1
|
Mustfa SA, Dimitrievska M, Wang C, Gu C, Sun N, Romańczuk K, Karpinski P, Łaczmański Ł, McGrath JA, Jacków‐Malinowska J, Chiappini C. Porous Silicon Nanoneedles Efficiently Deliver Adenine Base Editor to Correct a Recurrent Pathogenic COL7A1 Variant in Recessive Dystrophic Epidermolysis Bullosa. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414728. [PMID: 40072288 PMCID: PMC12038538 DOI: 10.1002/adma.202414728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Base editing, a CRISPR-based genome editing technology, enables precise correction of single-nucleotide variants, promising resolutive treatment for monogenic genetic disorders like recessive dystrophic epidermolysis bullosa (RDEB). However, the application of base editors in cell manufacturing is hindered by inconsistent efficiency and high costs, contributed by suboptimal delivery methods. Nanoneedles have emerged as an effective delivery approach, enabling highly efficient, non-perturbing gene therapies both in vitro and in vivo. Here we demonstrate that nanoneedle delivery of an adenine base editor corrects a heterozygous single-nucleotide pathogenic variant in COL7A1 in primary RDEB fibroblasts in vitro with 96.5% efficiency, without inducing off-target variants. The nanoneedle delivery maintains cell viability and displays modest phenotypical alterations unlike conventional cationic lipid transfection. The nanoneedle-mediated editing significantly increases the production and secretion of full-length type VII collagen protein, contributing to restore functional fibroblasts phenotype by improving cell adhesion. These findings underscore the suitability and safety of nanoneedles for gene editing in a clinically relevant context of cell manufacturing, establishing a foundation for their use in cell therapies.
Collapse
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
| | - Marija Dimitrievska
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- St John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonSE1 1ULUK
| | - Cong Wang
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- London Centre for NanotechnologyKing's College LondonLondonSE1 1ULUK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- London Centre for NanotechnologyKing's College LondonLondonSE1 1ULUK
| | - Ningjia Sun
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
| | - Katarzyna Romańczuk
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclaw53‐114Poland
| | - Pawel Karpinski
- Department of GeneticsWroclaw Medical UniversityWroclaw50‐367Poland
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclaw53‐114Poland
| | - John A. McGrath
- St John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonSE1 1ULUK
| | - Joanna Jacków‐Malinowska
- St John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonSE1 1ULUK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- London Centre for NanotechnologyKing's College LondonLondonSE1 1ULUK
| |
Collapse
|
2
|
Khung YL. Hydrosilylation of porous silicon: Unusual possibilities and potential challenges. Adv Colloid Interface Sci 2025; 338:103416. [PMID: 39884111 DOI: 10.1016/j.cis.2025.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Among the many types of surface modifications on porous silicon (pSi), hydrosilylation stands out to be an important approach due to the formation of highly stable surface linkage through Si-C bonding. Since its conceptualization in 1998, hydrosilylation had gradually gained popularity for pSi surface modifications and had become an important approach for stabilizing pSi surfaces especially for biological applications. Over the past decade, significant advancements have been made in the hydrosilylation process for modifying porous silicon (pSi) surfaces. These developments have progressed to the point of enabling the incorporation of multiple chemical functionalities onto a single surface. This review aims to highlight the most recent studies on hydrosilylation of pSi surfaces, explore some of the more unconventional reaction mechanisms available in pSi surface chemistry, and discuss the challenges associated with implementing these strategies.
Collapse
Affiliation(s)
- Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, Taiwan.
| |
Collapse
|
3
|
An H, Ward SJ, Layouni R, Laibinis PE, Locke AK, Weiss SM. Porous Silicon on Paper: A Platform for Quantitative Rapid Diagnostic Tests. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6024-6030. [PMID: 39812632 PMCID: PMC11788981 DOI: 10.1021/acsami.4c18940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme. The paper substrate provides structural support as well as an efficient means of draining solutions from the PSi membrane without the use of an external pump and microfluidic channels. Distinct changes in the reflectance properties of the PSi membrane are measured when molecules are captured in the membrane. A concentration-dependent response of the sensor for protein detection is demonstrated. Factors influencing the interaction time of molecules in the PSi membrane and the drying time of the membrane, which directly affect the detection sensitivity and overall testing time, are discussed. The demonstrated performance of the PSi-on-paper sensor establishes the feasibility of a platform for low-cost rapid diagnostic tests with a highly sensitive, quantitative readout.
