1
|
Zhang N, Liang W, Wei K, Li Y, Li J, Wu Z, Du Y. Controlled synthesis of three Palladium-Stannum nanocatalysts with enhanced electrocatalytic performance for alcohol oxidation reaction via a Kinetic-induced method. J Colloid Interface Sci 2025; 692:137516. [PMID: 40215902 DOI: 10.1016/j.jcis.2025.137516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
The preparation of active, stable and selective Pd-based nanocatalysts for alcohol oxidation reactions (AORs) is urgently desired. Nowadays, advanced ultrathin porous nanosheets (UPNSs) have emerged as efficient electrocatalysts due to their abundant accessible surfaces and low coordination sites. Herein, a template method is developed to prepare three PdSn nanocatalysts with different morphological features, involving UPNSs, nanonetworks (NNWs) and nanodentrites (NDs), only by altering temperature during the Sn deposition process. The growth mechanism of three PdSn nanocatalysts with different morphologies relies on the selective etching and different atom migration rates via kinetics-induced procedure. Benefiting from the boosted synergistic effect and favorable surface defects, the PdSn UPNSs exhibit preeminent electrocatalytic activity of 8846 and 6672 mA mg-1 for ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), coupled with excellent electrocatalytic durability through long-term electrochemical measures. The possible performance enhancement mechanism of the PdSn UPNSs is also investigated from the perspectives of electronic structure and surface structure. Mechanism shows that PdSn UPNSs possess the lowest d-band center and the superior conductivity, contributing to the distinguished poison resistance ability and accelerated reaction kinetics. The work not only emphasizes highly desired PdSn nanocatalysts with boosted EOR and EGOR performances, but also proposes the effect of morphology regulation on electrocatalytic properties, providing a significant guidance to fabricate efficient nanocatalysts by adjusting the reaction temperature.
Collapse
Affiliation(s)
- Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wanyu Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kuo Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Yanghanqi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Gu X, Sun H, Zhang N, Yu J, Li J, Ye C, Du Y. Universal synthesis of highly active PdM (Sb, Ir, and Bi) nanowire networks for ethylene glycol and glycerol electrooxidation. J Colloid Interface Sci 2025; 688:775-783. [PMID: 40037014 DOI: 10.1016/j.jcis.2025.02.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
One-dimensional (1D) Pd-based nanowire materials, characterized by high aspect ratios and exposed high-index crystal surfaces, are widely developed in the field of direct fuel cells. However, their synthesis methods are often not universal and necessitate demanding conditions, including high temperatures and metal templates, leading to resource consumption. In this study, we present a simple and universal one-step method for synthesizing PdM (Sb, Ir, and Bi) nanowire networks (NNWs) at room temperature. Leveraging their structural advantages and the synergistic effects between bimetals, PdM NNWs demonstrate exceptional electrocatalytic performance, exhibiting higher mass and specific activities as well as enhanced durability compared to Pd/C for the ethylene glycol and glycerol oxidation reactions. Notably, PdSb NNWs excelled in electrochemical tests, achieving the highest mass activities of 7.55 and 5.59 A mg-1 for the ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR), respectively. Additionally, due to the semi-metallic properties of Sb, which can flexibly modify the chemical environment of Pd, the PdSb NNWs exhibited superior antitoxicity and a significantly lower decay of current density across three consecutive chronoamperometry (CA) tests. This research advances the synthesis of palladium-based nanostructures, providing impetus for the design of highly efficient electrocatalysts in the realm of direct alcohol fuel cells.
Collapse
Affiliation(s)
- Xinyu Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huiyu Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Zeng Q, Ma M, Liu H, Xu L, Tian S, Chen D, Wang J, Yang J. Gold-catalyzed construction of atomically rough surfaces towards high-efficiency ethanol electrooxidation. Sci Bull (Beijing) 2025:S2095-9273(25)00455-4. [PMID: 40348670 DOI: 10.1016/j.scib.2025.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Atomic surface engineering for nanostructures significantly contributes to the enhancement of electrocatalysis for a given chemical reaction. However, exploring a facile method to elaborately regulate surfaces at atomic scale remains a grand challenge. Herein, we report the construction of atomically rough surfaces (ARSs) on Au-based binary alloys through a novel and controllable gold (Au)-catalyzed strategy, which involves the first synthesis of Au-based bimetallic nanoalloys, i.e., AuPd and AuAg, and subsequent reduction of another metal ions (Pt, Pd, or Ag) initiated by Au sites on the alloy particle surfaces. By combining ARSs with low-coordinated atoms with ligand effect induced by vicinal Au atoms, the as-prepared ARSs exhibit good activity and durability toward ethanol oxidation reaction (EOR) in an alkaline medium. In particular, the Pd-Pt ARSs on the AuPd alloy particle surface (denoted as AuPd-Pt) exhibit the highest electrocatalytic EOR performance in terms of both specific activity (14.9 mA cm-2) and mass activity (28.5 A mg-1), surpassing those of their AuPd alloy counterparts, commercial Pd/C catalyst, and most Pd-based electrocatalysts reported recently. In situ Fourier transform infrared (FTIR) spectroscopy reveals that the EOR process on the Pd-Pt ARSs strongly prefers incomplete oxidation, which is further authenticated by the density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Ma
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Shaonan Tian
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Han S, Sun L, Fan D, Liu B. Pulsed electrosynthesis of glycolic acid through polyethylene terephthalate upcycling over a mesoporous PdCu catalyst. Nat Commun 2025; 16:3426. [PMID: 40210654 PMCID: PMC11985915 DOI: 10.1038/s41467-025-58813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Electrocatalytic upcycling of polyethylene terephthalate (PET) plastics offers a promising and sustainable route that not only addresses serious waste pollution but also produces high value-added chemicals. Despite some important achievements, their activity and selectivity have been slower than needed. In this work, pulsed electrocatalysis is employed to engineer chemisorption properties on a lamellar mesoporous PdCu (LM-PdCu) catalyst, which delivers high activity and stability for selective electrosynthesis of high value-added glycolic acid (GA) from PET upcycling under ambient conditions. LM-PdCu is synthesized by in situ nucleation and attachment strategy along assembled lamellar templates, whose stacked morphology and lamellar mesoporous structure kinetically accelerate selective desorption of GA and expose fresh active sites of metal catalysts for continuous electrocatalysis at pulsed mode. This strategy thus delivers GA Faraday efficiency of >92% in wide potential windows, yield rate of reaching 0.475 mmol cm-2 h-1, and cycling stability of exceeding 20 cycles for electrocatalytic PET upcycling. Moreover, pulsed electrocatalysis discloses good electrocatalytic performance for scaled-up GA electrosynthesis from real bottle waste plastics. This work presents a sustainable route for selective electrosynthesis of value-added chemicals through upcycling of various waste feedstocks.
Collapse
Affiliation(s)
- Shu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| | - Dongping Fan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Mathew N, Rathod R, Saha S, Santra PK, Pati SK, Eswaramoorthy M. Engineering Ni(OH) 2 with Pd for Efficient Electrochemical Urea Oxidation. Chem Asian J 2025; 20:e202401188. [PMID: 40048285 DOI: 10.1002/asia.202401188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Urea-assisted water electrolysis is a promising and energy-efficient alternative to electrochemical water splitting due to its low thermodynamic potential of 0.37 V, which is 860 mV less than that needed for water splitting (1.23 V). Ni(OH)2 has proven to be an efficient catalyst for this reaction. However, the non-spontaneous desorption of CO2 molecules from the catalyst surface leads to active site poisoning, which significantly impacts its long-term stability. Herein, we have demonstrated that Pd incorporated NiOH2 (Pd/Ni(OH)2) results in a significant decrease in the overpotential by 40 mV at 10 mA cm-2 as compared to Ni(OH)2. The decrease in the Tafel slope and charge transfer resistance of Pd/Ni(OH)2 indicates an improvement in the kinetics of the reaction, resulting in a maximum current density of 380 mA cm-2 at 1.5 V, which is higher than that observed for Ni(OH)2 (180 mA cm-2). XAS analysis was utilized to determine the nature of the metal species in the catalyst. It revealed that while Pd predominantly exists in its metallic state within the bulk of the catalyst, the surface is enriched with the oxide phase. The presence of Pd prevents the strong adsorption of CO2 at the active site in Pd/Ni(OH)2, resulting in a substantial improvement of stability of up to 300 h as compared to Ni(OH)2. DFT calculations were performed to explore the detailed reaction mechanism of urea oxidation on Ni(OH)2 and Pd/Ni(OH)2. These calculations provided further insight into the experimental observations and evaluated the contribution of Pd in enhancing the catalytic efficiency of Ni(OH)2. Additionally, the operando Raman and IR spectroscopy were used to understand the formation of the active sites and the intermediates during urea electrooxidation.
