1
|
Saha R, Sharma A, Siddiqui AI, Benmansour S, Ortega-Castro J, Frontera A, Mondal B, Lah MS, Gómez García CJ. Simultaneous electron and proton conduction in a stable metal organic material with highly selective electrocatalytic oxygen reduction reaction to water. Chem Sci 2025:d5sc02474a. [PMID: 40313526 PMCID: PMC12041934 DOI: 10.1039/d5sc02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/20/2025] [Indexed: 05/03/2025] Open
Abstract
Proton coupled electron transfer (PCET) is considered as the elementary step of several chemical, electrochemical and biological processes and thus the development of dual conducting materials has recently become a major focus in Chemical Science. Herein, we report the highly selective electrocatalytic oxygen reduction to water by the stable dual conducting metal-organic material (MOM) [Cu(INA)2(H2O)4] (INA = isonicotinate). Structural analysis reveals the important role of both, hydrogen bonding and π-interactions, in the formation of a supramolecular 3D network. Theoretical calculations show that hydrogen bonding interactions among the coordinated water molecules and deprotonated carboxylate oxygen atoms induce proton transport (2.26 ± 0.10 × 10-5 S cm-1 at 98% RH) while weak intermolecular π-interactions (π-π and anion-π) provide the pathway for electron transport (1.4 ± 0.1 × 10-7 S cm-1 at 400 K). Such dual proton and electron conductivity leads to a selective oxygen reduction reaction (ORR) to water in an alkaline medium. To the best of our knowledge, this is the first report on electrocatalytic ORR by a dual-conducting metal-organic material.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia Dr Moliner 50, Burjasot Valencia 46100 Spain
| | - Amitosh Sharma
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Republic of Korea
| | | | - Samia Benmansour
- Departamento de Química Inorgánica, Universidad de Valencia Dr Moliner 50, Burjasot Valencia 46100 Spain
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears Crta de Valldemossa km 7.5 Palma de Mallorca 07122 Baleares Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears Crta de Valldemossa km 7.5 Palma de Mallorca 07122 Baleares Spain
| | - Biswajit Mondal
- Discipline of Chemistry, IIT Gandhinagar Palaj 382355 Gujarat India
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Republic of Korea
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia Dr Moliner 50, Burjasot Valencia 46100 Spain
| |
Collapse
|
2
|
George SL, Zhao L, Wang Z, Xue Z, Zhao L. Iron Porphyrin-Based Composites for Electrocatalytic Oxygen Reduction Reactions. Molecules 2024; 29:5655. [PMID: 39683814 DOI: 10.3390/molecules29235655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The oxygen reduction reaction (ORR) is one of the most critical reactions in energy conversion systems, and it facilitates the efficient conversion of chemical energy into electrical energy, which is necessary for modern technology. Developing efficient and cost-effective catalysts for ORRs is crucial for advancing and effectively applying renewable energy technologies such as fuel cells, metal-air batteries, and electrochemical sensors. In recent years, iron porphyrin-based composites have emerged as ideal catalysts for facilitating effective ORRs due to their unique structural characteristics, abundance, advances in synthesis, and excellent catalytic properties, which mimic natural enzymatic systems. However, many articles have focused on reviewing porphyrin-based frameworks or metalloporphyrins in general, necessitating research specifically addressing iron porphyrin. This review discusses iron porphyrin as an effective catalyst in ORRs. It provides a comprehensive knowledge of the application of iron porphyrin-based composites for electrocatalytic ORRs, focusing on their properties, synthesis, structural integration with conductive supports, catalytic mechanism, and efficacy. This review also discusses the challenges of applying iron porphyrin-based composites and provides recommendations to address these challenges.
