. In addition, the 2D nanosheet array delivered a low cell voltage of 1.66 V at 10 mA/cm2 in a symmetric two-electrode system, implying its huge potential in overall water decomposition. The electrocatalytic performance is superior to the as-prepared 1D nanowire array and most of the Cu3P-related electrocatalysts previously reported. Experimental measurements and first-principles calculations show that the excellent performance of the 2D nanosheet array can be attributed to its unique 2D mesoporous structure and hybridization of cobalt, which not only provide a large electrochemically active surface and fast electrocatalytic reaction kinetics but also weaken the binding strength of electrocatalytic reaction intermediates. The present study provides a simple and controllable approach to synthesize Cu3P-based bimetallic phosphide nanostructures, which can be used as boosting Janus electrocatalysts for water decomposition.
Collapse
Affiliation(s)
- Yuan Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, 330022 Jiangxi, P. R. China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, 330022 Jiangxi, P. R. China
| | - Bin Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xin Li
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, 330022 Jiangxi, P. R. China
| | - Manman Guo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, 330022 Jiangxi, P. R. China
| | - Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark 07102-1982, New Jersey, United States
| | - Keng Xu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, 330022 Jiangxi, P. R. China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, 330022 Jiangxi, P. R. China
| |
Collapse
|
20
|
Liu Z, Yuan C, Hao W, Lu Z, Zhang J, Ruan W, Ma B, Jiang W, Teng F. In-situ conversion of Bi2O2CO3 to Bi2O2CO3/Fe2O3/BiOCl, Fe2O3/BiOCl heterojunctions and boosted photodegradation activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Wang Z, Chen J, Song E, Wang N, Dong J, Zhang X, Ajayan PM, Yao W, Wang C, Liu J, Shen J, Ye M. Manipulation on active electronic states of metastable phase β-NiMoO 4 for large current density hydrogen evolution. Nat Commun 2021; 12:5960. [PMID: 34645822 PMCID: PMC8514534 DOI: 10.1038/s41467-021-26256-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Non-noble transition metal oxides are abundant in nature. However, they are widely regarded as catalytically inert for hydrogen evolution reaction (HER) due to their scarce active electronic states near the Fermi-level. How to largely improve the HER activity of these kinds of materials remains a great challenge. Herein, as a proof-of-concept, we design a non-solvent strategy to achieve phosphate substitution and the subsequent crystal phase stabilization of metastable β-NiMoO4. Phosphate substitution is proved to be imperative for the stabilization and activation of β-NiMoO4, which can efficiently generate the active electronic states and promote the intrinsic HER activity. As a result, phosphate substituted β-NiMoO4 exhibits the optimal hydrogen adsorption free energy (−0.046 eV) and ultralow overpotential of −23 mV at 10 mA cm−2 in 1 M KOH for HER. Especially, it maintains long-term stability for 200 h at the large current density of 1000 mA cm−2 with an overpotential of only −210 mV. This work provides a route for activating transition metal oxides for HER by stabilizing the metastable phase with abundant active electronic states. Non-noble transition metal oxides are common yet typically poor hydrogen evolution catalysts due to scarce active electronic states. This work provides a route for achieving hydrogen evolution at high current densities by stabilizing a metastable NiMoO4 phase with abundant active electronic states.
Collapse
Affiliation(s)
- Zengyao Wang
- Institute of Special Materials and Technology, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Jiyi Chen
- Institute of Special Materials and Technology, Fudan University, Shanghai, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Southeast Asia, Singapore
| | - Erhong Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Ning Wang
- Institute of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Xiang Zhang
- Department of Materials Science and Nano Engineering, Rice University, Houston, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, USA
| | - Wei Yao
- Institute of Special Materials and Technology, Fudan University, Shanghai, China
| | - Chenfeng Wang
- Institute of Special Materials and Technology, Fudan University, Shanghai, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai, China.