Collapse
Affiliation(s)
- Nijita Mathew
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Radha Rathod
- Centre for Nano and Soft Matter Sciences, Bengaluru, Karnataka, 562162, India
| | - Sougata Saha
- Theoretical Sciences Unit, JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Pralay K Santra
- Centre for Nano and Soft Matter Sciences, Bengaluru, Karnataka, 562162, India
| | - Swapan K Pati
- Theoretical Sciences Unit, JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| |
Collapse
|
6
|
Liao Y, Chen W, Ding Y, Xie L, Yang Q, Wu Q, Liu X, Zhu J, Feng R, Fu XZ, Luo S, Luo JL. Boosting Alcohol Oxidation Electrocatalysis with Multifactorial Engineered Pd 1/Pt Single-Atom Alloy-BiO x Adatoms Surface. NANO-MICRO LETTERS 2025; 17:172. [PMID: 40025287 PMCID: PMC11872865 DOI: 10.1007/s40820-025-01678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025]
Abstract
Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on the surface of multimetallic nanocrystals. Herein, we present the multifactorial engineering (size, shape, phase, and composition) of the fully ordered PtBi nanoplates at atomic level, achieving a unique catalyst surface where the face-centered cubic (fcc) Pt edges are modified by the isolated Pd atoms and BiOx adatoms. This Pd1/Pt-BiOx electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg-1Pt+Pd toward ethanol oxidation in alkaline electrolyte and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm-2. The surrounding BiOx adatoms are critical for mitigating CO-poisoning on the Pt surface, and the Pd1/Pt single-atom alloy further facilitates the electrooxidation of CH3CH2OH. This work offers new insights into the rational design and construction of sophisticated catalyst surface at single-atomic sites for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Yujia Liao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, People's Republic of China
| | - Wen Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Yutian Ding
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lei Xie
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- School of Resources, Environment and Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Qi Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, People's Republic of China
| | - Qilong Wu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Xianglong Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Jinliang Zhu
- School of Resources, Environment and Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Renfei Feng
- Canadian Light Source Inc., 44 Innovation Blvd., Saskatoon, SK, S7N 0×4, Canada
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China.
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
7
|
Cheng J, Tu Y, Xiang Y, Ni J, Guo T, Huang X, Liu B, Wei Z. Anti-poisoning of CO and carbonyl species over Pd catalysts during the electrooxidation of ethylene glycol to glycolic acid at elevated current density. Chem Sci 2025:d4sc08579e. [PMID: 39911335 PMCID: PMC11791778 DOI: 10.1039/d4sc08579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The electrocatalytic oxidation of ethylene glycol (EG) to produce valuable glycolic acid (GLYA) is a promising strategy to tackle EG overcapacity. Despite the good selectivity of Pd for EG oxidation, its performance is constrained by limited mass activity and toxicity of intermediates like CO or CO-analogues. This study reports the alloying of Pd with Ni and Mo metals to enhance the activity and durability of EG oxidation in alkaline media. Notably, the peak current density reached up to 2423 mA mg-1, double that of pristine Pd/C, accompanied by a GLYA Faraday efficiency up to 87.7%. Moreover, PdNiMo/C exhibited a 5-fold slower activity decline compared to Pd/C. In situ experiments and theoretical analysis reveal that Ni and Mo synergistically strengthen the oxygen affinity of the catalyst, facilitating the generation of *OH radicals at lower potentials, thereby accelerating EG oxidation kinetics. Additionally, Ni incorporation prevents C-C bond cleavage and weakens CO adsorption, effectively mitigating catalyst poisoning.
Collapse
Affiliation(s)
- Jia Cheng
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| | - Yunchuan Tu
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| | - Yang Xiang
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| | - Jingtian Ni
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| | - Tao Guo
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| | - Xun Huang
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong 999077 P. R. China
| | - Zidong Wei
- Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 40004 P. R. China
| |
Collapse
|
8
|
Zhou X, Liu S, Teng H, Ma K, Miao W, Cui X, Zhou X, Jiang L. OH Regulator of Amorphous CrO x on Defect-Rich Ultrafine Pd Nanowires Boosts Electrocatalytic Ethanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408373. [PMID: 39428817 DOI: 10.1002/smll.202408373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Reasonable construction of high activity and selectivity electrocatalysts is crucial to achieve efficient ethanol oxidation reaction (EOR). However, the oxidation of ethanol tends to produce CO species that poison the active centers of the EOR electrocatalysts. Herein, a unique amorphous CrOx-protected defect-rich ultrafine Pd nanowires (CrOx-Pd NWs) is developed. On the one hand, the CrOx layer can act as a protective layer to maintain the structure of the nanowire. On the other hand, it can play the role of OH regulator to optimize the adsorption energy barrier of intermediate species in Pd nanowire, thereby enhancing the ability of the catalyst to resist CO poisoning. The CrOx-Pd NWs exhibit excellent EOR performance with 3.64 times higher mass activity and 50 mV lower CO electro-oxidation potential than commercial Pd black. The results show that the CrOx layer promotes the dissociation of H2O into OHads, while the CrOx transfers electrons to neighboring Pd atoms optimizing the electronic configuration of Pd, thus selectively oxidizing ethanol to acetate and preventing the formation of toxic *CO. This work provides an effective strategy for the synthesis of nanowire materials with oxide/metal interfaces and offers new ideas for the design of catalysts that can efficiently drive EOR.
Collapse
Affiliation(s)
- Xiaotong Zhou
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Songliang Liu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Huaifang Teng
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Kun Ma
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Weixin Miao
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuejing Cui
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xin Zhou
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
| | - Luhua Jiang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
9
|
Ren F, Pan H, Wang C, Du Y. Combining Bismuth Telluride and Palladium for High Efficiency Glycerol Electrooxidation. CHEMSUSCHEM 2024:e202401682. [PMID: 39509173 DOI: 10.1002/cssc.202401682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Designing high-performance anodic catalysts to drive glycerol oxidation reaction (GOR) is essential for advancing direct alcohol fuel cells. Coupling Pd with oxophilic materials is an effective strategy to enhance its intrinsic catalytic activity. In this study, we successfully synthesized Pd/Bi2Te3 catalysts with tunable compositions, using Bi2Te3 as a novel promoter, and applied them to the GOR for the first time. Electrocatalytic tests revealed that the activity of the Pd/Bi2Te3 catalysts was closely linked to their compositions. Among these catalysts, the optimized Pd/Bi2Te3-20 % showed potential to replace the commercial Pd/C catalyst, exhibiting a peak current density 5.2 times higher than that of the benchmark Pd/C catalyst. Furthermore, improved catalytic stability and faster catalytic kinetics were observed for Pd/Bi2Te3-20 %. The synergistic effect between Pd and Bi2Te3 is responsible for the high performance of the Pd/Bi2Te3-20 % catalyst.