Collapse
Affiliation(s)
| | - Linkai Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyi Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
4
|
Schlachter A, Karsenti PL, Harvey PD, Langlois A. The Excited-State N-H Tautomerization Rate in Free-Base Corroles. Chemistry 2024; 30:e202401709. [PMID: 38925567 DOI: 10.1002/chem.202401709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Corrole is a tetrapyrrolic dye with a structure that resembles porphyrin, apart from a single missing carbon. The absence of this carbon results in the re-arrangement of the double bonds within the macrocycle, and the presence of three pyrrolic protons in the central cavity in its free-base form. These protons lead to the existence of two distinct tautomeric structures that exist in a dynamic equilibrium. Although the ground-state energies of the tautomers are similar, the excited states show a significant difference in energy which unbalances the equilibrium between the tautomers and results in rapid excited-state tautomerization, favouring one tautomeric species over the other. Although the excited-state tautomerization process has been known for a long time, very few studies have been performed on it, leaving many key aspects of the process poorly understood. Herein we show how ultrafast photoluminescence can be used to experimentally determine the rates of excited-state tautomerization and activation energies of three free-base corrole derivatives thus allowing us to completely describe the excited-state dynamics of the unusual excited state of free-base corrole and opening the door to the development of new materials that can exploit its unique characteristics.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| | - Paul-Ludovic Karsenti
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| | - Adam Langlois
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| |
Collapse
|
5
|
Guo PP, Xu C, Yang KZ, Lu C, Chi HM, Xu Y, Su YZ, Liu X, Wei PJ, Liu JG. Bioinspired molecular catalysts with a unique tricopper architecture for highly efficient oxygen reduction reaction. Chem Commun (Camb) 2024; 60:9050-9053. [PMID: 39099533 DOI: 10.1039/d4cc02949f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
In situ growth of intertwined trinuclear copper complexes (nCu3) on a cellulose-derived carbon support (CMC) produced a high-performance electrocatalyst (CMC-nCu3) for the oxygen reduction reaction (ORR), which demonstrated superior performance in zinc-air batteries compared to a commercial Pt/C catalyst. This work highlights the importance of copper-based molecular catalysts with rich and intertwined tricopper structures for boosting both ORR activity and stability.
Collapse
Affiliation(s)
- Peng-Peng Guo
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chao Xu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Kun-Zu Yang
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chen Lu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hua-Min Chi
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ying Xu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yong-Zhi Su
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Xin Liu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ping-Jie Wei
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jin-Gang Liu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
6
|
Honig HC, Mostoni S, Presman Y, Snitkoff-Sol RZ, Valagussa P, D'Arienzo M, Scotti R, Santoro C, Muhyuddin M, Elbaz L. Morphological and structural design through hard-templating of PGM-free electrocatalysts for AEMFC applications. NANOSCALE 2024; 16:11174-11186. [PMID: 38770663 DOI: 10.1039/d4nr01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a hierarchical structure containing a large portion of graphitic zones which contribute to the catalyst stability. They also had a high electrochemically active site density reaching 1.47 × 1019 sites g-1 for SAFe_M_P1AP2 and 1.14 × 1019 sites g-1 for SEFe_M_P1AP2, explaining the difference in performance in fuel cell measurements. These findings underscore the potential impact of a controlled materials design for advancing green energy applications.
Collapse
Affiliation(s)
- Hilah C Honig
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Yan Presman
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Rifael Z Snitkoff-Sol
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Paolo Valagussa
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
- Institute for Photonics and Nanotechnologies-CNR, Via alla Cascata 56/C, 38123 Povo, TN, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
7
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
8
|
Persky Y, Yurko Y, Snitkoff-Sol RZ, Zion N, Elbaz L. Tuning the performance of Fe-porphyrin aerogel-based PGM-free oxygen reduction reaction catalysts in proton exchange membrane fuel cells. NANOSCALE 2023; 16:438-446. [PMID: 38083971 DOI: 10.1039/d3nr04315k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Fe-N-C catalysts are currently the leading candidates to replace Pt-based catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. To maximize their activity, it is necessary to optimize their structure to allow high active site density on one hand, and hierarchical porous structure that will allow good mass transport of reactants and products to and from the active sites on the other hand. Hence, the hierarchical structure of the catalyst plays an important role in the balance between the electrochemical active site density and the mass transport resistance. Aerogels were synthesized in this work to study the interplay between these two parameters. Aerogels are covalent organic frameworks with ultra-low density, high porosity, and large surface area. The relative ease of tuning the composition and pore structure of aerogels make them prominent candidates for catalysis. Herein, we report on a tunable Fe-N-C catalyst based on an Fe porphyrin aerogel, which shows high electrocatalytic oxygen reduction reaction activity with tunable hierarchical pore structure and studied the influence of the porous structure on the overall performance in proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Yeela Persky
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Yan Yurko
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Rifael Z Snitkoff-Sol
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Noam Zion
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
9
|
Behera S, Aziz ST, Singla N, Mondal B. The synergy between electrochemical substrate oxidation and the oxygen reduction reaction to enable aerobic oxidation. Chem Commun (Camb) 2023; 59:11528-11531. [PMID: 37672289 DOI: 10.1039/d3cc02428h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Aerobic substrate oxidation reactions catalyzed by a heterogeneous catalyst can be looked upon as two independent half-cell reactions, viz. anodic substrate oxidation and the cathodic oxygen reduction reaction (ORR). In this context, Fe PANI/C, a well-known catalyst for the ORR, is chosen to validate this hypothesis, wherein the anodic reaction is hydrazine oxidation. Fe PANI/C shows excellent activity in terms of the electrochemical ORR and hydrazine oxidation in both alkaline aqueous and non-aqueous media and taken together the aerobic oxidation efficacy of hydrazine-like small organic molecules is correlated with the electrochemical outcomes.