| | - Mingxin Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Zhang P, Zhu P, Zhang F, Wang Y, Zheng W, Liu D, Mao Y. Enhanced electrocatalytic hydrogen evolution performance of 2D few-layer WS2 nanosheets via piezoelectric effects. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Sun L, Luo Q, Dai Z, Ma F. Material libraries for electrocatalytic overall water splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Zhou L, Pan D, Guo Z, Li J, Huang S, Song J. Simple Construction of Amorphous Monometallic Cobalt‐Based Selenite Nanoparticles using Ball Milling for Highly Efficient Oxygen Evolution Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling‐Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Dong‐Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Zheng‐Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Jin‐Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Jun‐Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| |
Collapse
|
25
|
Peng X, Jin X, Gao B, Liu Z, Chu PK. Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Zheng N, He X, Guo W, Hu Z. Enhancement of mass transfer efficiency and photoelectrochemical activity for TiO2 nanorod arrays by decorating Ni3+-states functional NiO water oxidation cocatalyst. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Qiao W, Yan S, Jin D, Xu X, Mi W, Wang D. Vertical-orbital band center as an activity descriptor for hydrogen evolution reaction on single-atom-anchored 2D catalysts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:245201. [PMID: 33631737 DOI: 10.1088/1361-648x/abe9da] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The d-band center descriptor based on the adsorption strength of adsorbate has been widely used in understanding and predicting the catalytic activity in various metal catalysts. However, its applicability is unsure for the single-atom-anchored two-dimensional (2D) catalysts. Here, taking the hydrogen (H) adsorption on the single-atom-anchored 2D basal plane as example, we examine the influence of orbitals interaction on the bond strength of hydrogen adsorption. We find that the adsorption of H is formed mainly via the hybridization between the 1s orbital of H and the vertical dz2orbital of anchored atoms. The other four projected d orbitals (dxy/dx2-y2, dxz/dyz) have no contribution to the H chemical bond. There is an explicit linear relation between the dz2-band center and the H bond strength. The dz2-band center is proposed as an activity descriptor for hydrogen evolution reaction (HER). We demonstrate that the dz2-band center is valid for the single-atom active sites on a single facet, such as the basal plane of 2D nanosheets. For the surface with multiple facets, such as the surface of three-dimensional (3D) polyhedral nanoparticles, the d-band center is more suitable.
Collapse
Affiliation(s)
- Wen Qiao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Shiming Yan
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Deyou Jin
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Xiaoyong Xu
- School of Physics Science and Technology, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Dunhui Wang
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
28
|
Feng Y, Xu M, He T, Chen B, Gu F, Zu L, Meng R, Yang J. CoPSe: A New Ternary Anode Material for Stable and High-Rate Sodium/Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007262. [PMID: 33751682 DOI: 10.1002/adma.202007262] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The exploration of ideal electrode materials overcoming the critical problems of large electrode volume changes and sluggish redox kinetics induced by large ionic radius of Na+ /K+ ions is highly desirable for sodium/potassium-ion batteries (SIBs/PIBs) toward large-scale applications. The present work demonstrates that single-phase ternary cobalt phosphoselenide (CoPSe) in the form of nanoparticles embedded in a layered metal-organic framework (MOF)-derived N-doped carbon matrix (CoPSe/NC) represents an ultrastable and high-rate anode material for SIBs/PIBs. The CoPSe/NC is fabricated by using the MOF as both a template and precursor, coupled with in situ synchronous phosphorization/selenization reactions. The CoPSe anode holds a set of intrinsic merits such as lower mechanical stress, enhanced reaction kinetics, as well as higher theoretical capacity and lower discharge voltage relative to its counterpart of CoSe2 , and suppressed shuttle effect with higher intrinsic electrical conductivity relative to CoPS. The involved mechanisms are evidenced by substantial characterizations and density functional theory (DFT) calculations. Consequently, the CoPSe/NC anode shows an outstanding long-cycle stability and rate performance for SIBs and PIBs. Moreover, the CoPSe/NC-based Na-ion full cell can achieve a higher energy density of 274 Wh kg-1 , surpassing that based on CoSe2 /NC and most state-of-the-art Na-ion full cells based on P-, Se-, or S-containing binary/ternary anodes to date.