Collapse
Affiliation(s)
- Fangfang Ren
- College of Chemical and Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, P.R. China
| | - Hongjun Pan
- College of Chemical and Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, P.R. China
| | - Cheng Wang
- College of Chemical and Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
10
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
11
|
Wang J, Yang L, Li Z, Chen C, Liao X, Guo P, Zhao XS. Morphology Variation of Ternary PdCuSn Nanocrystalline Assemblies and Their Electrocatalytic Oxidation of Alcohols. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47368-47377. [PMID: 39190921 DOI: 10.1021/acsami.4c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Metal alloys not only increase the composition and spatial distribution of elements but also provide the opportunity to adjust their physicochemical properties. Recently, multimetallic alloy nanocatalysts have attracted great attention in energy applications and the chemical industry. This work presents the production of three ternary PdCuSn nanocrystalline assemblies with similar compositions via a one-step hydrothermal method. The shape variation of assembly units from nanosheets and nanowires to nanoparticles were realized by adjusting the percentage of Sn in metal precursors. Experimental data show that PdCuSn nanowire networks showed the best catalytic activity by virtue of their optimized morphological characteristics and microscopic electronic structure. With electrooxidation of methanol, ethanol, ethylene glycol, and glycerol at 30 °C, PdCuSn nanowire networks demonstrated catalytic activity of 1129, 2111, 2540, and 1445 mA mg-1, respectively. The catalytic activity for alcohol oxidation is attributed to the production of the electronic structure and morphology features that are most suitable. This is achieved by introducing the proper quantities of Cu and Sn components in the first stage of synthesis. This study would help with the construction of high-efficiency nanostructured alloy catalysts by regulating the electronic structure and morphology.
Collapse
Affiliation(s)
- Jiasheng Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Likang Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Ze Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Chen Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xuejiang Liao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - X S Zhao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
12
|
Du M, Xue R, Yuan W, Cheng Y, Cui Z, Dong W, Qiu B. Tandem Integration of Biological and Electrochemical Catalysis for Efficient Polyester Upcycling under Ambient Conditions. NANO LETTERS 2024; 24:9768-9775. [PMID: 39057181 DOI: 10.1021/acs.nanolett.4c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Excessive production of waste polyethylene terephthalate (PET) poses an ecological challenge, which necessitates developing technologies to extract the values from end-of-life PET. Upcycling has proven effective in addressing the low profitability of current recycling strategies, yet existing upcycling technologies operate under energy-intensive conditions. Here we report a cascade strategy to steer the transformation of PET waste into glycolate in an overall yield of 92.6% under ambient conditions. The cascade approach involves setting up a robust hydrolase with 95.6% PET depolymerization into ethylene glycol (EG) monomer within 12 h, followed by an electrochemical process initiated by a CO-tolerant Pd/Ni(OH)2 catalyst to convert the EG intermediate into glycolate with high Faradaic efficiency of 97.5%. Techno-economic analysis and life cycle assessment indicate that, compared with the widely adopted electrochemical technology that heavily relies on alkaline pretreatment for PET depolymerization, our designed enzymatic-electrochemical approach offers a cost-effective and low-carbon pathway to upgrade PET.
Collapse
Affiliation(s)
- Mengmeng Du
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Xue
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Wenfang Yuan
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Cheng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bocheng Qiu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Xia S, Wu F, Liu Q, Gao W, Guo C, Wei H, Hussain A, Zhang Y, Xu G, Niu W. Steering the Selective Production of Glycolic Acid by Electrocatalytic Oxidation of Ethylene Glycol with Nanoengineered PdBi-Based Heterodimers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400939. [PMID: 38618653 DOI: 10.1002/smll.202400939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Heterodimers of metal nanocrystals (NCs) with tailored elemental distribution have emerged as promising candidates in the field of electrocatalysis, owing to their unique structures featuring heterogeneous interfaces with distinct components. Despite this, the rational synthesis of heterodimer NCs with similar elemental composition remains a formidable challenge, and their impact on electrocatalysis has remained largely elusive. In this study, Pd@Bi-PdBi heterodimer NCs are synthesized through an underpotential deposition (UPD)-directed growth pathway. In this pathway, the UPD of Bi promotes a Volmer-Weber growth mode, allowing for judicious modulation of core-satellite to heterodimer structures through careful control of supersaturation and growth kinetics. Significantly, the heterodimer NCs are employed in the electrocatalytic process of ethylene glycol (EG) with high activity and selectivity. Compared with pristine Pd octahedra and common PdBi alloy NC, the unique heterodimer structure of the Pd@Bi-PdBi heterodimer NCs endows them with the highest electrocatalytic performance of EG and the best selectivity (≈93%) in oxidizing EG to glycolic acid (GA). Taken together, this work not only heralds a new strategy for UPD-directed synthesis of bimetallic NCs, but also provides a new design paradigm for steering the selectivity of electrocatalysts.
Collapse
Affiliation(s)
- Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qixin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenping Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenxi Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Haili Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yue Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Xu Y, Li J, Hu M, Wu Z, Du Y. 2D petal-like PdAg nanosheets promote efficient electrocatalytic oxidation of ethanol and methanol. NANOSCALE 2024; 16:14096-14100. [PMID: 39007217 DOI: 10.1039/d4nr01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The development of efficient alcohol electrooxidation catalysts is of vital importance for the commercialization of direct liquid fuel cells. As emerging advanced catalysts, two-dimensional (2D) noble metal nanomaterials have attracted much research attention due to their intrinsic structural advantages. Herein, we report the synthesis of petal-like PdAg nanosheets (NSs) with an ultrathin 2D structure and jagged edges via a facile wet-chemical approach, combining doping engineering and morphology tuning. Notably, the highly active sites and Pd-Ag composition endowed PdAg NSs with improved toxicity tolerance and substantially improved the durability toward the ethanol/methanol oxidation reaction (EOR/MOR). Moreover, the electronic effect and synergistic effect significantly enhanced the EOR and MOR activities in comparison with Pd NSs and commercial Pd/C. This work provides efficient catalysts for fuel electrooxidations and deep insight into the rational design and fabrication of novel 2D nanoarchitecture.
Collapse
Affiliation(s)
- Yuhua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- The School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Mengyun Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, PR China
| |
Collapse
|
15
|
Wang X, Yang H, Liu M, Liu Z, Liu K, Mu Z, Zhang Y, Cheng T, Gao C. Locally Varying Surface Binding Affinity on Pd-Au Nanocrystals Enhances Electrochemical Ethanol Oxidation Activity. ACS NANO 2024; 18:18701-18711. [PMID: 38941536 DOI: 10.1021/acsnano.4c06063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Noble metal nanocrystals face challenges in effectively catalyzing electrochemical ethanol oxidation reaction (EOR)-represented multistep, multielectron transfer processes due to the linear scaling relationship among binding energies of intermediates, impeding independent optimization of individual elemental steps. Herein, we develop noble metal nanocrystals with a range of local surface binding affinities in close proximity to overcome this challenge. Experimentally, this is demonstrated by applying tensile strain to a Pd surface and decorating it with discrete Au atoms, forming a diversity of binding sites with varying affinities in close proximity for guest molecules, as evidenced by CO probing and density functional theory calculations. Such a surface enables reaction intermediates to migrate between different binding sites as needed for each elemental step, thereby reducing the energy barrier for the overall EOR when compared to reactions at a single site. On these tailored surfaces, we attain specific and mass activities of 32.7 mA cm-2 and 47.8 A mgPd-1 in EOR, surpassing commercial Pd/C by 10.9 and 43.8 times, respectively, and outperforming state-of-the-art Pd-based catalysts. These results highlight the promise of this approach in improving a variety of multistep, multielectron transfer reactions, which are crucial for energy conversion applications.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Moxuan Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaojun Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zerui Mu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chuanbo Gao
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
16
|
Ji L, Zhang X, Qian N, Li J, Shen S, Wu X, Tan X, Zhang H, Yang D. A universal synthesis strategy of Pd-based trimetallic nanowires for efficient alcohol electrooxidation. NANOSCALE 2024; 16:3685-3692. [PMID: 38288750 DOI: 10.1039/d3nr06200g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Trimetallic nanowires (NWs) have drawn much attention in efficient alcohol oxidation reaction (AOR) due to their unique features, including high atomic utilization efficiency and fast electron transfer ability. However, a universal strategy to synthesize Pd-based trimetallic NWs with high catalytic performance is still lacking. Herein, we develop a universal method for facile synthesis of PdBiM (M = Pt, Ru, Ir, Co, Cu) NWs with excellent AOR activities. By taking PdBiPt NWs as an example, the formation mechanism was investigated, and it is found that introduction of bismuth (Bi) plays an important role in facilitating the formation of the NW structure. Moreover, the PdBiPt NWs deliver an outstanding performance toward both the ethanol oxidation reaction (EOR) and the methanol oxidation reaction (MOR). Density functional theory (DFT) calculations together with experimental results disclose that the moderate electronic structure of trimetallic PdBiPt NWs can optimize the adsorption of OHads and weaken the adsorption of COads, thereby leading to the substantially enhanced AOR performance. We believe that this work can inspire the design of multimetallic NWs as high-performance catalysts.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Xiaoyue Zhang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China.