Collapse
Affiliation(s)
- Snehanjali Behera
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Sk Tarik Aziz
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Nisha Singla
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Biswajit Mondal
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
10
|
Bhowmick R, Roy Chowdhury S, Vlaisavljevich B. Molecular Geometry and Electronic Structure of Copper Corroles. Inorg Chem 2023; 62:13877-13891. [PMID: 37590888 DOI: 10.1021/acs.inorgchem.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Copper corroles are known for their unique multiconfigurational electronic structures in the ground state, which arise from the transfer of electrons from the π orbitals of the corrole to the d-orbital of copper. While density functional theory (DFT) provides reasonably good molecular geometries, the determination of the ground spin state and the associated energetics is heavily influenced by functional choice, particularly the percentage of the Hartree-Fock exchange. Using extended multireference perturbation theory methods (XMS-CASPT2), the functional choice can be assessed. The molecular geometries and electronic structures of both the unsubstituted and the meso-triphenyl copper corroles were investigated. A minimal active space was employed for structural characterization, while larger active spaces are required to examine the electronic structure. The XMS-CASPT2 investigations conclusively identify the ground electronic state as a multiconfigurational singlet (S0) with three dominant electronic configurations in its lowest energy and characteristic saddled structure. In contrast, the planar geometry corresponds to the triplet state (T0), which is approximately 5 kcal/mol higher in energy compared to the S0 state for both the bare and substituted copper corroles. Notably, the planarity of the T0 geometry is reduced in the substituted corrole compared with that in the unsubstituted one. By analyzing the potential energy surface (PES) between the S0 and T0 geometries using XMS-CASPT2, the multiconfigurational electronic structure is shown to transition toward a single electron configuration as the saddling angle decreases (i.e., as one approaches the planar geometry). Despite the ability of the functionals to reproduce the minimum energy structures, only the TPSSh-D3 PES is reasonably close to the XMS-CASPT2 surface. Significant deviations along the PES are observed with other functionals.