Collapse
Affiliation(s)
- Yutong Feng
- School of Chemical Science and Engineering, Tongji University, No.1239 Siping Rd., Yangpu District, Shanghai, 200092, China
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No.150 Jimo Rd., Pudong New District, Shanghai, 200120, China
| | - Mengzhu Xu
- School of Chemical Science and Engineering, Tongji University, No.1239 Siping Rd., Yangpu District, Shanghai, 200092, China
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No.150 Jimo Rd., Pudong New District, Shanghai, 200120, China
| | - Ting He
- School of Chemical Science and Engineering, Tongji University, No.1239 Siping Rd., Yangpu District, Shanghai, 200092, China
| | - Bingjie Chen
- School of Chemical Science and Engineering, Tongji University, No.1239 Siping Rd., Yangpu District, Shanghai, 200092, China
| | - Feng Gu
- Institute for Process Modelling and Optimization, Jiangsu Industrial Technology Research Institute, 388 Ruoshui Road, SIP, Suzhou, 215123, China
| | - Lianhai Zu
- Department of Chemical Engineering, ARC Hub for Computational Particle Technology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruijin Meng
- School of Chemical Science and Engineering, Tongji University, No.1239 Siping Rd., Yangpu District, Shanghai, 200092, China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, No.1239 Siping Rd., Yangpu District, Shanghai, 200092, China
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No.150 Jimo Rd., Pudong New District, Shanghai, 200120, China
| |
Collapse
|
29
|
Younis MA, Lyu S, Lei C, Yang B, Li Z, He Q, Lu J, Lei L, Hou Y. Efficient mineralization of sulfanilamide over oxygen vacancy-rich NiFe-LDH nanosheets array during electro-fenton process. CHEMOSPHERE 2021; 268:129272. [PMID: 33352511 DOI: 10.1016/j.chemosphere.2020.129272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Electrochemical degradation of toxic sulfanilamide with inexpensive approach is in urgent demand due to the harmful effects of sulfanilamide for both humans and aquatic environments. Here, we reported an efficient mineralization of sulfanilamide by using NiFe-layered double hydroxide (NiFe-LDH) nanosheets array with abundant oxygen vacancies that was in situ grown on exfoliated graphene (EG) by a simple hydrothermal treatment at different temperatures. The hydrothermal temperature was carefully analyzed for control synthesis of oxygen vacancy-rich NiFe-LDH/EG nanosheets array (NiFe-LDH/EG-OVr) for sulfanilamide degradation. Owing to the abundant oxygen vacancies, NiFe-LDH/EG-OVr rapidly generated hydrogen peroxide (H2O2) and hydroxyl radical (•OH) during electro-Fenton (EF) process, which resulted in the 98% mineralization of sulfanilamide in first 80 min. The radicals trapping experiments revealed that the •OH radicals was participated as the main active oxidation species in the efficient mineralization of sulfanilamide. The present results indicated that the oxidative attack by •OH radicals initiated the degradation process of sulfanilamide. During the total degradation of sulfanilamide, several organic compounds including aminophenol, hydroquinone, and oxalic acid, were identified as main intermediates by using gas chromatography-mass spectroscopy (GC-MS) and high-performance liquid chromatography-mass spectroscopy (HPLC-MS).