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Sudan Shen
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xingqiao Wu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China.
| | - Xin Tan
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China.
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| |
Collapse
|
17
|
Lv H, Liu B. Two-dimensional mesoporous metals: a new era for designing functional electrocatalysts. Chem Sci 2023; 14:13313-13324. [PMID: 38033890 PMCID: PMC10685317 DOI: 10.1039/d3sc04244h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Two-dimensional (2D) mesoporous metals contribute a unique class of electrocatalyst materials for electrochemical applications. The penetrated mesopores of 2D mesoporous metals expose abundant accessible undercoordinated metal sites, while their 2D nanostructures accelerate the transport of electrons and reactants. Therefore, 2D mesoporous metals have exhibited add-in structural functions with great potential in electrocatalysis that not only enhance electrocatalytic activity and stability but also optimize electrocatalytic selectivity. In this Perspective, we summarize recent progress in the design, synthesis, and electrocatalytic performance of 2D mesoporous metals. Four main strategies for synthesizing 2D mesoporous metals, named the CO (and CO container) induced route, halide ion-oriented route, interfacial growth route, and metal oxide atomic reconstruction route, are presented in detail. Moreover, electrocatalytic applications in several important reactions are summarized to highlight the add-in structural functions of 2D mesoporous metals in enhancing electrochemical activity, stability, and selectivity. Finally, current challenges and future directions are discussed in this area. This Perspective offers some important insights into both fundamental investigations and practical applications of novel high-performance functional electrocatalysts.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
18
|
Peng W, Lu YR, Lin H, Peng M, Chan TS, Pan A, Tan Y. Sulfur-Stabilizing Ultrafine High-Entropy Alloy Nanoparticles on MXene for Highly Efficient Ethanol Electrooxidation. ACS NANO 2023; 17:22691-22700. [PMID: 37926947 DOI: 10.1021/acsnano.3c07110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
High-entropy alloys (HEAs) are significantly promising candidates for heterogeneous catalysis, yet the controllable synthesis of ultrafine HEA nanoparticles (NPs) remains a formidable challenge due to severe thermal sintering during the high-temperature fabrication process. Herein, we report a sulfur-stabilizing strategy to construct ultrafine HEA NPs with an average diameter of 4.02 nm supported on sulfur-modified Ti3C2Tx (S-Ti3C2Tx) MXene, on which the strong interfacial metal-sulfur interactions between HEA NPs and the S-Ti3C2Tx supports significantly increase the interfacial adhesion strength, thus greatly suppressing nanoparticle sintering by retarding both particle migration and metal atom diffusion. The representative quinary PtPdCuNiCo HEA-S-Ti3C2Tx exhibits excellent catalytic performance toward alkaline ethanol oxidation reaction (EOR) with an ultrahigh mass activity of 7.03 A mgPt+Pd-1, which is 4.34 and 5.17 times higher than those of the commercial Pt/C and Pd/C catalysts, respectively. In situ attenuated total reflection-infrared spectroscopy studies reveal that the high intrinsic catalytic activity for the EOR can be ascribed to the synergy of different catalytically active sites of HEA NPs and the well-designed interfacial metal-sulfur interactions.
Collapse
Affiliation(s)
- Wei Peng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Ming Peng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
19
|
Zhai M, Zhang Y, Xu J, Lin H, Wang J, Wang L. Nickel hydroxide-decorating potassium-doped graphitic carbon nitride for boosting photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2023; 650:1671-1678. [PMID: 37499623 DOI: 10.1016/j.jcis.2023.07.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
In this study, nickel hydroxide (Ni(OH)2) was employed to modify potassium (K)-doped graphitic carbon nitride (g-C3N4, CN) for enhancing photocatalytic CO2 reduction. The light absorption and charge separation performances of CN were enhanced after modification. Experiments and theoretical calculations indicated that the loaded Ni(OH)2 could gather electrons, facilitate adsorption and activation of CO2. The optimized photocatalyst exhibited high CO2 reductive rate with CO and CH4 yields of 42.6 and 3.5 μmol g-1, respectively after 3 h irradiation in the presence of 0.5 mL water, which was 1.4 and 4.6 times higher than the yields on K-doped CN and Ni(OH)2-decorated CN, respectively. This work provides new thought for enhancing CO2 reductive performance of CN.
Collapse
Affiliation(s)
- Mianmian Zhai
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu Zhang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jixiang Xu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
20
|
Ge M, Li H, Zhu X, Feng Y, Wang M, Cui D, Yang H, Li S, Zheng J, Ju J, Chen X, Yuan X. Confinement Effects in Carbonized ZIF-Confined Hollow PtCo Nanospheres Enable the Methanol Oxidation Reaction. Inorg Chem 2023; 62:16582-16588. [PMID: 37751364 DOI: 10.1021/acs.inorgchem.3c02519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Confinement effects in highly porous nanostructures can effectively adjust the selectivity and kinetics of electrochemical reactions, which can boost the methanol oxidation reaction (MOR). In this work, carbonized ZIF-8-confined hollow PtCo nanospheres (PtCo@carbonized ZIF-8) were fabricated using a facile strategy. A monodisperse confined region was successfully prepared, and the dispersion of the PtCo nanoparticles (NPs) could be precisely regulated, allowing for the effective tuning of the confined region. Thus, the precise regulation of the catalytic reaction was achieved. Importantly, hollow PtCo NPs were prepared using a method based on the Kirkendall effect, and their forming mechanism was systematically investigated. Because of the confinement effects of carbonized zeolitic imidazolate framework-8 (ZIF-8), the crystal and electronic structures of the PtCo NPs were able to be effectively tuned. Our electrochemical results show that PtCo@carbonized ZIF-8 composites manifest a higher mass activity (1.4 A mgPt-1) and better stability compared to commercial Pt/C.
Collapse
Affiliation(s)
- Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Yanjun Feng
- Shanghai Institute of Satellite Engineering, 3666 Yuanjiang Road, Shanghai 201109, P.R. China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Ding Cui
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Shengming Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Jianfeng Ju
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaolei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
21
|
Wei K, Lin H, Zhao X, Zhao Z, Marinkovic N, Morales M, Huang Z, Perlmutter L, Guan H, Harris C, Chi M, Lu G, Sasaki K, Sun S. Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C-C Cleavage in C2+ Alcohol Electro-oxidation Reactions. J Am Chem Soc 2023; 145:19076-19085. [PMID: 37606196 DOI: 10.1021/jacs.3c07027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.