Collapse
Affiliation(s)
- Rina Bhowmick
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Sabyasachi Roy Chowdhury
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| |
Collapse
|
11
|
Chowdhury SN, Biswas S, Das S, Biswas AN. Kinetic and mechanistic investigations of dioxygen reduction by a molecular Cu(II) catalyst bearing a pentadentate amidate ligand. Dalton Trans 2023; 52:11581-11590. [PMID: 37548356 DOI: 10.1039/d3dt02194g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A pentadentate Cu(II) complex, [CuII(dpaq)](ClO4) (1), featuring a redox active ligand, H-dpaq (H-dpaq = 2-[bis(pyridine-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate), catalyses four-electron reduction of dioxygen by decamethylferrocene (Fc*) in the presence of trifluoroacetic acid (CF3COOH) in acetone at 298 K. No catalytic oxygen reduction was observed in the presence of stronger Brønsted acids than CF3COOH, such as perchloric acid (HClO4) or trifluoromethanesulphonic acid (HOTf). In contrast, facile catalytic reduction of O2 occurs by Fc* with 1 and HClO4 or HOTf in dimethylformamide (DMF). The use of CF3COOH as the proton source in DMF results in the suppression of O2 reduction under otherwise identical reaction conditions. While the O2 reduction reactions in DMF are linearly dependent on the pKa of Brønsted acids, the acid dependence on catalytic O2-reduction reactivity by 1 in acetone showed complete reversal. Cyclic voltammetry studies using p-chloranil as the probe substrates in the presence of acids in the solvents reveal that the strengths of the protonic acids increase significantly in acetone compared to that in DMF. The amidate-N in [CuII(dpaq)](ClO4) (1) undergoes protonation in the presence of HClO4 or HOTf in DMF to form [CuII(H-dpaq)]2+ (1-H+), but not in the presence of CF3COOH. Enhanced acid strength of CF3COOH in acetone, however, effectively protonates 1 and triggers O2 reduction. Protonation of 1 with HClO4 or HOTf in acetone results in the change of its coordination environment, and this protonated species does not trigger O2 reduction. Detailed kinetic studies indicate that 1-H+ undergoes reduction by two-electrons and the reduced species binds O2 to form a Cu(II)-superoxo intermediate. This is followed by a rate-determining proton-coupled electron-transfer (PCET) reduction to generate the Cu(II)-hydroperoxo intermediate. While catalytic O2 reduction in acetone occurs predominantly via a 4e-/4H+ pathway, product selectivity (H2O vs. H2O2) in DMF depends upon the concentration of the reductant (Fc*). While dioxygen reduction to H2O2 is favoured at low [Fc*], mechanistic studies suggest that O2 reduction with high [Fc*] proceeds via a [2e- + 2e-] mechanism, where the released H2O2 during catalysis is further reduced to water.
Collapse
Affiliation(s)
- Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India.
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India.
| | - Saikat Das
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India.
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India.
| |
Collapse
|
12
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
13
|
Honig HC, Elbaz L. Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine. ChemElectroChem 2023. [DOI: 10.1002/celc.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hilah C. Honig
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| | - Lior Elbaz
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| |
Collapse
|
14
|
Opallo MW, Dusilo K, Warczak M, Kalisz J. Hydrogen Evolution, Oxygen Evolution and Oxygen Reduction at Polarizable Liquid|Liquid Interfaces. ChemElectroChem 2022. [DOI: 10.1002/celc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcin Wojciech Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences Department of Electrode Processes Kasprzaka 44/52 01-224 Warszawa POLAND
| | - Katarzyna Dusilo
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Magdalena Warczak
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Justyna Kalisz
- University of Warsaw: Uniwersytet Warszawski Chemistry POLAND
| |
Collapse
|
15
|
Wu Y, Bu X, Ke Y, Sun H, Li J, Chen L, Cui W, He Y, Wu L. Insight into the Stereocontrol of DNA Polymerase‐Catalysed Reaction by Chiral Cobalt Complexes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Xinya Bu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongqi Ke
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710065 People's Republic of China
| | - Jingyao Li
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Lu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Wei Cui
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yujian He
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Li Wu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 People's Republic of China
| |
Collapse
|
16
|
Dummert SV, Saini H, Hussain MZ, Yadava K, Jayaramulu K, Casini A, Fischer RA. Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications. Chem Soc Rev 2022; 51:5175-5213. [PMID: 35670434 DOI: 10.1039/d1cs00550b] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While there is a tremendous amount of scientific research on metal organic frameworks (MOFs) for gas storage/separation, catalysis and energy storage, the development and application of biocompatible MOFs still poses major challenges. In general, they can be synthesised from various biocompatible linkers and metal ions but particularly cyclodextrins (CDs) as cyclic oligosaccharides are an astute choice for the former. Although the field of CD-MOF materials is still in the early stages and their design and fabrication comes with many hurdles, the benefits coming from CDs built in a porous framework are exciting. Versatile host-guest complexation abilities, high encapsulation capacity and hydrophilicity are among the valuable properties inherent to CDs and offer extended and novel applications to MOFs. In this review, we provide an overview of the state-of-the-art synthesis, design, properties and applications of these materials. Initially, a rationale for the preparation of CD-based MOFs is provided, based on the chemical and structural properties of CDs and including their advantages and disadvantages. Further on, the review exhaustively surveys CD-MOF based materials by categorising them into three sub-classes, namely (i) CD-MOFs, (ii) CD-MOF hybrids, obtained via combination with external materials, and (iii) CD-MOF-derived materials prepared under pyrolytic conditions. Subsequently, CD-based MOFs in practical applications, such as drug delivery and cancer therapy, sensors, gas storage, (enantiomer) separations, electrical devices, food industry, and agriculture, are discussed. We conclude by summarizing the state of the art in the field and highlighting some promising future developments of CD-MOFs.