Collapse
Affiliation(s)
- Huijin An
- Interdisciplinary
Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Simon J. Ward
- Department
of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Rabeb Layouni
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Paul E. Laibinis
- Interdisciplinary
Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrea K. Locke
- Interdisciplinary
Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sharon M. Weiss
- Interdisciplinary
Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
4
|
Duan W, Zhao J, Gao Y, Xu K, Huang S, Zeng L, Shen JW, Zheng Y, Wu J. Porous silicon-based sensing and delivery platforms for wound management applications. J Control Release 2024; 371:530-554. [PMID: 38857787 DOI: 10.1016/j.jconrel.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Wound management remains a great challenge for clinicians due to the complex physiological process of wound healing. Porous silicon (PSi) with controlled pore morphology, abundant surface chemistry, unique photonic properties, good biocompatibility, easy biodegradation and potential bioactivity represent an exciting class of materials for various biomedical applications. In this review, we focus on the recent progress of PSi in the design of advanced sensing and delivery systems for wound management applications. Firstly, we comprehensively introduce the common type, normal healing process, delaying factors and therapeutic drugs of wound healing. Subsequently, the typical fabrication, functionalization and key characteristics of PSi have been summarized because they provide the basis for further use as biosensing and delivery materials in wound management. Depending on these properties, the rise of PSi materials is evidenced by the examples in literature in recent years, which has emphasized the robust potential of PSi for wound monitoring, treatment and theranostics. Finally, challenges and opportunities for the future development of PSi-based sensors and delivery systems for wound management applications are proposed and summarized. We hope that this review will help readers to better understand current achievements and future prospects on PSi-based sensing and delivery systems for advanced wound management.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Longhuan Zeng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yongke Zheng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Deleuziere M, Benoist É, Quelven I, Gras E, Amiens C. [ 18F]-Radiolabelled Nanoplatforms: A Critical Review of Their Intrinsic Characteristics, Radiolabelling Methods, and Purification Techniques. Molecules 2024; 29:1537. [PMID: 38611815 PMCID: PMC11013168 DOI: 10.3390/molecules29071537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A wide range of nano-objects is found in many applications of our everyday life. Recognition of their peculiar properties and ease of functionalization has prompted their engineering into multifunctional platforms that are supposed to afford efficient tools for the development of biomedical applications. However, bridging the gap between bench to bedside cannot be expected without a good knowledge of their behaviour in vivo, which can be obtained through non-invasive imaging techniques, such as positron emission tomography (PET). Their radiolabelling with [18F]-fluorine, a technique already well established and widely used routinely for PET imaging, with [18F]-FDG for example, and in preclinical investigation using [18F]-radiolabelled biological macromolecules, has, therefore, been developed. In this context, this review highlights the various nano-objects studied so far, the reasons behind their radiolabelling, and main in vitro and/or in vivo results obtained thereof. Then, the methods developed to introduce the radioelement are presented. Detailed indications on the chemical steps involved are provided, and the stability of the radiolabelling is discussed. Emphasis is then made on the techniques used to purify and analyse the radiolabelled nano-objects, a point that is rarely discussed despite its technical relevance and importance for accurate imaging. The pros and cons of the different methods developed are finally discussed from which future work can develop.
Collapse
Affiliation(s)
- Maëlle Deleuziere
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Éric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069, CNRS—Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Catherine Amiens
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
6
|
Howaili F, Saadabadi A, Mäkilä E, Korotkova E, Eklund PC, Salo-Ahen OMH, Rosenholm JM. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics 2024; 16:276. [PMID: 38399330 PMCID: PMC10892027 DOI: 10.3390/pharmaceutics16020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pinosylvin monomethyl ether (PsMME) is a natural compound known for its valuable bioactive properties, including antioxidant and anti-inflammatory effects. However, PsMME's susceptibility to photodegradation upon exposure to ultraviolet (UV) radiation poses a significant limitation to its applications in the pharmaceutical field. This study, for the first time, introduces a strategy to enhance the photostability of PsMME by employing various nanoformulations. We utilized mesoporous silica nanoparticles (MSNs) coated with polydopamine via a poly(ethylene imine) layer (PDA-PEI-MSNs), thermally carbonized porous silicon nanoparticles (TCPSi), and pure mesoporous polydopamine nanoparticles (MPDA). All these nanocarriers exhibit unique characteristics, including the potential for shielding the drug from UV light, which makes them promising for enhancing the photostability of loaded drugs. Here, these three nanoparticles were synthesized and their morphological and physicochemical properties, including size and ζ-potential, were characterized. They were subsequently loaded with PsMME, and the release profiles and kinetics of all three nanoformulations were determined. To assess their photoprotection ability, we employed gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) to assess the recovery percentage of loaded PsMME before and after UV exposure for each nanoformulation. Our findings reveal that MPDA exhibits the highest protection ability, with a remarkable 90% protection against UV light on average. This positions MPDA as an ideal carrier for PsMME, and by extension, potentially for other photolabile drugs as well. As a final confirmation of its suitability as a drug nanocarrier, we conducted cytotoxicity evaluations of PsMME-loaded MPDA, demonstrating dose-dependent drug toxicity for this formulation.