Collapse
Affiliation(s)
- Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xueru Zhao
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Michael Morales
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Laura Perlmutter
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Kotaro Sasaki
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
22
|
Li M, Huang C, Yang H, Wang Y, Song X, Cheng T, Jiang J, Lu Y, Liu M, Yuan Q, Ye Z, Hu Z, Huang H. Programmable Synthesis of High-Entropy Nanoalloys for Efficient Ethanol Oxidation Reaction. ACS NANO 2023. [PMID: 37418375 DOI: 10.1021/acsnano.3c02762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.
Collapse
Affiliation(s)
- Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Chenming Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Yu Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiangcong Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Jietao Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yangfan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Maochang Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
23
|
Peng W, Zhou J, Lu YR, Peng M, Yuan D, Chan TS, Tan Y. Palladium metallene confined on MXene with increased hydroxyl binding strength for highly efficient ethanol electrooxidation. Proc Natl Acad Sci U S A 2023; 120:e2222096120. [PMID: 37252989 PMCID: PMC10265983 DOI: 10.1073/pnas.2222096120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.
Collapse
Affiliation(s)
- Wei Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, China
| | - Jing Zhou
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu300, Taiwan
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, China
| | - Dingwang Yuan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu300, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, China
| |
Collapse
|
24
|
Zhang M, Zhang X, Lv M, Yue X, Zheng Z, Xia H. Ethanol Oxidation via 12-Electron Pathway on Spiky Au@AuPd Nanoparticles Assisted by Near-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205781. [PMID: 36775916 DOI: 10.1002/smll.202205781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 05/04/2023]
Abstract
In this work, ethanol oxidation reaction (EOR) via 12-electron (C1-12e) pathway on spiky Au@AuPd nanoparticles (NPs) with ultrathin AuPd alloy shells is achieved in alkaline media with the assistance of the near-infrared (NIR) light. It is found that OH radicals can be produced from the OHads species adsorbed on the surfaces of Pd atoms led by surface plasmon resonance (SPR) effect of spiky Au@AuPd NPs under the irradiation of NIR light. Moreover, OH radicals play the key role for the achievement of EOR proceeded by the desirable C1-12e pathway because OH radicals can directly break the C-C bonds of ethanol. Accordingly, the electrocatalytic performance of spiky Au@AuPd NPs toward EOR under NIR light is greatly improved. For instance, their mass activity can be up to 33.2 A mgpd -1 in the 0.5 m KOH solution containing 0.5 m ethanol, which is about 158 times higher than that of commercial Pd/C catalysts (0.21 A mgpd -1 ) and is better than those of the state-of-the-art Pd-based catalysts reported in literature thus far, to the best of our knowledge. Moreover, their highest mass activity can be further improved to 118.3 A mgpd -1 in the 1.5 m KOH solution containing 1.25 m ethanol.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinru Yue
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
25
|
Chang J, Wang G, Chang X, Yang Z, Wang H, Li B, Zhang W, Kovarik L, Du Y, Orlovskaya N, Xu B, Wang G, Yang Y. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nat Commun 2023; 14:1346. [PMID: 36906649 PMCID: PMC10008627 DOI: 10.1038/s41467-023-37011-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials' physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm-2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.
Collapse
Affiliation(s)
- Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Guanzhi Wang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, USA
| | - Xiaoxia Chang
- Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Han Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wei Zhang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, USA
| | - Libor Kovarik
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL, 32816, USA
| | - Bingjun Xu
- Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, USA.
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL, 32816, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA.
| |
Collapse
|
26
|
Liu F, Gao X, Shi R, Guo Z, Tse ECM, Chen Y. Concerted and Selective Electrooxidation of Polyethylene-Terephthalate-Derived Alcohol to Glycolic Acid at an Industry-Level Current Density over a Pd-Ni(OH) 2 Catalyst. Angew Chem Int Ed Engl 2023; 62:e202300094. [PMID: 36656087 DOI: 10.1002/anie.202300094] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Electro-reforming of Polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into fine chemicals and H2 is an ideal solution to address severe plastic pollution. Here, we report the electrooxidation of EG to glycolic acid (GA) with a high Faraday efficiency and selectivity (>85 %) even at an industry-level current density (600 mA cm-2 at 1.15 V vs. RHE) over a Pd-Ni(OH)2 catalyst. Notably, stable electrolysis over 200 h can be achieved, outperforming all available Pd-based catalysts. Combined experimental and theoretical results reveal that 1) the OH* generation promoted by Ni(OH)2 plays a critical role in facilitating EG-to-GA oxidation and removing poisonous carbonyl species, thereby achieving high activity and stability; 2) Pd with a downshifted d-band center and the oxophilic Ni can synergistically facilitate the rapid desorption and transfer of GA from the active Pd sites to the inactive Ni sites, avoiding over-oxidation and thus achieving high selectivity.
Collapse
Affiliation(s)
- Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xutao Gao
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhengxiao Guo
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Edmund C M Tse
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Xiao W, Li S, Liu J, Fan J, Ma L, Cai W. Lead as an effective facilitator for ethanol electrooxidation on Rh catalyst in alkaline media: RhPb/C vs RhRu/C. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
28
|
Zhao Z, Zhang L, Ma X, Min Y, Xu Q, Li Q. Pd3Pb1@Pt2 core–shell concave nanocubes to boost the ethanol oxidation reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction. Catalysts 2022. [DOI: 10.3390/catal13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The one-pot synthesis strategy of Au@Pd dendrites nanoparticles (Au@Pd DNPs) was simply synthesized in a high-temperature aqueous solution condition where cetyltrimethylammonium chloride (CTAC) acted as a reducing and capping agent at a high temperature. The Au@Pd DNPs with highly monodisperse were shown in high yields by the Au:Pd rate. The nanostructure and optical and crystalline properties of the Au@Pd DNPs were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction. The Au@Pd DNPs showed an efficient electrochemical catalytic performance rate toward the ethanol oxidation reaction (EOR) due to their nanostructures and Au:Pd rate.
Collapse
|
30
|
Huang J, Ni Z, Song X, Li H, Chen X, Zhang A, Yang H, Liu Y, Zhu P, Hua P, Yuan X. Trace Doping of Pb(OH) 2 Species on PdPb Alloys Boost Highly Active and Stable Ethanol Oxidation. ACS OMEGA 2022; 7:35720-35726. [PMID: 36249359 PMCID: PMC9558606 DOI: 10.1021/acsomega.2c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
PdPb nanocrystals have drawn considerable attention due to their excellent catalytic properties, while their practical applications have been impeded by the severe degradation of activity, which is caused by the adsorption of intermediates (especially CO) during the operation. Herein, we first present porous PdPb alloys with the incorporation of amorphous Pb(OH)2 species as highly active and stable electrocatalysts. Alloying Pd with Pb species is initially proposed to optimize the Pd-Pd interatomic distance and adjust the d-band center of Pd. Importantly, the amorphous Pb(OH)2 species are beneficial to promoting the formation of OHad and the removal of COad. Therefore, PdPb-Pb(OH)2 catalysts show a mass activity of 3.18 A mgPd -1 and keep excellent stability for the ethanol oxidation reaction (EOR). In addition, further CO stripping and a series of CO poisoning experiments indicate that PdPb-Pb(OH)2 composites possess much better CO tolerance benefiting from the tuned electronic structure of Pd and surface incorporation of Pb(OH)2 species.