Collapse
Affiliation(s)
- Sarah V Dummert
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Mian Zahid Hussain
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Khushboo Yadava
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India. .,Indian Institute of Science Education and Research Kolkata, Nadia 741246, India
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Angela Casini
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| |
Collapse
|
17
|
Wang M, Wu Y, Li X, Wang Y, Wu X, Li G, Yang L, Lin Y. Achieving a highly efficient oxygen reduction reaction via a molecular Fe single atom catalyst. NANOSCALE 2022; 14:8255-8259. [PMID: 35642926 DOI: 10.1039/d2nr01326f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular Fe phthalocyanine (FePc) is successfully anchored on a defective mesoporous carbon framework for the highly efficient oxygen reduction reaction (ORR) with a half-wave potential of 0.86 V (vs. RHE) and a limited current density of 5.40 mA cm-2. DFT calculations further suggest that the non-planar structure incorporating FePc can promote charge polarization and decrease the energy barrier.
Collapse
Affiliation(s)
- Ming Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yuxuan Wu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Xiaoyu Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yange Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Xingshun Wu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Guang Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Li Yang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
18
|
Hua Q, Madsen KE, Esposito AM, Chen X, Woods TJ, Haasch RT, Xiang S, Frenkel AI, Fister TT, Gewirth AA. Effect of Support on Oxygen Reduction Reaction Activity of Supported Iron Porphyrins. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qi Hua
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kenneth E. Madsen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Anne Marie Esposito
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xinyi Chen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richard T. Haasch
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Timothy T. Fister
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andrew A. Gewirth
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Lv B, Li X, Guo K, Ma J, Wang Y, Lei H, Wang F, Jin X, Zhang Q, Zhang W, Long R, Xiong Y, Apfel UP, Cao R. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angew Chem Int Ed Engl 2021; 60:12742-12746. [PMID: 33742485 DOI: 10.1002/anie.202102523] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/26/2023]
Abstract
Achieving a selective 2 e- or 4 e- oxygen reduction reaction (ORR) is critical but challenging. Herein, we report controlling ORR selectivity of Co porphyrins by tuning only steric effects. We designed Co porphyrin 1 with meso-phenyls each bearing a bulky ortho-amido group. Due to the resulted steric hinderance, 1 has four atropisomers with similar electronic structures but dissimilar steric effects. Isomers αβαβ and αααα catalyze ORR with n=2.10 and 3.75 (n is the electron number transferred per O2 ), respectively, but ααββ and αααβ show poor selectivity with n=2.89-3.10. Isomer αβαβ catalyzes 2 e- ORR by preventing a bimolecular O2 activation path, while αααα improves 4 e- ORR selectivity by improving O2 binding at its pocket, a feature confirmed by spectroscopy methods, including O K-edge near-edge X-ray absorption fine structure. This work represents an unparalleled example to improve 2 e- and 4 e- ORR by tuning only steric effects without changing molecular and electronic structures.