Collapse
Affiliation(s)
- Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland;
| | - Ekaterina Korotkova
- Laboratory of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Patrik C. Eklund
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Outi M. H. Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| |
Collapse
|
7
|
Fletcher J, Parish G, Dell J, Keating A. Morphological and Optical Transformation of Gas Assisted Direct Laser Written Porous Silicon Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300655. [PMID: 37069782 DOI: 10.1002/smll.202300655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Direct laser writing (DLW) of mesoporous porous silicon (PS) films is shown to selectively create spatially separated nitridized and carbonized features on a single film. Nitridized or carbonized features are formed during DLW at 405 nm in an ambient of nitrogen and propane gas, respectively. The range of laser fluence required to create varying feature sizes while avoiding damage to the PS film is identified. At high enough fluence, nitridation using DLW has been shown as an effective method for laterally isolating regions on the PS films. The efficacy in preventing oxidation once passivated is investigated via energy dispersive X-ray spectroscopy. Changes in composition and optical properties of the DL written films are investigated using spectroscopic analysis. Results show carbonized DLW regions have a much higher absorption than as-fabricated PS, attributed to pyrolytic carbon or transpolyacetylene deposits in the pores. Nitridized regions exhibit optical loss similar to previously published thermally nitridized PS films. This work presents methods to engineer PS films for a variety of potential device applications, including the application of carbonized PS to selectively engineer thermal conductivity and electrical resistivity and of nitridized PS to micromachining and selective modification of refractive index for optical applications.
Collapse
Affiliation(s)
- Jesse Fletcher
- Department of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia
| | - Giacinta Parish
- Department of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia
| | - John Dell
- Department of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia
| | - Adrian Keating
- Department of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia
| |
Collapse
|
8
|
Um H, Kang RH, Kim D. Iron-silicate-coated porous silicon nanoparticles for in situ ROS self-generation. Colloids Surf B Biointerfaces 2023; 225:113273. [PMID: 36965332 DOI: 10.1016/j.colsurfb.2023.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Porous silicon nanoparticles (pSiNPs) have gained attention from drug delivery systems (DDS) due to their biocompatibility, high drug-loading efficiency, and facile surface modification. To date, many surface chemistries of pSiNPs have been developed to maximize the merits and overcome the drawbacks of pSiNPs. In this work, we newly disclosed a formulation, iron-silicate-coated pSiNPs (Fe-pSiNPs-NCS), using the surface modification method with iron-silicate and 3-isothiocyanatopropyltriethoxysilane (TEPITC). Fe-pSiNPs-NCS demonstrated effective reactive-oxygen species (ROS) self-generation ability via a Fenton-like reaction of iron-silicate and in situ hydrogen peroxide (H2O2) generation of TEPITC on the surface of pSiNPs, resulting in excellent anticancer effect in U87MG cancer cells. Moreover, we confirmed that Fe-pSiNPs-NCS could be used as a drug delivery carrier as it was proven that anticancer drugs (doxorubicin, SN-38) were loaded into Fe-pSiNPs-NCS with high-loading efficiency. These findings could offer efficient strategies for developing nanotherapeutics in biomedical fields.
Collapse
Affiliation(s)
- Hyeji Um
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Rae Hyung Kang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul 02447, the Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, the Republic of Korea; UC San Diego Materials Research Science and Engineering Center, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Guo K, Alba M, Chin GP, Tong Z, Guan B, Sailor MJ, Voelcker NH, Prieto-Simón B. Designing Electrochemical Biosensing Platforms Using Layered Carbon-Stabilized Porous Silicon Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15565-15575. [PMID: 35286082 PMCID: PMC9682479 DOI: 10.1021/acsami.2c02113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous silicon (pSi) is an established porous material that offers ample opportunities for biosensor design thanks to its tunable structure, versatile surface chemistry, and large surface area. Nonetheless, its potential for electrochemical sensing is relatively unexplored. This study investigates layered carbon-stabilized pSi nanostructures with site-specific functionalities as an electrochemical biosensor. A double-layer nanostructure combining a top hydrophilic layer of thermally carbonized pSi (TCpSi) and a bottom hydrophobic layer of thermally hydrocarbonized pSi (THCpSi) is prepared. The modified layers are formed in a stepwise process, involving first an electrochemical anodization step to generate a porous layer with precisely defined pore morphological features, followed by deposition of a thin thermally carbonized coating on the pore walls via temperature-controlled acetylene decomposition. The second layer is then generated beneath the first by following the same two-step process, but the acetylene decomposition conditions are adjusted to deposit a thermally hydrocarbonized coating. The double-layer platform features excellent electrochemical properties such as fast electron-transfer kinetics, which underpin the performance of a TCpSi-THCpSi voltammetric DNA sensor. The biosensor targets a 28-nucleotide single-stranded DNA sequence with a detection limit of 0.4 pM, two orders of magnitude lower than the values reported to date by any other pSi-based electrochemical DNA sensor.