Collapse
Affiliation(s)
- Jialu Huang
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Zhiming Ni
- Sales
Department, Petrochina Tuha Oilfield Company, Shanshan County, Turpan 838200, Xinjiang, China
| | - Xiaofan Song
- State
Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Han Li
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Xiaolei Chen
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Aichuang Zhang
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Hu Yang
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Yuan Liu
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Peng Zhu
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Ping Hua
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| | - Xiaolei Yuan
- School
of Chemistry and Chemical Engineering, Nantong
University, 9 Seyuan Road, Nantong 226019, China
| |
Collapse
|
31
|
Chen Y, Pei J, Chen Z, Li A, Ji S, Rong H, Xu Q, Wang T, Zhang A, Tang H, Zhu J, Han X, Zhuang Z, Zhou G, Wang D. Pt Atomic Layers with Tensile Strain and Rich Defects Boost Ethanol Electrooxidation. NANO LETTERS 2022; 22:7563-7571. [PMID: 36103215 DOI: 10.1021/acs.nanolett.2c02572] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm-2 and mass activity of 1166.6 mA mg Pt-1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection-absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C-C bond for complete ethanol oxidation for enhanced performance.
Collapse
Affiliation(s)
- Yuanjun Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
| | - Shufang Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Aojie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Zhou
- School of Science, Hubei University of Technology, Wuhan 430068, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Yang H, Zhang A, Bai Y, Chu M, Li H, Liu Y, Zhu P, Chen X, Deng C, Yuan X. One Stone Two Birds: Unlocking the Synergy between Amorphous Ni(OH) 2 and Pd Nanocrystals toward Ethanol and Formic Acid Oxidation. Inorg Chem 2022; 61:14419-14427. [PMID: 36037068 DOI: 10.1021/acs.inorgchem.2c02307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Even though extensive efforts have been devoted to mixing Pd nanocrystals with Ni(OH)2 for the enhanced synergy, it remains a great challenge to incorporate nanosized Ni(OH)2 species on the Pd electrode and reveal their synergy. Herein, we present spongelike Pd nanocrystals with the modification of amorphous Ni(OH)2 species. The catalyst configuration is first considered by compositing Pd with Ni(OH)2 species to optimize the Pd-Pd interatomic distance and then constructing a strongly coupled interface between Pd nanostructures and Ni(OH)2 species. For the ethanol oxidation reaction (EOR) and the formic acid oxidation reaction (FAOR), Pd-Ni(OH)2 composites exhibit an impressive mass activity of 4.98 and 2.65 A mgPd-1, respectively. Most impressively, there is no significant decrease in the EOR activity during five consecutive cycles (50 000 s). A series of CO-poisoning tests have proved that the enhanced EOR and FAOR performances involve synergy between Pd nanostructures and Ni(OH)2 species.
Collapse
Affiliation(s)
- Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Aichuang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Yunfei Bai
- Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Peng Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Xiaolei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Chengwei Deng
- Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| |
Collapse
|
33
|
Sun L, Lv H, Feng J, Guselnikova O, Wang Y, Yamauchi Y, Liu B. Noble-Metal-Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201954. [PMID: 35695354 DOI: 10.1002/adma.202201954] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
As second-generation mesoporous materials, mesoporous noble metals (NMs) are of significant interest for their wide applications in catalysis, sensing, bioimaging, and biotherapy owing to their structural and metallic features. The introduction of interior hollow cavity into NM-based mesoporous nanoparticles (MNs), which subtly integrate hierarchical hollow and mesoporous structure into one nanoparticle, produces a new type of hollow MNs (HMNs). Benefiting from their higher active surface, better electron/mass transfer, optimum electronic structure, and nanoconfinement space, NM-based HMNs exhibit their high efficiency in enhancing catalytic activity and stability and tuning catalytic selectivity. In this review, recent progress in the design, synthesis, and catalytic applications of NM-based HMNs is summarized, including the findings of the groups. Five main strategies for synthesizing NM-based HMNs, namely silica-assisted surfactant-templated nucleation, surfactant-templated sequential nucleation, soft "dual"-template, Kirkendall effect in synergistic template, and galvanic-replacement-assisted surfactant template, are described in detail. In addition, the applications in ethanol oxidation electrocatalysis and hydrogenation reactions are discussed to highlight the high activity, enhanced stability, and optimal selectivity of NM-based HMNs in (electro)catalysis. Finally, the further outlook that may lead the directions of synthesis and applications of NM-based HMNs is prospected.
Collapse
Affiliation(s)
- Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ji Feng
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Olga Guselnikova
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
34
|
Lv H, Sun L, Wang Y, Liu S, Liu B. Highly Curved, Quasi-Single-Crystalline Mesoporous Metal Nanoplates Promote CC Bond Cleavage in Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203612. [PMID: 35640570 DOI: 10.1002/adma.202203612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The ability to manipulate metal nanocrystals with well-defined morphologies and structures is greatly important in material chemistry, catalysis chemistry, nanoscience, and nanotechnology. Although 2D metals serve as interesting platforms, further manipulating them in solution with highly penetrated mesopores and ideal crystallinity remains a huge challenge. Here, an easy yet powerful synthesis strategy for manipulating the mesoporous structure and crystallinity of 2D metals in a controlled manner with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra iodine-ion as the structure/facet-selective agent is reported. This strategy allows for preparing an unprecedented type of 2D quasi-single-crystalline mesoporous nanoplates (SMPs) with highly curved morphology and controlled metal composition. The products, for example, PdCu SMPs, feature abundant undercoordinated sites, optimized electronic structures, excellent electron/mass transfers, and confined mesopore environments. Curved PdCu SMPs exhibit remarkable electrocatalytic activity of 6.09 A mgPd -1 and stability for ethanol oxidation reaction (EOR) compared with its counterpart catalysts and commercial Pd/C. More importantly, PdCu SMPs are highly selective for EOR electrocatalysis that dramatically promotes C-C bond cleavage with a superior C1 pathway selectivity as high as 72.1%.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
35
|
Wang H, Guan A, Zhang J, Mi Y, Li S, Yuan T, Jing C, Zhang L, Zhang L, Zheng G. Copper-doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Berretti E, Pagliaro M, Giaccherini A, Montegrossi G, Di Benedetto F, Lepore G, D'Acapito F, Vizza F, Lavacchi A. Experimental evidence of palladium dissolution in anodes for alkaline direct ethanol and formate fuel cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Li S, Ma R, Hu J, Li Z, Liu L, Wang X, Lu Y, Sterbinsky GE, Liu S, Zheng L, Liu J, Liu D, Wang J. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat Commun 2022; 13:2916. [PMID: 35614111 PMCID: PMC9133001 DOI: 10.1038/s41467-022-30670-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
To achieve zero-carbon economy, advanced anode catalysts are desirable for hydrogen production and biomass upgrading powered by renewable energy. Ni-based non-precious electrocatalysts are considered as potential candidates because of intrinsic redox attributes, but in-depth understanding and rational design of Ni site coordination still remain challenging. Here, we perform anodic electrochemical oxidation of Ni-metalloids (NiPx, NiSx, and NiSex) to in-situ construct different oxyanion-coordinated amorphous nickel oxyhydroxides (NiOOH-TOx), among which NiOOH-POx shows optimal local coordination environment and boosts electrocatalytic activity of Ni sites towards selective oxidation of methanol to formate. Experiments and theoretical results demonstrate that NiOOH-POx possesses improved adsorption of OH* and methanol, and favors the formation of CH3O* intermediates. The coordinated phosphate oxyanions effectively tailor the d band center of Ni sites and increases Ni-O covalency, promoting the catalytic activity. This study provides additional insights into modulation of active-center coordination environment via oxyanions for organic molecules transformation. Coordination environments around metal sites are important in electrocatalysis. Here, Ni metalloid oxidation produces oxyanion doped amorphous Ni-oxyhydroxides where substitution with phosphorus is found to boost methanol electrooxidation activity.