Collapse
Affiliation(s)
- Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
21
|
Lv B, Li X, Guo K, Ma J, Wang Y, Lei H, Wang F, Jin X, Zhang Q, Zhang W, Long R, Xiong Y, Apfel U, Cao R. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two‐Electron and Four‐Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie, Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
22
|
Growth and electrochemical stability of a layer-by-layer thin film containing tetrasulfonated Fe phthalocyanine. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Lei H, Wang Y, Zhang Q, Cao R. First-row transition metal porphyrins for electrocatalytic hydrogen evolution — a SPP/JPP Young Investigator Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of first-row transition metal complexes of tetrakis(pentafluorophenyl)porphyrin (1), denoted as 1-M (M [Formula: see text] Mn, Fe, Co, Ni, Cu, and Zn), were synthesized and examined as electrocatalysts for the hydrogen evolution reaction (HER). All these transition metal porphyrins were shown to be active for HER in acetonitrile using trifluoroacetic acid (TFA) as the proton source. The molecular nature and the stability of these metal porphyrins when functioning as HER catalysts were confirmed, and all catalysts gave Faradaic efficiency of >97% for H2 generation during bulk electrolysis. Importantly, by using 1-Cu, a remarkably high turnover frequency (TOF) of 48500 s[Formula: see text] 1-Cu the most efficient among this series of metal porphyrin catalysts. This TOF value also represents one of the highest values reported in the literature. In addition, electrochemical analysis demonstrated that catalytic HER mechanisms with these 1-M complexes are different. These results show that with the same porphyrin ligand, the change of metal ions will have significant impact on both catalytic efficiency and mechanism. This work for the first time provides direct comparison of electrocatalytic HER features of transition metal complexes of tetrakis(pentafluorophenyl)porphyrin under identical conditions, and will be valuable for future design and development of more efficient HER electrocatalysts of this series.
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
24
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
25
|
Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts 2020. [DOI: 10.3390/catal10050475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Scientific and technological innovation is increasingly playing a role for promoting the transition towards a circular economy and sustainable development. Thanks to its dual function of harvesting energy from waste and cleaning up waste from organic pollutants, microbial fuel cells (MFCs) provide a revolutionary answer to the global environmental challenges. Yet, one key factor that limits the implementation of larger scale MFCs is the high cost and low durability of current electrode materials, owing to the use of platinum at the cathode side. To address this issue, the scientific community has devoted its research efforts for identifying innovative and low cost materials and components to assemble lab-scale MFC prototypes, fed with wastewaters of different nature. This review work summarizes the state-of the-art of developing platinum group metal-free (PGM-free) catalysts for applications at the cathode side of MFCs. We address how different catalyst families boost oxygen reduction reaction (ORR) in neutral pH, as result of an interplay between surface chemistry and morphology on the efficiency of ORR active sites. We particularly review the properties, performance, and applicability of metal-free carbon-based materials, molecular catalysts based on metal macrocycles supported on carbon nanostructures, M-N-C catalysts activated via pyrolysis, metal oxide-based catalysts, and enzyme catalysts. We finally discuss recent progress on MFC cathode design, providing a guidance for improving cathode activity and stability under MFC operating conditions.
Collapse
|
26
|
Lori O, Elbaz L. Recent Advances in Synthesis and Utilization of Ultra‐low Loading of Precious Metal‐based Catalysts for Fuel Cells. ChemCatChem 2020. [DOI: 10.1002/cctc.202000001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oran Lori
- Chemistry DepartmentBar-Ilan University Ramat-Gan 5290002 Israel
| | - Lior Elbaz
- Chemistry DepartmentBar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
27
|
Macedo LJA, Hassan A, Sedenho GC, Crespilho FN. Assessing electron transfer reactions and catalysis in multicopper oxidases with operando X-ray absorption spectroscopy. Nat Commun 2020; 11:316. [PMID: 31949281 PMCID: PMC6965173 DOI: 10.1038/s41467-019-14210-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Here we propose an experimental setup based on operando X-ray absorption spectroscopy (XAS) to understand why copper-containing oxidoreductase enzymes show exceptional performance as catalysts for the oxygen reduction reaction (ORR). An electrode based on carbon nanoparticles organized in mesoporous structures with bilirubin oxidase (BOD) was developed to be used in a home-made operando XAS electrochemical cell, and we probed the electron transfer under ORR regime. In the presence of molecular oxygen, the BOD cofactor containing 4 copper ions require an overpotential about 150 mV to be reduced as compared to that in the absence of oxygen. A second electron transfer step, which occurs faster than the cofactor reduction, suggests that the cooper ions act as a tridimensional redox active electronic bridges for the electron transfer reaction. Understanding enzyme active sites can elucidate fundamental enzymatic reaction pathways and inform designs for synthetic catalysts. Here, authors employ operando X-ray absorption spectroelectrochemistry to assess copper ions in bilirubin oxidase during oxygen reduction electrocatalysis.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil.
| |
Collapse
|
28
|
Honig HC, Friedman A, Zion N, Elbaz L. Enhancement of the oxygen reduction reaction electrocatalytic activity of metallo-corroles using contracted cobalt(iii) CF3-corrole incorporated in a high surface area carbon support. Chem Commun (Camb) 2020; 56:8627-8630. [DOI: 10.1039/d0cc03122d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular ORR catalysts based on metallo-corrole with the smallest meso-substituent reported to date, Co(iii)CF3-corrole, was synthesized and compared to the well-studied Co(iii)tpf-corrole when adsorbed on a high surface area carbon support.