Collapse
Affiliation(s)
- Muhammad Adnan Younis
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Siliu Lyu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaojun Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinggang He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
30
|
Ji Q, Xu J, Wang C, Wang L. Controlling the coordination environment of Co atoms derived from Co/ZIF-8 for boosting photocatalytic H 2 evolution of CdS. J Colloid Interface Sci 2021; 596:139-147. [PMID: 33838325 DOI: 10.1016/j.jcis.2021.03.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Regulating the coordination environment of metal-Nx species by replacing N with low electronegativity atoms is an approach of tuning the electrocatalytic performance of metal-based sites. However, such effects on the enhancement of photocatalytic H2 evolution over semiconductors are not discussed yet. Herein, we designed and prepared Co-based cocatalysts with controlled coordination environment via calcination Co/ZIF-8 loaded with triphenylphosphine followed by a sulfurization treatment. It was then used as cocatalyst to modify CdS. The effects of the coordination environment of Co atoms on the H2 evolution activity of CdS were discussed. The obtained Co was co-stabilized by N, P, and S atoms and embedded in graphitic carbon (denoted as Co-NxPS/C). Experimental results indicated that the Co-NxPS/C exhibited high activity in enhancing H2 evolution of CdS with a value of 1260 μmol after 5 h irradiation. The simultaneous replacement of N with P and S atoms in N-stabilized Co embedded in carbon could enhance light harvesting, accelerate the transfer of photogenerated electrons from CdS to carbon with increased electrons accumulation ability and conductivity, improve charge separation efficiency, and enhance proton reduction kinetics. It is believed that the results of this study could promote the development of other high performance MOF-derived atomically dispersed cocatalysts to increase photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Qingjie Ji
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, State Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jixiang Xu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, State Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chao Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, State Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, State Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
31
|
Cheng F, Li Z, Wang L, Yang B, Lu J, Lei L, Ma T, Hou Y. In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal-organic framework nanoarray. MATERIALS HORIZONS 2021; 8:556-564. [PMID: 34821271 DOI: 10.1039/d0mh01757d] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) have been identified as one of the promising electrocatalysts for the oxygen evolution reaction (OER). However, direct observation of the electrocatalytic behavior of MOF-based electrocatalysts remains extremely challenging, which is of great significance to understand their electrocatalytic mechanism. Herein, we developed a vertically oriented Ni-based MOF nanosheet array doped with 2.09 wt% Ce (denoted as Ce-NiBDC/OG). Ce-NiBDC/OG displayed a low overpotential of 265 mV to deliver a 10 mA cm-2 current density for the OER. In situ spectroscopy and operando microscopy visualized the phase transformation behavior of Ce-NiBDC/OG to Ce-doped NiOOH induced by electrochemical activation, which was regarded as the real active site. Mechanistic studies revealed that, for the Ce-NiBDC/OG-derived catalyst, the doping of Ce species in NiOOH significantly increased the adsorption of *OH, and further reduced the energy barriers of the rate-determining step (*OH→*O).
Collapse
Affiliation(s)
- Fanpeng Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang S, Si Y, Li B, Yang L, Dai W, Luo S. Atomic-Level and Modulated Interfaces of Photocatalyst Heterostructure Constructed by External Defect-Induced Strategy: A Critical Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004980. [PMID: 33289948 DOI: 10.1002/smll.202004980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Despite the existence of numerous photocatalyst heterostructures, their separation efficiency and charge flow precision remain low due to the poor study on interfacial properties. The photocatalysts with confined defects can effectively control the photogenerated carrier migration, but the metastability of such defects considerably decreases the photocatalyst stability. Meanwhile, the introduction of defective region can increase the coordinative unsaturation and delocalize local electrons to promote their interactions with the molecules/ions in that region. The selective growth of modulated heterogeneous interface by defect-induced strategy may not only increase the stability of defective structures, but also enhance the migration of interfacial charges. Using this method, photocatalytic heterostructures with low contact resistances and intimate interfaces are constructed to achieve the optimal charge migration in terms of efficiency and accuracy. In this work, the point, linear, and planar heterogeneous interfaces and related defect engineering techniques are discussed. Particularly, it is focused on the external, defect-induced interfacial heterogeneities with various spatial and dimensional configurations, which exhibit modulated and controllable interfacial properties. Furthermore, the main aspects of fabricating photocatalyst heterostructures by the defect-induced strategy, including the i) controllable generation of defects, ii) advanced characterization methods, and iii) elaborate construction of the minimal interface, are described.
Collapse
Affiliation(s)
- Shuqu Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Yanmei Si
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Bing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| |
Collapse
|
33
|
Ding X, Wang X, Song W, Wei X, Zhu J, Tang Y, Wang M. Synergism of 1D/2D boride/MXene nanosheet heterojunctions for boosted overall water splitting. NEW J CHEM 2021. [DOI: 10.1039/d1nj04596b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transition metal boride (TMB) as a new type of catalyst has attracted much attention in recent years.