Collapse
Affiliation(s)
- Keying Guo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Maria Alba
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Grace Pei Chin
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Ziqiu Tong
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Bin Guan
- Future
Industries Institute, University of South
Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Michael J. Sailor
- Department
of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simón
- Department
of Electronic Engineering, Universitat Rovira
i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
10
|
Wafer-Scale Fabrication and Transfer of Porous Silicon Films as Flexible Nanomaterials for Sensing Application. NANOMATERIALS 2022; 12:nano12071191. [PMID: 35407309 PMCID: PMC9000722 DOI: 10.3390/nano12071191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/30/2022]
Abstract
Flexible sensors are highly advantageous for integration in portable and wearable devices. In this work, we propose and validate a simple strategy to achieve whole wafer-size flexible SERS substrate via a one-step metal-assisted chemical etching (MACE). A pre-patterning Si wafer allows for PSi structures to form in tens of microns areas, and thus enables easy detachment of PSi film pieces from bulk Si substrates. The morphology, porosity, and pore size of PS films can be precisely controlled by varying the etchant concentration, which shows obvious effects on film integrity and wettability. The cracks and self-peeling of Psi films can be achieved by the drying conditions after MACE, enabling transfer of Psi films from Si wafer to any substrates, while maintaining their original properties and vertical alignment. After coating with a thin layer of silver (Ag), the rigid and flexible PSi films before and after transfer both show obvious surface-enhanced Raman scattering (SERS) effect. Moreover, flexible PSi films SERS substrates have been demonstrated with high sensitivity (down to 2.6 × 10−9 g/cm2) for detection of methyl parathion (MPT) residues on a curved apple surface. Such a method provides us with quick and high throughput fabrication of nanostructured materials for sensing, catalysis, and electro-optical applications.
Collapse
|
11
|
Kamakura R, Raza GS, Mäkilä E, Riikonen J, Kovalainen M, Ueta Y, Lehto VP, Salonen J, Herzig KH. Colonic Delivery of α-Linolenic Acid by an Advanced Nutrient Delivery System Prolongs Glucagon-Like Peptide-1 Secretion and Inhibits Food Intake in Mice. Mol Nutr Food Res 2021; 66:e2100978. [PMID: 34882959 PMCID: PMC9285029 DOI: 10.1002/mnfr.202100978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Scope Nutrients stimulate the secretion of glucagon‐like peptide‐1 (GLP‐1), an incretin hormone, secreted from enteroendocrine L‐cells which decreases food intake. Thus, GLP‐1 analogs are approved for the treatment of obesity, yet cost and side effects limit their use. L‐cells are mainly localized in the distal ileum and colon, which hinders the utilization of nutrients targeting GLP‐1 secretion. This study proposes a controlled delivery system for nutrients, inducing a prolonged endogenous GLP‐1 release which results in a decrease food intake. Methods and Results α‐Linolenic acid (αLA) was loaded into thermally hydrocarbonized porous silicon (THCPSi) particles. In vitro characterization and in vivo effects of αLA loaded particles on GLP‐1 secretion and food intake were studied in mice. A total of 40.4 ± 3.2% of loaded αLA is released from particles into biorelevant buffer over 24 h, and αLA loaded THCPSi significantly increased in vitro GLP‐1 secretion. Single‐dose orally given αLA loaded mesoporous particles increased plasma active GLP‐1 levels at 3 and 4 h and significantly reduced the area under the curve of 24 h food intake in mice. Conclusions αLA loaded THCPSi particles could be used to endogenously stimulate sustain gastrointestinal hormone release and reduce food intake.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, FI-90220, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, FI-90220, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Joakim Riikonen
- Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Miia Kovalainen
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, FI-90220, Finland
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Vesa-Pekka Lehto
- Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, FI-90220, Finland.,Department of Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| |
Collapse
|
12
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
13
|
|
14
|
Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021; 9:2756-2784. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery. This review aims at overviewing recent developments of inorganic nanoparticles (like porous or mesoporous silica particles) and different nano-clay materials (like montmorillonite, laponites or halloysite nanotubes) employed for overcoming the blood brain barrier (BBB) in the treatment and therapy of major brain diseases such as Alzheimer's, Parkinson's, glioma or amyotrophic lateral sclerosis. Recent strategies of crossing the BBB through invasive and not invasive administration routes by using different types of nanoparticles compared to nano-clays and inorganic particles are overviewed.