Collapse
Affiliation(s)
| | | | - Noam Zion
- Chemistry Department
- Bar-Ilan University
- Ramat-Gan
- Israel
| | - Lior Elbaz
- Chemistry Department
- Bar-Ilan University
- Ramat-Gan
- Israel
| |
Collapse
|
29
|
Ngo HT, Lewis JEM, Payne DT, D’Souza F, Hill JP, Ariga K, Yoshikawa G, Goldup SM. Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. Chem Commun (Camb) 2020; 56:7447-7450. [DOI: 10.1039/c9cc09681g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rotaxane as sacrificial template to avoid metal insertion in porphyrinoids during copper catalyzed click reaction.
Collapse
Affiliation(s)
- Huynh Thien Ngo
- Olfactory Sensors Group
- Center for Functional Sensor & Actuator (CFSN)
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - James E. M. Lewis
- Department of Chemistry
- University of Southampton
- Southampton
- UK
- Department of Chemistry
| | - Daniel T. Payne
- International Center for Young Scientists (ICYS)
- National Institute of Materials Science (NIMS)
- Ibaraki
- Japan
| | | | - Jonathan P. Hill
- International Centre for Materials Nanoarchitectonics
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Katsuhiko Ariga
- International Centre for Materials Nanoarchitectonics
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
- Department of Advanced Materials Science
| | - Genki Yoshikawa
- Olfactory Sensors Group
- Center for Functional Sensor & Actuator (CFSN)
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | |
Collapse
|
30
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
31
|
Liu Q, Wang J, Zhang J, Yan Y, Qiu X, Wei S, Tang Y. In situ immobilization of isolated Pd single-atoms on graphene by employing amino-functionalized rigid molecules and their prominent catalytic performance. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02110h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isolated Pd single atoms anchored on graphene demonstrate a catalytic activity that is 21.3 times higher than that of Pd/C in the RhB hydrogenation reaction.
Collapse
Affiliation(s)
- Qicheng Liu
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jingchun Wang
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jingzi Zhang
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yawei Yan
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Shaohua Wei
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
- Yancheng Institute of Technology
| | - Yawen Tang
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| |
Collapse
|
32
|
Zion N, Cullen DA, Zelenay P, Elbaz L. Heat‐Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019; 59:2483-2489. [DOI: 10.1002/anie.201913521] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Noam Zion
- Bar-Ilan University Ramat-Gan 52900 Israel
| | | | - Piotr Zelenay
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lior Elbaz
- Bar-Ilan University Ramat-Gan 52900 Israel
| |
Collapse
|
33
|
Zion N, Cullen DA, Zelenay P, Elbaz L. Heat‐Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Noam Zion
- Bar-Ilan University Ramat-Gan 52900 Israel
| | | | - Piotr Zelenay
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lior Elbaz
- Bar-Ilan University Ramat-Gan 52900 Israel
| |
Collapse
|
34
|
Raggio M, Mecheri B, Nardis S, D'Epifanio A, Licoccia S, Paolesse R. Metallo-Corroles Supported on Carbon Nanostructures as Oxygen Reduction Electrocatalysts in Neutral Media. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michele Raggio
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Barbara Mecheri
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Sara Nardis
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandra D'Epifanio
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Silvia Licoccia
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Roberto Paolesse
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
35
|
Gonen S, Lori O, Fleker O, Elbaz L. Electrocatalytically Active Silver Organic Framework: Ag(I)‐Complex Incorporated in Activated Carbon. ChemCatChem 2019. [DOI: 10.1002/cctc.201901604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shmuel Gonen
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Oran Lori
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ohad Fleker
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Lior Elbaz
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
36
|
Friedman A, Saltsman I, Gross Z, Elbaz L. Electropolymerization of PGM-free molecular catalyst for formation of 3D structures with high density of catalytic sites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|