Collapse
Affiliation(s)
- Xinyu Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xunyue Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Wenwu Song
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaoqing Wei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong 226019, China
| | - Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong 226019, China
| |
Collapse
|
34
|
Boppella R, Tan J, Yun J, Manorama SV, Moon J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Rasouli H, Hosseini MG, Hosseini MM. Ta2O5-incorporated in photoinduced electrocatalyst of TiO2-RuO2 decorated by PPy-NrGO nanocomposite for boosting overall water splitting. J Colloid Interface Sci 2021; 582:254-269. [DOI: 10.1016/j.jcis.2020.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
|
36
|
Tahir MB, Shafiq F, Sagir M, Tahir MS. Construction of visible-light-driven ternary ZnO-MoS2-BiVO4 composites for enhanced photocatalytic activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. Active Site Engineering in Porous Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002435. [PMID: 32666550 DOI: 10.1002/adma.202002435] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Electrocatalysis is at the center of many sustainable energy conversion technologies that are being developed to reduce the dependence on fossil fuels. The past decade has witnessed significant progresses in the exploitation of advanced electrocatalysts for diverse electrochemical reactions involved in electrolyzers and fuel cells, such as the hydrogen evolution reaction (HER), the oxygen reduction reaction (ORR), the CO2 reduction reaction (CO2 RR), the nitrogen reduction reaction (NRR), and the oxygen evolution reaction (OER). Herein, the recent research advances made in porous electrocatalysts for these five important reactions are reviewed. In the discussions, an attempt is made to highlight the advantages of porous electrocatalysts in multiobjective optimization of surface active sites including not only their density and accessibility but also their intrinsic activity. First, the current knowledge about electrocatalytic active sites is briefly summarized. Then, the electrocatalytic mechanisms of the five above-mentioned reactions (HER, ORR, CO2 RR, NRR, and OER), the current challenges faced by these reactions, and the recent efforts to meet these challenges using porous electrocatalysts are examined. Finally, the future research directions on porous electrocatalysts including synthetic strategies leading to these materials, insights into their active sites, and the standardized tests and the performance requirements involved are discussed.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yipu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
38
|
Chaudhary P, Ingole PP. Nickel incorporated graphitic carbon nitride supported copper sulfide for efficient noble-metal-free photo-electrochemical water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Heterogeneous CoSe2–CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Maiti A. Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Trans 2020; 49:11430-11450. [PMID: 32662489 DOI: 10.1039/d0dt01469a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, the production of hydrogen and oxygen focuses on renewable energy techniques and sustainable energy storage. A substantial challenge is to extend low-cost electrocatalysts consisting of earth-abundant resources, prepared by straightforward approaches that display high intrinsic activity compared to noble metals. The expansion of bifunctional catalysts in alkaline electrolytes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has become very crucial in recent times. Herein, the recent progress in cobalt-based HER-OER electrocatalysts has been are brushed up and numerous bifunctional cobalt-based catalysts such as cobalt-oxides, phosphides, sulfides, selenides, nitrides, borides, carbides, perovskites, and MOF-based cobalt analogs have been investigated in detail. Specifically, much more attention has been paid to their structural variation, bifunctional activity, overpotential of the overall system, and stability. Cobalt-based catalysts with lower cell voltage, remarkable durability, and unique electronic structures, offer a new perspective in energy-related fields. In recent years, cobalt-based analogs with diagnostic facilities have been introduced due to their electronic structures, tunable d band structures, and tailorable active sites. This perspective also elucidates the present issues, promising ideas, and future forecasts for cobalt-based catalysts. The critical aspects of cobalt-based catalysts and the numerous opportunities, as discussed at the end, can possibly enrich the sustainable energy field.
Collapse
Affiliation(s)
- Anurupa Maiti
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India.