Collapse
Affiliation(s)
- Francesca Persano
- University of Salento, Department of Mathematics and Physics, Via Per Arnesano 73100, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Miao Z, Hu D, Gao D, Fan L, Ma Y, Ma T, Liu X, Zheng H, Zha Z, Sheng Z, Xu CY. Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Sci Bull (Beijing) 2021; 66:147-157. [PMID: 36654222 DOI: 10.1016/j.scib.2020.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
We report that atomically thin two-dimensional silicon quantum sheets (2D Si QSs), prepared by a scalable approach coupling chemical delithiation and cryo-assisted exfoliation, can serve as a high-performance brain photonic nanoagent for orthotopic glioma theranostics. With the lateral size of approximately 14.0 nm and thickness of about 1.6 nm, tiny Si QSs possess high mass extinction coefficient of 27.5 L g-1 cm-1 and photothermal conversion efficiency of 47.2% at 808 nm, respectively, concurrently contributing to the best photothermal performance among the reported 2D mono-elemental materials (Xenes). More importantly, Si QSs with low toxicity maintain the trade-off between stability and degradability, paving the way for practical clinical translation in consideration of both storage and action of nanoagents. In vitro Transwell filter experiment reveals that Si QSs could effectively go across the bEnd.3 cells monolayer. Upon the intravenous injection of Si QSs, orthotopic brain tumors are effectively inhibited under the precise guidance of photoacoustic imaging, and the survival lifetime of brain tumor-bearing mice is increased by two fold. Atomically thin Si QSs with strong light-harvesting capability are expected to provide an effective and robust 2D photonic nanoplatform for the management of brain diseases.
Collapse
Affiliation(s)
- Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linxin Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Teng Ma
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Cheng-Yan Xu
- Shenzhen Bay Laboratory, Shenzhen 518107, China; School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
16
|
Sauze S, Aziziyan MR, Brault P, Kolhatkar G, Ruediger A, Korinek A, Machon D, Arès R, Boucherif A. Integration of 3D nanographene into mesoporous germanium. NANOSCALE 2020; 12:23984-23994. [PMID: 33094784 DOI: 10.1039/d0nr04937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene is a key material of interest for the modification of physicochemical surface properties. However, its flat surface is a limitation for applications requiring a high specific surface area. This restriction may be overcome by integrating 2D materials in a 3D structure. Here, a strategy for the controlled synthesis of Graphene-Mesoporous Germanium (Gr-MP-Ge) nanomaterials is presented. Bipolar electrochemical etching and chemical vapor infiltration were employed, respectively, for the nanostructuration of Ge substrate and subsequent 3D nanographene coating. While Raman spectroscopy reveals a tunable domain size of nanographene with the treatment temperature, transmission electron microscopy data confirm that the crystallinity of Gr-MP-Ge is preserved. X-ray photoelectron spectroscopy indicates the non-covalent bonding of carbon to Ge for Gr-MP-Ge. State-of-the-art molecular dynamics modeling provides a deeper understanding of the synthesis process through the presence of radicals. The successful synthesis of these nanomaterials offers the integration of nanographene into a 3D structure with a high aspect ratio and light weight, thereby opening avenues to a variety of applications for this versatile nanomaterial.
Collapse
Affiliation(s)
- Stéphanie Sauze
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5 Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Muthukumaran T, Philip J. A facile approach to synthesis of cobalt ferrite nanoparticles with a uniform ultrathin layer of silicon carbide for organic dye removal. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Surface Heterogeneous Nucleation-Mediated Release of Beta-Carotene from Porous Silicon. NANOMATERIALS 2020; 10:nano10091659. [PMID: 32847021 PMCID: PMC7560142 DOI: 10.3390/nano10091659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
We demonstrate that the release of a poorly soluble molecule from nanoporous carriers is a complex process that undergoes heterogeneous surface nucleation events even under significantly diluted release conditions, and that those events heavily affect the dynamics of release. Using beta-carotene and porous silicon as loaded molecule and carrier model, respectively, we show that the cargo easily nucleates at the pore surface during the release, forming micro- to macroscopic solid particles at the pores surface. These particles dissolve at a much slower pace, compared to the rate of dissolution of pure beta-carotene in the same solvent, and they negatively affect the reproducibility of the release experiments, possibly because their solubility depends on their size distribution. We propose to exploit this aspect to use release kinetics as a better alternative to the induction time method, and to thereby detect heterogenous nucleation during release experiments. In fact, release dynamics provide much higher sensitivity and reproducibility as they average over the entire sample surface instead of depending on statistical analysis over a small area to find clusters.
Collapse
|
20
|
Zhang DX, Esser L, Vasani RB, Thissen H, Voelcker NH. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine (Lond) 2020; 14:3213-3230. [PMID: 31855121 DOI: 10.2217/nnm-2019-0167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Porous silicon (pSi) nanomaterials are increasingly attractive for biomedical applications due to their promising properties such as simple and feasible fabrication procedures, tunable morphology, versatile surface modification routes, biocompatibility and biodegradability. This review focuses on recent advances in surface modification of pSi for controlled drug delivery applications. A range of functionalization strategies and fabrication methods for pSi-polymer hybrids are summarized. Surface engineering solutions such as stimuli-responsive polymer grafting, stealth coatings and active targeting modifications are highlighted as examples to demonstrate what can be achieved. Finally, the current status of engineered pSi nanomaterials for in vivo applications is reviewed and future prospects and challenges in drug-delivery applications are discussed.