Collapse
Affiliation(s)
- Shanlin Li
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Ruguang Ma
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215011, China
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zichuang Li
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N6A5B7, Canada
| | - Xunlu Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - George E Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Danmin Liu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Jiacheng Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Hebei Provincial Key Laboratory Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
38
|
Braun M, Behrendt G, Krebs ML, Dimitri P, Kumar P, Sanjuán I, Cychy S, Brix AC, Morales DM, Hörlöck J, Hartke B, Muhler M, Schuhmann W, Behrens M, Andronescu C. Electrooxidation of Alcohols on Mixed Copper‐Cobalt Hydroxycarbonates in Alkaline Solution. ChemElectroChem 2022. [DOI: 10.1002/celc.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Braun
- Universitat Duisburg-Essen Fakultat fur Chemie Chemical Technology III GERMANY
| | - Gereon Behrendt
- Universitat Duisburg-Essen Fakultat fur Chemie Institute of Inorganic Chemistry GERMANY
| | - Moritz L. Krebs
- Kiel University: Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Patricia Dimitri
- Universitat Duisburg-Essen Fakultat fur Chemie Institute of Inorganic Chemistry GERMANY
| | - Piyush Kumar
- Universitat Duisburg-Essen Fakultat fur Chemie Chemical Technology III GERMANY
| | - Ignacio Sanjuán
- University of Duisburg-Essen Faculty of Chemistry: Universitat Duisburg-Essen Fakultat fur Chemie Chemical Technology III GERMANY
| | - Steffen Cychy
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie: Ruhr Universitat Bochum Fakultat fur Chemie und Biochemie Laboratory of Industrial Chemistry GERMANY
| | - Ann Cathrin Brix
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie: Ruhr Universitat Bochum Fakultat fur Chemie und Biochemie Analytical Chemistry, Center for Electrochemical Sciences (CES) GERMANY
| | - Dulce M. Morales
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Nachwuchsgruppe „Gestaltung des Sauerstoffentwicklungsmechanismus GERMANY
| | - Jennifer Hörlöck
- Christian-Albrechts-Universitat zu Kiel Theoretical Chemistry GERMANY
| | - Bernd Hartke
- University of Kiel: Christian-Albrechts-Universitat zu Kiel Theoretical Chemistry GERMANY
| | - Martin Muhler
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie: Ruhr Universitat Bochum Fakultat fur Chemie und Biochemie Laboratory of Industrial Chemistry GERMANY
| | - Wolfgang Schuhmann
- Ruhr Universitat Bochum Fakultat fur Chemie und Biochemie Analytical Chemistry, Center for Electrochemical Sciences (CES) GERMANY
| | - Malte Behrens
- Universitat Kiel: Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Corina Andronescu
- Universitat Duisburg-Essen Chemical Technology III Carl-Benz-Str. 199 D-47057 Duisburg GERMANY
| |
Collapse
|
39
|
Roles of hydroxyl and oxygen vacancy of CeO2·xH2O in Pd-catalyzed ethanol electro-oxidation. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p-d Hybridization Interaction in Heterostructural Pd-PdSe Nanosheets Boosts C-C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202200899. [PMID: 35083836 DOI: 10.1002/anie.202200899] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/14/2023]
Abstract
Advanced electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells are strongly desired owing to the higher energy efficiency. Herein, Pd-PdSe heterostructural nanosheets (Pd-PdSe HNSs) have been successfully fabricated via a one-step approach. These Pd-PdSe HNSs feature unique electronic and geometrical structures, in which unconventional p-d hybridization interactions and tensile strain effect co-exist. Compared with commercial Pd/C and Pd NSs catalysts, Pd-PdSe HNSs display 5.5 (6.6) and 2.5 (2.6) fold enhancement of specific (mass) activity for the EG oxidation reaction (EGOR). Especially, the optimum C1 pathway selectivity of Pd-PdSe HNSs reaches 44.3 %, illustrating the superior C-C bond cleavage ability. Electrochemical in situ FTIR spectroscopy and theoretical calculations demonstrate that the extraordinary p-d hybridization interaction and tensile strain effect could effectively reduce the activation energy of C-C bond breaking and accelerate CO* oxidation, boosting the complete oxidation of EG and improving the catalytic performance.
Collapse
Affiliation(s)
- Yuchen Qin
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Wenlong Zhang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Fengqi Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, college of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xia Sheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Chenxi Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Xiaoyu Liang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Pei Liu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xiaopeng Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xin Zheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Yunlai Ren
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Cuilian Xu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
41
|
Wang Y, Zheng M, Li Y, Ye C, Chen J, Ye J, Zhang Q, Li J, Zhou Z, Fu XZ, Wang J, Sun SG, Wang D. p-d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt 3 Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202115735. [PMID: 35001467 DOI: 10.1002/anie.202115735] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 12/22/2022]
Abstract
Constructing monodispersed metal sites in heterocatalysis is an efficient strategy to boost their catalytic performance. Herein, a new strategy using monodispersed metal sites to tailor Pt-based nanocatalysts is addressed by engineering unconventional p-d orbital hybridization. Thus, monodispersed Ga on Pt3 Mn nanocrystals (Ga-O-Pt3 Mn) with high-indexed facets was constructed for the first time to drive ethanol electrooxidation reaction (EOR). Strikingly, the Ga-O-Pt3 Mn nanocatalyst shows an enhanced EOR performance with achieving 8.41 times of specific activity than that of Pt/C. The electrochemical in situ Fourier transform infrared spectroscopy results and theoretical calculations disclose that the Ga-O-Pt3 Mn nanocatalyst featuring an unconventional p-d orbital hybridization not only promote the C-C bond-breaking and rapid oxidation of -OH of ethanol, but also inhibit the generation of poisonous CO intermediate species. This work discloses a promising strategy to construct a novel nanocatalysts tailored by monodispersed metal site as efficient fuel cell catalysts.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meng Zheng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yunrui Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and environment, China University of Petroleum, Beijing, 102249, China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and environment, China University of Petroleum, Beijing, 102249, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p–d Hybridization Interaction in Heterostructural Pd‐PdSe Nanosheets Boosts C−C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchen Qin
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Wenlong Zhang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Fengqi Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces college of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Xia Sheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Chenxi Li
- College of Life Science Chongqing Normal University Chongqing 401331 P. R. China
| | - Xiaoyu Liang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Pei Liu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xiaopeng Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xin Zheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Yunlai Ren
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Cuilian Xu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
43
|
Castagna RM, Alvarez AE, Sanchez MD, Sieben JM. Glycerol Electrooxidation on Phosphorus‐Doped Pt‐αNi(OH)
2
/C Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202104212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rodrigo M. Castagna
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC) and CONICET Universidad Nacional del Sur Av. Alem 1253 Bahía Blanca B8000CPB) Argentina
| | - Andrea E. Alvarez
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC) and CONICET Universidad Nacional del Sur Av. Alem 1253 Bahía Blanca B8000CPB) Argentina
| | - Miguel D. Sanchez
- Instituto de Física del Sur (IFISUR) Departamento de Física. Universidad Nacional del Sur (UNS), CONICET Av. Alem 1253 Bahía Blanca B8000CPB) Argentina
| | - Juan Manuel Sieben
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC) and CONICET Universidad Nacional del Sur Av. Alem 1253 Bahía Blanca B8000CPB) Argentina
| |
Collapse
|
44
|
Qin Y, Huang H, Yu W, Zhang H, Li Z, Wang Z, Lai J, Wang L, Feng S. Porous PdWM (M = Nb, Mo and Ta) Trimetallene for High C1 Selectivity in Alkaline Ethanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103722. [PMID: 34951154 PMCID: PMC8844492 DOI: 10.1002/advs.202103722] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Indexed: 05/20/2023]
Abstract
Direct ethanol fuel cells are among the most efficient and environmentally friendly energy-conversion devices and have been widely focused. The ethanol oxidation reaction (EOR) is a multielectron process with slow kinetics. The large amount of by-product generated by incomplete oxidation greatly reduces the efficiency of energy conversion through the EOR. In this study, a novel type of trimetallene called porous PdWM (M = Nb, Mo and Ta) is synthesized by a facile method. The mass activity (15.6 A mgPd -1 ) and C1 selectivity (55.5%) of Pd50 W27 Nb23 /C trimetallene, obtained after optimizing the compositions and proportions of porous PdWM, outperform those of commercial Pt/C (1.3 A mgPt -1 , 5.9%), Pd/C (5.0 A mgPd -1 , 7.2%), and Pd97 W3 /C bimetallene (9.5 A mgPd -1 , 14.1%). The mechanism by which Pd50 W27 Nb23 /C enhances the EOR performance is evaluated by in situ Fourier transform infrared spectroscopy and density functional theory calculations. It is found that W and Nb enhance the adsorption of CH3 CH2 OH and oxophilic high-valence Nb accelerates the subsequent oxidation of CO and CHx species. Moreover, Nb promotes the cleavage of CC bonds and increases the C1 selectivity. Pd60 W28 Mo12 /C and Pd64 W27 Ta9 /C trimetallene synthesized by the same method also exhibit excellent EOR performance.