| |
Collapse
|
41
|
Yang L, Liu H, Zhou Z, Chen Y, Xiong G, Zeng L, Deng Y, Zhang X, Liu H, Zhou W. A Universal Process: Self-Templated and Orientated Fabrication of XMoO 4 (X: Ni, Co, or Fe) Nanosheets on MoO 2 Nanoplates as Electrocatalysts for Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33785-33794. [PMID: 32631054 DOI: 10.1021/acsami.0c08750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fabrication of superior nonprecious electrocatalysts is essential for water electrolysis. Herein, the epitaxial growth of the XMoO4 (X = Ni, Co, Fe) nanosheets on the hexagonal MoO2 nanoplates are carried out. The preoxidation of MoO2 nanoplate is fatal to the epitaxial growth of a nanosheets array on MoO2 nanoplates. The hierarchical heterostructure of the vertically aligned NiMo nanosheets on MoO2 nanoplate (NiMo/MoO2) is well-maintained in the process of in situ topotactic reduction transformation from NiMoO4·xH2O/MoO2. Attributing it to the rich electroactive sites from nanosheets array, together with the intrinsic electrocatalytic performance of NiMo alloy, the as-engineered NiMo/MoO2 as electrocatalyst exhibits admirable hydrogen evolution reaction (HER) activity with a small onset potential of -12 mV vs RHE (1 mA cm-2) and a tafel value of 43.6 mV dec-1 at alkaline media. Furthermore, the obtained CoMoO4/MoO2 possesses excellent oxygen evolution performance, which is verified by an ultralow overpotential of 230 mV@10 mA cm-2, small Tafel slope (51 mV dec-1), and robust durability. The developed NiMo/MoO2 and CoMoO4/MoO2 electrocatalysts are assembled into an alkaline electrolyzer, which affords a cell potential of 1.51 V at 10 mA cm-2, as well as outstanding operational durability, which is superior to the typically constructed 20 wt % Pt/C-RuO2 system (1.59 V at 10 mA cm-2). Hence, the universal strategy using MoO2 nanoplates as Mo source and epitaxial substrate may be extended to explore and construct economical and superior Mo-based electrocatalysts for water electrolysis.
Collapse
Affiliation(s)
- Linjing Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, People's Republic of China
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hui Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ziqian Zhou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, People's Republic of China
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Yuke Chen
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Guowei Xiong
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Lili Zeng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yunqie Deng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hong Liu
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Weijia Zhou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, People's Republic of China
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
42
|
Lu X, Sakai N, Tang D, Li X, Taniguchi T, Ma R, Sasaki T. CoNiFe Layered Double Hydroxide/RuO 2.1 Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33083-33093. [PMID: 32584016 DOI: 10.1021/acsami.0c07656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient electrocatalysts are highly demanded for oxygen evolution reaction (OER) in water splitting and metal-air batteries. Here, superlattice structured materials composed of CoNiFe layered double hydroxide (LDH)/ruthenium oxide nanosheets are synthesized as carbon-free electrocatalysts for OER. The positively charged CoNiFe LDH and negatively charged RuO2.1 are alternately stacked at the molecular level into superlattice-like hybrids by electrostatic interaction upon mixing their dispersions under suitable conditions. Such heterostructured composites are found to act as effective catalysts toward OER of water splitting with a small overpotential of 281 mV and Tafel plot of 48.9 mV/decade. Such composites also serve as efficient carbon-free cathode catalysts for aprotic Li-O2 batteries with remarkable higher specific capacities and lower overvoltages than RuO2 nanoparticles. The superior performance may be attributed to the peculiar superlattice structure, resulting in strong interfacial electronic coupling, better electrical conductivity, and the suppression of side reactions caused by traditional carbon-based materials. Furthermore, potential difference between RuO2.1 and CoNiFe LDH nanosheets is observed directly by scanning Kelvin probe microscopy, indicating that electrostatic fields might be induced in the superlattice structures to benefit the transport of electrons and charged ions as well as the catalytic process.