Collapse
Affiliation(s)
- De-Xiang Zhang
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.,Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia
| | - Lars Esser
- Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Helmut Thissen
- Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.,Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| |
Collapse
|
21
|
Dovzhenko D, Martynov I, Samokhvalov P, Osipov E, Lednev M, Chistyakov A, Karaulov A, Nabiev I. Enhancement of spontaneous emission of semiconductor quantum dots inside one-dimensional porous silicon photonic crystals. OPTICS EXPRESS 2020; 28:22705-22717. [PMID: 32752526 DOI: 10.1364/oe.401197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Controlling spontaneous emission by modifying the local electromagnetic environment is of great interest for applications in optoelectronics, biosensing and energy harvesting. Although the development of devices based on one-dimensional porous silicon photonic crystals with embedded luminophores is a promising approach for applications, the efficiency of the embedded luminophores remains a key challenge because of the strong quenching of the emission due to the contact of the luminophores with the surface of porous silicon preventing the observation of interesting light-matter coupling effects. Here, we experimentally demonstrate an increase in the quantum dot (QD) spontaneous emission rate inside a porous silicon microcavity and almost an order of magnitude enhancement of QD photoluminescence intensity in the weak light-matter coupling regime. Furthermore, we have demonstrated drastic alteration of the QD spontaneous emission at the edge of the photonic band gap in porous silicon distributed Bragg reflectors and proved its dependence on the change in the density of photonic states.
Collapse
|
22
|
Jakobsson U, Mäkilä E, Rahikkala A, Imlimthan S, Lampuoti J, Ranjan S, Heino J, Jalkanen P, Köster U, Mizohata K, Santos HA, Salonen J, Airaksinen AJ, Sarparanta M, Helariutta K. Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nucl Med Biol 2020; 84-85:102-110. [PMID: 32334356 DOI: 10.1016/j.nucmedbio.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Porous silicon (PSi) nanoparticles are capable of delivering therapeutic payloads providing targeted delivery and sustained release of the payloads. In this work we describe the development and proof-of-concept in vivo evaluation of thermally hydrocarbonized porous silicon (PSi) nanoparticles that are implanted with radioactive 155Tb atoms and coated with red blood cell (RBC) membrane (155Tb-THCPSi). The developed nanocomposites can be utilized as an intravenous delivery platform for theranostic radionuclides. METHODS THCPSi thin films were implanted with 155Dy ions that decay to 155Tb at the ISOLDE radioactive ion-beam (RIB) facility at CERN. The films were processed to nanoparticles by ball-milling and sonication, and subsequently coated with either a solid lipid and RBC membrane or solely with RBC membrane. The nanocomposites were evaluated in vitro for stability and in vivo for circulation half-life and ex vivo for biodistribution in Balb/c mice. RESULTS Nanoporous THCPSi films were successfully implanted with 155Tb and processed to coated nanoparticles. The in vitro stability of the particles in plasma and buffer solutions was not significantly different between the particle types, and therefore the RBC membrane coated particles with less laborious processing method were chosen for the biological evaluation. The RBC membrane coating enhanced significantly the blood half-life compared to bare THCPSi particles. In the ex vivo biodistribution study a pronounced accumulation to the spleen was found, with lower uptake in the liver and a minor uptake in the lung, gall bladder and bone marrow. CONCLUSIONS We have demonstrated, using 155Tb RIB-implanted PSi nanoparticles coated with mouse RBC membranes, the feasibility of using such a theranostic nanosystem for the delivery of RIB based radionuclides with prolonged circulation time. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE For the first time, the RIB implantation technique has been utilized to produce PSi nanoparticle with a surface modified for better persistence in circulation. When optimized, these particles could be used in targeted radionuclide therapy with a combination of chemotherapeutic payload within the PSi structure.
Collapse
Affiliation(s)
- Ulrika Jakobsson
- Department of Chemistry, University of Helsinki, Finland; Helsinki Institute of Physics, University of Helsinki, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, Finland
| | - Antti Rahikkala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | | | | | - Sanjeev Ranjan
- Department of Chemistry, University of Helsinki, Finland; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jouni Heino
- Helsinki Institute of Physics, University of Helsinki, Finland
| | - Pasi Jalkanen
- Department of Physics, University of Helsinki, Finland
| | | | | | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Finland
| | - Anu J Airaksinen
- Department of Chemistry, University of Helsinki, Finland; Turku PET Centre, University of Turku, Finland
| | | | - Kerttuli Helariutta
- Department of Chemistry, University of Helsinki, Finland; Helsinki Institute of Physics, University of Helsinki, Finland.