Collapse
Affiliation(s)
- Yingnan Qin
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Hao Huang
- School of Sustainable Energy Materials and ScienceJinhua Advanced Research InstituteJinhua321000P. R. China
| | - Wenhao Yu
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Haonan Zhang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety ProtectionCollege of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Zhenjiang Li
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Zuochao Wang
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Jianping Lai
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Lei Wang
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety ProtectionCollege of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Shouhua Feng
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| |
Collapse
|
45
|
Wang Y, Zheng M, Li Y, Ye C, Chen J, Ye J, Zhang Q, Li J, Zhou Z, Fu XZ, Wang J, Sun SG, Wang D. P‐d orbital hybridization induced by monodispersed Ga site on Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Wang
- Tsinghua University Department of Chemistry CHINA
| | - Meng Zheng
- Shenzhen University School of Medicine CHINA
| | - Yunrui Li
- CUPB: China University of Petroleum Beijing Petroleum Engineering CHINA
| | | | - Juan Chen
- CUPB: China University of Petroleum Beijing Petroleum Engineering CHINA
| | - Jinyu Ye
- Xiamen University Chemistry CHINA
| | | | - Jiong Li
- SINAP: Shanghai Institute of Applied Physics Chinese Academy of Sciences Physics CHINA
| | | | - Xian-Zhu Fu
- Shenzhen University School of Medicine CHINA
| | - Jin Wang
- Shenzhen University School of Medicine CHINA
| | | | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| |
Collapse
|
46
|
Huang J, Ji L, Li X, Wu X, Qian N, Li J, Yan Y, Yang D, Zhang H. Facile synthesis of PdSn alloy octopods through the Stranski–Krastanov growth mechanism as electrocatalysts towards the ethanol oxidation reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00242f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd72Sn28 octopods synthesized through the Stranski–Krastanov growth mode exhibited remarkably enhanced catalytic performance for the EOR relative to commercial Pd/C.
Collapse
Affiliation(s)
- Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- BTR New Material Group CO., LTD., GuangMing District, Shenzhen 518106, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
47
|
Xu W, Wu X, Yuan Y, Qin Y, Liu Y, Wang Z, Zhang D, Li H, Lai J, Wang L. Multiphase PdCu nanoparticles with improved C1 selectivity in ethanol oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00869f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PdCu/CNT-300 catalysts with a mixed crystalline phase were successfully prepared. The introduction of Cu elements and the presence of a phase interface in the mixed phase facilitated electron transfer and increased the rate of the EOR.
Collapse
Affiliation(s)
- Wenxia Xu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xueke Wu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yueyue Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingnan Qin
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanru Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zuochao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Dan Zhang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
48
|
Huang J, Deng C, Liu Y, Han T, Ji F, Zhang Y, Lu H, Hua P, Zhang B, Qian T, Yuan X, Yang Y, Yao Y. Bifunctional effect of Bi(OH) 3 on the PdBi surface as interfacial Brønsted base enables ethanol electro-oxidization. J Colloid Interface Sci 2021; 611:327-335. [PMID: 34965487 DOI: 10.1016/j.jcis.2021.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023]
Abstract
Palladium (Pd) is supposed to be one of the most promising catalytic metals towards ethanol (C2H5OH) oxidation reaction (EOR). However, Pd electrocatalysts easily suffer from the poisoning of the intermediates (especially CO), resulting in the quick decay of EOR catalysis. Herein, inspired by the Brønsted-Lowry acid-base theory, a "attraction-repulsion" concept is proposed to guide the surface structure engineering toward EOR catalysts. Specifically, we induce Bi(OH)3 species as Brønsted base onto PdBi nanoplates to effectively repel the adsorption of CO intermediates. The PdBi-Bi(OH)3 nanoplates show an impressive mass activity of 4.46 A mgPd-1 during the EOR catalysis and keep excellent stability. Both the stability and enhanced performance are attributed by the interfacial Brønsted base Bi(OH)3 which can selectively attract and repel reactants and intermediates, as evidenced from in situ measurements and theoretical views.
Collapse
Affiliation(s)
- Jialu Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chengwei Deng
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Yue Liu
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tingting Han
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Feng Ji
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ping Hua
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bowei Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
49
|
Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. iScience 2021; 24:103332. [PMID: 34805792 PMCID: PMC8586809 DOI: 10.1016/j.isci.2021.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Deliberately optimizing the d-band position of an active component via electronic and lattice strain tuning is an effective way to boost its catalytic performance. We herein demonstrate this concept by constructing core-shell Au@NiPd nanoparticles with NiPd alloy shells of only three atomic layers through combining an Au catalysis with the galvanic replacement reaction. The Au core with larger electronegativity modulates the Pd electronic configuration, while the Ni atoms alloyed in the ultrathin shells neutralize the lattice stretching in Pd shells exerted by Au cores, equipping the active Pd metal with a favorable d-band position for electrochemical oxygen reduction reaction in an alkaline medium, for which core-shell Au@NiPd nanoparticles with a Ni/Pd atomic ratio of 3/7 exhibit a half-wave potential of 0.92 V, specific activity of 3.7 mA cm-2, and mass activity of 0.65 A mg-1 at 0.9 V, much better than most of the recently reported Pd-even Pt-based electrocatalysts.
Collapse
|
50
|
Li S, Liang X, Shen S, Yang H, Wu CML. Surface Engineering of Flower-Like Ionic Liquid-Functionalized Graphene Anchoring Palladium Nanocrystals for a Boosted Ethanol Oxidation Reaction. Inorg Chem 2021; 60:17388-17397. [PMID: 34709791 DOI: 10.1021/acs.inorgchem.1c02953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of low-cost and high-performance electrocatalyst-supporting materials is desirable and necessary for the ethanol oxidation reaction (EOR). Here, we report a facile and universal template-free approach for the first time to synthesize three-dimensional (3D) flower-like ionic liquid-functionalized graphene (IL-RGO). Then, the crystalline Pd nanoparticles were anchored on IL-RGO by a simple wet chemical growth method without a surfactant (denoted as Pd/IL-RGO). In particular, the IL is conducive to form a 3D flower-like structure. The optimized Pd/IL-RGO-2 presents a much-promoted electrocatalytic performance toward the EOR compared with commercial Pd/C catalysts, which is mainly derived from the grafted IL on RGO and the unique 3D flower-like structure. In detail, the IL can control, stabilize, and disperse the Pd nanocrystals as well as serving as the solvent and electrolyte in the microenvironment of the EOR, and the 3D flower-like structure endows the Pd/IL-RGO with high surface areas and rich opened channels, thereby kinetically accelerating the charge/mass transfers. Furthermore, density functional theory calculations reveal that the strong electronic interaction between Pd and IL-RGO generates a downshift of dcenter for Pd and thereby enhances the durability toward CO-like intermediates and electrocatalytic reaction kinetics.
Collapse
Affiliation(s)
- Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiongyi Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Sihao Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| |
Collapse
|