Collapse
Affiliation(s)
- Xueyi Lu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| | - Nobuyuki Sakai
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| | - Daiming Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| | - Xinming Li
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| | - Takaaki Taniguchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| | - Takayoshi Sasaki
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan
| |
Collapse
|
43
|
Chen L, Jang H, Kim MG, Qin Q, Liu X, Cho J. Fe, Al-co-doped NiSe 2 nanoparticles on reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting. NANOSCALE 2020; 12:13680-13687. [PMID: 32573626 DOI: 10.1039/d0nr02881a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing low-cost and highly efficient electrocatalysts for overall water splitting is of far-reaching significance for new energy conversion. Herein, dual-cation Fe, Al-co-doped NiSe2 nanoparticles on reduced graphene oxide (Fe, Al-NiSe2/rGO) were prepared as a bifunctional electrocatalyst for overall water splitting. The dual-cation doping can induce a stronger electronic interaction between the foreign atoms and host catalyst, for optimizing the adsorption energy of reaction intermediates. Meanwhile, the leaching out of Al from the crystal structure of the target product during the alkaline wash creates more defects and increases the active site exposure. As a result, the Fe, Al-NiSe2/rGO catalyst exhibits excellent catalytic activities for both the OER and HER with an overpotential of 272 mV @η10 for the OER in 1.0 M KOH and 197 mV @η10 for the HER in 0.5 M H2SO4, respectively. A two-electrode electrolyzer using Fe, Al-NiSe2/rGO as the anode and cathode shows a low voltage of 1.70 V at the current density of 10 mA cm-2. This study emphasizes the synergistic contribution of the dual-cation co-doping effect and more defects created by Al leaching to boost the performance of water splitting.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Lin J, Wang H, Cao J, He F, Feng J, Qi J. Engineering Se vacancies to promote the intrinsic activities of P doped NiSe2 nanosheets for overall water splitting. J Colloid Interface Sci 2020; 571:260-266. [DOI: 10.1016/j.jcis.2020.03.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022]
|
45
|
Yuan J, Cheng X, Wang H, Lei C, Pardiwala S, Yang B, Li Z, Zhang Q, Lei L, Wang S, Hou Y. A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities. NANO-MICRO LETTERS 2020; 12:104. [PMID: 34138090 PMCID: PMC7770871 DOI: 10.1007/s40820-020-00442-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/28/2020] [Indexed: 05/19/2023]
Abstract
Cost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction (OER) are critical to the energy crisis and environmental pollution. Herein, we report a superaerophobic three dimensional (3D) heterostructured nanowrinkles of bimetallic selenides consisting of crystalline NiSe2 and NiFe2Se4 grown on NiFe alloy (NiSe2/NiFe2Se4@NiFe) prepared by a thermal selenization procedure. In this unique 3D heterostructure, numerous nanowrinkles of NiSe2/NiFe2Se4 hybrid with a thickness of ~ 100 nm are grown on NiFe alloy in a uniform manner. Profiting by the large active surface area and high electronic conductivity, the superaerophobic NiSe2/NiFe2Se4@NiFe heterostructure exhibits excellent electrocatalytic activity and durability towards OER in alkaline media, outputting the low potentials of 1.53 and 1.54 V to achieve ultra-high current densities of 500 and 1000 mA cm-2, respectively, which is among the most active Ni/Fe-based selenides, and even superior to the benchmark Ir/C catalyst. The in-situ derived FeOOH and NiOOH species from NiSe2/NiFe2Se4@NiFe are deemed to be efficient active sites for OER.
Collapse
Affiliation(s)
- Jiaxin Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaodi Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Hanqing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chaojun Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Sameer Pardiwala
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, People's Republic of China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China.
| |
Collapse
|
46
|
Wang R, Liu Y, Zuo P, Zhang Z, Lei N, Liu Y. Phthalocyanine-sensitized evolution of hydrogen and degradation of organic pollutants using polyoxometalate photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18831-18842. [PMID: 32207021 DOI: 10.1007/s11356-020-08425-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
In this study, 2 (3), 9 (10), 16 (17), 23 (24)-tetrakis-(8-quinoline-oxy) phthalocyanine zinc(II) (ZnQPc) was prepared and then quaternized to obtain water soluble zinc phthalocyanine (ZnQPc4+). Then, ZnQPc4+ was used as a photosensitizer for a series of POM catalysts, including Dawson type K6[α-P2W18O62]·14H2O (P2W18) and K10[α-P2W17O61]·20H2O (P2W17) and Keggine type H3PW12O40·xH2O (PW12). The Keggin type PW12 showed higher efficiency with 18.2 μmol of H2 evolution (turnover number (TON) = 14,550) for 6 h upon ZnQPc4+ sensitization in relation to two Dawson P2W17 and P2W18 in a visible light-driven water-soluble system with isopropanol and H2PtCl6·6H2O. In addition, the complexes of ZnQPc4+ with a series of POM catalysts (P2W17, P2W18, and PW12) were also used as photocatalysts for the degradation of methylene blue (MB) in water, and it was found that the complexes of ZnQPc4+ with P2W17 and PW12 showed improved photocatalytic activity, and the degradation rates of MB reached 100% at a small dosage under natural pH and visible light. The high efficacy of POM catalysts for H2 evolution and the degradation of MB were attributed to the sensitization of POMs by ZnQPc4+, which was enabled by the transfer of photogenerated electrons of ZnQPc4+ to the lowest unoccupied molecular orbital (LUMO) of POM.