| |
Collapse
|
23
|
Jubgang Fandio DJ, Sauze S, Boucherif A, Arès R, Morris D. Structural, optical and terahertz properties of graphene-mesoporous silicon nanocomposites. NANOSCALE ADVANCES 2020; 2:340-346. [PMID: 36133992 PMCID: PMC9418058 DOI: 10.1039/c9na00502a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/23/2019] [Indexed: 06/08/2023]
Abstract
We investigate the structural, optical and terahertz properties of graphene-mesoporous silicon nanocomposites using Raman, terahertz time-domain and photoluminescence spectroscopy. The nanocomposites consist of a free-standing mesoporous silicon membrane with its external and pore surfaces coated with few-layer graphene. Results show a stabilization of the porous silicon morphology by the graphene coating. The terahertz refractive index and absorption coefficient were found to increase with graphene deposition temperature. Four bands in the 1.79-2.2 eV range emerge from the PL spectra of the nanocomposites. The broad bands centered at 1.79 eV and 1.96 eV were demonstrated to originate from Si nanocrystallites of different sizes. The narrower bands at 2.11 eV and 2.14 eV could be related to a thin SiC film at the Si/C interface.
Collapse
Affiliation(s)
- Défi Junior Jubgang Fandio
- Département de Physique, Regroupement Québecois sur les Matériaux de Pointe, Université de Sherbrooke 2500 Boulevard Université Sherbrooke Québec Canada J1K 2R1
- Laboratoire Nanotechnologies Nanosystèmes, (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke, Québec Canada J1K 0A5
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke J1K OA5 Québec Canada
| | - Stéphanie Sauze
- Laboratoire Nanotechnologies Nanosystèmes, (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke, Québec Canada J1K 0A5
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke J1K OA5 Québec Canada
| | - Abderraouf Boucherif
- Laboratoire Nanotechnologies Nanosystèmes, (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke, Québec Canada J1K 0A5
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke J1K OA5 Québec Canada
| | - Richard Arès
- Laboratoire Nanotechnologies Nanosystèmes, (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke, Québec Canada J1K 0A5
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke J1K OA5 Québec Canada
| | - Denis Morris
- Département de Physique, Regroupement Québecois sur les Matériaux de Pointe, Université de Sherbrooke 2500 Boulevard Université Sherbrooke Québec Canada J1K 2R1
- Laboratoire Nanotechnologies Nanosystèmes, (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke, Québec Canada J1K 0A5
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke 3000 Boulevard Université Sherbrooke J1K OA5 Québec Canada
| |
Collapse
|
24
|
Baraket A, Alcaraz JP, Gondran C, Costa G, Nonglaton G, Gaillard F, Cinquin P, Cosnier ML, Martin DK. Long duration stabilization of porous silicon membranes in physiological media: Application for implantable reactors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110359. [PMID: 31923938 DOI: 10.1016/j.msec.2019.110359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
The natural biodegradabilty of porous silicon (pSi) in physiological media limits its wider usage for implantable systems. We report the stabilization of porous silicon (pSi) membranes by chemical surface oxidation using RCA1 and RCA2 protocols, which was followed by a PEGylation process using a silane-PEG. These surface modifications stabilized the pSi to allow a long period of immersion in PBS, while leaving the pSi surface sufficiently hydrophilic for good filtration and diffusion of several biomolecules of different sizes without any blockage of the pSi structure. The pore sizes of the pSi membranes were between 5 and 20 nm, with the membrane thickness around 70 μm. The diffusion coefficient for fluorescein through the membrane was 2 × 10-10 cm2 s-1, and for glucose was 2.2 × 10-9 cm2 s-1. The pSi membrane maintained that level of glucose diffusion for one month of immersion in PBS. After 2 months immersion in PBS the pSi membrane continued to operate, but with a reduced glucose diffusion coefficient. The chemical stabilization of pSi membranes provided almost 1 week stable and functional biomolecule transport in blood plasma and opens the possibility for its short-term implantation as a diffusion membrane in biocompatible systems.
Collapse
Affiliation(s)
- Abdoullatif Baraket
- ISA, Institut des Sciences Analytiques, Département LSA, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Jean-Pierre Alcaraz
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France
| | - Chantal Gondran
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F 38000, Grenoble, France
| | - Guillaume Costa
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Guillaume Nonglaton
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Frédéric Gaillard
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Philippe Cinquin
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France
| | - Marie-Line Cosnier
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Donald K Martin
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France.