Collapse
Affiliation(s)
- Ruixin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, Shanxi, China.
| | - Yefeng Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, Shanxi, China
| | - Peng Zuo
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, Shanxi, China
| | - Zhendong Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, Shanxi, China
| | - Nana Lei
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, Shanxi, China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional Composites, North University of China, Taiyuan, 030051, Shanxi, China.
| |
Collapse
|
47
|
Hu R, Meng L, Zhang J, Wang X, Wu S, Wu Z, Zhou R, Li L, Li DS, Wu T. A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO 4. NANOSCALE 2020; 12:8875-8882. [PMID: 32259173 DOI: 10.1039/d0nr01616k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BiVO4 has been widely used as a photoanode material, while the slow surface oxygen evolution reaction (OER) kinetics still severely hinders its performance. Here, an efficient bimetallic cocatalyst (named FeSnOS) was obtained by post-annealing a Fe/Sn-containing metal chalcogenide coordination compound to enhance the OER activity of BiVO4. The synergistic effect of Fe and Sn species in the amorphous FeSnOS cocatalyst efficiently lowers the interface impedance of the photoanode, reduces the electrochemical reaction overpotential, and promotes the surface OER dynamics. At the same time, a type-II heterojunction was constructed due to the process of post-annealing, which efficiently improves the bulk phase charge separation efficiency of the photoanode. The obtained optimal photoanode (named FeSnOS-BiVO4) shows a photocurrent density of 3.1 mA cm-2 at 1.23 V vs. the reversible hydrogen electrode, which is 3.4 times higher than that of the pristine BiVO4 photoanode, and its onset potential shifts negatively from 0.44 V to 0.25 V. This work presents a simple and effective method to build a bimetallic cocatalyst for improved photoelectrochemical performance, which extends the application of polymetallic metal chalcogenide complexes.
Collapse
Affiliation(s)
- Ruolin Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tang W, Sun D, Liu S, Li B, Sun W, Fu J, Li B, Hu D, Yu J. One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Qi J, Xu T, Cao J, Guo S, Zhong Z, Feng J. Fe doped Ni 5P 4 nanosheet arrays with rich P vacancies via phase transformation for efficient overall water splitting. NANOSCALE 2020; 12:6204-6210. [PMID: 32133464 DOI: 10.1039/c9nr10240j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proper vacancy engineering is considered as a promising strategy to improve intrinsic activity, but it is challenging to construct rich vacancies by a simple strategy. Herein, Fe doped Ni5P4 nanosheet arrays with rich P vacancies are developed via a facile phase transformation strategy. Based on systematic investigations, we have demonstrated that an optimized surface electronic structure, abundant active sites and improved charge transport capability can be effectively achieved by vacancy engineering. Consequently, Fe doped Ni5P4 with rich vacancies show remarkable catalytic performances with 94.5 mV for the hydrogen evolution reaction (HER) and 217.3 mV for the oxygen evolution reaction (OER) at 10 mA cm-2, respectively, as well as good durability. When directly employed as working electrodes, the as-obtained Fe doped Ni5P4 with rich vacancies can attain 10 mA cm-2 at a low voltage of 1.59 V. This work demonstrates a feasible strategy for rationally fabricating electrocatalysts with rich vacancies via a simple phase transformation.
Collapse
Affiliation(s)
- Junlei Qi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | | | |
Collapse
|
50
|
Lin J, Yan Y, Xu T, Cao J, Zheng X, Feng J, Qi J. Rich P vacancies modulate Ni2P/Cu3P interfaced nanosheets for electrocatalytic alkaline water splitting. J Colloid Interface Sci 2020; 564:37-42. [DOI: 10.1016/j.jcis.2019.12.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022]
|