| |
Collapse
|
25
|
L. Gole J. Nanostructured metal oxide modification of a porous silicon interface for sensor applications: the question of water interaction, stability, platform diversity and sensitivity, and selectivity. AIMS ELECTRONICS AND ELECTRICAL ENGINEERING 2020. [DOI: 10.3934/electreng.2020.1.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Layouni R, Choudhury MH, Laibinis PE, Weiss SM. Thermally Carbonized Porous Silicon for Robust Label-Free DNA Optical Sensing. ACS APPLIED BIO MATERIALS 2019; 3:622-627. [DOI: 10.1021/acsabm.9b01002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rabeb Layouni
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - Moinul H. Choudhury
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, Tennessee 37235 United States
- Department of General Educational Development, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paul E. Laibinis
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - Sharon M. Weiss
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, Tennessee 37235 United States
| |
Collapse
|
27
|
Mäkilä E, Anton Willmore AM, Yu H, Irri M, Aindow M, Teesalu T, Canham LT, Kolasinski KW, Salonen J. Hierarchical Nanostructuring of Porous Silicon with Electrochemical and Regenerative Electroless Etching. ACS NANO 2019; 13:13056-13064. [PMID: 31670505 DOI: 10.1021/acsnano.9b05740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchically nanostructured silicon was produced by regenerative electroless etching (ReEtching) of Si powder made from pulverized anodized porous silicon. This material is characterized by ∼15 nm mesopores, into the walls of which tortuous 2-4 nm pores have been introduced. The walls are sufficiently narrow that they support quantum-confined crystallites that are photoluminescent. With suitable parameters, the ReEtching process also provides control over the emission color of the photoluminescence. Ball milling and hydrosilylation of this powder with undecylenic acid produces nanoparticles with hydrodynamic diameter of ∼220 nm that exhibit robust and bright luminescence that can be excited with either one ultraviolet/visible photon or two near-infrared photons. The long-lived, robust visible photoluminescence of these chemically passivated porous silicon nanoparticles is well-suited for bioimaging and theranostic applications.
Collapse
Affiliation(s)
- Ermei Mäkilä
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | | | - Haibo Yu
- Department of Materials Science and Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Marianna Irri
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | - Mark Aindow
- Department of Materials Science and Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Tambet Teesalu
- Laboratory for Cancer Biology , University of Tartu , Tartu 50411 , Estonia
| | - Leigh T Canham
- School of Physics and Astronomy , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Kurt W Kolasinski
- Department of Chemistry , West Chester University , West Chester , Pennsylvania 19383-2115 , United States
| | - Jarno Salonen
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| |
Collapse
|
28
|
Abstract
Biological systems respond to and communicate through biophysical cues, such as electrical, thermal, mechanical and topographical signals. However, precise tools for introducing localized physical stimuli and/or for sensing biological responses to biophysical signals with high spatiotemporal resolution are limited. Inorganic semiconductors display many relevant electrical and optical properties, and they can be fabricated into a broad spectrum of electronic and photonic devices. Inorganic semiconductor devices enable the formation of functional interfaces with biological material, ranging from proteins to whole organs. In this Review, we discuss fundamental semiconductor physics and operation principles, with a focus on their behaviour in physiological conditions, and highlight the advantages of inorganic semiconductors for the establishment of biointerfaces. We examine semiconductor device design and synthesis and discuss typical signal transduction mechanisms at bioelectronic and biophotonic interfaces for electronic and optoelectronic sensing, optoelectronic and photothermal stimulation and photoluminescent in vivo imaging of cells and tissues. Finally, we evaluate cytotoxicity and highlight possible new material components and biological targets of inorganic semiconductor devices.
Collapse
|
29
|
Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S. Porous Silicon-Based Photonic Biosensors: Current Status and Emerging Applications. Anal Chem 2018; 91:441-467. [DOI: 10.1021/acs.analchem.8b05028] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstrasse 5, 30167 Hanover, Germany
| | - Naama Massad-Ivanir
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sharon Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
30
|
High-performance solid state supercapacitors assembling graphene interconnected networks in porous silicon electrode by electrochemical methods using 2,6-dihydroxynaphthalen. Sci Rep 2018; 8:9654. [PMID: 29942035 PMCID: PMC6018509 DOI: 10.1038/s41598-018-28049-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/15/2018] [Indexed: 01/02/2023] Open
Abstract
The challenge for conformal modification of the ultra-high internal surface of nanoporous silicon was tackled by electrochemical polymerisation of 2,6-dihydroxynaphthalene using cyclic voltammetry or potentiometry and, notably, after the thermal treatment (800 °C, N2, 4 h) an assembly of interconnected networks of graphene strongly adhering to nanoporous silicon matrix resulted. Herein we demonstrate the achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties. Accordingly, our symmetric supercapacitors (SSC) showed remarkable performance characteristics, comparable to many of the best high-power and/or high-energy carbon-based supercapacitors, their figures of merit matching under battery-like supercapacitor behaviour. Furthermore, the devices displayed high specific capacity values along with enhanced capacity retention even at ultra-high rates for voltage sweep, 5 V/s, or discharge current density, 100 A/g, respectively. The cycling stability tests performed at relatively high discharge current density of 10 A/g indicated good capacity retention, with a superior performance demonstrated for the electrodes obtained under cyclic voltammetry approach, which may be ascribed on the one hand to a better coverage of the porous silicon substrate and, on the other hand, to an improved resilience of the hybrid electrode to pore clogging.
Collapse
|